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Teaching Math More Effectively, 
Through Calculational Proofs 

David Gries and Fred B. Schneider 

Lower-level college math courses usually avoid using formalism, in both definitions 
and proofs. Later, when students have mastered definitions and proofs written 
largely in English, they may be shown how informal reasoning could be formalized, 
but the impression is left that such formalization is not worth the effort. The 
design of proofs is also not taught. Students see proofs and may be asked to 
develop a few themselves, but there is little or no discussion of principles or 
strategies for designing proofs. 

Few are happy with the results of these courses. Generally, students' reasoning 
abilities are poor, even after several math courses. Many students still fear math 
and notation, and the development of proofs remains a mystery to most. In short, 
students are not being equipped with the tools needed to employ mathematics in 
solving new problems. 

We believe that this state of affairs can be improved. This article describes our 
approach. 

THE INADEQUACY OF INFORMAL PROOFS. A proof of a theorem should 
provide evidence for belief in the validity of the theorem, where the evidence 
consists of facts (e.g. previously proved theorems) and an explanation of how they 
interact to convince. A good presentation of a proof should clearly indicate the 
facts and explain how they are combined. It should also make the proof appear so 
obvious that readers can see how it was developed, can explain it to others, and 
perhaps can prove other theorems in a similar fashion. 

Now look at the proof in Table 1, which was taken from a math text and is 
typical of informal proofs. First, note that this proof does not state the facts on 
which it rests. (For example, it says, "If y ¢ A, then, since y E A u B we must 
have y E B", but there is no reference to the theorem that justifies this inference.) 

TABLE 1. Conventional Proof of A u(B n C)=(A u B) n (A u C) 

We first show that A u(B n C)s(A u B) n (A u C). If x EA u(B n C), then either 
x eA or x E B n C. If x EA, then certainly x cA u B and x EA u C,so x e(A u B) n 
(A u C). On the other hand, if x c B n C, then x c B and x E C, so x EA u B and x c 
A u C,so x e(A u B) n (A u C). Hence, A u(B n C) 5 (A u B) n (A u C). 

Conversely, if y c (A u B) n (A u C), then y EA u B and y EA u C. We consider two 
cases: y EA and y C A. If y EA, then y EA u(B n C), and this part is done. If y ZA, 
then, since y EA u B we must have y E B. Similarly, since y EA u C and y CA, we have 
y E C. Thus, y E B n C, and this implies y c A U(B n C). Hence (A u B) n (A u C)c 
A U(B n C). The theorem follows. 

1995] 
691 

TEACHING MATH MORE EFFECTIVELY 

This content downloaded from 128.253.4.15 on Wed, 21 Aug 2013 10:19:54 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


p Vq -p V q 

<Distr. of v over -, p v (q a r)-p v q--p V r> 
p V (q - q) 

- < q--q-false> 

p V false 
<Identity of v, p v false--p> 

p 

Second, it is difficult to see precisely how the facts interact the sequence and 
subsequences of inferences and all the cae analyses in the proof cannot be easily 
digested. The structure of the proof is hidden by all the verbiage. One case analysis 
is presented in two paragraphs and others by sequential sentences within a 
paragraph; however, sequential sentences are also used to define steps common to 
all cases. Finally, this proof yields little insight into its development how did it 
arise? 

And yet, in spite of its inadequacies, this proof (and others like it) is held up as 
a model for students to emulate. 

CALCULATIONAL PROOFS IN AN EQUATIONAL LOGIC. Our thesis is that 
mathematics and rigorous thinking can be taught more effectively by first teaching 
the design of rigorous proofs using a formal logic. However, the choice of logic and 
the accompanying method of proof is critical to success. In our experience, an 
equational logic, which is based on equality and Leibniz's"substitution of equals 
for equals", is most suitable because it has the following characteristics. 

* Equational logic is easy to teach, since the style is already familiar to those 
who have had high-school algebra. 

* Equational logic provides an alternative to reasoning in English. Rarely do 
proofs in equational logic parrot informal English arguments. Instead, proofs 
are calculational, in that they are developed by calculating using the rules of 
the logic, much as one calculates to solve a problem in high-school algebra. 
Further, principles and strategies can be used to help discover theorems and 
proofs. 

* The rigorous use of equational logic need not lead to overwhelming complex- 
ity (as is the case with some logics). On the contrary, it is often a simplifying 
force. Typically, calculational proofs are shorter, simpler, and easier to 
remember than informal English proofs. 

* Equational logic is versatile it can be extended to a wide variety of mathe- 
matical domains. 

Table 2 contains a calculational proof of theorem p v q-p v q--p. Note 
that equivalence - is being treated associatively, so that this theorem can be 

TABLE 2. Equational proof of p v q--p v q _ p 

viewed either as (p v q- p v q) -- p or as p v q - (p v q - p). Symbol = 
is used conjunctionally: b = c = d is equivalent to b = c A c = d.l Use of associa- 
tivity of equivalence helps avoid formal detail without sacrificing rigor our 
notation is designed with an eye to preventing complexity from overwhelming. 

1Operator - is used for equality over booleans; = is used for equality over any type, including 
boolean. 
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Each step of the proof in Table 2 has the following form. 
E[V = P] 

= <P= Q) 
E[v = Q] 

Such a step shows equality of two formulas using the rule of '4substitution of equals 
for equals'. The hint between the two formulas shows the equality being used in 
the substitution (E[v = P] denotes expression E with every free occurrence of 
variable v replaced by expression P). Transitivity of equality allows us to conclude 
that the first and last formula of the proof of Table 2 are equal. 

Notice that the proof format makes it easy to find the facts on which the proof 
depends they are given within the angle brackets < and >. HereS we have written 
out the full text of each fact, but we usually use the name or number of an already 
proved theorem.2 

Explicit principles and strategies drove the development of the proof in Table 2. 
For exampleS one strategy for proving P - Q is to transform the more complicated 
of P and Q into the simpler one. In the proof, we viewed the formula to be proved 
as (p v q - p v q) - p and started with the more complicated, left-hand term. 
Second, the proof in Table 2 is "opportunity driven" or "forced", in that at each 
step, the shape of the formula almost dictates in a unique way what substitution to 
make. Here, the shape of the first line of the proof cries out for simplification 
using distribution of v over - . The second step is an equally obvious simplifica- 
tion, based on the shape of the formula. 

Table 3 gives our calculational proof of distributivit of set union over set 
intersection. In contrast to the proof of Table 1, this proof exhibits all the good 

TABLE 3. Calculational Proof of A U (B n C) = (A u B) n (A U C) 

Below, we prove v E A U (B n C)-v E (A u B) n (A u C). By Extensionality (the definition 
of equality of sets), we then conclude A U (B n c) = (A u B) n (A U C). 

v eA u (B n c) 
= <Definition of u > 

v sA v v eB n C 

= <Definition of n > 

v eA v (v eB A v E C) 
= <Distr. of v over A > 

(v E A v v E B) A (v E A v v E C) 
= <Definition of u, twice> 

(v sA U B) A (v eA u C) 
= <Definition of n > 

v E (A u B) n (A u C) 

qualities mentioned earlier. It refers to all the facts it uses (e.g. the definition of 
u ). Its structure is simple, with each step being clearly delineated. AndS it is based 

2 Formally, our logic consists of 15 axioms and 4 inference rules, and a theorem is either an axiom or 
a formula that is derived using the inference rules. The inference rules are Substitution of equals for 
equals (Leibniz), Transivity of equality, Substitution, and Equanimity: 

Leibniz: F P = Q then F E[z = P] = E[z = Q] 
Transitivity: F P = Q, Q = R then F P = R 
Substitution: F P then F P[z = Q] 
Equanimity: F P, P--Q then F Q 

1995] 693 TEACHING MATH MORE EFFECTIVELY 

This content downloaded from 128.253.4.15 on Wed, 21 Aug 2013 10:19:54 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


on a strategy one that is used over and over in mathematics: To prove something 
about operators (here, U and n ), eliminate them using their definitions, perform 
some manipulation, and reintroduce the operators. 

Anyone experienced in such calculational proofs will find the proofs of Tables 2 
and 3 obvious and straightforward and will have no difficulty reproducing them. 
And, although these proofs are rigorous (and could be checked by a mechanical 
proof checker), complexity does not overwhelm. 

Equational logic and the calculational approach can be extended to all domains 
typically taught in a first discrete math course e.g. set theory, mathematical 
induction, a theory of integers, functions and relations, combinatorics, and recur- 
rence relations. This is done by first defining the pure predicate calculus and then 
extending it by adding new types, presenting axioms that define the manipulative 
properties of the operations on those types, and building up a library of theorems. 

A key to making rigor and formalism palatable is to keep notation consistent 
and uniform. Mathematics employs a number of different notations for quantifica- 
tion see, for example, the left column of Table 4. We replace these different 
forms by a single notation for all quantifications. For any operator * that is 
associative, is symmetric, and has an identity, the notation3 

(*ilR.i: P.i) 

denotes the "accumulation" using operator * of the values of expression P.i over 

TABLE 4. A Uniform Notation for Quantification 

Conventional notation Uniform notation 

Li3=l i2 (+ill <i < 3:i2) 

(Vi).l < i < 3 b[i] = O (Aill < i < 3: b[i] = O) 

(3i).1 <i <3 Ab[i] =0 (vill <i <3:b[i]=0) 

usi (uill<i<3:Si) 
i=l 

all values of i that satisfy range-predicate R.i. For example, Table 4 gives the 
conventional notation and a more uniform notation for four different quantifica- 
tions. Other operators that can be used for * are multiplication of integers, reals, 
and complex numbers, b * c; union of sets, S U T; intersection of sets, S n T; 
minimum of two values, b S c (if z does not have an identity, axioms and theorems 
that deal with a falseirange R.i are not applicable); maximum of two values, b t c; 
and greatest common divisor, b gcd c. 

With a single notation, scope, free occurrence of a variable, and bound occur- 
rence of a variable can be defined for all quantifications just once. More impor- 
tantly, general axioms and theorems for manipulating quantifications can be 
introduced. The issue of quantification is thus simplified. 

After introducing rules for quantification, it is easy to introduce pure predicate 
calculus. Operators A and v are associative, are symmetric, and have identities, 

3Bound variable i can be annotated with a type to indicate the range of values it may assume. A 
discussion of types is outside the scope of this article. Also, we write R.i to denote application of 
function R to argument i; eliminating the traditional parentheses avoids clutter. 
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so (AilR.i: P.i) and (vilR.i: P.i) make sense. The first is universal quantification, 
more conventionally written as (VilR.i: P.i); the second is existential quantifica- 
tion, (3ilR.i: P.i). 

TEACHING THE CALCULATIONAL APPROACH. Equational propositional 
logic, along with preliminaries (e.g. the definition of textual substitution) can be 
taught to college freshmen in four weeks. During that time, students see many 
proofs and develop may themselves, in the calculational style. They also learn 
strategies and principles for designing proofs. As students develop a skill in 
proving theorems, they learn that attention to rigor may be simplifying force and 
not an onerous burden. 

Four weeks may seem like a long time to spend on propositional logic, but 
learning the calculational approach and gaining confidence in formal manipulation 
requires it and is worth it. Initially, most students are troubled by the prospect of 
uninterpreted manipulation. They want to think about the meanings of mathemati- 
cal statements. Having meanings for objects is a "safety net",which, students feel, 
prevents them from performing nonsensical manipulations. Unfortunately, the use 
of the "meaning" safety net does not scale well to complicated problems. Skill in 
performing uninterpreted syntactic manipulation does. 

Students also have to be convinced that using formalism can be helpful. They 
must see first hand that a rigorous approach can help them solve problems they 
could not easily solve without it. This is possible with our approach. After just 
three days of learning equational logic, one can begin to attack the kinds of word 
problems that are found in Smullyan's books, for example. 

Once logic and proof have been thoroughly presented, other topics can be 
discussed set theory, a theory of integers, and mathematical induction. Each 
topic is presented using the same calculational approach. In this manner, the 
notions of proof and proof style become the unifying force, the glue that binds 
together arguments in all domains. Discussion of informal versus formal presenta- 
tions of proofs imparts deeper understanding of both, enabling students to deal 
more easily with math that they will see in later courses. For example, proof by 
contradiction in any domain is easily seen to be based on the theorem p -- p 
false of propositional logic. 

As an example of the greater understanding that rigor and precision allow, 
suppose we have proved the metatheorem that a formula P is a theorem iff the 
formula (\lxl: P) is a theorem. Then, the different ways in which theorems are 
expressed in texts can be discussed, and the following three statements can be seen 
to be equivalent. In the first, it is assumed informally that a and b are 
integers perhaps this is mentioned in the accompanying prose; in the second, the 
type is given informally; in the third, the type is made formally explicit. 

a +b =b +a 

a + b = b + a (for a, b integers) 

(Va, b:El:a + b = b + a) 

To make rigor and formalism palatable, every new notation must be explained 
and rules must be given for manipulating it. Fear of formalism comes from having 
to use a formalism without knowing rules for its use, and attention in a class to 
such basic detail overcomes this fear. For example, traditionally, students are not 
shown rules for manipulating summations like 3=1 i2; consequently, they have 
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trouble with mathematical induction, where problems require manipulation of 
such summations. 

The following example shows how attention to rigor and formal detail provides 
a measure of clarity that is impossible to obtain otherwise. Consider proving 
bmn - bm * bn, for n, m natural numbers, by mathematical induction. Without 
formalizing quantification and having rules for manipulating it, no amount of 
informal explanation will clarify for students the different roles of m and n in the 
proof. However, bm +n = bm * bn is equivalent to (Ym, n l O < n A 0 < m: bm +n = 
bm * bn), which can be rewritten (using an axiom of quantification and the ability to 
name a formula) as 

(nlO < n: P.n) where P.n: (YmlO < m: bm+n = bm * bn). 
Now it is clear that n is the "induction variable"and that induction hypothesis P.n 
is a universal quantification over m. 

Further, once students understand quantification, they can prove the following 
using a calculational proof. Let U be a set and < a binary relation over U. 

Then (U, <) admits induction iff (U, <) is well founded. This theorem, which is 
rarely mentioned in informal presentations, gives deeper insight into induction. 

When formal notations are presented properly, as a repository of the facts and a 
means of clarification, students begin to like formalism and to rely on it. It is the 
formalism that provides rules for judging between sound and unsound inference 
and that helps expose ambiguity and eliminate it. 

DISCUSSION. The rigorous approach to teaching math has not, as yet, been 
accepted. Two criticisms are heard frequently: (1) students canSt handle rigor and 
formalism, and (2) teaching syntactic manipulation impedes understanding that a 
more semantic and informal approach provides. 

Our own experience belies the first criticism; in fact, the criticism should go the 
other way. Teaching mathematics through informalism is like driving in a fog. One 
sees dim figures in the distance, and every once in a while some of them suddenly 
appear clearly, but usually everything is veiled and mysterious. It's dangerous to 
drive in the fog, especially in a strange territory, and one must drive slowly. Even 
so, one may not always be sure where one is. Teaching rigor and precision, 
provided it is done without the veil of complexity interfering, burns away the fog, 
leaving everything crisp and clear and making it possible to drive faster and to 
enter uncharted lands. 

We can rebut the criticism concerning semantics versus syntactics as well. An 
informal proof, like that in Table 1, can be translated into a proof in a natural- 
deduction or Hilbert-style logic. The resulting proof is every bit as syntactic as 
ours. The English proof is simply an informal version of a syntactic proof and, as 
we have seen, a poor one at that. Therefore, the informal proof has no more 
meaning or semantics than a formal calculational proof. 

Perhaps this criticism concerning semantics comes about because formal state- 
ments are sometimes difficult to understand. However, presenting a formal defini- 
tion or theorem does not preclude giving alternative views as well. For example, a 
presentation of the axiomatic definition of set union can be supplemented with a 
Venn diagram, an English description, and an informal notion of evaluation. 
Nevertheless, it should be realized that for purposes of reasoning constructing 
proofs it is the axiomatic definition that is important. In fact, the axiomatic 
definition should be viewed as encoding all the meaning of the object being 
defined. 
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We also hear complaints that our approach suppresses intuition, that everything 
begins to appear mechanical. By "intuition"one usually means direct perception of 
truth or fact, independent of any reasoning process; keen and quick direct insight; 
or pure, untaught, noninferential knowledge (Webster's Encyclopedic Unabr7dged 
Dictiona1y, 1989). There is simply no hope of teaching this-how can one teach 
something that is untaught, noninferential, and independent of any reasoning 
process? Of course, one can hope that students will develop an ability to intuit by 
watching instructors in math courses over the years. But this hit-or-miss prospect 
cannot be called teaching intuition. 

On the other hand, a good part of mathematics is concerned with the opposite 
of intuition: with new and different reasoning processes that complement our 
ability to reason in English. This part of mathematics can be taught, and our 
approach to logic is an excellent vehicle for that task. Further, using the calcula- 
tional approach to proofs, we are able to teach aids to discovery. In particular, with 
our disciplined, syntactic, proof style, we can teach principles and strategies whose 
application can indeed lead to the discovery of some (but not all) theorems and 
proofs. We have yet to see comparable principles and strategies for conventional 
English proofs. 

Note that we are not against intuition; we have only stated that it cannot be 
taught. Moreover, we believe that discussing aids to discovery, as explained in the 
last paragraph, does not suppress intuition but goes further in aiding it than does 
the conventional method of teaching proofs. 

New ideas in teaching are slow to catch on. People don't like changing their 
habits- especially if it requires them to change their own way of thinking. 
However, current teaching methods are not exciting students or even educating 
them well, and alternatives should be seriously considered. Our approach bears 
looking into by all who want to teach mathematics effectively.4 

Department of Computer Science 
Comell University 
Upson Hall 
Ithaca, NY14853 
gries@cs.comell.edu 
flws(Rcs.comell.edu 

4The authors' 500-page text A Logical Approach to Discrete Math (Springer Verlag, NY, 1993) uses 
the approach described in this article in teaching the usual topics in discrete math-logic, set theory, a 
theory of integers, induction, functions and relations, combinatorics, solving recurrence relations, and 
graph theory. The 300'page Instructor's Manual contains other essays that concern the approach, as 
well as answers to the exercises. Together, the text and Instructor's Manual contain over 700 
calculational proofs, most of which are short and simple. Contact Gries at gries(H?cs.cornell.edu to 
obtain the Instructor's Manual. 
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