15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Regular Languages, Axiomatically

Matt Fredrikson®

Carnegie Mellon University
Lecture 6
February 2, 2023

1 Introduction

On Tuesday we began our journey towards understanding the theory of program cor-
rectness and its verification. We introduced a small imperative language, and specified
its semantics in terms of how the initial state of a program relates to its final state(s).
To formalize the semantics, we essentially introduced a set of axioms that encode our
understanding of the effects that a program will have on its state as it executes.

To gain more familiarity with these ideas, and relate them to what we have learned
about specification in Why3, in this lecture we will formalize the semantics of regular
expressions in a similar way. We will them implement and verify a regular expression
matcher using Brzozowski derivatives [?]. It is an verification exercise for relatively
complex program, and we will also practice testing our axioms. Just like testing code,
this is generally good practice because incorrect specifications may render verification
meaningless. There is another purpose to practice regular expressions: they form a
structure called a Kleene algebra [?], a structure that is echoed in our language of pro-
grams. We will make that connection more precise in a future lecture.

Learning goals. After this lecture, you should be able to:
¢ Specify the semantics of regular expressions using axioms

¢ Formalize these semantics in Why3

“Closely adapted from notes written by Frank Pfenning in Spring 2022

http://www.cs.cmu.edu/~15414

L6.2 Regular Languages, Axiomatically

¢ Test the specification of these semantcs

¢ Implement and verify an algorithm for matching regular expressions

2 Specifying the Meaning of Regular Expressions

For simplicity, we use integers to represent the basic type of characters. A word is just a
list of characters.

1 module RegExp

2 use int.Int

3 use list.List

4 use list.Append

6 type char = int

7 type word = list char
8

9 end

Regular expressions r over characters a are usually defined in the following BNF nota-
tion
rou= al|l|lri-re|0]ry+re|rt

In WhyML, the following type definition precisely expresses this grammar.

I type regexp = Char char (¥ single character *)
2 | One (¥ empty string *)
| Times regexp regexp (* concatenation *)
| Zero (¥ empty set *)
5 | Plus regexp regexp (¥ unton *)
6 | Star regexp (¥ repetition *)

2.1 The Language Generated by a Regular Expression

A regular expression defines a language, £(r) which is a set of words over the alphabet
of characters. Rather than explicitly using sets, we define a predicate

| predicate mem (w : word) (r : regexp)

such that mem w r is true iff w € £(r). The key step is now to translate the mathematical
definition of £(r) into axioms describing the properties of mem.

Characters. Mathematically, we define £(a) = {a}. Axiomatically, it would be cor-
rect but too weak to simply state

| axiom mem_char : forall a. mem (Cons a Nil) (Char a) (* too weak! *)

It only expresses that a € £(a), or, in other words, {a} C L(a). To express the equality
we should state

| axiom mem_char : forall w a. mem w (Char a) <-> w = Cons a Nil

15-414 LECTURE NOTES MATT FREDRIKSON'

Regular Languages, Axiomatically L6.3

Empty word. We define £(1) = {¢}, where ¢ represents the empty word. As an axiom:

| axiom mem_one : forall w. mem w One <-> w = Nil

Concatenation. We define £(r; -r2) = {w; wa | w1 € L(r1) Awe € L(r2)}. To obtain a
suitable axiom we need to say that a word w € L(r; - rp) iff w can be decomposed into
wy wa such that wy € £(r1) and wy € L(r2). This requires an existential quantifier.

| axiom mem_times : forall w rl r2.
2 mem w (Times ril r2)
<-> exists wil w2. w = w1l ++ w2 /\ mem wil r1 /\ mem w2 r2

Here we use list concatenation ++ from the 1ist.Append module.

Empty set. We define £(0) = { }. For consistent style we define

| axiom mem_zero : forall w. mem w Zero <-> false

but we could have said equivalently Vw.not (mem w Zero)
Union. We define £(r1 + r2) = L(r1) U L(rz2). In axiomatic form:

I axiom mem_plus : forall w rl r2.
2 mem w (Plus rl r2) <-> mem w rl \/ mem w r2

Repetition. We can defined inductively that £(r*) = L(e + r - r*). Expanding it, we

would get
axiom mem_starO : forall w r.
2 mem w (Star r)
<-> w = Nil \/ exists wl w2. w = wl ++ w2
4 /\ mem wi r /\ mem w2 (Star r)

A difficulty here appears to be the fact that if w; = ¢ then ws = w and the question
if w € r* comes again down to w € r*. While there is nothing wrong with that in
an inductive definition, the automated provers supporting Why3 seem to have some
problems of using it effectively. But we can observe that there is really no point of
using this property when w; = ¢ since it does not add to the set £(r*). So we can
restrict the axiom to non-empty words matching r without affecting £(r*).

axiom mem_starl : forall w r.
2 mem w (Star r)
<-> w = Nil \/ exists a wil w2. w = Cons a wil ++ w2
4 /\ mem (Cons a wil) r /\ mem w2 (Star r)

This axiom has the helpful property that when the regular expression r* recurs on the
right-hand side, the string w is shorter than w on the left-hand side. So progress is be-
ing made in more than one way: when we read the clauses of the definition of mem w r
(expressed via our axioms) from left to right, either the regular expression becomes
smaller, or the regular expression stays the same but then the word becomes shorter.

15-414 LECTURE NOTES MATT FREDRIKSON?

L6.4 Regular Languages, Axiomatically

Alternatively, we could have used the solution from while loops and specified that
w € r* iff there exists an n > 0 such that w € ™ and then define the n-fold iteration r"
by induction on n. We used the first solution in part to demonstrate a different way to
make the inductive nature of definitions explicit.

3 Regular Expression Matching

The goal of this section will be to implement a verified matcher for regular expres-
sions. We use the very elegant algorithm using Brzozowski derivatives [?] which has
more recently been reexamined from the practical perspective by Owens, Reppy, and
Turon [?]. We do not consider the translation to finite-state automata or the efficiency
improvements by Owens et al., just the basic algorithm.

Besides the intrinsic elegance of the algorithm, the main purpose of this exercise is
to exemplify effective logical specification for relatively complex types such as regular
expressions.

3.1 Testing the Specification

Before we get into the algorithm, let’s test the specification of the meaning of regular
expressions as sets of words over a given alphabet. For simplicity, we represented the
alphabet as just integers, and words as list of integers. We only give two sample axioms
here (see regexp.mlw for the complete list.

1 type char = int
> type word = list int

4 type regexp = Char char

| One

6 | Times regexp regexp
| Zero
| Plus regexp regexp
[

Star regexp

11 predicate mem (w:word) (r:regexp)

13 axiom mem_char : forall w a.

14 mem w (Char a) <-> w = Cons a Nil
15

16 axiom mem_plus : forall w rl r2.

17 mem w (Plus rl r2) <-> mem w rl \/ mem w r2

19 axiom mem_starl : forall w r.

20 mem w (Star r) <-> w = Nil \/ exists a wl w2. w = Cons a wl ++ w2

21 /\ mem (Cons a wil) r /\ mem w2 (Star r
)

23 (¥ ...more axzioms.. *)

15-414 LECTURE NOTES MATT FREDRIKSON?

http://www.cs.cmu.edu/~15414/lectures/06-dynamiclogic/regexp.mlw

Regular Languages, Axiomatically L6.5

A first way to test is if Why3 can prove that w € L(r) for some specific w and r. Such
proofs are generally difficult, since the logical specification doesn’t imply an particular
algorithm for regular expression matching, so we want to pick small examples. Here is
one that the system can prove:

1 goal testl : mem (Cons O (Cons 1 Nil)) (Star (Plus (Char 0) (Char 1)))

It was reassuring that when we made an error and forget the Star, the proof attempt
failed as it should.

The keyword goal explicitly introduces a formula that Why3 has to prove. The fact
that it has been proved is not exploited subsequently. That may be important because
too many random facts about mem may pollute the search space in the verification of
the functions we care about. When we need to introduce explicit lemmas because the
provers cannot verify something directly, we use instead lemma name : P which proves
P and then assumes it for the remainder of the verification.

As mentioned in the introduction, regular expressions form a Kleene algebra that sat-
isfies a number of laws. Here are three simple examples:

0+r = r 0 is the unit of +
r1-(rg-r3) = (r1-72)-73 concatenation is associative
(r*)* = r* iteration is idempotent

These are justified by equations between the sets denoted by the regular expressions on
both sides. We can ask Why3 to prove them as a way of testing the axioms.

I goal plus_zero : forall w r.
2 mem w (Plus Zero r) <-> mem W T
1 goal times_assoc : forall w rl r2 r3.

mem w (Times rl (Times r2 1r3)) <-> mem w (Times (Times rl r2) r3)

7 (¥ fails to prove, even though true *)

8 (*

9 goal star_star : forall w 7.

10 mem w (Star (Star r)) <-> mem w (Star r)
11 %)

It turns out that Why3 can prove the first two, but not the last. That’s not necessarily
a black mark: we would need to investigate further what the proof actually looks like,
and whether we can guide Why3 to find it with appropriate lemmas.

3.2 Matching Regular Expressionsx with Derivatives

One basic problem for designing regular expression matcher is the definition of con-
catenation:

w € L(ry-1re) iff w=wjwe with w; € L(r;) and we € L(r2)

The question here is how to find the split of w into two subwords. In order to avoid this
kind of guess we want to go through the word letter by letter from left to right. The

15-414 LECTURE NOTES MATT FREDRIKSON*

L6.6 Regular Languages, Axiomatically

main function matching a word against a regular expression would be based on two
auxiliary functions nullable 7 and 9, and the following definitions:

g€ L(r) iff nullabler
aw € L(r) iff w e L(,r)

If we can devise function nullable r and J,r then top-level matching function is easy to
define since we terminate in the clause for the empty word ¢ and the word becomes
smaller reading the second clause from left to right.

3.3 Writing the Matcher
Let’s recall the key definitions and for now just specify the matcher and the auxiliary
functions it uses.

I let rec nullable (r:regexp) : bool =
ensures { result <-> mem Nil r }

N

5 let rec deriv (a:char) (r:regexp) : regexp =
6+ ensures { forall w. mem (Cons a w) r <-> mem w result }

9 let rec re_match (w:word) (r:regexp) : bool =
10 ensures { mem w r <-> result }
11

Before writing deriv and nullable we can actually write an verify re_match, which
should reassure us our general approach will eventually succeed.

I let rec re_match (w:word) (r:regexp) : bool =

2> variant { w }

3 ensures { mem w r <-> result }

4 match w with

5 | Nil -> nullable r

5 | Cons a w’ -> re_match w’ (deriv a r)
7 end

For this verification we need a new form of the variant contract. It takes here not an
integer quantity but a value of recursive type, namely w : word where word = listint.
Such a variant declaration for a function has to verify that all recursive calls will be on
structurally smaller expressions of the given type. In the case of lists, it could be the
tail, the tail of the tail, etc. This function can be verified since v’ is the tail of w.

3.4 Deciding Nullability

We specified nullable with
e€ L(r) iff nullabler

From this, its relatively straightforward to synthesize the defining equations for nullable r,
depending on the regular expression r. A single character a or the empty set 0 obviously

15-414 LECTURE NOTES MATT FREDRIKSON?

Regular Languages, Axiomatically L6.7

do not generate the empty word. On the other hand, 1 and r* do, by their definition. A
concatenation ry - 2 generates the empty word if both 1 and 3 do, and a union r; + 7
if either r; or ro do. This gives us the following definition, which clearly terminates
because r decreases in each recursive call.

1 let rec nullable (r:regexp) : bool =

variant { r }
ensures { result <-> mem Nil r }

@ N

4 match r with

5 | Char _a -> false

6 | One -> true

7 | Times rl r2 -> nullable rl && nullable r2
8 | Zero -> false

9 | Plus r1 r2 -> nullable rl1l || nullable r2
10 | Star _r -> true

11 end

And, indeed, this function is easily verified against the axioms for mem. We use an
underscore ‘_" at the beginning of a variable that does not occur in its scope in order to
prevent a spurious warning from the compiler.

3.5 Computing the Brzozowski Derivative

We specified the Brzozowski derivate of a regular expression r with respect to a char-
acter a, written as d,r, with

aw € L(r) iff we L(Dyr)

Remarkably, such a derivative exists: if a language is regular (that is, is generated by a
regular expression), then the language of postfixes of any character a is again regular.
Moreover, we can effectively compute J,7.

As for nullable, we want to analyze the structure of the regular expression and see
if we can find a way to compute the derivative. We start by defining the derivative in
mathematical notation.

O = 1

Oab =0 fora # b

Og 1 = 0

Oa(r1-12) = (O4r1)-re if not nullable(ry)

The last line is the most interesting. If r; does not generate the empty string, then
the character a must be matched by r;. The rest of the word is then matched by 9,71
followed by 7. But what if r; is nullable? Then it is also possible that a is at the
beginning of the word generated by r2. So we continue:

Oa(r1-m2) = (Ogr1) - 12 + Ogra if nullable(ry)
9,0 = 0

Oa(r1+12) = (9ar1) + (Oar2)

0a (1) = (Ogr) - r*

15-414 LECTURE NOTES MATT FREDRIKSON®

L6.8

Regular Languages, Axiomatically

The last line just says that for a w € L(r*) the first a has to be matched by a copy of .
We now observe that in each case any appeal to J, on the right-hand side is on a

smaller regular expression. Translating this into WhyML is routine.

G o W N =

11
12

13

let rec deriv (a:

ensures { forall
variant { r }
match r with
| Char b ->
| One ->
| Times r1 r2 ->

| Zero ->
| Plus r1 r2 ->
| Star r ->
end

char) (r:regexp) : regexp =

w. mem (Cons a w) r <-> mem w result 1}

if a = b then One else Zero
Zero
if nullable ril

then Plus (Times (deriv a rl1l) r2) (deriv a r2)

else Times (deriv a rl) r2
Zero

Plus (deriv a r1) (deriv a r2)
Times (deriv a r) (Star r)

The complete live-code file with the verified regular expression matcher can be found
in regexp.mlw.

References

15-414 LECTURE NOTES

MATT FREDRIKSON’

http://www.cs.cmu.edu/~15414/lectures/06-dynamiclogic/regexp.mlw

	Introduction
	Specifying the Meaning of Regular Expressions
	The Language Generated by a Regular Expression

	Regular Expression Matching
	Testing the Specification
	Matching Regular Expressionsx with Derivatives
	Writing the Matcher
	Deciding Nullability
	Computing the Brzozowski Derivative

