Program Verification
(Rosen, Sections 5.5)
e

TOPICS
* Program Correctness
 Preconditions & Postconditions
* Program Verification

* Assignments

« Composition

e Conditionals

* Loops

Proofs about Programs

 Why study logic?
* Why do proofs?

* Because we want to prove properties of
programs

— In particular, we want to prove properties of
variables at specific points in a program

Isn’t testing enough?

* Assuming the program compiles, we perform
some amount of testing.

* Testing shows that for specific examples the
program seems to be running as intended.

* Testing can only show existence of some bugs
but cannot, in general, exhaustively identify all of
them.

e Verification can be used to prove the correctness
of the program with any input.

Program Verification

* We consider a program to be correct if it produces the
expected output for all possible (combinations of)
inputs.

 Domain of input values can be very large, how many
possible values of an integer?
_231_231_1

 Domain of doubles even larger!

* Instead we can formally specify program behavior,
then use techniques for inferring correctness.

Program Correctness Proofs

* Two parts:

— Correct answer when the program terminates
(called partial correctness)

— The program does terminate

e We will only do part 1

— Prove that a method is correct if it terminates

* Part 2 has been shown to be impossible in
general! (Halting problem.)

Predicate Logic and Programs

* Variables in programs are like variables in
predicate logic:

— They have a domain of discourse (data type)

— They have values (drawn from the data type)
e Variables in programs are different from

variables in predicate logic:

— Their values change over time

Assertions

* Two parts:

— Initial Assertion: a statement of what must be true
about the input values or values of variables at the
beginning of the program segment

e E.g Method that determines the sgrt of a number, requires
the input (parameters) to be >=0

— Final Assertion: a statement of what must be true
about the output values or values of variables at the
end of the program segment

* E.g. What is the final result after a call to the method?

Preconditions and PostConditions

—_
* Initial Assertion: called the - Pre-conditions
precondition . before code executes !
X =1 i
......................... ———
. . {
* Final Assertion: called the // prgm code
postcondition } I
~ Post-conditions
* Note: these assertions can be represented as after code executez
Z=-

propositions or predicates, OR as asserts in your
program!

Hoare Triple

14
* A program, or program segment, S,
is said to be partially correct ~ Pre-conditions
with respect to the before code executes.
initial assertion (precondition) p 1p

and the final assertion (postcondition) q {

if, whenever p is true
for the input values of S 1 |

and S terminates, ~ Post-conditions
then q is true for the output values of S.” after code executes

Program Verification
Example #1: Assighment Statements

S
3/ ‘,,,zf:
e i
M .
Aoraicati

e Assume that our proof system already includes
rules of arithmetic...

e Consider the following code:

2;
X + vy,

y
Z

What is true
BEFORE code

* Precondition: p(x), x =1
* Postcondition: q(2), 2=3 oo~ (" \whatis true

AFTER code
executes

Program Verification
Example #1: Assighment Statements

* Prove that the program segment:
y =2

Z=X+Y;
* |s correct with respect to
precondition: x=1
postcondition: z=3
e Suppose x =1 is true as program begins
— Then y is assigned the value of 2
— Then z is assigned the value of 3 (x +y =1 + 2)

— Thus, the program segment is correct with regards to
the precondition x = 1 and postconditionz =3

Program Verification
Example #2: Assignment Statements

¥ A
M .
Applications

* Prove that the program segment:
X=2;

Z=Xx*y,
* |s correct with respect to
precondition:y >=1
postcondition: z >=2
 Supposey >=1istrue as program begins
— Then x is assigned the value of 2

— Then z is assigned the value of x * y which is 2*(y>=1)
which makes z >=2

— Thus, the program segment is correct for precondition
y >=1 and postconditionz >=2

RUIe 1 Pre-conditions

 before code executes :

Composition Rule j,p
{

* Once we prove correctness of /I prgm code: S1
program segments, we can } I
combine the proofs together to ~ Postcondtions |
prove correctness of an entire |Sif%:.rc(;idd?tiz);e:0urti;té

* This is like the hypothetical {
syllogism inference rule, or \ l prgm code: 52
direct proof in Proof Techniques &

. Post-conditions
 after code executes |

Program Verification

Example #1: Composition Rule

T ———
* Prove that the program segment (swap):

* |s correct with respect to
precondition: x=7,y=5
postcondition: x =5,y =7

Program Verification
Example #1 (cont.): Composition Rule

e
Suppose x =7 and y = 5 is true as program begins
— // Precondition: x=7,y =5
* =X
—//t=7,x=7,y=5
© x=vy
—//t=7,x=5,y=5
—y=t
— // Postcondition: t=7,x=5,y=7

Thus, the program segment is correct with regards to the
precondition thatx=7 & y=5 and

postconditionx=5andy =7

Rule 2:
Conditional Statements

if (condition)
statement;
With precondition: p and postcondition: q
* Must show that

— Case 1: when p (precondition) is true and condition is true
then g (postcondition) is true, when S (statement) terminates

OR
— Case 2: when p is true and condition is false, then q is true
(S does not execute)

Conditional Rule:
Example #1

‘\? P21 7';
,\4/' i %
Discrete
Applications

Verify that the program segment:
if (x>y)y=x
Is correct with respect to precondition T and postcondition

thaty >=x Precondition T (true) is the weakest possible
precondition, and nothing can be concluded from it.

Consider the two cases...
1. Condition (x >y) is true, theny = x
2. Condition (x >y) is false, then that means x <=y

Thus, if the precondition is true, then y == x or x <=y which
means that the postcondition that y >=x is true

Conditional Rule:
Example #2

Verify ttat the program segment:

if(x%2==1)x=x+1

Is correct with respect to precondition T (state of program is
correct as enter this program segment) and postcondition that x is
even

Consider the two cases...
1. Condition (x % 2 equals 1) is true, then x is odd. If x is
odd, then adding 1 means x is even
2. Condition (x % 2 equals 1) is false, then x is even.

Thus, if the precondition is true, then x is odd or x is even which
means that the postcondition that x is even is true

Conditional Rule:
Example #3 (in code form)

// pre: a>0 AND b>0 AND p + a*b == val
if (a%2==1) p+=b;
a/=2;
b*=2;
// post: p + a*b == val
if a is even, post holds, because at pre: a*b == at post: (a/2) * (b*2)
if a is odd, when we divide odd a by 2 and multiply b by 2,
at pre: a*b == at post: a*b —b, but then b is added to p
try it for p=0,a=3, b=2 at pre, try it for p=0,a=2, b=5 at pre

Rule 2a:

Conditional with Else
—

if (condition)
S1;
else
S2;
* Must show that

— Case 1: when p (precondition) is true and condition is
true then g (postcondition) is true, when S1
(statement) terminates

OR

— Case 2: when p is true and condition is false, then q is
true, when S2 (statement) terminates

Conditional Rule:

Example #4
Verity the program segment:
/[pre: T
if (x < 0) abs = -x;
else abs = x;

// post: abs = | x|
1. Condition (x < 0) is true, then x is negative. Assigning abs

the negative of a negative number, means abs is the
absolute value of x

2. Condition (x < 0) is false, then x >= 0 which means x is
positive. Assigning abs a positive number, means abs is the
absolute value of x

How to we prove loops correct?

General idea: a loop invariant allows us to make
a static observation (invariant) about a dynamic
phenomenon (loop)

* Find a property that is true before the loop

 Show that it must still be true after every
iteration of the loop, so it is true after the loop

* Also, the loop has terminated, so the loop
condition is false

Loop invariants

The loop condition and loop invariant allows us
to reason about the behavior of the loop:
<loop invariant>
while(condition){
<condition AND loop invariant>
S,
<loop invariant>

}

< not condition AND loop invariant>

In other words...

—_—t—
<loop invariant> If we can prove that
while(test){ . the loop invariant holds before the loop
and

<test AND loop the loop body keeps the loop invariant true

' iant> . . , . :
'”;’a”an i.e. <test AND loop invariant> S; <loop invariant>
<loop invariant> then we can infer that

}

< not test AND . not test AND loop invariant

| : : holds after the loop terminates
oop Invariant>

Example #1: loop index value

after loop
————
<precondition: n>0>
inti=0; We want to prove:
while (i < n){ i==n right after the loop
i =i+1;

} What is a good loop invariant?
<post condition: i==n > .

i==07

I==n"?

1<=n

loop index value after loop

// precondition: n>0
inti=0;
// i<=n loop invariant WHY TRUE?

while (i < n){

//i<n test passed So we can conclude:

// AND i==n right after the loop

// i<=n loop invariant
i++;

’

//i<=n loop invariant

}
//i>=n ANDi<=n = i==n

Example #2: summing

int total (int[] elements){
int sum =0,i =0, n = elements.length;
// invariant?
while (i < n){
// i<n and invariant?
sum += elements [i];
i++;

// invariant?
}
// i==n (previous example) AND invariant
// =2 sum == sum of int[] elements
return sum;

}

Summing
int totEI (int[] elements){

// pre elements.length > 0
int sum =0,i =0, n = elements.length;

// sum == sum of elements from 0 to i-1
while (i < n){

// sum == sum of elements 0..i-1

sum +=elements [i];

i++;

// sum == sum of elements 0..i-1

}

// i==n (previous example) AND

// sum has sum elements 0..i-1 = sum == sum of elements 0..n-1
// - sum == sum of int[] elements

Example #3: factorial

Given following program segment, what is the loop invariant for factorial?
// precondition: n >=1

i=1;

factorial = 1;

while (i < n) {

i++;

factorial *=1i;

Example #3: factorial

Given following program segment, what is the loop invariant for factorial?
// precondition: n>=1
i=1;
factorial = 1;
// i<= n AND factorial = i!
while (i < n) {
// i<n AND i<= n AND factorial == i!
i++;
factorial *=i;
// i<=n AND factorial == il
}

// i==n (example 1) and factorial == i! - factorial == n!

Example #4:
Egyptian multiplication

A B
19 5
/2 9 10 *2
/2 4 20 *2
/2 2 40 *2
/2 1 80 *2
throw away all rows with even A:
A B
19 5
10
80
add B's 95

--> the product !!

Tryiton7 * 8

left right P a
7 8 0 7
+=b: 8 3
+=b: 24 1
+=b: 56 0

Now try it on 8*7

16
32
64

The code:

// pre: left >=0 AND right >=0
int a=left, b=right, p=0; // and and b copies, p accumulating product

while (a!=0){
if (odd(a)) p+=b;
a/=2;

b*=2;

}
// post: p == left*right

Can we show it works?
Yes, loop invariants!!

// pre: left >=0 AND right >=0

int a=left, b=right, p=0; // and and b copies, p accumulating product
// p+(a*b) == left * right loop invariant

while (a!=0){
// al=0 and p+a*b == left*right loop condition and loop invariant
if (odd(a)) p+=b;
a/=2;
b*=2;
// p+(a*b) == left*right (see slide 19 conditional rule, example #3)
}

// a==0 and p+a*b == left*right = p == left*right

int representation 19*5

00101
10011

101 5
1010 10
00000

000000
1010000 80

1011111 95=64+31
Try iton 7*8 and 8*7

Summary: Loop Invariant
Reasoning

// precondition
// use precondition to show loop invariant true
while (b){
// b AND loop invariant
)
// use S to show loop invariant true

}

// not b AND loop invariant = conclusion

not b AND loop invariant: stronger than loop invariant alone.

