

For a language L

- if there is some Turing Machine that accepts every string in *L* and rejects every string not in *L*, then *L* is a decidable language
- if there is some Turing machine that accepts every string in *L* and either rejects or loops on every string not in *L*, then *L* is Semi-decidable or computably enumerable (CE)

1/42

L =all polynomial equations with integer coefficients that have a solution in the integers

This is CE!

if it were decidable, this would mean we had a method of determining whether any equation has a solution or not!

L =all C programs that crash on some input CE as well!

If it were decidable, life would be sweet...

Accept={
$$\langle M, x \rangle$$
 : M is a Turing Machine that accepts string x}
CE

accept

reject

x³+y³+z³=0 x²+y²+1=0

, x⁴+2y³+z⁴=5

- Why is "Semi-Decidable" called CE?
- Definition: an enumerator for a language $L \subset \Sigma^*$ is a TM that writes on its output tape

 $\#x_1\#x_2\#x_3\#\ldots$

```
and L = \{x_1, x_2, x_3, \ldots\}.
```

• The output may be infinite

A language is Semi-decidable/CE iff some enumerator enumerates it.

Proof:

(\Leftarrow) Let *E* be the enumerator for *L*. We create a semi-decider for *L*. On input *w*:

- Simulate E. Compare each string it outputs with w.
- If w matches a string output by E, accept.

A language is Semi-decidable/CE iff some enumerator enumerates it.

Proof:

 (\Rightarrow) Let *M* recognise (semi-decide) language $L \subset \Sigma^*$. We create an enumerator for *L*.

- let s_1, s_2, s_3, \ldots be enumeration of Σ^* in lexicographic order.
- for *i* = 1, 2, 3, 4, ...
 - simulate M for i steps on $s_1, s_2, s_3, \ldots, s_i$
- if any simulation accepts, print out that s_j

5/42

decidable \subset CE \subset all languages

our goal: prove these containments proper

6 / 42

- the natural numbers $\textbf{N}{=}\{1,2,3,\ldots\}$ are countable
- Definition: a set S is countable if it is finite, or if it is infinite and there is an onto (surjective) function $f : \mathbf{N} \to S$

Equivalently: there is a function from S into N

The positive rational numbers $\mathbf{Q} = \{m/n : m, n \in \mathbf{N}\}$ are countable.

• Proof:

1/1 1/2 1/3 1/4 1/5 1/6 ... 2/1 2/2 2/3 2/4 2/5 2/6 ... 3/1 3/2 3/3 3/4 3/5 3/6 ... 4/1 4/2 4/3 4/4 4/5 4/6 ... 5/

8/42

The real numbers **R** are NOT countable (they are "uncountable").

How do you prove such a statement?

- assume countable (so there exists function f from N onto R)
- derive contradiction ("construct" an element not mapped to by f)
- technique is called diagonalization (Cantor)

Proof:

. . .

- \bullet suppose R is countable
- list **R** according to the bijection *f*:

 $\begin{array}{c|cc}
n & f(n) \\
1 & 3.14159... \\
2 & 5.55555... \\
3 & 0.12345... \\
\end{array}$

4 0.50000...

Proof:

. . .

- \bullet suppose R is countable
- list **R** according to the bijection *f*:

n	f(n)
1	3.14159
2	5.5 <mark>5</mark> 555
3	0.12 <mark>3</mark> 45
4	0.500 <mark>0</mark> 0

set $x = 0 \cdot a_1 a_2 a_3 a_4 \dots$ where digit $a_i \neq i$ -th digit after decimal point of f(i)

e.g.
$$x = 0.2641...$$

x cannot be in the list!

11/42

There exist languages that are not Computably Enumerable.

Proof outline:

- the set of all TMs is countable (and hence so is the set of all CE languages)
- the set of all languages is uncountable
- the function $L : {TMs} \rightarrow {all languages}$ cannot be onto

Lemma

The set of all TMs is countable.

Proof:

- each TM *M* can be described by a finite-length string $\langle M \rangle$
- \bullet can enumerate these strings, and give the natural bijection with ${\bf N}$

Lemma

The set of all languages is uncountable.

Proof:

- fix an enumeration of all strings *s*₁, *s*₂, *s*₃, ... (for example, lexicographic order)
- a language L is described by an infinite string in {In, Out}* whose *i*-th element is In if s_i is in L and Out if s_i is not in L.

non-CE languages

. . .

- suppose the set of all languages is countable
- list membership strings of all languages according to the bijection *f*:

n	f(n)
1	0101010
2	1010011
3	1110001
4	0100011

 $\begin{array}{l} 0 = Out \\ 1 = In \end{array}$

non-CE languages

- suppose the set of all CE languages is countable
- list characteristic vectors of all languages according to the bijection *f*:

n	f(n)
1	0 101010
2	1 0 10011
3	1110001
4	0100011

create language L with membership string \times

where *i*-th digit of $x \neq i$ -th digit of f(i)

x cannot be in the list!

therefore, the language L is not in the list.

- This language might be an esoteric, artificially constructed one. So who cares?
- We will show a natural undecidable L next.

The Halting Problem

• Definition of the "Halting Problem": $HALT = \{ \langle M, x \rangle : TM \ M \text{ halts on input } x \}$ $\langle M, x \rangle$ denotes coding of machine and input as a string (pick some

coding - doesn't matter for this argument)

- HALT is computably enumerable. (proof?)
- Is HALT decidable?

HALT is a generic software-testing challenge, so genuinely interesting!

HALT is not decidable (undecidable).

Proof will involve the following

- Suppose there's some TM *H* that decides HALT. Using this we will get a contradiction.
- You'll need to believe that TMs can simulate other TMs, also can be composed with each other.

Proof

- For simplicity, assume input alphabet is one-letter, so inputs to machines are unary integers.
- Assume that HALT were decidable. We create a new TM H' that is *different from every other Turing machine* (clearly a contradiction, since H' would have to be different from itself!)
- Let M_1, \ldots, M_n, \ldots enumerate all the Turing Machine descriptions. Suppose *H* decides HALT.
- Definition of *H*':

On input *n* (i.e. 1^n), *H'* runs machine *H* on $\langle M_n, n \rangle$

- if *H* returns ACCEPT (so *M_n* halts on *n*), then *H'* goes into a loop (alternatively: runs *M_n* on *n*, and then *H'* returns ACCEPT iff *M_n* rejects *n*.
- If *H* returns REJECT (so *M_n* does not halt on *n*), then *H'* ACCEPTS.

H' is a TM, but is different from every TM (since disagrees with *i*-th TM in its behaviour on input $1^i \rightarrow \text{contradiction}!$)

Language Classes: Current Summary

Q: any interesting language that is not CE?

A language L is decidable if and only if L is CE and L is co-CE.

Proof:

 (\Rightarrow) we already know decidable implies CE

- if *L* is decidable, then complement of *L* is decidable by flipping accept/reject.
- so *L* is co-CE.

A language L is decidable if and only if L is CE and L is co-CE.

Proof: (\Leftarrow) we have TM *M* that recognises *L*, and TM *M'* recognises complement of *L*.

- on input x, simulate M, M' in parallel
- if M accepts, accept; if M' accepts, reject.

A language L is decidable if and only if L is CE and L is co-CE.

Corollary

The complement of HALT is not CE.

Proof:

- we know that HALT is CE but not decidable
- if complement of HALT were CE, then HALT is CE and co-CE hence decidable. Contradiction.

Bottom line: For every "strictly semi-decidable language", its complement cannot be semi-decidable.

- Given a new problem NEW, want to determine if it is easy or hard
 - right now, easy typically means decidable
 - right now, hard typically means undecidable
- One option:
 - prove from scratch that the problem is easy (decidable), or
 - prove from scratch that the problem is hard (undecidable) (e.g. dream up a diag. argument)

- A better option:
 - to prove NEW is decidable, show how to transform it (effectively) into a known decidable problem OLD so that solution to OLD can be used to solve NEW.
 - to prove NEW is undecidable, show how to transform a known undecidable problem OLD into NEW so that solution to NEW could be used to solve OLD.
- called a **reduction**. Reduction from problem *A* to problem *B* shows that "*A* is no harder than *B*", and also that "*B* is at least as hard as *A*".
- to get a positive result on NEW, create a reduction from NEW to OLD, where OLD is known to be easy.
- To get a negative result on NEW, create a reduction from OLD to NEW, where OLD is known to be hard.

- Try to prove undecidable: ACC_{TM} = { (M, w) : M accepts input w }
 We know this language is undecidable: HALT = { (M, w) : M halts on input w }
- Idea:
 - suppose ACC_{TM} is decidable
 - show that we can use ACC_{TM} to decide HALT (reduction)
 - conclude *HALT* is decidable. Contradiction.

- How could we use procedure that decides ACC_{TM} to decide HALT?
 - given input to HALT: $\langle M, w \rangle$
- Some things we can do:
 - check if $\langle M, w \rangle \in ACC_{TM}$
 - construct another TM M' and check if $\langle M', w \rangle \in ACC_{TM}$

Deciding HALT using a procedure that decides ACC_{TM} ("reducing HALT to ACC_{TM} ").

- on input $\langle M, w \rangle$
- check if $\langle M, w \rangle \in ACC_{TM}$
 - if yes, then know *M* halts on *w*; ACCEPT
 - if no, then M either rejects w or it loops on w
- construct M' by swapping $q_{\text{accept}}/q_{\text{reject}}$ in M
- check if $\langle M', w \rangle \in ACC_{TM}$
 - if yes, then M' accepts w, so M rejects w; **ACCEPT**
 - if no, then *M* neither accepts nor rejects *w*; **REJECT**

Want to prove language L is undecidable. Let $L_{impossible}$ be some problem that we already know is undecidable (e.g. Halting).

Proof by contradiction: Assume that there were some TM M_L that decides L. Show that using M_L we could decide $L_{impossible}$, a contradiction.

How to do this? Create a Turing Machine N that decides $L_{impossible}$; N has "subroutines" calling M_L .

Simplest version, "many-one reduction": N takes an input I to $L_{impossible}$, and construct a new input I' to test against M_L .

Try to prove undecidable:

 $\mathsf{NEMP} = \{ \langle \mathsf{M} \rangle : L(\mathsf{M}) \neq \emptyset \}$

Reduce from

 $HALT = \{ \langle M, w \rangle : M \text{ halts on input } w \}$

OK, we want to decide HALT using NEMP

Create a machine N that decides HALT on input $\langle M, w \rangle$ using "subroutines" for NEMP.

N wants to check if $\langle M, w \rangle \in HALT$

- N constructs another TM M' and checks if $\langle M' \rangle \in \mathsf{NEMP}$
- M' constructed so that $\langle M, w \rangle \in HALT \Leftrightarrow \langle M' \rangle \in NEMP$

Reducing HALT to NEMP

idea of N (function it computes):

 Given (M, w), construct (M'); on any input i, M' runs M on w and accepts i if M halts

construction of M':

- Use 3 states to delete any input (make tape blank)
- 2 |w| states print w on input tape
- Use copies of M's states to simulate M on w
- ...make sure all states accept.

N constructs M' as above (can be done automatically, i.e. N is doing something computable!)

Extra note: this reduction also proves that the problem of recognising whether a TM accepts an infinite number of distinct inputs, is undecidable.

many-one reductions

Definition: $A \leq_m B$ (A many-one reduces to B) if there is a computable (using a TM) function f such that for all w

 $w \in A \Leftrightarrow f(w) \in B$

Book calls it "mapping reduction".

Example: to show NEMP undecidable, constructed computable f so that $\langle M, w \rangle \in \text{HALT} \Leftrightarrow f(\langle M, w \rangle) \in \text{NEMP}$

In this notation: $HALT \leq_m NEMP$

Definition: $A \leq_m B$ (A many-one reduces to B) if there is a computable function f such that for all w

 $w \in A \Leftrightarrow f(w) \in B$

Theorem

If $A \leq_m B$ and B is decidable then A is decidable.

Proof:

 decider for A: on input w compute f(w), run decider for B, do whatever it does.

If $A \leq_m B$ and B is CE, then A is CE.

Proof:

• TM for recognizing A: on input w compute f(w), run TM that recognises B, do whatever it does.

Main use: given language NEW, prove it is not CE by showing $OLD \leq_m NEW$, where OLD known to be not CE.

Applying Reductions to Get Negative Results on Decidability

Theorem The language $REGULAR = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}$ is undecidable.

Proof:

- reduce from ACC_{TM} (i.e. show $ACC_{TM} \leq_m REGULAR$)
- i.e. want

M accepts $w \Leftrightarrow f(\langle M, w \rangle)$ is code of regular language

• what should $f(\langle M, w \rangle)$ produce?

Undecidability via Reductions

Proof:

• $f(\langle M, w \rangle) = \langle M' \rangle$ described below

M' takes input x:

- if x has form $0^n 1^n$, accept
- else simulate *M* on *w* and accept *x* if *M* accepts

 $M' = \{0^n 1^n\} \text{ if } w \notin L(M)$ $= \Sigma^* \text{ if } w \in L(M)$

What would a formal proof of this look like?

- is f computable?
- YES maps to YES? $\langle M, w \rangle \in ACC_{TM} \Rightarrow$ $f(M, w) \in REGULAR$
- NO maps to NO? $\langle M, w \rangle \notin ACC_{TM} \Rightarrow$ $f(M, w) \notin REGULAR$

general idea: write pseudo-code that takes description of M as input and produces description of M'.

Argue that this pseudo-code could be implemented as a Turing machine with output tape.

The boundary between decidability and undecidability is often quite delicate

- seemingly related problems
- one decidable
- other undecidable

We will cover most examples in the problem sheet

Problem: Given a context free grammar G, is the language it generates empty? Decidable: i.e. language $\{\langle G \rangle : L(G) \text{ empty}\}$ is a decidable language. See problem sheets.

The boundary between decidability and undecidability is often quite delicate

- seemingly related problems
- one decidable
- other undecidable

We will cover most examples in the problem sheet

Problem: Given a context free grammar G, is the language it generates empty? Decidable: i.e. language $\{\langle G \rangle : L(G) \text{ empty}\}$ is a decidable language. See problem sheets.

Problem: Given a context free grammar G, does it generate every string? Undecidable: i.e. language $\{\langle G \rangle : L(G) = \Sigma^*\}$ is an undecidable language. In next problem set. Problem: Given a NPDA, is the language it accepts empty?

• Decidable. Convert to CFG and use previous result.

Note: reduction *to* a known decidable problem is device to prove decidability

Problem: Given a NPDA, is the language it accepts empty?

• Decidable. Convert to CFG and use previous result.

Note: reduction *to* a known decidable problem is device to prove decidability

Problem: Given a two-stack NPDA, is the language it accepts empty?

• Undecidable. In current problem set.

Undecidability can find its way into problems that are not "obviously" about TMs/computation in general. E.g. some puzzle-like problems; PCP is as follows:

$$PCP = \{ \langle (x_1, y_1), (x_2, y_2), \dots, (x_k, y_k) \rangle : x_i, y_i \in \Sigma^*$$
and there exists (a_1, a_2, \dots, a_n) for which $x_{a_1}x_{a_2} \dots x_{a_n} = y_{a_1}y_{a_2} \dots y_{a_n} \}$

Idea is a many-one reduction from ACC to PCP: given a TM M and input w, we have an effective procedure that creates a set of tiles T = f(M, w) such that: M accepts $w \Leftrightarrow$ there is some way of producing a tiling with T. (I won't cover it in lectures.)

