
Decidable and Semi-decidable

input
machine−→

• accept
• reject
• loop forever.

For a language L

if there is some Turing Machine that accepts every string in L
and rejects every string not in L, then L is a decidable
language

if there is some Turing machine that accepts every string in L
and either rejects or loops on every string not in L, then L is
Semi-decidable or computably enumerable (CE)

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 1 / 42

CE vs. Decidable Languages

L =all polynomial
equations with integer
coefficients that have a
solution in the integers

This is CE!

if it were decidable, this would mean we had a method of
determining whether any equation has a solution or not!

L =all C programs that crash on some input
CE as well!

If it were decidable, life would be sweet...

Accept={〈M, x〉 : M is a Turing Machine that accepts string x}
CE

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 2 / 42

Alternative definition of Computable Enumerability

Why is “Semi-Decidable” called CE?

Definition: an enumerator for a language L ⊂ Σ∗ is a TM that
writes on its output tape

#x1#x2#x3# . . .

and L = {x1, x2, x3, . . .}.
The output may be infinite

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 3 / 42

Computable Enumerability

Theorem

A language is Semi-decidable/CE iff some enumerator enumerates
it.

Proof:
(⇐) Let E be the enumerator for L. We create a semi-decider for
L. On input w :

Simulate E . Compare each string it outputs with w .

If w matches a string output by E , accept.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 4 / 42

Computable Enumerability

Theorem

A language is Semi-decidable/CE iff some enumerator enumerates
it.

Proof:
(⇒) Let M recognise (semi-decide) language L ⊂ Σ∗. We create
an enumerator for L.

let s1, s2, s3, . . . be enumeration of Σ∗ in lexicographic order.

for i = 1, 2, 3, 4, . . .

simulate M for i steps on s1, s2, s3, . . . , si

if any simulation accepts, print out that sj

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 5 / 42

Undecidability

decidable ⊂ CE ⊂ all languages

our goal: prove these containments proper

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 6 / 42

Countable and Uncountable Sets

the natural numbers N={1, 2, 3, . . .} are
countable

Definition: a set S is countable if it is finite, or
if it is infinite and there is an onto (surjective)
function f : N→ S

Equivalently: there is a function from S into N

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 7 / 42

Countable and Uncountable Sets

Theorem
The positive rational numbers
Q = {m/n : m, n ∈ N} are countable.

Proof:

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 8 / 42

Countable and Uncountable Sets

Theorem

The real numbers R are NOT countable (they are
“uncountable”).

How do you prove such a statement?
assume countable (so there exists function f
from N onto R)

derive contradiction (“construct” an element
not mapped to by f)

technique is called diagonalization (Cantor)

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 9 / 42

Countable and Uncountable Sets

Proof:
suppose R is countable
list R according to the bijection f :

n f (n)

1 3.14159 . . .

2 5.55555 . . .

3 0.12345 . . .

4 0.50000 . . .
. . .

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 10 / 42

Countable and Uncountable Sets

Proof:
suppose R is countable
list R according to the bijection f :

n f (n)

1 3.14159 . . .

2 5.55555 . . .

3 0.12345 . . .

4 0.50000 . . .
. . .

set x = 0 · a1a2a3a4 . . .

where digit ai 6= i-th
digit after decimal point
of f (i)

e.g. x = 0.2641 . . .

x cannot be in the list!

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 11 / 42

non-CE languages

Theorem
There exist languages that are not Computably
Enumerable.

Proof outline:
the set of all TMs is countable (and hence so is
the set of all CE languages)
the set of all languages is uncountable
the function L : {TMs} → {all languages}
cannot be onto

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 12 / 42

non-CE languages

Lemma
The set of all TMs is countable.

Proof:
each TM M can be described by a finite-length
string 〈M〉
can enumerate these strings, and give the
natural bijection with N

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 13 / 42

non-CE languages

Lemma
The set of all languages is uncountable.

Proof:
fix an enumeration of all strings s1, s2, s3, . . .
(for example, lexicographic order)
a language L is described by an infinite string in
{In,Out}∗ whose i-th element is In if si is in L
and Out if si is not in L.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 14 / 42

non-CE languages

suppose the set of all languages is countable

list membership strings of all languages according to the
bijection f :

n f (n)

1 0101010 . . .

2 1010011 . . .

3 1110001 . . .

4 0100011 . . .
. . .

0 =Out
1 =In

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 15 / 42

non-CE languages

suppose the set of all CE languages is countable

list characteristic vectors of all languages according to the
bijection f :

n f (n)

1 0101010 . . .

2 1010011 . . .

3 1110001 . . .

4 0100011 . . .
. . .

create language L with

membership string x

where i-th digit of x 6= i-th

digit of f (i)

x cannot be in the list!

therefore, the language L is

not in the list.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 16 / 42

So far...

This language might be an esoteric, artificially constructed
one. So who cares?

We will show a natural undecidable L next.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 17 / 42

The Halting Problem

Definition of the “Halting Problem”:

HALT= {〈M , x〉 : TM M halts on input x}
〈M, x〉 denotes coding of machine and input as a string (pick some

coding – doesn’t matter for this argument)

HALT is computably enumerable.
(proof?)

Is HALT decidable?

HALT is a generic software-testing challenge, so genuinely

interesting!

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 18 / 42

The Halting Problem

Theorem

HALT is not decidable (undecidable).

Proof will involve the following
Suppose there’s some TM H that decides
HALT. Using this we will get a contradiction.
You’ll need to believe that TMs can simulate
other TMs, also can be composed with each
other.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 19 / 42

Proof

For simplicity, assume input alphabet is one-letter, so inputs
to machines are unary integers.

Assume that HALT were decidable. We create a new TM H ′

that is different from every other Turing machine (clearly a
contradiction, since H ′ would have to be different from itself!)

Let M1, . . . ,Mn, . . . enumerate all the Turing Machine
descriptions. Suppose H decides HALT.

Definition of H ′:
On input n (i.e. 1n), H ′ runs machine H on 〈Mn, n〉

if H returns ACCEPT (so Mn halts on n), then H ′ goes into a
loop (alternatively: runs Mn on n, and then H ′ returns
ACCEPT iff Mn rejects n.
If H returns REJECT (so Mn does not halt on n), then H ′

ACCEPTS.

H ′ is a TM, but is different from every TM (since disagrees with
i-th TM in its behaviour on input 1i → contradiction!)

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 20 / 42

Language Classes: Current Summary

Q: any interesting language that is not CE?

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 21 / 42

CE and co-CE

Theorem
A language L is decidable if and only if L is CE and
L is co-CE.

Proof:
(⇒) we already know decidable implies CE

if L is decidable, then complement of L is
decidable by flipping accept/reject.
so L is co-CE.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 22 / 42

CE and co-CE

Theorem
A language L is decidable if and only if L is CE and
L is co-CE.

Proof:
(⇐) we have TM M that recognises L, and TM M ′

recognises complement of L.
on input x , simulate M , M ′ in parallel
if M accepts, accept; if M ′ accepts, reject.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 23 / 42

A concrete language that is not CE

Theorem

A language L is decidable if and only if L is CE and L is co-CE.

Corollary

The complement of HALT is not CE.

Proof:

we know that HALT is CE but not decidable

if complement of HALT were CE, then HALT is CE and co-CE
hence decidable. Contradiction.

Bottom line: For every “strictly semi-decidable language”, its
complement cannot be semi-decidable.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 24 / 42

Reductions

Given a new problem NEW, want to determine if it is easy or
hard

right now, easy typically means decidable
right now, hard typically means undecidable

One option:

prove from scratch that the problem is easy (decidable), or
prove from scratch that the problem is hard (undecidable) (e.g.
dream up a diag. argument)

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 25 / 42

Reductions

A better option:

to prove NEW is decidable, show how to transform it
(effectively) into a known decidable problem OLD so that
solution to OLD can be used to solve NEW.
to prove NEW is undecidable, show how to transform a known
undecidable problem OLD into NEW so that solution to NEW
could be used to solve OLD.

called a reduction. Reduction from problem A to problem B
shows that “A is no harder than B”, and also that “B is at
least as hard as A”.

to get a positive result on NEW, create a reduction from
NEW to OLD, where OLD is known to be easy.

To get a negative result on NEW, create a reduction from
OLD to NEW, where OLD is known to be hard.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 26 / 42

Example reduction

Try to prove undecidable:
ACCTM = {〈M ,w〉 : M accepts input w}

We know this language is undecidable:
HALT = {〈M ,w〉 : M halts on input w}

Idea:
suppose ACCTM is decidable
show that we can use ACCTM to decide HALT (reduction)
conclude HALT is decidable. Contradiction.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 27 / 42

Example reduction

How could we use procedure that decides
ACCTM to decide HALT?

given input to HALT : 〈M,w〉
Some things we can do:

check if 〈M,w〉 ∈ ACCTM

construct another TM M ′ and check if 〈M ′,w〉 ∈ ACCTM

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 28 / 42

Example reduction

Deciding HALT using a procedure that decides ACCTM (“reducing
HALT to ACCTM”).

on input 〈M,w〉
check if 〈M,w〉 ∈ ACCTM

if yes, then know M halts on w ; ACCEPT
if no, then M either rejects w or it loops on w

construct M ′ by swapping qaccept/qreject in M

check if 〈M ′,w〉 ∈ ACCTM

if yes, then M ′ accepts w , so M rejects w ; ACCEPT
if no, then M neither accepts nor rejects w ; REJECT

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 29 / 42

Recap: Reductions and Negative Results

Want to prove language L is undecidable.
Let Limpossible be some problem that we already know is
undecidable (e.g. Halting).

Proof by contradiction: Assume that there were some TM ML that
decides L. Show that using ML we could decide Limpossible, a
contradiction.

How to do this?
Create a Turing Machine N that decides Limpossible; N has
“subroutines” calling ML.

Simplest version, “many-one reduction”: N takes an input I to
Limpossible, and construct a new input I ′ to test against ML.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 30 / 42

Another example

Try to prove undecidable:

NEMP = {〈M〉 : L(M) 6= ∅}

Reduce from

HALT = {〈M,w〉 : M halts on input w}

OK, we want to decide HALT using NEMP

Create a machine N that decides HALT on input 〈M,w〉 using
“subroutines” for NEMP.
N wants to check if 〈M,w〉 ∈HALT

N constructs another TM M ′ and checks if 〈M ′〉 ∈NEMP

M′ constructed so that 〈M,w〉 ∈HALT ⇔ 〈M′〉 ∈ NEMP

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 31 / 42

Reducing HALT to NEMP

idea of N (function it computes):

Given 〈M,w〉, construct 〈M ′〉; on any input i , M ′ runs M on
w and accepts i if M halts

construction of M ′:

1 Use 3 states to delete any input (make tape blank)

2 |w | states print w on input tape

3 Use copies of M’s states to simulate M on w

4 ...make sure all states accept.

N constructs M ′ as above (can be done automatically, i.e. N is
doing something computable!)

Extra note: this reduction also proves that the problem of
recognising whether a TM accepts an infinite number of distinct
inputs, is undecidable.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 32 / 42

many-one reductions

Definition: A ≤m B (A many-one reduces to B) if there is a
computable (using a TM) function f such that for all w

w ∈ A⇔ f (w) ∈ B

Book calls it “mapping reduction”.

Example: to show NEMP undecidable, constructed computable f

so that 〈M,w〉 ∈ HALT⇔ f (〈M,w〉) ∈ NEMP

In this notation: HALT≤mNEMP

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 33 / 42

many-one reductions

Definition: A ≤m B (A many-one reduces to B) if there is a
computable function f such that for all w

w ∈ A⇔ f (w) ∈ B

Theorem

If A ≤m B and B is decidable then A is decidable.

Proof:

decider for A: on input w compute f (w), run decider for B,
do whatever it does.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 34 / 42

Using many-one reductions

Theorem

If A ≤m B and B is CE, then A is CE.

Proof:

TM for recognizing A: on input w compute f (w), run TM
that recognises B, do whatever it does.

Main use: given language NEW , prove it is not CE by showing
OLD ≤m NEW , where OLD known to be not CE.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 35 / 42

Applying Reductions to Get Negative Results on
Decidability

Theorem

The language
REGULAR = {〈M〉 : M is a TM and L(M) is regular}
is undecidable.

Proof:

reduce from ACCTM (i.e. show ACCTM ≤m REGULAR)

i.e. want
M accepts w ⇔ f (〈M,w〉) is code of regular language

what should f (〈M,w〉) produce?

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 36 / 42

Undecidability via Reductions

Proof:

f (〈M,w〉) = 〈M ′〉 described below

M ′ takes input x :

if x has form 0n1n, accept

else simulate M on w and
accept x if M accepts

M ′ = {0n1n} if w 6∈ L(M)
=Σ∗ if w ∈ L(M)

What would a formal proof of this
look like?

is f computable?

YES maps to YES?
〈M,w〉 ∈ ACCTM ⇒
f (M,w) ∈ REGULAR

NO maps to NO?
〈M,w〉 6∈ ACCTM ⇒
f (M,w) 6∈ REGULAR

general idea: write pseudo-code that takes description of M as

input and produces description of M ′.

Argue that this pseudo-code could be implemented as a Turing

machine with output tape.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 37 / 42

Decidable and Undecidable problems

The boundary between decidability and undecidability is often
quite delicate

seemingly related problems

one decidable

other undecidable
We will cover most examples in the problem sheet

Problem: Given a context free grammar G , is the language it generates empty?
Decidable: i.e. language {〈G〉 : L(G) empty} is a decidable language.

See problem sheets.

Problem: Given a context free grammar G , does it generate every string?
Undecidable: i.e. language {〈G〉 : L(G) = Σ∗} is an undecidable language.

In next problem set.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 38 / 42

Decidable and Undecidable problems

The boundary between decidability and undecidability is often
quite delicate

seemingly related problems

one decidable

other undecidable
We will cover most examples in the problem sheet

Problem: Given a context free grammar G , is the language it generates empty?
Decidable: i.e. language {〈G〉 : L(G) empty} is a decidable language.

See problem sheets.

Problem: Given a context free grammar G , does it generate every string?
Undecidable: i.e. language {〈G〉 : L(G) = Σ∗} is an undecidable language.

In next problem set.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 38 / 42

Decidable and Undecidable problems

Problem: Given a NPDA, is the language it accepts empty?

Decidable. Convert to CFG and use previous result.

Note: reduction to a known decidable problem is device to prove
decidability

Problem: Given a two-stack NPDA, is the language it accepts
empty?

Undecidable. In current problem set.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 39 / 42

Decidable and Undecidable problems

Problem: Given a NPDA, is the language it accepts empty?

Decidable. Convert to CFG and use previous result.

Note: reduction to a known decidable problem is device to prove
decidability

Problem: Given a two-stack NPDA, is the language it accepts
empty?

Undecidable. In current problem set.

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 39 / 42

Post Correspondence Problem

Undecidability can find its way into problems that are not
“obviously” about TMs/computation in general. E.g. some
puzzle-like problems; PCP is as follows:

PCP = {〈(x1, y1), (x2, y2), . . . , (xk , yk)〉 : xi , yi ∈ Σ∗

and there exists (a1, a2, . . . , an)

for which xa1xa2 . . . xan = ya1ya2 . . . yan}

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 40 / 42

PCP example

aab

a

cd

baab

c

cdc

← Input

Solution:
aab

a

aab

a

cd

baab

c

cdc

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 41 / 42

PCP

Idea is a many-one reduction from ACC to PCP:
given a TM M and input w , we have an effective procedure that
creates a set of tiles T = f (M,w) such that:
M accepts w ⇔ there is some way of producing a tiling with T .
(I won’t cover it in lectures.)

ACC PCPf

f

yes

no

yes

no

Paul Goldberg Intro to Foundations of CS; slides 3, 2017-18 42 / 42

