Decidable and Semi-decidable

® accept

. machine .
input " — e reject

e loop forever.

For a language L
o if there is some Turing Machine that accepts every string in L
and rejects every string not in L, then L is a decidable
language
o if there is some Turing machine that accepts every string in L
and either rejects or loops on every string not in L, then L is
Semi-decidable or computably enumerable (CE)

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 1/42

CE vs. Decidable Languages

L =all polynomial

equations with integer
coefficients that have a
solution in the integers

This is CE!

if it were decidable, this would mean we had a method of
determining whether any equation has a solution or not!

X3yd4zi=0 > accept
X2+y2+1=0 = reject

L =all C programs that crash on some input
CE as well!
If it were decidable, life would be sweet...

Accept={(M, x) : M is a Turing Machine that accepts string x}
CE

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 2/42

Alternative definition of Computable Enumerability

@ Why is “Semi-Decidable” called CE?

@ Definition: an enumerator for a language L C ¥* is a TM that
writes on its output tape

HX1HEXRHXBHE . ..

and L = {x1,x2,x3,...}.
@ The output may be infinite

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 3/42

Computable Enumerability

Theorem

A language is Semi-decidable/CE iff some enumerator enumerates
it.

Proof:

(<) Let E be the enumerator for L. We create a semi-decider for
L. On input w:

@ Simulate E. Compare each string it outputs with w.

o If w matches a string output by E, accept.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 4/42

Computable Enumerability

Theorem

A language is Semi-decidable/CE iff some enumerator enumerates
it.

Proof:

(=) Let M recognise (semi-decide) language L C ¥*. We create
an enumerator for L.

@ let s1,5,53,... be enumeration of £* in lexicographic order.
e fori=1,2,3,4,...
e simulate M for i steps on s1,s,53,...,5S;

e if any simulation accepts, print out that s;

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 5/42

Undecidability

decidable
all languages
regular
languages
context free
languages CE

decidable C CE C all languages

our goal: prove these containments proper

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 6/42

Countable and Uncountable Sets

o the natural numbers N={1,2,3,...} are
countable

° Definitior]: a set S is countable if it is finite, or
if it is infinite and there is an onto (surjective)
function f : N — S

Equivalently: there is a function from S into N

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18

7/42

Countable and Uncountable Sets

Theorem

The positive rational numbers
Q= {m/n : m,ne N} are countable.

e Proof:
ot
1 1/6 .
P 4 4 2/5 2/6
y, 3/4 3/5 3/6
4/3 4/4 4/5 4/6 ...
4

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18

8 /42

Countable and Uncountable Sets

Theorem

The real numbers R are NOT countable (they are
“uncountable”).

How do you prove such a statement?

e assume countable (so there exists function f
from N onto R)

o derive contradiction (“construct” an element
not mapped to by f)

o technique is called diagonalization (Cantor)

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 9/42

Countable and Uncountable Sets

Proof:

e suppose R is countable

e list R according to the bijection f:

n f(n)

1 3.14159. ..
2 5.55555 ...
3 0.12345. ..
4 0.50000. ..

Paul Goldberg

Intro to Foundations of CS; slides 3, 2017-18

10/ 42

Countable and Uncountable Sets

Proof:
e suppose R is countable

e list R according to the bijection f:

: f(n) set x =0 ajarazay . ..
1 3.14159... where digit a; # i-th

2 5.55555. .. digit after decimal point
3 0.12345... of £(7)

4 0.50000... e.g x=02641. ..

x cannot be in the list!

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 11/42

non-CE languages

Theorem

There exist languages that are not Computably
Enumerable.

Proof outline:

o the set of all TMs is countable (and hence so is
the set of all CE languages)

o the set of all languages is uncountable

o the function L : {TMs} — {all languages}
cannot be onto

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 12 /42

non-CE languages

Lemma
The set of all TMs is countable. J
Proof:
o each TM M can be described by a finite-length
string (M)

e can enumerate these strings, and give the
natural bijection with N

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 13 /42

non-CE languages

Lemma
The set of all languages is uncountable.

Proof:
o fix an enumeration of all strings sy, s, s3, ...
(for example, lexicographic order)
e a language L is described by an infinite string in
{In, Out}* whose i-th element is In if s; is in L
and Out if s; is not in L.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 14 /42

non-CE languages

@ suppose the set of all languages is countable

@ list membership strings of all languages according to the

bijection f:

n f(n)

1 0101010...
2 1010011...
3 1110001...
4 0100011...

Paul Goldberg

0 =Out
1 =In

Intro to Foundations of CS; slides 3, 2017-18

15 /42

non-CE languages

@ suppose the set of all CE languages is countable

@ list characteristic vectors of all languages according to the

create language L with

membership string x

where i-th digit of x # i-th
digit of £(/)

x cannot be in the list!

bijection f:

n f(n)

1 0101010...
2 1010011...
3 1110001...
4 0100011...

therefore, the language L is
not in the list.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 16 / 42

So far...

{a"b":nz20} some language
decidable

all languages
regular

languages

context free
languages

{a"b"c":n=20}

@ This language might be an esoteric, artificially constructed
one. So who cares?

@ We will show a natural undecidable L next.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 17 /42

The Halting Problem

@ Definition of the “Halting Problem™:
HALT= {(M,x) : TM M halts on input x}

(M, x) denotes coding of machine and input as a string (pick some

coding — doesn't matter for this argument)

@ HALT is computably enumerable.
(proof?)

o Is HALT decidable?

HALT is a generic software-testing challenge, so genuinely
interesting!

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18

18/ 42

The Halting Problem

Theorem
HALT is not decidable (undecidable). J

Proof will involve the following

e Suppose there's some TM H that decides
HALT. Using this we will get a contradiction.

e You'll need to believe that TMs can simulate
other TMs, also can be composed with each

other.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 19 /42

Proof

e For simplicity, assume input alphabet is one-letter, so inputs
to machines are unary integers.

@ Assume that HALT were decidable. We create a new TM H’
that is different from every other Turing machine (clearly a
contradiction, since H' would have to be different from itself!)

o Let My,...,M,,... enumerate all the Turing Machine
descriptions. Suppose H decides HALT.

@ Definition of H':

On input n (i.e. 1"), H' runs machine H on (M,, n)
o if H returns ACCEPT (so M, halts on n), then H" goes into a
loop (alternatively: runs M, on n, and then H’ returns

ACCEPT iff M, rejects n.

o If H returns REJECT (so M, does not halt on n), then H’
ACCEPTS.

H' is a TM, but is different from every TM (since disagrees with
i-th TM in its behaviour on input 1’ — contradiction!)

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 20/ 42

Language Classes: Current Summary

z some language
T T~

all languages

regular
languages

CE=semi-
decidable
HALT: CE

but not
decidable

context free
languages

Q: any interesting language that is not CE?

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 21/42

CE and co-CE

Theorem

A language L is decidable if and only if L is CE and
L is co-CE.

Proof:
(=) we already know decidable implies CE

e if L is decidable, then complement of L is
decidable by flipping accept/reject.
e so L is co-CE.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 22 /42

CE and co-CE

Theorem

A language L is decidable if and only if L is CE and
L is co-CE.

Proof:
(<) we have TM M that recognises L, and TM M’

recognises complement of L.
e on input x, simulate M, M’ in parallel
o if M accepts, accept; if M’ accepts, reject.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 23 /42

A concrete language that is not CE

Theorem
A language L is decidable if and only if L is CE and L is co-CE. ’

Corollary
The complement of HALT is not CE. \

Proof:
@ we know that HALT is CE but not decidable

o if complement of HALT were CE, then HALT is CE and co-CE
hence decidable. Contradiction.

Bottom line: For every “strictly semi-decidable language”, its
complement cannot be semi-decidable.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 24 /42

Reductions

@ Given a new problem NEW, want to determine if it is easy or
hard

e right now, easy typically means decidable
e right now, hard typically means undecidable

@ One option:

e prove from scratch that the problem is easy (decidable), or
e prove from scratch that the problem is hard (undecidable) (e.g.
dream up a diag. argument)

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 25/42

Reductions

@ A better option:

e to prove NEW is decidable, show how to transform it
(effectively) into a known decidable problem OLD so that
solution to OLD can be used to solve NEW.

e to prove NEW is undecidable, show how to transform a known
undecidable problem OLD into NEW so that solution to NEW
could be used to solve OLD.

o called a reduction. Reduction from problem A to problem B
shows that “A is no harder than B”, and also that “B is at
least as hard as A”.

@ to get a positive result on NEW, create a reduction from
NEW to OLD, where OLD is known to be easy.

@ To get a negative result on NEW, create a reduction from
OLD to NEW, where OLD is known to be hard.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 26 /42

Example reduction

o Try to prove undecidable:

ACCry = {(M,w) : M accepts input w}
o We know this language is undecidable:

HALT = {(M,w) : M halts on input w}
o ldea:

e suppose ACCry is decidable
o show that we can use ACCry to decide HALT (reduction)
e conclude HALT is decidable. Contradiction.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18

27/ 42

Example reduction

e How could we use procedure that decides
ACCry to decide HALT?
e given input to HALT: (M, w)

e Some things we can do:

e check if (M, w) € ACCrpy
e construct another TM M’ and check if (M', w) € ACCrpy

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 28 /42

Example reduction

Deciding HALT using a procedure that decides ACCtp (“reducing
HALT to ACCTM").

@ on input (M, w)
e check if (M, w) € ACCrum

o if yes, then know M halts on w; ACCEPT

e if no, then M either rejects w or it loops on w
@ construct M’ by swapping Gaccept/ reject in M
e check if (M",w) € ACCtpm

o if yes, then M’ accepts w, so M rejects w; ACCEPT
e if no, then M neither accepts nor rejects w; REJECT

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 29 /42

Recap: Reductions and Negative Results

Want to prove language L is undecidable.
Let Limpossible be some problem that we already know is
undecidable (e.g. Halting).

Proof by contradiction: Assume that there were some TM M, that
decides L. Show that using M, we could decide Linpossible: @
contradiction.

How to do this?
Create a Turing Machine N that decides Limpossible; N has
“subroutines” calling M;.

Simplest version, “many-one reduction”: N takes an input / to
Limpossible; and construct a new input /” to test against M;.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 30/ 42

Another example

Try to prove undecidable:
NEMP = {(M) : L(M) # 0}
Reduce from
HALT = {(M, w) : M halts on input w}

OK, we want to decide HALT using NEMP

Create a machine N that decides HALT on input (M, w) using
“subroutines” for NEMP.
N wants to check if (M, w) eHALT

@ N constructs another TM M’ and checks if (M) eNEMP
e M’ constructed so that (M, w) eHALT < (M’) € NEMP

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18

31/42

Reducing HALT to NEMP

idea of N (function it computes):

e Given (M, w), construct (M’); on any input i, M’ runs M on
w and accepts / if M halts
construction of M':
@ Use 3 states to delete any input (make tape blank)
@ |w]| states print w on input tape
© Use copies of M's states to simulate M on w
@ ...make sure all states accept.

N constructs M’ as above (can be done automatically, i.e. N is
doing something computable!)

Extra note: this reduction also proves that the problem of
recognising whether a TM accepts an infinite number of distinct
inputs, is undecidable.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 32/42

many-one reductions

Definition: A <,, B (A many-one reduces to B) if there is a
computable (using a TM) function f such that for all w

weAsf(w)eB

A f B
reduction from
f language A to
v v language B

Book calls it “mapping reduction”.
Example: to show NEMP undecidable, constructed computable f
so that (M, w) € HALT < f((M,w)) € NEMP

In this notation: HALT<,,NEMP

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 33/42

many-one reductions

Definition: A <,, B (A many-one reduces to B) if there is a
computable function f such that for all w

weAsf(w)eB

Theorem
If A<,, B and B is decidable then A is decidable. J

Proof:

@ decider for A: on input w compute f(w), run decider for B,
do whatever it does.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 34/42

If A<,, B and B is CE, then A is CE.

Proof:

@ TM for recognizing A: on input w compute f(w), run TM
that recognises B, do whatever it does.

Main use: given language NEW, prove it is not CE by showing
OLD <,, NEW, where OLD known to be not CE.

Applying Reductions to Get Negative Results on
Decidability

Theorem

The language
REGULAR = {(M) : M isa TM and L(M) is regular}
is undecidable.

Proof:
@ reduce from ACCry (i.e. show ACCry <, REGULAR)

@ i.e. want
M accepts w < f((M,w)) is code of regular language
e what should f((M, w)) produce?

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 36 /42

Undecidability via Reductions

Proof:
o f((M,w)) = (M) described below

/ 2 0

M’ takes input x: @ is f computable?

@ YES maps to YES?
</W7 W> € ACCry =
f(M,w) € REGULAR

@ if x has form 071", accept

@ else simulate M on w and
accept x if M accepts

M = {0"1"} if w & L(M)

_ @ NO maps to NO?
=Y"if w € L(M) (M, w) & ACCriy =

What would a formal proof of this f(M,w) ¢ REGULAR
look like?

general idea: write pseudo-code that takes description of M as
input and produces description of M.

Argue that this pseudo-code could be implemented as a Turing
machine with output tape.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 37/42

Decidable and Undecidable problems

The boundary between decidability and undecidability is often
quite delicate

@ seemingly related problems
@ one decidable

@ other undecidable
We will cover most examples in the problem sheet

Problem: Given a context free grammar G, is the language it generates empty?

Decidable: i.e. language {(G) : L(G) empty} is a decidable language.
See problem sheets.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 38/42

Decidable and Undecidable problems

The boundary between decidability and undecidability is often
quite delicate

@ seemingly related problems
@ one decidable

@ other undecidable
We will cover most examples in the problem sheet

Problem: Given a context free grammar G, is the language it generates empty?
Decidable: i.e. language {(G) : L(G) empty} is a decidable language.

See problem sheets.
Problem: Given a context free grammar G, does it generate every string?

Undecidable: i.e. language {(G) : L(G) = X"} is an undecidable language.
In next problem set.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 38/42

Problem: Given a NPDA, is the language it accepts empty?
@ Decidable. Convert to CFG and use previous result.

Note: reduction to a known decidable problem is device to prove
decidability

Decidable and Undecidable problems

Problem: Given a NPDA, is the language it accepts empty?
@ Decidable. Convert to CFG and use previous result.

Note: reduction to a known decidable problem is device to prove
decidability

Problem: Given a two-stack NPDA, is the language it accepts
empty?
@ Undecidable. In current problem set.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 39 /42

Post Correspondence Problem

Undecidability can find its way into problems that are not
“obviously” about TMs/computation in general. E.g. some
puzzle-like problems; PCP is as follows:

PCP = {<(X17}’1)>(X2a)’2)7---»(Xk7)/k)> DX i € Y*

and there exists (a1, az, ..., an)

for which xg,Xa, - -« Xa, = Va1 Yay - - - Yan }

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18

40/ 42

. . . o
o

PCP

Idea is a many-one reduction from ACC to PCP:

given a TM M and input w, we have an effective procedure that
creates a set of tiles T = f(M, w) such that:

M accepts w < there is some way of producing a tiling with T.
(I won't cover it in lectures.)

ACC f PCP

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 42 /42

