
Certifying Inexpressibility?

Orna Kupferman1 and Salomon Sickert1,2 (B)

1 School of Computer Science and Engineering,
The Hebrew University, Jerusalem, Israel.

orna@cs.huji.ac.il, salomon.sickert@mail.huji.ac.il
2 Technische Universität München, Munich, Germany.

s.sickert@tum.de

Abstract Different classes of automata on infinite words have different expres-
sive power. Deciding whether a given language L ⊆ Σω can be expressed by an
automaton of a desired class can be reduced to deciding a game between Prover
and Refuter: in each turn of the game, Refuter provides a letter in Σ, and Prover
responds with an annotation of the current state of the run (for example, in the
case of Büchi automata, whether the state is accepting or rejecting, and in the
case of parity automata, what the color of the state is). Prover wins if the se-
quence of annotations she generates is correct: it is an accepting run iff the word
generated by Refuter is in L. We show how a winning strategy for Refuter can
serve as a simple and easy-to-understand certificate to inexpressibility, and how
it induces additional forms of certificates. Our framework handles all classes of
deterministic automata, including ones with structural restrictions like weak au-
tomata. In addition, it can be used for refuting separation of two languages by
an automaton of the desired class, and for finding automata that approximate L
and belong to the desired class.

Keywords: Automata on infinite words · Expressive power · Games.

1 Introduction

Finite automata on infinite objects were first introduced in the 60’s, and were the key to
the solution of several fundamental decision problems in mathematics and logic [8,32,41].
Today, automata on infinite objects are used for specification, verification, and synthesis
of nonterminating systems. The automata-theoretic approach reduces questions about
systems and their specifications to questions about automata [27,49], and is at the heart
of many algorithms and tools. Industrial-strength property-specification languages such
as the IEEE 1850 Standard for Property Specification Language (PSL) [14] include
regular expressions and/or automata, making specification and verification tools that
are based on automata even more essential and popular.

A run r of an automaton on infinite words is an infinite sequence of states, and
acceptance is determined with respect to the set of states that r visits infinitely often.
For example, in Büchi automata, some of the states are designated as accepting states,
denoted by α, and a run is accepting iff it visits states from the accepting set α infinitely
often [8]. Dually, in co-Büchi automata, a run is accepting if it visits the set α only
finitely often. Then, in parity automata, the acceptance condition maps each state to

? This is the full version of an article with the same title that appears in the FoSSaCS 2021
conference proceedings.

http://orcid.org/0000-0003-4699-6117
http://orcid.org/0000-0002-0280-8981

2 Orna Kupferman and Salomon Sickert

a color in some set C = {j, . . . , k}, for j ∈ {0, 1} and some index k ≥ 0, and a run is
accepting if the maximal color it visits infinitely often is odd.

The different classes of automata have different expressive power. For example, while
deterministic parity automata can recognize all ω-regular languages, deterministic Büchi
automata cannot [28]. We use DBW, DCW, and DPW to denote a deterministic Büchi,
co-Büchi, and parity word automaton, respectively, or (this would be clear from the con-
text) the set of languages recognizable by the automata in the corresponding class. There
has been extensive research on expressiveness of automata on infinite words [48,20]. In
particular, researchers have studied two natural expressiveness hierarchies induced by
different classes of deterministic automata. The first hierarchy is the Mostowski Hier-
archy, induced by the index of parity automata [34,50]. Formally, let DPW[0, k] denote
a DPW with C = {0, . . . , k}, and similarly for DPW[1, k] and C = {1, . . . , k}. Clearly,
DPW[0, k] ⊆ DPW[0, k + 1], and similarly DPW[1, k] ⊆ DPW[1, k + 1]. The hierarchy
is infinite and strict. Moreover, DPW[0, k] complements DPW[1, k + 1], and for every
k ≥ 0, there are languages Lk and L′k such that Lk ∈ DPW[0, k] \ DPW[1, k + 1] and
L′k ∈ DPW[1, k + 1] \ DPW[0, k]. At the bottom of this hierarchy, we have DBW and
DCW. Indeed, DBW=DPW[0, 1] and DCW=DPW[1, 2].

While the Mostowski Hierarchy refines DPWs, the second hierarchy, which we term
the depth hierarchy, refines deterministic weak automata (DWWs). Weak automata
can be viewed as a special case of Büchi or co-Büchi automata in which every strongly
connected component in the graph induced by the structure of the automaton is either
contained in α or is disjoint from α, where α is depending on the acceptance condition
the set of accepting or rejecting states. The structure of weak automata captures the
alternation between greatest and least fixed points in many temporal logics, and they
were introduced in this context in [35]. DWWs have been used to represent vectors of
real numbers [6], and they have many appealing theoretical and practical properties
[31,21]. In terms of expressive power, DWW = DCW ∩ DBW.

The depth hierarchy is induced by the depth of alternation between accepting and
rejecting components in DWWs. For this, we view a DWW as a DPW in which the colors
visited along a run can only increase. Accordingly, each run eventually gets trapped in a
single color, and is accepting iff this color is odd. We use DWW[0, k] and DWW[1, k] to
denote weak-DPW[0, k] and weak-DPW[1, k], respectively. The picture obtained for the
depth hierarchy is identical to that of the Mostowski hierarchy, with DWW[j, k] replac-
ing DPW[j, k] [50]. At the bottom of the depth hierarchy we have co-safety and safety
languages [2]. Indeed, co-safety languages are DWW[0, 1] and safety are DWW[1, 2].

Beyond the theoretical interest in expressiveness hierarchies, their study is motivated
by the fact many algorithms, like synthesis and probabilistic model checking, need to op-
erate on deterministic automata [5,3]. The lower the automata are in the expressiveness
hierarchy, the simpler are algorithms for reasoning about them. Simplicity goes beyond
complexity, which typically depends on the parity index [16], and involves important
practical considerations like minimization and canonicity (exists only for DWWs [31]),
circumvention of Safra’s determinization [26], and symbolic implementations [47]. Of
special interest is the characterization of DBWs. For example, it is shown in [25] that
given a linear temporal logic formula ψ, there is an alternation-free µ-calculus formula
equivalent to ∀ψ iff ψ can be recognized by a DBW. Further research studies typeness for
deterministic automata, examining the ability to define a weaker acceptance condition
on top of a given automaton [19,21].

Certifying Inexpressibility 3

T :

a b

rej

acc

acc rej

Figure 1. A refuter for DBW-recognizability of “only finitely many a’s”.

Our goal in this paper is to provide a simple and easy-to-understand explanation
to inexpressibility results. The need to accompany results of decision procedures by
an explanation (often termed “certificate”) is not new, and includes certification of a
“correct” decision of a model checker [24,44], reachability certificates in complex multi-
agent systems [1], and explainable reactive synthesis [4]. To the best of our knowledge,
our work is the first to provide certification to inexpressibility results.

The underlying idea is simple: Consider a language L and a class γ of deterministic
automata. We consider a turn-based two-player game in which one player (Refuter)
provides letters in Σ, and the second player (Prover) responds with letters from a
set A of annotations that describe states in a deterministic automaton. For example,
when we consider a DBW, then A = {acc,rej}, and when we consider a DPW[0, k],
then A = {0, . . . , k}. Thus, during the interaction, Refuter generates a word x ∈ Σω

and Prover responds with a word y ∈ Aω. Prover wins if for all words x ∈ Σω, we
have that x ∈ L iff y is accepting according to γ. Clearly, if there is a deterministic γ
automaton for L, then Prover can win by following its run on x. Dually, a finite-state
winning strategy for Prover induces a deterministic γ automaton for L. The game-based
approach is not new, and has been used for deciding the membership of given ω-regular
languages in different classes of deterministic automata [26]. Further, the game-based
formulation is used in descriptive set theory to classify sets into hierarchies, see for
example [39, Chapters 4 and 5] for an introduction that focuses on ω-regular languages.
Our contribution is a study of strategies for Refuter. Indeed, since the above described
game is determined [9] and the strategies are finite-state, Refuter has a winning strategy
iff no deterministic γ automaton for L exists, and this winning strategy can serve as a
certificate for inexpressibility.

Example 1. Consider the language L¬∞a ⊆ {a, b}ω of all words with only finitely many
a’s. It is well known that L cannot be recognized by a DBW [28]. In Figure 1 we describe
what we believe to be the neatest proof of this fact. The figure describes a transducer
R with inputs in {acc,rej} and outputs in {a, b} – the winning strategy of Refuter in
the above described game. The way to interpret R is as follows. In each round of the
game, Prover tells Refuter whether the run of her DBW for L¬∞a is in an accepting
or a rejecting state, and Refuter uses R in order to respond with the next letter in the
input word. For example, if Prover starts with acc, namely declaring that the initial
state of her DBW is accepting, then Refuter responds with a, and if Prover continues
with rej, namely declaring that the state reachable with a is rejecting, then Refuter
responds with b. If Prover continues with rej forever, then Prover continues with b
forever. Thus, together Prover and Refuter generate two words: y ∈ {acc,rej}ω and
x ∈ {a, b}ω. Prover wins whenever x ∈ L¬∞a iff y contains infinitely many acc’s. If
Prover indeed has a DBW for L¬∞a, then she can follow its transition function and

4 Orna Kupferman and Salomon Sickert

win the game. By following the refuter R, however, Refuter can always fool Prover and
generate a word x such that x ∈ L¬∞a iff y contains only finitely many acc’s. �

We first define refuters for DBW-recognizability, and study their construction and
size for languages given by deterministic or nondeterministic automata. Our refuters
serve as a first inexpressibility certificate. We continue and argue that each DBW-
refuter for a language L induces three words x ∈ Σ∗ and x1, x2 ∈ Σ∗, such that
x · (x1 + x2)∗ · xω1 ⊆ L and x · (x∗1 · x2)ω ∩ L = ∅. The triple 〈x, x1, x2〉 is an additional
certificate for L not being in DBW. Indeed, we show that a language L is not in DBW iff
it has a certificate as above. For example, the language L¬∞a has a certificate 〈ε, b, a〉.
In fact, we show that Landweber’s proof for L¬∞a can be used as is for all languages
not in DBW, with x1 replacing b, x2 replacing a, and adding x as a prefix.

We then generalize our results on DBW-refutation and certification in two orthog-
onal directions. The first is an extension to richer classes of deterministic automata, in
particular all classes in the two hierarchies discussed above, as well as all deterministic
Emerson-Lei automata (DELWs) [17]. For the depth hierarchy, we add to the winning
condition of the game a structural restriction. For example, in a weak automaton, Prover
loses if the sequence y ∈ Aω of annotations she generates includes infinitely many al-
ternations between acc and rej. We show how structural restrictions can be easily
expressed in our framework.

The second direction is an extension of the recognizability question to the questions
of separation and approximation: We say that a language L ⊆ Σω is a separator for
two languages L1, L2 ⊆ Σω if L1 ⊆ L and L ∩ L2 = ∅. Studies of separation include a
search for regular separators of general languages [11], as well as separation of regular
languages by weaker classes of languages, e.g., FO-definable languages [40] or piecewise
testable languages [12]. In the context of ω-regular languages, [2] presents an algorithm
computing the smallest safety language containing a given language L1, thus finding a
safety separator for L1 and L2. As far as we know, besides this result there has been
no systematic study of separation of ω-regular languages by deterministic automata.

In addition to the interest in separators, we use them in the context of recognizability
in two ways. First, a third type of certificate that we suggest for DBW-refutation of a
language L are “simple” languages L1 and L2 such that L1 ⊆ L, L∩L2 = ∅, and 〈L1, L2〉
are not DBW-separable. Second, we use separability in order to approximate languages
that are not in DBW. Consider such a language L ⊆ Σω. A user may be willing to
approximate L in order to obtain DBW-recognizability. Specifically, we assume that
there are languages I↓ ⊆ L and I↑ ⊆ Σω \ L of words that the user is willing to under-
and over-approximate L with. Thus, the user searches for a language that is a separator
for L \ I↓ and Σω \ (L ∪ I↑). We study DBW-separability and DBW-approximation,
namely separability and approximation by languages in DBW. In particular, we are
interested in finding “small” approximating languages I↓ and I↑ with which L has a
DBW-approximation, and we show how certificates that refute DBW-separation can
direct the search to for successful I↓ and I↑. Essentially, as in counterexample guided
abstraction-refinement (CEGAR) for model checking [10], we use certificates for non-
DBW-separability in order to suggest interesting radius languages. While in CEGAR
the refined system excludes the counterexample, in our setting the approximation of L
excludes the certificate. As has been the case with recognizability, we extend our results
to all classes of deterministic automata.

Certifying Inexpressibility 5

2 Preliminaries

2.1 Transducers and Realizability

Consider two finite alphabets Σ and A. It is convenient to think about Σ as the “main”
alphabet, and about A as an alphabet of annotations. For two words x = x0 ·x1 ·x2 · · · ∈
Σω and y = y0 · y1 · y2 · · · ∈ Aω, we define x⊕ y as the word in (Σ × A)ω obtained by
merging x and y. Thus, x⊕ y = (x0, y0) · (x1, y1) · (x2, y2) · · · .

A (Σ/A)-transducer models a finite-state system that responds with letters in A
while interacting with an environment that generates letters in Σ. Formally, a (Σ/A)-
transducer is T = 〈Σ,A, ι, S, s0, ρ, τ〉, where ι ∈ {sys, env} indicates who initiates the
interaction – the system or the environment, S is a set of states, s0 ∈ S is an initial
state, ρ : S×Σ → S is a transition function, and τ : S → A is a labelling function on the
states. Consider an input word x = x0 ·x1 ·x2 · · · ∈ Σω. The run of T on x is the sequence
s0, s1, s2 . . . such that for all j ≥ 0, we have that sj+1 = ρ(sj , xj). The annotation of x
by T , denoted T (x), depends on ι. If ι = sys, then T (x) = τ(s0) · τ(s1) · τ(s2) · · · ∈ Aω.
Note that the first letter in A is the output of T in s0. This reflects the fact that the
system initiates the interaction. If ι = env , then T (x) = τ(s1) · τ(s2) · τ(s3) · · · ∈ Aω.
Note that now, the output in s0 is ignored, reflecting the fact that the environment
initiates the interaction.

Consider a language L ⊆ (Σ×A)ω. Let comp(L) denote the complement of L. Thus,
comp(L) = (Σ × A)ω \ L. We say that a language L ⊆ (Σ × A)ω is (Σ/A)-realizable
by the system if there is a (Σ/A)-transducer T with ι = sys such that for every word
x ∈ Σω, we have that x⊕T (x) ∈ L. Then, L is (A/Σ)-realizable by the environment if
there is an (A/Σ)-transducer T with i = env such that for every word y ∈ Aω, we have
that T (y)⊕ y ∈ L. When the language L is regular, realizability reduces to deciding a
game with a regular winning condition. Then, by determinacy of games and due to the
existence of finite-memory winning strategies [9], we have the following.

Proposition 1. For every ω-regular language L ⊆ (Σ×A)ω, exactly one of the follow-
ing holds.

1. L is (Σ/A)-realizable by the system.
2. comp(L) is (A/Σ)-realizable by the environment.

2.2 Automata

A deterministic word automaton over a finite alphabet Σ is A = 〈Σ,Q, q0, δ, α〉, where Q
is a set of states, q0 ∈ Q is an initial state, δ : Q×Σ → Q is a transition function, and α is
an acceptance condition. We extend δ to words inΣ∗ in the expected way, thus for q ∈ Q,
w ∈ Σ∗, and letter σ ∈ Σ, we have that δ(q, ε) = q and δ(q, wσ) = δ(δ(q, w), σ). A run
of A on an infinite word σ0, σ1, · · · ∈ Σω is the sequence of states r = q0, q1, . . . , where
for every position i ≥ 0, we have that qi+1 = δ(qi, σi). We use inf (r) to denote the set
of states that r visits infinitely often. Thus, inf (r) = {q : qi = q for infinitely many i ≥
0}.

The acceptance condition α refers to inf (r) and determines whether the run r is
accepting. For example, in the Büchi, acceptance condition, we have that α ⊆ Q, and
a run is accepting iff it visits states in α infinitely often; that is, α∩ inf (r) 6= ∅. Dually,
in co-Büchi, α ⊆ Q, and a run is accepting iff it visits states in α only finitely often;

6 Orna Kupferman and Salomon Sickert

that is, α ∩ inf (r) = ∅. The language of A, denoted L(A), is then the set of words w
such that the run of A on w is accepting.

A parity condition is α : Q → {0, . . . , k}, for k ≥ 0, termed the index of α. A run
r satisfies α iff the maximal color i ∈ {0, . . . , k} such that α−1(i) ∩ inf (r) 6= ∅ is odd.
That is, r is accepting iff the maximal color that r visits infinitely often is odd. Then,
a Rabin condition is α = {〈G1, B1〉, . . . , 〈Gk, Bk〉}, with Gi, Bi ⊆ Q, for all 0 ≤ i ≤ k.
A run r satisfies α iff there is 1 ≤ i ≤ k such that inf (r) ∩Gi 6= ∅ and inf (r) ∩Bi = ∅.
Thus, there is a pair 〈Gi, Bi〉 such that r visits states in Gi infinitely often and visits
states in Bi only finitely often.

All the acceptance conditions above can be viewed as special cases of the Emerson-
Lei acceptance condition (EL-condition, for short) [17], which we define below. Let
M be a finite set of marks. Given an infinite sequence π = M0 · M1 · · · ∈ (2M)ω of
subsets of marks, let inf (π) be the set of marks that appear infinitely often in sets in
π. Thus, inf (π) = {m ∈ M : there exist infinitely many i ≥ 0 such that m ∈ Mi}.
An EL-condition is a Boolean assertion over atoms in M. For simplicity, we consider
assertions in positive normal form, where negation is applied only to atoms. Intuitively,
marks that appear positively should repeat infinitely often and marks that appear
negatively should repeat only finitely often. Formally, a deterministic EL-automaton
is A = 〈Σ,Q, q0, δ,M, τ, θ〉, where τ : Q→ 2M maps each state to a set of marks, and θ
is an EL-condition over M. A run r of a A is accepting if inf (τ(r)) satisfies θ.

For example, a Büchi condition α ⊆ Q can be viewed as an EL-condition with
M = {acc} and τ(q) = {acc} for q ∈ α and τ(q) = ∅ for q 6∈ α. Then, the assertion
θ = acc is satisfied by sequences π induced by runs r with inf (r) ∩ α 6= ∅. Dually,
the assertion θ = ¬rej with M = {rej} is satisfied by sequences π induced by runs
r with inf (r) ∩ α = ∅, and thus corresponds to a co-Büchi condition. In the case of a
parity condition α : Q→ {0, . . . , k}, it is not hard to see that α is equivalent to an EL-
condition in which M = {0, 1, . . . , k}, for every state q ∈ Q, we have that τ(q) = {α(q)},
and θ = θk expresses the parity condition, where θk is inductively defined as:

θk =

¬0 if k = 0,

¬k ∧ θk−1 if k is even,

k ∨ θk−1 If k > 0 and k is odd.

Lastly, a Rabin condition α = {〈G1, B1〉, . . . , 〈Gk, Bk〉} is equivalent to an EL-condition
with M = {G1, B1, . . . , Gk, Bk} and τ(q) = {m ∈ M : q ∈ m}. Note that now, the
mapping τ is not to singletons, and each state is marked by all sets in α in which it is
a member. Then, θ =

∨
1≤i≤k(Gi ∧ ¬Bi).

We use DBW, DCW, DPW, DRW, DELW to denote deterministic Büchi, co-Büchi,
parity, Rabin, and EL word automata, respectively. For parity automata, we also use
DPW[0, k] and DPW[1, k], for k ≥ 0, to denote DPWs in which the colours are in
{0, . . . , k} and {1, . . . , k}, respectively. For Rabin automata, we use DRW[k], for k ≥ 0,
to denote DRWs that have at most k elements in α. Finally, we use DELW[θ], to denote
DELWs with EL-condition θ. We sometimes use the above acronyms in order to refer
to the set of languages that are recognizable by the corresponding class of automata.
For example, we say that a language L is in DBW if L is DBW-recognizable, thus there
is a DBW A such that L = L(A). Note that DBW = DPW[0, 1], DCW = DPW[1, 2],
and DRW[1] = DPW[0, 2]. In fact, in terms of expressiveness, DRW[k] = DPW[0, 2k]
[43,30].

Certifying Inexpressibility 7

Consider a directed graph G = 〈V,E〉. A strongly connected set of G (SCS) is a set
C ⊆ V of vertices such that for every two vertices v, v′ ∈ C, there is a path from v
to v′. An SCS C is maximal if it cannot be extended to a larger SCS. Formally, for
every nonempty C ′ ⊆ V \C, we have that C ∪C ′ is not an SCS. The maximal strongly
connected sets are also termed strongly connected components (SCC). An automaton
A = 〈Σ,Q,Q0, δ, α〉 induces a directed graph GA = 〈Q,E〉 in which 〈q, q′〉 ∈ E iff there
is a letter σ such that q′ ∈ δ(q, σ). When we talk about the SCSs and SCCs of A, we
refer to those of GA. Consider a run r of an automaton A. It is not hard to see that
the set inf (r) is an SCS. Indeed, since every two states q and q′ in inf (r) are visited
infinitely often, the state q′ must be reachable from q.

A DBW A = 〈Σ,Q, q0, δ, α〉 is weak (DWW) if every SCC C of A is accepting,
namely C ⊆ α, or rejecting, namely C ∩ α = ∅. Thus, each run of A eventually visits
either states in α or only states not in α. It is easy to see that every DWW can be
viewed as a DBW and as a DCW. In order to refer to the depth of the SCCs in A,
we also refer to A also as a DPW. Indeed, a DPW A = 〈Σ,Q, q0, δ, α〉 is weak if for
every transition q′ = δ(q, σ) we have α(q′) ≥ α(q), i.e., α is monotonically increasing
along a run. We use DWW[0, k] and DWW[1, k] to denote weak DPW[0, k] and weak
DPW[1, k], respectively. Finally, note that for each safety ω-regular language L, there
exists a DWW[1, 2] that recognises L and all DWW[1, 2] recognise a safety language.
Dually, co-safety languages correspond to DWW[0, 1].

3 Refuting DBW-Recognizability

Let A = {acc,rej}. We use ∞acc to denote the subset {a0 · a1 · a2 · · · ∈ Aω :
there are infinitely many j ≥ 0 with aj = acc} and ¬∞acc = comp(∞acc) = {a0 ·
a1 · a2 · · · ∈ Aω : there are only finitely many j ≥ 0 with aj = acc}.

A DBW A = 〈Σ,Q, q0, δ, α〉 can be viewed as a (Σ/A)-transducer TA = 〈Σ,A, sys,
Q, q0, δ, τ〉, where for every state q ∈ Q, we have that τ(q) = acc if q ∈ α, and
τ(q) = rej otherwise. Then, for every word x ∈ Σω, we have that x ∈ L(A) iff
TA(x) ∈ ∞acc.

For a language L ⊆ Σω, we define the language DBW(L) ⊆ (Σ×A)ω of words with
correct annotations. Thus,

DBW(L) = {x⊕ y : x ∈ L iff y ∈ ∞acc}.
Note that comp(DBW(L)) is the language

NoDBW(L) = {x⊕ y : (x ∈ L and y 6∈ ∞acc) or (x 6∈ L and y ∈ ∞acc)}.
A DBW-refuter for L is an (A/Σ)-transducer with ι = env realizing NoDBW(L).

Example 2. For every language R ⊆ Σ∗ of finite words, the language Rω ⊆ Σω consists
of infinite concatenations of words in R. It was recently shown that Rω may not be in
DBW [29]. The language used in [29] is R = $ + (0 · {0, 1, $}∗ · 1). In Figure 2 below we
describe a DBW-refuter for Rω.

Following R, Refuter starts by generating a prefix 0 · 1 and then responds to acc
with 1 and responds with $ to rej. Accordingly, if Prover generates a rejecting run,
Prover generates a word in 0 · 1 · (1 + $)∗ · $ω, which is in Rω. Also, if Prover generates
an accepting run, Prover generates a word in 0 · 1 · (1+ · $∗)ω, which has a single 0 and
infinitely many 1’s, and is therefore not in Rω. �

8 Orna Kupferman and Salomon Sickert

R:

1 $$ 0
acc,rej acc,rej

rej

acc

acc rej

Figure 2. A DBW-refuter for ($ + (0 · {0, 1, $}∗ · 1))ω.

By Proposition 1, we have the following.

Proposition 2. Consider a language L ⊆ Σω. Let A = {acc,rej}. Exactly one of the
following holds:

– L is in DBW, in which case the language DBW(L) is (Σ/A)-realizable by the system,
and a finite-memory winning strategy for the system induces a DBW for L.

– L is not in DBW, in which case the language NoDBW(L) is (A/Σ)-realizable by
the environment, and a finite-memory winning strategy for the environment induces
a DBW-refuter for L.

3.1 Complexity

In this section we analyze the size of refuters. We start with the case where the language
L is given by a DPW.

Theorem 1. Consider a DPW A with n states. Let L = L(A). One of the following
holds.

1. There is a DBW for L with n states.
2. There is a DBW-refuter for L with 2n states.

Proof. If L is in DBW, then, as DPWs are Büchi type [19], a DBW for L can be
defined on top of the structure of A, and so it has n states. If L is not in DBW, then by
Proposition 2, there is a DBW-refuter for L, namely a ({acc,rej}/Σ)-transducer that
realizes NoDBW(L). We show we can define a DRW U with 2n states for NoDBW(L).
The result then follows from the fact a realizable DRW is realized by a transducer of
the same size as the DRW [15].

We construct U by taking the union of the acceptance conditions of a DRW U1 for
{x⊕ y : x ∈ L and y 6∈ ∞acc} and a DRW U2 for {x⊕ y : x 6∈ L and y ∈ ∞acc}. We
obtain both DRWs by taking the product ofA, extended to the alphabetΣ×{acc,rej},
with a 2-state automaton for ∞acc, again extended to the alphabet Σ × {acc,rej}.

We describe the construction in detail. Let A = 〈Σ,Q, q0, δ, α〉. Then, the state
space of U1 is Q×{acc,rej} and its transition on a letter 〈σ, a〉 follows δ when it reads
σ, with a determining whether U1 moves to the acc or rej copy. Let α1 be the Rabin
condition equivalent to α. We obtain the acceptance condition of U1 by replacing each
pair 〈G,B〉 in α1 by 〈G× {rej}, B × {rej} ∪Q× {acc}〉. It is not hard to see that a
run of U1 satisfies the latter pair iff its projection on Q satisfies the pair 〈G,B〉 and its
projection on {acc,rej} has only finitely many acc. The construction of U2 is similar,
with α2 being a Rabin condition that complements α, and then replacing each pair
〈G,B〉 in α2 by 〈G × {acc}, B × {acc,rej})〉. Since U1 and U2 have the same state
space, and we only have to take the union of the pairs in their acceptance conditions,
the 2n bound follows. ut

Certifying Inexpressibility 9

Now, when L is given by an NBW, an exponential bound follows from the expo-
nential blow up in determinization [42]. If we are also given an NBW for comp(L), the
complexity can be tightened. Formally, we have the following.

Theorem 2. Given NBWs with n and m states, for L and comp(L), respectively, one
of the following holds.

1. There is a DBW for L with min{(1.65n)n, 3m} states.
2. There is a DBW-refuter for L with min{2 · (1.65n)n, 2 · (1.65m)m} states.

Proof. If L is in DBW, then a DBW for L can be defined on top of a DPW for L,
which has at most (1.65n)n states [45], or by dualizing a DCW for comp(L). Since the
translation of an NBW with m states to a DCW, when it exists, results in a DCW
with 3m states [7], we are done. If L is not in DBW, then we proceed as in the proof of
Theorem 1, defining U on the top of a DPW for either L or comp(L). ut

3.2 Certifying DBW-Refutation

Consider a DBW-refuter R = 〈{acc,rej}, Σ, env , S, s0, ρ, τ〉. We say that a path
s0, . . . , sm in R is an rej+-path if it contains at least one transition and all the transi-
tions along it are labeled by rej; thus, for all 0 ≤ j < m, we have that sj+1 = ρ(sj ,rej).
Then, a path s0, . . . , sm in R is an acc-path if it contains at least one transition and
its first transition is labeled by acc. Thus, s1 = ρ(s0,acc).

Lemma 1. Consider a DBW-refuter R = 〈{acc,rej}, Σ, env , S, s0, ρ, τ〉. Then there
exists a state s ∈ S, a (possibly empty) path p = s0, s1, . . . sm, a rej+-cycle p1 =
s10, s

1
1 . . . s

1
m1

, and an acc-cycle p2 = s20, s
2
1 . . . s

2
m2

, such that sm = s10 = s1m1
= s20 =

s2m2
= s.

Proof. Let si ∈ S be a reachable state that belongs to an ergodic component in the
graph of R (that is, si ∈ C, for a set C of strongly connected states that can reach
only states in C). Since R is responsive, in the sense it can read in each round both
acc and rej, we can read from si the input sequence rejω. Hence, R has a rej+-path
si, . . . , sl, . . . , sk with sl = sk, for l < k. It is easy to see that the claim holds with
s = sl. In particular, since R is responsive and C is strongly connected, there exists an
acc-cycle from sl to itself. ut

p

s0 s

p1

p2

Figure 3. The structure from Lemma 1 that exists in every DBW-refuter.

10 Orna Kupferman and Salomon Sickert

Theorem 3. An ω-regular language L is not in DBW iff there exist three finite words
x ∈ Σ∗ and x1, x2 ∈ Σ+, such that

x · (x1 + x2)∗ · xω1 ⊆ L and x · (x∗1 · x2)ω ∩ L = ∅.

Proof. Assume first that L is not in DBW. Then, by Theorem 2, there exists a DBW-
refuter R for it. Let p = s0, s1, . . . sm, p1 = s10, s

1
1, . . . , s

1
m1

, and p2 = s20, s
2
1, . . . , s

2
m2

,
be the path, rej+-cycle, and acc-cycle that are guaranteed to exist by Lemma 1.
Let x, x1, and x2 be the outputs that R generates along them. Formally, x = τ(s1) ·
τ(s2) · · · τ(sm), x1 = τ(s11) · τ(s12) · · · τ(s1m1

), and x2 = τ(s21) · τ(s21) · · · τ(s2m2
). Note that

as the environment initiates the interaction, the first letter in the words x, x1, and x2,
are the outputs in the second states in p, p1, and p2. We prove that x, x1, and x2 satisfy
the two conditions in the theorem.

Let y ∈ {acc,rej}∗, and y1, y2 ∈ {acc,rej}+ be the input sequences read along
p, p1, and p2, respectively. Thus, y = a0, a1, . . . , am−1 is such that for all 0 ≤ j < m, we
have that sj+1 = ρ(sj , aj), and similarly for y1 and y2 with p1 and p2.

Consider a word w ∈ x·(x1+x2)∗ ·xω1 . Let a ∈ y·(y1+y2)∗ ·yω1 be such thatR(a) = w.
Note we can obtain a from w by replacing each subword x by y, x1 by y1, and x2 by
y2. Since p1 is a rej+-cycle, we have that a ∈ (acc+rej)∗ ·rejω, and so a ∈ ¬∞acc.
Since R is a refuter for L, it follows that R(a) ∈ L. Hence, x · (x1 + x2)∗ · xω1 ⊆ L.

For this direction it remains to show that x · (x∗1 · x2)ω ∩ L = ∅. Consider a word
w ∈ x · (x∗1 · x2)ω, and let a ∈ y · (y∗1 · y2)ω be such that R(a) = w. Since p1 is an
acc-cycle, we have that a ∈ (rej∗acc)ω, and so a ∈ ∞acc. Since R is a refuter for L,
it follows that R(a) /∈ L. Hence, x · (x∗1 · x2)ω ∩ L = ∅, and we are done.

For the other direction, we adjust Landweber’s proof [28] for the non-DBW-recogniz-
ability of ¬∞a to L. Essentially, ¬∞a can be viewed as a special case of x·(x1+x2)∗ ·xω1 ,
with x = ε, x1 = b, and x2 = a. Assume by way of contradiction that there is a DBW A
with L(A) = L. Let A = 〈Σ,Q, q0, δ, α〉. Consider the infinite word w0 = x · xω1 . Since
w0 ∈ x · (x1 + x2)∗ · xω1 , and so w ∈ L, the run of A on w0 is accepting. Thus, there
is i1 ≥ 0 such that A visits α when it reads the x1 suffix of x · xi11 . Consider now the
infinite word w1 = x ·xi11 ·x2 ·xω1 . Since w1 is also in L, the run of A on w1 is accepting.
Thus, there is i2 ≥ 0 such that A visits α when it reads the x1 suffix of x · xi11 · x2 · xi21 .
In a similar fashion we can continue to find indices i1, i2, . . . such for all j ≥ 1, we have
that A visits α when it reads the x1 suffix of x · xi11 · x2 · xi21 · x2 · · ·x2 · x

ij
1 . Since Q is

finite, there are iterations j and k, such that 1 ≤ j < k ≤ |Q|+ 1 and there is a state q

such that q = δ(q0, x · xi11 · x2 · xi21 · x2 · · ·x2 · x
ij
1) = δ(q0, x · xi11 · x2 · xi21 · x2 · · ·x2 · xik1).

Since j < k, the extension x2 ·xij+1

1 · · ·xik−1

1 ·x2 ·xik1 is not empty and at least one state
in α is visited when A loops in q while reading it. It follows that the run of A on the
word

w = x · xi11 · x2 · xi21 · x2 · · ·x2 · x
ij
1 · (x2 · x

ij+1

1 · · ·xik−1

1 · x2 · xik1)ω

is accepting. But w ∈ x ·(x∗1 ·x2)ω, so it is not in L, and we have reached a contradiction.
ut

Remark 1. Theorem 3, as well as the yet to be presented Theorems 10 and 11 are special
cases of [50, Lemma 14]. However, our alternative proof relies on Proposition 1 and the
analysis of the resulting refuter, while the proof of [50] examines the structure of a
deterministic Muller automaton. Due to the game-based setting we can easily extend

Certifying Inexpressibility 11

our approach to refuting separability of languages (Section 4), which requires substantial
modifications of the approach from [50].

We refer to a triple 〈x, x1, x2〉 of words that satisfy the conditions in Theorem 3 as a
certificate to the non-DBW-recognizability of L.

Example 3. In Example 2, we described a DBW-refuter for L = ($+ (0 · {0, 1, $}∗ ·1))ω.
A certificate to its non-DBW-recognizability is 〈x, x1, x2〉, with x = 01, x1 = $, and
x2 = 1. Indeed, 01 · ($ + 1)∗ · $ω ⊆ L and 01 · ($∗ · 1)ω ∩ L = ∅. �

Note that obtaining certificates according to the proof of Theorem 3 may not give
us the shortest certificate. For example, for L in Example 3, the proof would give us
x = 01$, x1 = $, and x2 = 1$, with 01$·($+1$)∗ ·$ω ⊆ L and 01$·($∗ ·1$)ω∩L = ∅. The
problem of generating smallest certificates is related to the problem of finding smallest
witnesses to DBW non-emptiness [22] and is harder. Formally, defining the length of a
certificate 〈x, x1, x2〉 as |x|+ |x1|+ |x2|, we have the following:

Theorem 4. Consider a DPW A and a threshold l ≥ 1. The problem of deciding
whether there is a certificate of length at most l for non-DBW-recognizability of L(A)
is NP-complete, for l given in unary or binary.

Proof. We start with membership in NP. Let n be the number of states in A. By
Theorem 1 and the construction in Theorem 3 we can bound the length of a certificate to
be at most 6n, since these are constructed from simple paths. Given a witness certificate
〈x, x1, x2〉 of length at most l (the latter can be checked in polynomial time, regardless of
how l is given), checking the conditions in Theorem 3 involves checking x·(x1+x2)∗·xω1 ⊆
L(A), namely containment of a DCW of size linear in the certificate in the language of
a DPW, which can be done in polynomial time, and checking x · (x∗1 · x2)ω ∩ L(A) =
∅, namely emptiness of the intersection with a DBW, which again can be done in
polynomial time.

For the NP-hardness, we describe a reduction from the Hamiltonian-cycle problem
on directed graphs. Formally, given a directed graph G = 〈V,E〉, we describe a DPW
that is not in DBW and which has a certificate of length |V |+1 iff G has a Hamiltonian
cycle, namely a cycle that visits each vertex in V exactly once. The proof elaborates
on the NP-hardness proof of the problem of finding a shortest witness to DBW non-
emptiness [22].

Let V = {1, . . . , n}, and assume that n ≥ 2 and E is not empty. We define a
DPW A = 〈E, (V ×V)∪{〈1, 1〉err}, {〈1, 1〉}, δ, α〉, where α(〈n, n〉) = 1, α(〈1, 1〉err) = 2,
α(q) = 0 for all other states q, and

δ(〈i, j〉, (k, h)) =

〈h, (j mod n) + 1〉 if i = k = j,

〈h, j〉 if i = k 6= j,

〈1, 1〉err otherwise.

δ(〈1, 1〉err, (k, h)) =

{
〈h, 2〉 if k = 1,

〈1, 1〉err otherwise.

Intuitively, A interprets a word w ∈ Eω, as an infinite path starting in vertex 1,
and it verifies that the path is valid on G. Whenever A encounters an edge that does

12 Orna Kupferman and Salomon Sickert

not match the current state, which is tracked in the first component of the state space,
it resets and moves to 〈1, 1〉err. The second component of a state 〈i, j〉 is the vertex
the path owes a visit in order to visit all vertices infinitely often. It is easy to see that
w ∈ L(A) iff there is a suffix w′ of w that describes a valid path in G that visits
every vertex infinitely often. Notice that L(A) is not DBW-recognizable and that A is
polynomial in the size of G.

Clearly, the reduction is polynomial, we now prove its correctness. Assume first
that G has a Hamiltonian cycle c. Then, from the word w read along c from vertex 1,
we construct the certificate 〈ε, w, (2, 1)〉 showing non-DBW-recognizabilty. Indeed, the
certificate is correct, since (w+ (2, 1))∗ ·wω ⊆ L(A) and (w∗ · (2, 1))ω ∩L(A) = ∅. This
certificate has size n+ 1.

For the other direction, assume that 〈x, x1, x2〉 is a certificate of size (at most) n+1.
Then, x ·xω1 ∈ L(A) and as x2 is not empty, it must be that |x|+ |x1| ≤ n. Let r be the
corresponding accepting run and thus r visits 〈n, n〉 infinitely often. By the definition
of δ, the run r also visits the states 〈i, i〉, for all 1 ≤ i ≤ n. Since the transitions to
each of these states are labelled differently, x1 must contain at least n different letters.
Hence, |x1| must be n and thus G has a Hamiltonian cycle.

Remark 2. [Relation with existing characterizations] By [28], the language of a
DPW A = 〈Σ,Q, q0, δ, α〉 is in DBW iff for every accepting SCS C ⊆ Q and SCS
C ′ ⊇ C, we have that C ′ is accepting. The proof of Landweber relies on a complicated
analysis of the structural properties of A. As we elaborate below, Theorem 3, which
relies instead on determinacy of games, suggests an alternative proof. Similarly, [50]
examines the structure of a deterministic Muller automaton, and Theorem 3 can be
viewed as a special case of Lemma 14 there, with a proof based on the game setting.

We use certificates in order to prove that a DPW A = 〈Σ,Q, q0, δ, α〉 is in DBW iff
for every accepting SCS C ⊆ Q and SCS C ′ ⊇ C, we have that C ′ is accepting. First,
an accepting SCS C ⊆ Q and a rejecting SCS C ′ ⊇ C induce a certificate 〈x, x1, x2〉.
Indeed, taking a state s ∈ C, we can define x to be a word that leads from q0 to s, x1
to be a word that traverses C, and x2 a word that traverses C ′. Then, the set of states
traversed infinitely often in a run on a word in x · (x1 + x2)∗ · xω1 is C, and the set of
states traversed infinitely often in a run on a word in x · (x∗1 · x2)ω is C ′. For the other
direction, a certificate 〈x, x1, x2〉 induces an accepting SCS C ⊆ Q and a rejecting SCS
C ′ ⊇ C as follows. Consider a graph G = 〈Q,E〉, where E(s, s′) iff δ(s, x1) = s′ or
δ(s, x2) = s′. We consider an ergodic SCC that is reachable from δ(q0, x) in G. In this
ergodic SCC, we can traverse both words in x · (x1 + x2)∗ · xω1 along an accepting cycle
C, and words in x · (x∗1 · x2)ω along a rejecting cycle, whose union with C can serve as
C ′. �

Being an (A/Σ)-transducer, every DBW-refuter R is responsive and may generate
many different words in Σω. Below we show that we can leave R responsive and yet let
it generate only words induced by a certificate. Formally, we have the following.

Lemma 2. Given a certificate 〈x, x1, x2〉 to non-DBW-recognizability of a language
L ⊆ Σω, we can define a refuter R for L such that for every y ∈ Aω, if y |= ∞acc,
then R(y) ∈ x · (x∗1 · x2)ω, and if y |= ¬∞acc, then R(y) ∈ x · (x1 + x2)∗ · xω1 .

Proof. Intuitively, R first ignores the inputs and outputs x. It then repeatedly outputs
either x1 or x2, according to the following policy: in the first iteration, R outputs x1. If

Certifying Inexpressibility 13

during the output of x1 all inputs are rej, then R outputs x1 also in the next iteration.
If an input acc has been detected, thus the prover tries to accept the constructed word,
the refuter outputs x2 in the next iteration, again keeping track of an acc input. If no
acc has been input, R switches back to outputting x1.

Formally, let 〈x, x1, x2〉 be a certificate with x = x1 · · ·xn, x1 = x11 · · ·xn1
1 , and

x2 = x12 · · ·xn2
2 . We define R = 〈{acc,rej}, Σ, env , S, s0, ρ, τ〉 with the components S,

ρ, and τ defined as follows:

– S = {s0, s1, . . . , sn, (s11, a), . . . , (sn1
1 , a), (s12, a), . . . , (sn2

2 , a) : a ∈ {acc,rej}}

– ρ(s, a) =

s1 if s = s0 and n > 0,

si+1 if s = si and n > i > 0,

(s11,rej) if s = sn,

(s11,rej) if s ∈ {(sn1
1 ,rej), (sn2

2 ,rej)} and a = rej,

(s12,rej) if s ∈ {(sn1
1 ,rej), (sn2

2 ,rej)} and a = acc,

(s12,rej) if s ∈ {(sn1
1 ,acc), (sn2

2 ,acc)}
(si+1

1 ,rej) if s = (si1,rej) and n1 > i > 0 and a = rej,

(si+1
1 ,acc) if s = (si1,rej) and n1 > i > 0 and a = acc,

(si+1
1 ,acc) if s = (si1,acc) and n1 > i > 0,

(si+1
2 ,rej) if s = (si2,rej) and n2 > i > 0 and a = rej,

(si+1
2 ,acc) if s = (si2,rej) and n2 > i > 0 and a = acc,

(si+1
2 ,acc) if s = (si2,acc) and n2 > i > 0.

– τ(si) = xi and τ((sij , a)) = xij . ut
By Theorem 3, every language not in DBW has a certificate 〈x, x1, x2〉. As we argue

below, these certificates are linear in the number of states of the refuters.

Lemma 3. Let R be a DBW-refuter for L ⊆ Σω with n states. Then, L has a certificate
of the form 〈x, x1, x2〉 such that |x|+ |x1|+ |x2| ≤ 2 · n.

Proof. The paths p, p1, and p2 that induce x, x1 and x2 in the proof of Theorem 3 are
simple, and so they are all of length at most n. Also, while these paths may share edges,
we can define them so that each edge appears in at most two paths. Indeed, if an edge
appears in all three path, we can shorten p. Hence, |x|+ |x1|+ |x2| ≤ 2 · n, and we are
done. ut
Theorem 5. Consider a language L ⊆ Σω not in DBW. The length of a certificate for
the non-DBW-recognizability of L is linear in a DPW for L and is exponential in an
NBW for L. These bounds are tight.

Proof. The upper bounds follow from Theorem 1 and Lemma 3, and the exponential de-
terminization of NBWs. The lower bound in the NBW case follows from the exponential
lower bound on the size of shortest non-universality witnesses for non-deterministic finite
word automata (NFW) [33]. We sketch the reduction: Let Ln ⊆ {0, 1}∗ be a language
such that the shortest witness for non-universality of Ln is exponential in n, but Ln has
a polynomial sized NFW. We then define L′n = (Ln ·$·(0∗ ·1)ω)+((0+1)∗ ·$·(0+1)∗ ·0ω).
It is clear that L′n has a NBW polynomial in n and is not DBW-recognizable. Note that
for every word w ∈ Ln, we have w ·$·(0+1)ω ⊆ L′n. Thus, in order to satisfy Theorem 3,
every certificate 〈x, x1, x2〉 needs to have w · $ as prefix of x, for some w /∈ Ln. Hence,
it is exponential in the size of the NBW. ut

14 Orna Kupferman and Salomon Sickert

L

I

L \ I

L ∪ I

Figure 4. Reduction of approximation to separability.

Remark 3. [LTL] When the language L is given by an LTL formula ϕ, then DBW(ϕ) =
ϕ↔ GFacc and thus an off-the-shelf LTL synthesis tool can be used to extract a DBW-
refuter, if one exists. As for complexity, a doubly-exponential upper bound on the size
of a DPW for NoDBW(L), and then also on the size of DBW-refuters and certificates,
follows from the double-exponential translation of LTL formulas to DPWs [49,42]. The
length of certificates, however, and then, by Lemma 2, also the size of a minimal refuter,
is related to the diameter of the DPW for NoDBW(L), and we leave its tight bound
open. �

4 Separability and Approximations

Consider three languages L1, L2, L ⊆ Σω. We say that L is a separator for 〈L1, L2〉 if
L1 ⊆ L and L2 ∩ L = ∅. We say that a pair of languages 〈L1, L2〉 is DBW-separable iff
there exists a language L in DBW such that L is a separator for 〈L1, L2〉.

Example 4. Let Σ = {a, b}, L1 = (a+b)∗ ·bω, and L2 = (a+b)∗ ·aω. By [28], L1 and L2

are not in DBW. They are, however, DBW-separable. A witness for this is L = (a∗ ·b)ω.
Indeed, L1 ⊆ L, L ∩ L2 = ∅, and L is DBW-recognizable. �

Consider a language L ⊆ Σω, and suppose we know that L is not in DBW. A user
may be willing to approximate L in order to obtain DBW-recognizability. Specifically,
we assume that there is a language I ⊆ Σω of words that the user is indifferent about.
Formally, the user is satisfied with a language in DBW that agrees with L on all words
that are not in I. Formally, we say that a language L′ approximates L with radius I if
L\I ⊆ L′ ⊆ L∪I. It is easy to see that, equivalently, L′ is a separator for 〈L\I, comp(L∪
I)〉. Note that the above formulation embodies the case where the user has in mind
different over- and under-approximation radiuses, thus separating 〈L\I↓, comp(L∪I↑)〉
for possibly different I↓ and I↑. Indeed, by defining I = (I↓ ∩ L) ∪ (I↑ \ L), we get
〈L \ I, comp(L ∪ I)〉 = 〈L \ I↓, comp(L) \ I↑)〉.

It follows that by studying DBW-separability, we also study DBW-approximation,
namely approximation by a language that is in DBW, possibly with different over- and
under-approximation radiuses.

Remark 4. [From recognizability to separation] It is easy to see that DBW-sep-
arability generalizes DBW-recognizability, as L is in DBW iff 〈L, comp(L)〉 is DBW-
separable. Given L ⊆ Σω, we say that a pair of languages 〈L1, L2〉 is a no-DBW-witness

Certifying Inexpressibility 15

T :

a a b a b

acc
rej

acc
rej

acc
rej

rej

acc

acc rej

Figure 5. A DBW-sep refuter for 〈L¬∞a \ I, comp(L¬∞a ∪ I)〉.

for L if L is a separator for 〈L1, L2〉 and 〈L1, L2〉 is not DBW-separable. Note that the
latter indeed implies that L is not in DBW.

A simple no-DBW witness for L can be obtained as follows. Let R be a DBW refuter
for L. Then, we define L1 = {R(y) : y ∈ ¬∞acc} and L2 = {R(y) : y ∈ ∞acc}. By
the definition of DBW-refuters, we have L1 ⊆ L and L2 ∩ L = ∅, and so 〈L1, L2〉 is a
no-DBW witness for L. It is simple, in the sense that when we describe L1 and L2 by a
tree obtained by pruning the Σ∗-tree, then each node has at most two children – these
that correspond to the responses of R to acc and rej. �

4.1 Refuting Separability

For a pair of languages 〈L1, L2〉, we define the language SepDBW(L) ⊆ (Σ × A)ω of
words with correct annotations for separation. Thus,

SepDBW(L1, L2) = {x⊕ y : (x ∈ L1 → y ∈ ∞acc) ∧ (x ∈ L2 → y 6∈ ∞acc)}.

Note that comp(SepDBW(L1, L2)) is then the language

NoSepDBW(L1, L2) = {x⊕ y : (x ∈ L1 ∧ y 6∈ ∞acc) ∨ (x ∈ L2 ∧ y ∈ ∞acc)}.

A DBW-sep-refuter for 〈L1, L2〉 is an (A/Σ)-transducer with ι = env that realizes
NoSepDBW(L1, L2).

Example 5. Consider the language L¬∞a = (a + b)∗ · bω, which is not DBW. Let I =
a∗ · bω + b∗ · aω, thus we are indifferent about words with only one alternation between
a and b. In Figure 5 we describe a DBW-sep refuter for 〈L¬∞a \ I, comp(L¬∞a ∪ I)〉.
Note that the refuter generates only words in a · b · a · (a+ b)ω, whose intersection with
I is empty. Consequently, the refutation is similar to the DBW-refutation of L¬∞a. �

By Proposition 1, we have the following extension of Proposition 2.

Proposition 3. Consider two languages L1, L2 ⊆ Σω. Let A = {acc,rej}. Exactly
one of the following holds:

– 〈L1, L2〉 is DBW-separable, in which case the language SepDBW(L1, L2) is (Σ/A)-
realizable by the system, and a finite-memory winning strategy for the system induces
a DBW for a language L that separates L1 and L2.

– 〈L1, L2〉 is not DBW-separable, in which case the language NoSepDBW(L) is (A/Σ)-
realizable by the environment, and a finite-memory winning strategy for the envi-
ronment induces a DBW-sep-refuter for 〈L1, L2〉.
As for complexity, the construction of the game for SepDBW(L1, L2) is similar to

the one described in Theorem 1. Here, however, the input to the problem includes two
DPWs. Also, the positive case, namely the construction of the separator does not follow
from known results.

16 Orna Kupferman and Salomon Sickert

Theorem 6. Consider DPWs A1 and A2 with n1 and n2 states, respectively. Let L1 =
L(A1) and L2 = L(A2). One of the following holds.

1. There is a DBW A with 2 · n1 · n2 states such that L(A) DBW-separates 〈L1, L2〉.
2. There is a DBW-sep-refuter for 〈L1, L2〉 with 2 · n1 · n2 states.

Proof. We show that SepDBW(L1, L2) and NoSepDBW(L1, L2) can be recognised by
DRWs with at most 2 ·n1 ·n2 states. Then, by [15], we can construct a DBW or a DBW-
sep-refuter with at most 2·n1 ·n2 states. The construction is similar to the one described
in the proof of Theorem 1. The only technical challenge is the fact SepDBW(L1, L2) is
defined as the intersection, rather than union, of two languages. For this, we observe
that we can define SepDBW(L1, L2) also as {x ⊕ y : (y ∈ ∞acc and x /∈ L2) or (y /∈
∞acc and x /∈ L1)}. With this formulation we then can reuse the union construction
as seen in Theorem 1 to obtain DRWs with at most 2 · n1 · n2 states. ut

As has been the case with DBW-recognizability, one can generate certificates from
a DBW-sep-refuter. The proof is similar to that of Theorem 3, with membership in
L1 replacing membership in L and membership in L2 replacing being disjoint from L.
Formally, we have the following.

Theorem 7. Two ω-regular languages L1, L2 ⊆ Σω are not DBW-separable iff there
exist three finite words x ∈ Σ∗ and x1, x2 ∈ Σ+, such that

x · (x1 + x2)∗ · xω1 ⊆ L1 and x · (x∗1 · x2)ω ⊆ L2.

We refer to a triple 〈x, x1, x2〉 of words that satisfy the conditions in Theorem 7 as
a certificate to the non-DBW-separability of 〈L1, L2〉. Observe that the same way we
generated a no-DBW witness in Remark 4, we can extract, given a DBW-sep-refuter
R for 〈L1, L2〉, languages L′1 ⊆ L1 and L′2 ⊆ L2 that tighten 〈L1, L2〉 and are still not
DBW-separable.

4.2 Certificate-Guided Approximation

In this section we describe a method for finding small approximating languages I↓ and
I↑ such that 〈L \ I↓, comp(L) \ I↑〉 is DBW-separable. If this method terminates we
obtain an approximation for L that is DBW-recognizable. As in counterexample guided
abstraction-refinement (CEGAR) for model checking [10], we use certificates for non-
DBW-separability in order to suggest interesting approximating languages. Intuitively,
while in CEGAR the refined system excludes the counterexample, here the approxima-
tion of L excludes the certificate.

Consider a certificate 〈x, x1, x2〉 for the non-DBW-separability of 〈L1, L2〉. We sug-
gest the following five approximations:

C0 = x · (x1 + x2)ω 〈L1 \ C0, L2 \ C0〉
C1 = x · (x1 + x2)∗ · xω1 = L1 ∩ C0 〈L1 \ C1, L2〉
C2 = x · (x∗2 · x1)ω ⊃ C1 〈L1, L2 \ C2〉
C3 = x · (x∗1 · x2)ω = L2 ∩ C0 〈L1, L2 \ C3〉
C4 = x · (x1 + x2)∗ · xω2 ⊂ C3 〈L1, L2 \ C4〉

First, it is easy to verify that 〈x, x1, x2〉 is indeed not a certificate for the non-DBW-
separability of the obtained candidate pairs 〈L′1, L′2〉. If 〈L′1, L′2〉 is DBW-separable,

Certifying Inexpressibility 17

we are done (yet may try to tighten the approximation). Otherwise, we can repeat the
process with a certificate for the non-DBW-separability of 〈L′1, L′2〉. As in CEGAR, some
suggestions may be more interesting than others, in some cases the process terminates,
in some it does not, and the user takes part directing the search.

Example 6. Consider again the language L = (a+b)∗ ·bω and the certificate 〈x, x1, x2〉 =
〈ε, b, a〉. Trying to approximate L by a language in DBW, we start with the pair
〈L, comp(L)〉. Our five suggestions are then as follows.

C0 = Σω 〈L \ C0, comp(L) \ C0〉 = 〈∅, ∅〉
C1 = (b+ a)∗ · bω 〈L \ C1, comp(L)〉 = 〈∅, comp(L)〉
C2 = (a∗ · b)ω 〈L, comp(L) \ C2〉 = 〈L, (a+ b)∗ · aω〉
C3 = (b∗ · a)ω 〈L, comp(L) \ C3〉 = 〈L, ∅〉
C4 = (b+ a)∗ · aω 〈L, comp(L) \ C4〉 = 〈L, (a+ b)∗ · (a · a∗ · b · b∗)ω〉

Candidates C0, C1, and C3 induce trivial approximations. Then, C2 suggests to
over-approximate L by setting I↑ to (a∗ · b)ω, which we view as a nice solution, ap-
proximating “eventually always b” by “infinitely often b”. Then, the pair derived from
C4 is not DBW-separable. We can try to approximate it. Note, however, that repeated
approximations in the spirit of C4 are going to only extend the prefix of x in the cer-
tificates, and the process does not terminate.

Let us now consider the slightly different certificate 〈x, x1, x2〉 = 〈a, b, a〉 and the
derived candidates:

C0 = a ·Σω 〈L \ C0, comp(L) \ C0〉 = 〈b · L, b · comp(L)〉
C1 = a · (b+ a)∗ · bω 〈L \ C1, comp(L)〉 = 〈b · L, comp(L)〉
C2 = a · (a∗ · b)ω 〈L, comp(L) \ C2〉

= 〈L, b · comp(L) + a · (a+ b)∗ · aω〉
C3 = a · (b∗ · a)ω 〈L, comp(L) \ C3〉 = 〈L, b · comp(L)〉
C4 = a · (b+ a)∗ · aω 〈L, comp(L) \ C4〉

= 〈L, b · comp(L) + a · (a+ b)∗ · (a · a∗ · b · b∗)ω〉
One can easily verify that 〈x, x1, x2〉 = 〈b · a, b, a〉 is a certificate showing that

none of the suggested pairs are DBW-separable. In fact 〈x, x1, x2〉 = 〈bi · a, b, a〉, for
i = 0, 1, 2, . . . , describes an infinite sequence such that no refinement obtained after a
finite number of steps is DBW-separable. �

5 Other Classes of Deterministic Automata

In this section we generalise the idea of DBW-refuters to other classes of deterministic
automata. For this we take again the view that a deterministic automaton is a 〈Σ,A〉-
transducer over a suitable annotation alphabet A. We then characterize each class of
deterministic automata by two languages over A:

– The language Lacc ⊆ Aω, describing when a run is accepting. For example, for
DBWs, we have A = {acc,rej} and Lacc =∞acc.

– The language Lstruct ⊆ Aω, describing structural conditions on the run. For ex-
ample, recall that a DWW is a DBW in which the states of each SCS are either
all accepting or all rejecting, and so each run eventually get trapped in an accept-
ing or rejecting SCS. Accordingly, the language of runs that satisfy the structural
condition is Lstruct = A∗ · (accω + rejω).

18 Orna Kupferman and Salomon Sickert

We now formalize this intuition. Let A be a finite set of annotations and let γ =
〈Lacc, Lstruct〉, for Lacc, Lstruct ⊆ Aω. A deterministic automaton A = 〈Σ,Q, q0, δ, α〉 is
a deterministic γ automaton (DγW, for short) if there is a function τ : Q → A that
maps each state to an annotation such that a run r of A satisfies α iff τ(r) ∈ Lacc,
and all runs r satisfy the structural condition, thus τ(r) ∈ Lstruct. We then say that a
language L is γ-recognizable if there a DγW A such that L = L(A).

Before we continue to study γ-recognizability, let us demonstrate the γ-characterization
of common deterministic automata. We first start with classes γ for which Lstruct is triv-
ial; i.e., Lstruct = Aω.

– DBW: A = {acc,rej} and Lacc =∞acc.
– DCW: A = {acc,rej} and Lacc = ¬∞acc.
– DPW[i, k]: A = {i, . . . , k} and Lacc = {y ∈ Aω : max(inf (y)) is odd}.
– DELW[θ]: A = 2M and Lacc = {y ∈ Aω : y |= θ}.

Note that the characterizations for Büchi, co-Büchi, and parity are special cases of
the characterization for DELW. In a similar way, we could define a language Lacc for
DRW[k] and other common special cases of DELWs. We continue to classes in the depth
hierarchy, where γ includes also a structural restriction:

– DWW: The set A and the language Lacc are as for DBW or DCW. In addition,
Lstruct = A∗ · (accω + rejω).

– DWW[j, k], for j ∈ {0, 1}: The set A and the language Lacc are as for DPW[j, k].
In addition, Lstruct = {y0 · y1 · · · ∈ Aω : for all i ≥ 0, we have that yi ≤ yi+1}.

– Bounded Languages: A language L is bounded if it is both safety and co-safety.
Thus, every word w ∈ Σω has a prefix v ∈ Σ∗ such that either for all u ∈ Σω we
have v · u ∈ L, or for all u ∈ Σω we have v · u 6∈ L [23]. To capture this, we use
A = {acc,rej, ?}, where “?” is used for annotating states with both accepting and
rejecting continuations. Then, Lacc = A∗ · accω, and Lstruct =?∗ · (accω + rejω).

– Deterministic (m,n)-Superparity Automata [39]: A = {(i, j) : 0 ≤ i ≤ m, 0 ≤
j ≤ n}, Lacc = {ym ⊕ yn ∈ Aω : max(inf (ym)) + max(yn) is odd}, and Lstruct =
{ym ⊕ (y0 · y1 · · ·) ∈ Aω : yi ≤ yi+1, for all i ≥ 0}.

Let Σ be an alphabet, let A be an annotation alphabet, and let γ = 〈Lacc, Lstruct〉,
for Lacc, Lstruct ⊆ Aω. We define the language Real(L, γ) ⊆ (Σ × A)ω of words with
correct annotations.

Real(L, γ) = {x⊕ y : y ∈ Lstruct and (x ∈ L iff y ∈ Lacc)}.

Note that the language DBW(L) can be viewed as a special case of our general frame-
work. In particular, in cases Lstruct = Aω, we can remove the y ∈ Lstruct conjunct from
Real(L, γ). Note that comp(Real(L, γ)) is the language

NoReal(L, γ) = {x⊕ y : y 6∈ Lstruct or (x ∈ L iff y 6∈ Lacc)}.

A γ-refuter for L is then an (A/Σ)-transducer with ι = env that realizes NoReal(L, γ).
We can now state the “DγW-generalization” of Proposition 2.

Proposition 4. Consider an ω-regular language L ⊆ Σω, and a pair γ = 〈Lacc, Lstruct〉,
for ω-regular languages Lacc, Lstruct ⊆ Aω. Exactly one of the following holds:

Certifying Inexpressibility 19

1. L is in DγW, in which case the language Real(L, γ) is (Σ/A)-realizable by the
system, and a finite-memory winning strategy for the system induces a DγW for L.

2. L is not in DγW, in which case the language NoReal(L, γ) is (A/Σ)-realizable by
the environment, and a finite-memory winning strategy for the environment induces
a γ-refuter for L.

Note that every DELW can be complemented by dualization, thus by changing
its acceptance condition from θ to ¬θ. In particular, DBW and DCW dualize each
other. As we argue below, dualization is carried over to refutation. For example, the
({acc,rej}/Σ)-transducer R from Figure 1 is both a DBW-refuter for ¬∞a and a
DCW-refuter for ∞a. Formally, we have the following.

Theorem 8. Consider an EL-condition θ over M. Let A = 2M. For every (A/Σ)-
transducer R and language L, we have that R is a DELW[θ]-refuter for L iff R is a
DELW[¬θ]-refuter for comp(L). In particular, for every language L and ({acc,rej}/Σ)-
transducer R, we have that R is a DBW-refuter for L iff R is a DCW-refuter for
comp(L).

Proof. For DELW[θ]-recognizability of L, the language of correct annotations is {x⊕y :
(x ∈ L iff y |= θ)}, which is equal to {x ⊕ y : (x ∈ comp(L) iff y |= ¬θ)}, which is the
language of correct annotations for DELW[¬θ]-recognizability of comp(L). ut

While dualization is nicely carried over to refutation, this is not the case for all
expressiveness results. For example, while DWW=DBW∩DCW, and in fact DBW and
DCW are weak type (that is, when the language of a DBW is in DWW, an equivalent
DWW can be defined on top of its structure, and similarly for DCW [21]), we describe
below a DWW-refuter that is neither a DBW- nor a DCW-refuter. Intuitively, this is
possible as in DWW refutation, Prover loses when the input is not in A∗ ·(accω+rejω),
whereas in DBW and DCW refutation, Refuter has to respond correctly also for these
inputs.

Example 7. Let Σ = {a, b, c, d}, and A = {acc,rej}. Consider the language L =
(a+ · b · c∗ · d)∗ · aω + (a · b · d)ω. Note that L is in DCW, but not in DBW, and hence
also not in DWW. The (A/Σ)-transducer R in Figure 6 is a DWW-refuter for L. To see
this, recall that for DWWs, we have that Lstruct = A∗ · (accω +rejω), and so all input
sequences y ∈ Aω that satisfy Lstruct eventually gets trapped in the aω loop, generating
a rejecting run on a word in the language, or gets trapped in the cω loop, generating
an accepting run on a word not in the language.

On the other hand, while L is not in DBW, the transducer R is not a DBW-
refuter for L. To see this, observe that the DBW A in the figure suggests a winning
strategy for Prover in the game corresponding to DBW. Indeed, when Prover generates
(rej · acc · rej)ω, which is accepting, then by following R, Refuter responds with
(a · b · d)ω, which is in L, and so Prover wins. Note that, unsurprisingly, the input
generated by Prover does not satisfy Lstruct. �

On the other hand, as every DWW is also a DBW and a DCW, every DBW-refuter
or DCW-refuter is also a DWW-refuter.

20 Orna Kupferman and Salomon Sickert

R:

a

b

d

ca

acc
rej

acc acc

rej rej

rejacc

accrej

A:

d

a b

Figure 6. The DWW-refuter R looses as a DBW-refuter when it plays against A.

Separability and Approximation. Consider a characterization γ = 〈Lacc, Lstruct〉. Two
languages L1, L2 ⊆ Σω are γ-separable if there exists a DγWA such that L1 ⊆ L(A)
and L2 ∩ L(A) = ∅. We define the corresponding languages of correct and incorrect
annotations as follows.

– Sep(L1, L2, Lacc, Lstruct) =
{x⊕ y : y ∈ Lstruct and ((x ∈ L1 and y ∈ Lacc) or (x ∈ L2 and y /∈ Lacc))}.

– NoSep(L1, L2, Lacc, Lstruct) = comp(Sep(L1, L2, Lacc, Lstruct)) =
{x⊕ y : y /∈ Lstruct or ((x ∈ L1 and y /∈ Lacc) or (x ∈ L2 and y ∈ Lacc))}.

Note that the language SepDBW(L1, L2) can be viewed as a special case of our
general framework and as before in cases Lstruct = Aω, we can remove the y ∈ Lstruct

conjunct from Sep. A γ-sep-refuter for L is an (A/Σ)-transducer with ι = env that
realizes NoSep(L1, L2, Lacc, Lstruct). By Proposition 1, exactly one of the following holds:

Proposition 5. Consider ω-regular languages L1, L2 ⊆ Σω, and a characterization
γ = 〈Lacc, Lstruct〉, for ω-regular languages Lacc, Lstruct ⊆ Aω. Exactly one of the fol-
lowing holds:

1. 〈L1, L2〉 are γ-separable, in which case the language Sep(L1, L2, γ) is (Σ/A)-realizable
by the system, and a finite-memory winning strategy for the system induces a DγW
for some L such that L1 ⊆ L and L ∩ L2 = ∅.

2. 〈L1, L2〉 are not γ-separable, in which case the language NoSep(L1, L2, γ) is (A/Σ)-
realizable by the environment, and a finite-memory winning strategy for the envi-
ronment induces a γ-sep-refuter for 〈L1, L2〉.

6 Certifying DγW-Refutation

In this section we extend the three-word certificates for non-DBW-recognizability to
richer classes of deterministic automata. The idea is similar (and in fact a little tedious):
each DγW-refuter embodies a structure (analogous to the one in Lemma 1) from which
we can extract finite words that constitute the corresponding certificate (analogous
to the one in Theorem 3). We describe here the details for classes in the Mostowski
hierarchy and well as for classes of the depth-hierarchy. We also restrict ourselves to
word-certificates for non-recognizability and do not show the word-certificates for non-
separability which have an identical structure.

Certifying Inexpressibility 21

6.1 Mostowski Hierarchy

First, by Theorem 8, certificates for a class and its dual class are related. For example,
dualizing Theorem 3, we obtain certificates for non-DCW-recognizability as follows.

Theorem 9. An ω-regular language L is not in DCW iff there exist three finite words
x ∈ Σ∗ and x1, x2 ∈ Σ+, such that

x · (x1 + x2)∗ · xω1 ∩ L = ∅ and x · (x∗1 · x2)ω ⊆ L.

Handling DPWs, we first define the analogue of a rej+-path, and then point to
the desired structure and the certificate it induces. Consider a DPW[i, k]-refuter R =
〈{i, . . . , k}, Σ, env , S, s0, ρ, τ〉 with i ∈ {0, 1} and i ≤ k. Let ` ∈ {i, . . . , k}. We say that
a path s1, . . . , sm in R is an `+≤-path if its first transition is labelled ` and all its other
transitions are labeled by colors in {i, . . . `}. Thus, s2 = ρ(s1, `) and, for all 1 ≤ j < m,
we have that sj+1 = ρ(sj , `

′), for some `′ ≤ `.

Lemma 4. Consider a DPW[i, k]-refuter R = 〈{i, . . . , k}, Σ, env , S, s0, ρ, τ〉 with i ∈
{0, 1} and i ≤ k. There exists a state s ∈ S, a (possibly empty) path p = s0, s1, . . . sm,
and for each ` ∈ {i, . . . , k}, a `+≤-cycle p` = s`1 . . . s

`
m`

, such that sm = s`1 = s`m`
= s.

Proof. Let R≤j denote the transducer that we obtain from R when we restrict δ to
transitions labelled by at most j. Note that R is R≤k. We proceed by induction on j
with i ≤ j ≤ k and show that in the transducer R≤j for every state s ∈ S there exists
a state s′ ∈ S, a (possibly empty) path p = s1, . . . sm with s = s1, and that for each
` ∈ {i, . . . , j} there exists a `+≤-cycle p` = s`1, s

`
2 . . . s

`
m`

, such that sm = s`1 = s`m`
= s′.

The base case for j = i follows immediately from the fact that R≤i is responsive on {i}
and by reading iω we obtain a lasso with the required properties.

Let j > i and let s ∈ S be an arbitrary state. Further, let sj ∈ S be a reachable
state from s that belongs to an ergodic component in the graph of R≤j (that is, sj ∈ C,
for a set C of strongly connected states that can reach only states in C). By induction
hypothesis there exists s′ ∈ S, a (possibly empty) path p = sj , sj+1, . . . sm, and for each
` ∈ {i, . . . , j−1} there exists a `+≤-cycle p` = s`1, s

`
2 . . . s

`
m`

, such that sm = s`1 = s`m`
= s′

for every ` ∈ {i, . . . , j − 1}. Since R≤j is responsive on {i, . . . , j} we can take from s′

a transition labelled ` and since C is ergodic we can find a path back to s′. Thus we
obtain the missing j+≤-cycle and by concatenating the path from s to sj and the path
p, we show that s′ can be reached from s. ut

Theorem 10. Let i ∈ {0, 1} and i ≤ k. An ω-regular language L is not in DPW[i, k] iff
there exist finite words x ∈ Σ∗ and xi, . . . , xk ∈ Σ+, such that for every even i ≤ ` ≤ k,
we have

x · (xi + · · ·+ xk)∗ · ((xi + xi+1 + · · ·+ x`−1)∗ · x`)ω ⊆ L,
and for every odd i ≤ ` ≤ k, we have

x · (xi + · · ·+ xk)∗ · ((xi + xi+1 + · · ·+ x`−1)∗ · x`)ω ∩ L = ∅.

Proof. Assume first that L is not in DPW[i, k]. Then, by Proposition 4, there exists a
DPW[i, k]-refuter R for it. From this refuter we can extract via Lemma 4 a path p and
`+≤-cycles. We then construct the postulated finite words in the exact same way as in
the proof of Theorem 3.

22 Orna Kupferman and Salomon Sickert

For the other direction, we first simplify the presentation by assuming i = 0. The
proof for i = 1 is analogous. Assume by way of contradiction that there is a DPW[0, k]
A with L(A) = L. Let A = 〈Σ,Q, q0, δ, α〉. Let n = |Q| and consider the following
sequence of words w0 = xn0 , w1 = (w0 ·x1)n, . . . , wk = (wk−1 ·xk)n. Let q = δ(q0, w) be
a state that is reached after reading w ∈ x · (xi +xi+1 + . . . xk)∗. Since w ·wω

0 ∈ L, there
must be a state p0 that is visited infinitely often and α(p0) is odd. Since |w0| ≥ |Q|,
this state must have been visited while reading w0. Now, consider w ·wω

1 . This word is
rejected and by the same reasoning as before there must be some p1 such that α(p1) is
even, it is visited while reading w1, and for every p0 that belongs to a w0 subsequences
we have α(p1) > α(p0). We continue and obtain a sequence α(pk) > · · · > α(p0) with
k strict inequalities. Since α(p0) is odd, we have α(p0) > 0 and thus α(pk) > k, which
contradicts the fact that A is a DPW[0, k]. ut

Note that, by [38], the “flower”-structure that induces the certificate exists also in
DPWs for L. Specifically, while Lemma 4 shows that every DPW[i, k]-refuter contains
a “flower” with k − i+ 1 petals, it is shown in [38] that for every ω-language L not in
DPW[1, k + 1], there exists a DPW for L that contains a flower with k + 1 petals and
this flower occurs in some accepting run.

Rabin and Streett acceptance. Recall that for all k ≥ 0, we have that DRW[k] =
DPW[0, 2k] . Hence, the certificates obtained through Theorem 10 carry over to the
Rabin case. Further, in a deterministic generalized Rabin automaton (DGRW), the
acceptance condition is of the form

α = {〈B1, G1,1, . . . , G1,n1〉, . . . 〈Bk, Gk,1, . . . , Gn,kn〉},

and a run r is accepting if there is j ∈ {1, . . . , k}, such that inf (r) ∩ Bj = ∅ and
inf (r) ∩ Gj,` 6= ∅ for every 1 ≤ ` ≤ nj . Since degeneralization does not increase the
number of Rabin pairs, we have that DGRW[k] = DRW[k] = DPW[0, 2k], and so again
the certificates obtained through Theorem 10 are applicable. Nevertheless, a refuter for
the DRW[k] may be more succinct than a DPW[0, 2k]-refuter.

Finally, the Streett and generalized acceptance conditions are dual to Rabin and
generalized Rabin, and certificates for them can be obtained dually.

6.2 Depth-Hierarchy

We continue to certificates for non-DWW[i, k]-recognizability. Consider now a DWW[i, k]-
refuter R = 〈{i, . . . , k}, Σ, env , S, s0, ρ, τ〉, with i ∈ {0, 1} and i ≤ k. Let ` ∈ {i, . . . , k}.
We say that a path s1, . . . , sm in R is an `+-path if all transitions are labelled by `.
Thus, for all 1 ≤ j < m, we have that sj+1 = ρ(sj , `).

Lemma 5. Consider a DWW[i, k]-refuter R = 〈{i, . . . , k}, Σ, env , S, s0, ρ, τ〉 with i ∈
{0, 1} and i ≤ k. Let si−1 be an alias for s0. Then there exists a sequence of states
si, si+1, . . . sk ∈ S, such that for every j ∈ {i, . . . , k} there exists a (possibly empty)
j+-path pj = sj1, s

j
2, . . . s

j
mj

, and a j+-cycle cj = sjmj+1, s
j
mj+2 . . . s

j
mj+m′j

such that

sjmj
= sjmj+1 = sjmj+m′j

= sj and sj1 = sj−1.

Proof. Such a structure can be found by constructing a sequence of lassos. Start by
reading iω from s0 to construct an i+-path pi and an i+-cycle ci. si is then the last

Certifying Inexpressibility 23

state of ci, respectively. Then, continue by reading (i + 1)ω from si to find the next
lasso and continue until all lassos are found. ut

Theorem 11. Let i ∈ {0, 1} and i ≤ k. An ω-regular language L is not in DWW[i, k]
iff there exist finite words x̂i, x̂i+1, . . . , x̂k ∈ Σ∗ and xi, xi+1, . . . , xk ∈ Σ+, such that
for every even i ≤ ` ≤ k, we have

x̂i · x∗i · x̂i+1 · x∗i+1 · · · x̂` · xω` ⊆ L,

and for every odd i ≤ ` ≤ k, we have

x̂i · x∗i · x̂i+1 · x∗i+1 · · · x̂` · xω` ∩ L = ∅.

Proof. Assume first that L is not in DWW[i, k]. Then, by Proposition 4, there exists a
DWW[i, k]-refuter R for it. From this refuter we can extract via Lemma 5 a sequence
of states with the corresponding paths and cycles. We then obtain words in the same
manner as in the proof of Theorem 3.

For the remaining direction assume by way of contradiction that there is a DWW[i, k]
A = 〈Σ,Q, q0, δ, α〉 with L(A) = L. We simplify the presentation by assuming i = 0.
The proof for i = 1 is analogous. Let n = |Q| and consider the following sequence of
words w0 = x̂0 · xn0 , w1 = w0 · x̂1 · xn1 , . . . , wk = wk−1 · x̂k · xnk . Since w0 · xω0 ∈ L and w0

has more letters than A has states, we have α(δ(q0, w0)) is odd. By the same argument
we have due to w1 · xω1 /∈ L that α(δ(q0, w1)) is even and since w0 is a prefix of w1

we also have α(δ(q0, w1)) > α(δ(q0, w0)). Continuing in this manner we obtain a chain
of length α(δ(q0, wk)) > α(δ(q0, wk−1)) > · · · > α(δ(q0, w0)) with k strict inequalities.
Since the smallest element is odd, we have α(δ(q0, w0)) > 0 and thus α(δ(q0, wk)) > k
which contradicts A being a DWW[0, k]. ut

We continue with general DWWs.

Lemma 6. Consider a DWW-refuter R = 〈{acc,rej}, Σ, env , S, s0, ρ, τ〉. There exist
two states s1, s2 ∈ S, (possibly empty) paths p0 = s0, s1, . . . sm0

, p1 = sm0+1, . . . , sm0+m1
,

and p2 = sm0+m1+1, . . . , sm0+m1+m2
, a rej+-cycle c1 = s11, s

1
2 . . . s

1
l1

, and a acc+-cycle
c2 = s21, s

2
2 . . . s

2
l2

, such that sm0
= sm0+1 = sm0+m1+m2

= s11 = s1l1 and sm0+m1
=

sm0+m1+1 = s21 = s2l2 .

Proof. Let s ∈ S be state in an ergodic SCC of the graph of R. Then the acc+- and
rej+-cycle are obtained from the lassos formed by reading from s the words accω and
rejω, respectively. Since s belongs to an ergodic SCC, there exist paths connecting the
first states of these cycles. ut

We now obtain in the same way as before from Proposition 4 and Lemma 6, the
desired certificate:

Theorem 12. An ω-regular language L is not in DWW iff there exist five finite words
x, x2, x4 ∈ Σ∗ and x1, x3 ∈ Σ+, such that

x · (x1 + x2 · x∗3 · x4)∗ · xω1 ⊆ L and x · (x1 + x2 · x∗3 · x4)∗ · x2 · xω3 ∩ L = ∅.

24 Orna Kupferman and Salomon Sickert

Recall that DWW=DBW∩DCW, so one would define a DWW certificate by dis-
juncting the certificates for DBW and DCW in Theorems 3 and 9. Theorem 12, however,
suggests a different certificate, and it is interesting to relate it to the ones for DBW and
DCW. Also note that while the DBW, DCW, and DPW certificates are covered by [50,
Lemma 14], this is not the case for the DWW certificate in Theorem 12.

Recall that at the bottom of the depth hierarchy we have safety and co-safety lan-
guages, whose intersection is the set of bounded languages.

Theorem 13. An ω-regular language L is not a bounded language iff there exist six
finite words x̂0, x̂1, x̂2 ∈ Σ∗ and x0, x1, x2 ∈ Σ+, such that

x̂0 · x∗0 · x̂1 · xω1 ⊆ L and x̂0 · x∗0 · x̂2 · xω2 ∩ L = ∅.

Proof. Assume first that L is not bounded. Then, by Proposition 4, there exists a
〈Lbounded

acc , Lbounded
struct 〉-refuter R for it. From this refuter we can extract three lassos: a

?-labeled lasso from which we obtain x̂0 and x0; a rej-labeled lasso starting at the
entry-point of the first lasso from which we obtain x̂1 and x1; and a acc-labeled lasso
starting at the entry-point of the first lasso from which we obtain x̂2 and x2.

For the other direction assume by way of contradiction that there is a deterministic
〈Lbounded

acc , Lbounded
struct 〉-automaton A = 〈Σ,Q, q0, δ, τ, γ〉 with L(A) = L. Assume that

x̂0 · xω0 ∈ L. Thus after reading |Q| letters one state has been repeated and by the

constraint it must be accepting. Thus x̂0 · x|Q|0 · x̂2 · xω2 ∈ L which is a contradiction.
The other case is analogous. ut

7 Discussion and Directions for Future Research

The automation of decision procedures makes certification essential. We suggest to use
the winning strategy of the refuter in expressiveness games as a certificate to inex-
pressibility. We show that beyond this state-based certificate, the strategy induces a
word-based certificate, generated from words traversed along a “flower structure” the
strategy contains, as well as a language-based certificate, consisting of languages that
under- and over-approximate the language in question and that are not separable by
automata in the desired class.

While our work considers expressive power, one can use similar ideas in order to
question the size of automata needed to recognize a given language. For example, in
the case of a regular language L of finite words, the Myhill-Nerode characterization
[36,37] suggests to refute the existence of deterministic finite word automata (DFW)
with n states for L by providing n+ 1 prefixes that are not right-congruent. Using our
approach, one can alternatively consider the winning strategy of Refuter in a game in
which the set of annotations includes also the state space, and Lstruct ensures consistency
of the transition relation. Even more interesting is refutation of size in the setting of
automata on infinite words. Indeed, there, minimization is NP-complete [46], and there
are interesting connections between polynomial certificates and possible membership
in co-NP, as well as connections between size of certificates and succinctness of the
different classes of automata.

Finally, while the approximation scheme we studied is based on suggested over- and
under-approximating languages, it is interesting to study approximations that are based
on more flexible distance measures [13,18].

Certifying Inexpressibility 25

References

1. Almagor, S., Lahijanian, M.: Explainable multi agent path finding. In: Proc. 19th Inter-
national Conference on Autonomous Agents and Multiagent Systems. pp. 34–42 (2020)

2. Alpern, B., Schneider, F.: Recognizing safety and liveness. Distributed computing 2, 117–
126 (1987)

3. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic systems.
In: Handbook of Model Checking., pp. 963–999. Springer (2018)

4. Baumeister, T., Finkbeiner, B., Torfah, H.: Explainable reactive synthesis. In:
18th Int. Symp. on Automated Technology for Verification and Analysis (2020).
https://doi.org/10.1007/978-3-030-59152-6 23

5. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reactive synthesis. In: Hand-
book of Model Checking., pp. 921–962. Springer (2018)

6. Boigelot, B., Jodogne, S., Wolper, P.: On the use of weak automata for deciding linear
arithmetic with integer and real variables. In: Proc. Int. Joint Conf. on Automated Rea-
soning. Lecture Notes in Computer Science, vol. 2083, pp. 611–625. Springer (2001)

7. Boker, U., Kupferman, O.: Co-ing Büchi made tight and useful. In: Proc. 24th IEEE Symp.
on Logic in Computer Science. pp. 245–254 (2009)

8. Büchi, J.: On a decision method in restricted second order arithmetic. In: Proc. Int.
Congress on Logic, Method, and Philosophy of Science. 1960. pp. 1–12. Stanford Uni-
versity Press (1962)

9. Büchi, J., Landweber, L.: Solving sequential conditions by finite-state strategies. Trans.
AMS 138, 295–311 (1969)

10. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. Journal of the ACM 50(5), 752–794 (2003)

11. Czerwinski, W., Lasota, S., Meyer, R., Muskalla, S., Kumar, K., Saivasan, P.: Regular
separability of well-structured transition systems. In: Proc. 29th Int. Conf. on Concurrency
Theory. LIPIcs, vol. 118, pp. 35:1–35:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2018)

12. Czerwinski, W., Martens, W., Masopust, T.: Efficient separability of regular languages
by subsequences and suffixes. In: Proc. 40th Int. Colloq. on Automata, Languages, and
Programming. Lecture Notes in Computer Science, vol. 7966, pp. 150–161. Springer (2013)

13. Dimitrova, R., Finkbeiner, B., Torfah, H.: Approximate automata for omega-regular lan-
guages. In: 17th Int. Symp. on Automated Technology for Verification and Analysis. Lec-
ture Notes in Computer Science, vol. 11781, pp. 334–349. Springer (2019)

14. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer (2006)
15. Emerson, E., Jutla, C.: The complexity of tree automata and logics of programs. In: Proc.

29th IEEE Symp. on Foundations of Computer Science. pp. 328–337 (1988)
16. Emerson, E., Jutla, C.: Tree automata, µ-calculus and determinacy. In: Proc. 32nd IEEE

Symp. on Foundations of Computer Science. pp. 368–377 (1991)
17. Emerson, E., Lei, C.L.: Modalities for model checking: Branching time logic strikes back.

Science of Computer Programming 8, 275–306 (1987)
18. Gange, G., Ganty, P., Stuckey, P.: Fixing the state budget: Approximation of regular

languages with small dfas. In: 15th Int. Symp. on Automated Technology for Verification
and Analysis. Lecture Notes in Computer Science, vol. 10482, pp. 67–83. Springer (2017)

19. Krishnan, S., Puri, A., Brayton, R.: Deterministic ω-automata vis-a-vis deterministic Büchi
automata. In: Algorithms and Computations. Lecture Notes in Computer Science, vol. 834,
pp. 378–386. Springer (1994)

20. Kupferman, O.: Automata theory and model checking. In: Handbook of Model Checking,
pp. 107–151. Springer (2018)

21. Kupferman, O., Morgenstern, G., Murano, A.: Typeness for ω-regular automata. Interna-
tional Journal on the Foundations of Computer Science 17(4), 869–884 (2006)

https://doi.org/10.1007/978-3-030-59152-6_23

26 Orna Kupferman and Salomon Sickert

22. Kupferman, O., Sheinvald-Faragy, S.: Finding shortest witnesses to the nonemptiness of
automata on infinite words. In: Proc. 17th Int. Conf. on Concurrency Theory. Lecture
Notes in Computer Science, vol. 4137, pp. 492–508. Springer (2006)

23. Kupferman, O., Vardi, M.: On bounded specifications. In: Proc. 8th Int. Conf. on Logic for
Programming Artificial Intelligence and Reasoning. Lecture Notes in Computer Science,
vol. 2250, pp. 24–38. Springer (2001)

24. Kupferman, O., Vardi, M.: From complementation to certification. Theoretical Computer
Science 305, 591–606 (2005)

25. Kupferman, O., Vardi, M.: From linear time to branching time. ACM Transactions on
Computational Logic 6(2), 273–294 (2005)

26. Kupferman, O., Vardi, M.: Safraless decision procedures. In: Proc. 46th IEEE Symp. on
Foundations of Computer Science. pp. 531–540 (2005)

27. Kurshan, R.: Computer Aided Verification of Coordinating Processes. Princeton Univ.
Press (1994)

28. Landweber, L.: Decision problems for ω–automata. Mathematical Systems Theory 3, 376–
384 (1969)

29. Leshkowitz, O., Kupferman, O.: On repetition languages. In: 45th Int. Symp. on Mathe-
matical Foundations of Computer Science. Leibniz International Proceedings in Informatics
(LIPIcs) (2020)

30. Löding, C.: Methods for the transformation of automata: Complexity and connection to
second order logic (1999), M.Sc. Thesis, Christian-Albrechts-University of Kiel

31. Löding, C.: Efficient minimization of deterministic weak ω-automata. Information Process-
ing Letters 79(3), 105–109 (2001)

32. McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Infor-
mation and Control 9, 521–530 (1966)

33. Meyer, A., Stockmeyer, L.: The equivalence problem for regular expressions with squaring
requires exponential space. In: Proc. 13th IEEE Symp. on Switching and Automata Theory.
pp. 125–129 (1972)

34. Mostowski, A.: Regular expressions for infinite trees and a standard form of automata. In:
Computation Theory. Lecture Notes in Computer Science, vol. 208, pp. 157–168. Springer
(1984)

35. Muller, D., Saoudi, A., Schupp, P.: Alternating automata, the weak monadic theory of
the tree and its complexity. In: Proc. 13th Int. Colloq. on Automata, Languages, and
Programming. Lecture Notes in Computer Science, vol. 226, pp. 275 – 283. Springer (1986)

36. Myhill, J.: Finite automata and the representation of events. Tech. Rep. WADD TR-57-
624, pages 112–137, Wright Patterson AFB, Ohio (1957)

37. Nerode, A.: Linear automaton transformations. Proceedings of the American Mathematical
Society 9(4), 541–544 (1958)

38. Niwinski, D., Walukiewicz, I.: Relating hierarchies of word and tree automata. In: Proc.
15th Symp. on Theoretical Aspects of Computer Science. Lecture Notes in Computer
Science, vol. 1373. Springer (1998)

39. Perrin, D., Pin, J.E.: Infinite words - automata, semigroups, logic and games, Pure and
applied mathematics series, vol. 141. Elsevier Morgan Kaufmann (2004)

40. Place, T., Zeitoun, M.: Separating regular languages with first-order logic. Log. Methods
Comput. Sci. 12(1) (2016)

41. Rabin, M.: Decidability of second order theories and automata on infinite trees. Transaction
of the AMS 141, 1–35 (1969)

42. Safra, S.: On the complexity of ω-automata. In: Proc. 29th IEEE Symp. on Foundations
of Computer Science. pp. 319–327 (1988)

43. Safra, S.: Exponential determinization for ω-automata with strong-fairness acceptance
condition. In: Proc. 24th ACM Symp. on Theory of Computing (1992)

Certifying Inexpressibility 27

44. S.Almagor, Chistikov, D., Ouaknine, J., Worrell, J.: O-minimal invariants for linear loops.
In: Proc. 45th Int. Colloq. on Automata, Languages, and Programming. LIPIcs, vol. 107,
pp. 114:1–114:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

45. Schewe, S.: Büchi complementation made tight. In: Proc. 26th Symp. on Theoretical As-
pects of Computer Science. LIPIcs, vol. 3, pp. 661–672. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany (2009)

46. Schewe, S.: Beyond Hyper-Minimisation—Minimising DBAs and DPAs is NP-Complete.
In: Proc. 30th Conf. on Foundations of Software Technology and Theoretical Computer
Science. Leibniz International Proceedings in Informatics (LIPIcs), vol. 8, pp. 400–411
(2010)

47. di Stasio, A., Murano, A., Vardi, M.: Solving parity games: Explicit vs symbolic. In: 23rd
International Conference on Implementation and Application of Automata. Lecture Notes
in Computer Science, vol. 10977, pp. 159–172. Springer (2018)

48. Thomas, W.: Automata on infinite objects. Handbook of Theoretical Computer Science
pp. 133–191 (1990)

49. Vardi, M., Wolper, P.: Reasoning about infinite computations. Information and Computa-
tion 115(1), 1–37 (1994)

50. Wagner, K.: On ω-regular sets. Information and Control 43, 123–177 (1979)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which

permits use, sharing, adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not in-

cluded in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Certifying Inexpressibility

