Decidable and Semi-decidable

For a language L

- if there is some Turing Machine that accepts every string in L and rejects every string not in L, then L is a decidable language
- if there is some Turing machine that accepts every string in L and either rejects or loops on every string not in L, then L is Semi-decidable or computably enumerable (CE)

CE vs. Decidable Languages

$L=$ all polynomial equations with integer coefficients that have a solution in the integers

This is CE!

if it were decidable, this would mean we had a method of determining whether any equation has a solution or not!
$L=$ all C programs that crash on some input
CE as well!
If it were decidable, life would be sweet...
Accept $=\{\langle M, x\rangle: M$ is a Turing Machine that accepts string $x\}$
CE

Alternative definition of Computable Enumerability

- Why is "Semi-Decidable" called CE?
- Definition: an enumerator for a language $L \subset \Sigma^{*}$ is a TM that writes on its output tape

$$
\# x_{1} \# x_{2} \# x_{3} \# \ldots
$$

and $L=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$.

- The output may be infinite

Computable Enumerability

Theorem

A language is Semi-decidable/CE iff some enumerator enumerates it.

Proof:
(\Leftarrow) Let E be the enumerator for L. We create a semi-decider for
L. On input w:

- Simulate E. Compare each string it outputs with w.
- If w matches a string output by E, accept.

Computable Enumerability

Theorem

A language is Semi-decidable/CE iff some enumerator enumerates it.

Proof:
(\Rightarrow) Let M recognise (semi-decide) language $L \subset \Sigma^{*}$. We create an enumerator for L.

- let $s_{1}, s_{2}, s_{3}, \ldots$ be enumeration of Σ^{*} in lexicographic order.
- for $i=1,2,3,4, \ldots$
- simulate M for i steps on $s_{1}, s_{2}, s_{3}, \ldots, s_{i}$
- if any simulation accepts, print out that s_{j}

Undecidability

decidable

$$
\text { decidable } \subset \mathrm{CE} \subset \text { all languages }
$$

our goal: prove these containments proper

Countable and Uncountable Sets

- the natural numbers $\mathbf{N}=\{1,2,3, \ldots\}$ are countable
- Definition: a set S is countable if it is finite, or if it is infinite and there is an onto (surjective) function $f: \mathbf{N} \rightarrow S$

Equivalently: there is a function from S into \mathbf{N}

Countable and Uncountable Sets

Theorem

The positive rational numbers
$\mathbf{Q}=\{m / n: m, n \in \mathbf{N}\}$ are countable.

- Proof:

Countable and Uncountable Sets

Theorem

The real numbers \mathbf{R} are NOT countable (they are "uncountable").

How do you prove such a statement?

- assume countable (so there exists function f from \mathbf{N} onto \mathbf{R})
- derive contradiction ("construct" an element not mapped to by f)
- technique is called diagonalization (Cantor)

Countable and Uncountable Sets

Proof:

- suppose \mathbf{R} is countable
- list \mathbf{R} according to the bijection f :

n	$f(n)$
1	$3.14159 \ldots$
2	$5.55555 \ldots$
3	$0.12345 \ldots$
4	$0.50000 \ldots$

Countable and Uncountable Sets

Proof:

- suppose \mathbf{R} is countable
- list \mathbf{R} according to the bijection f :

n	$f(n)$
1	$3.14159 \ldots$
2	$5.55555 \ldots$
3	$0.12345 \ldots$
4	$0.50000 \ldots$

set $x=0 \cdot a_{1} a_{2} a_{3} a_{4} \ldots$
where digit $a_{i} \neq i$-th digit after decimal point of $f(i)$
e.g. $x=0.2641 \ldots$
x cannot be in the list!

non-CE languages

Theorem
There exist languages that are not Computably Enumerable.

Proof outline:

- the set of all TMs is countable (and hence so is the set of all CE languages)
- the set of all languages is uncountable
- the function $L:\{T M s\} \rightarrow\{$ all languages $\}$ cannot be onto

non-CE languages

Lemma

The set of all TMs is countable.
Proof:

- each TM M can be described by a finite-length string $\langle M\rangle$
- can enumerate these strings, and give the natural bijection with \mathbf{N}

non-CE languages

Lemma

The set of all languages is uncountable.
Proof:

- fix an enumeration of all strings $s_{1}, s_{2}, s_{3}, \ldots$ (for example, lexicographic order)
- a language L is described by an infinite string in $\{\ln , \text { Out }\}^{*}$ whose i-th element is \ln if s_{i} is in L and Out if s_{i} is not in L.

non-CE languages

- suppose the set of all languages is countable
- list membership strings of all languages according to the bijection f :

n	$f(n)$	
1	$0101010 \ldots$	
2	$1010011 \ldots$	$0=$ Out
3	$1110001 \ldots$	$1=\ln$
4	$0100011 \ldots$	

non-CE languages

- suppose the set of all CE languages is countable
- list characteristic vectors of all languages according to the bijection f :

n	$f(n)$
1	$0101010 \ldots$
2	$1010011 \ldots$
3	$1110001 \ldots$
4	$0100011 \ldots$

create language L with membership string x where i-th digit of $x \neq i$-th digit of $f(i)$
x cannot be in the list!
therefore, the language L is not in the list.

- This language might be an esoteric, artificially constructed one. So who cares?
- We will show a natural undecidable L next.
- Definition of the "Halting Problem": $\mathrm{HALT}=\{\langle M, x\rangle: \mathrm{TM} M$ halts on input $x\}$ $\langle M, x\rangle$ denotes coding of machine and input as a string (pick some coding - doesn't matter for this argument)
- HALT is computably enumerable.
(proof?)
- Is HALT decidable?

HALT is a generic software-testing challenge, so genuinely interesting!

The Halting Problem

Theorem
HALT is not decidable (undecidable).

Proof will involve the following

- Suppose there's some TM H that decides HALT. Using this we will get a contradiction.
- You'll need to believe that TMs can simulate other TMs, also can be composed with each other.
- For simplicity, assume input alphabet is one-letter, so inputs to machines are unary integers.
- Assume that HALT were decidable. We create a new TM H ${ }^{\prime}$ that is different from every other Turing machine (clearly a contradiction, since H^{\prime} would have to be different from itself!)
- Let $M_{1}, \ldots, M_{n}, \ldots$ enumerate all the Turing Machine descriptions. Suppose H decides HALT.
- Definition of H^{\prime} :

On input n (i.e. 1^{n}), H^{\prime} runs machine H on $\left\langle M_{n}, n\right\rangle$

- if H returns ACCEPT (so M_{n} halts on n), then H^{\prime} goes into a loop (alternatively: runs M_{n} on n, and then H^{\prime} returns ACCEPT iff M_{n} rejects n.
- If H returns REJECT (so M_{n} does not halt on n), then H^{\prime} ACCEPTS.
H^{\prime} is a TM, but is different from every TM (since disagrees with i-th TM in its behaviour on input $1^{i} \rightarrow$ contradiction!)

Language Classes: Current Summary

Q: any interesting language that is not CE?

CE and co-CE

Theorem
A language L is decidable if and only if L is CE and L is co-CE.

Proof:
(\Rightarrow) we already know decidable implies CE

- if L is decidable, then complement of L is decidable by flipping accept/reject.
- so L is co-CE.

CE and co-CE

Theorem
A language L is decidable if and only if L is CE and L is co-CE.

Proof:
(\Leftarrow) we have TM M that recognises L, and TM M^{\prime} recognises complement of L.

- on input x, simulate M, M^{\prime} in parallel
- if M accepts, accept; if M^{\prime} accepts, reject.

A concrete language that is not CE

Theorem
 A language L is decidable if and only if L is $C E$ and L is co-CE.

Corollary

The complement of HALT is not CE.

Proof:

- we know that HALT is CE but not decidable
- if complement of HALT were CE, then HALT is CE and co-CE hence decidable. Contradiction.

Bottom line: For every "strictly semi-decidable language", its complement cannot be semi-decidable.

Reductions

- Given a new problem NEW, want to determine if it is easy or hard
- right now, easy typically means decidable
- right now, hard typically means undecidable
- One option:
- prove from scratch that the problem is easy (decidable), or
- prove from scratch that the problem is hard (undecidable) (e.g. dream up a diag. argument)

Reductions

- A better option:
- to prove NEW is decidable, show how to transform it (effectively) into a known decidable problem OLD so that solution to OLD can be used to solve NEW.
- to prove NEW is undecidable, show how to transform a known undecidable problem OLD into NEW so that solution to NEW could be used to solve OLD.
- called a reduction. Reduction from problem A to problem B shows that " A is no harder than B ", and also that " B is at least as hard as A ".
- to get a positive result on NEW, create a reduction from NEW to OLD, where OLD is known to be easy.
- To get a negative result on NEW, create a reduction from OLD to NEW, where OLD is known to be hard.

Example reduction

- Try to prove undecidable:
$A C C_{T M}=\{\langle M, w\rangle: M$ accepts input $w\}$
- We know this language is undecidable: $H A L T=\{\langle M, w\rangle: M$ halts on input $w\}$
- Idea:
- suppose $A C C_{T M}$ is decidable
- show that we can use $A C C_{T M}$ to decide HALT (reduction)
- conclude HALT is decidable. Contradiction.

Example reduction

- How could we use procedure that decides $A C C_{T M}$ to decide HALT?
- given input to HALT: $\langle M, w\rangle$
- Some things we can do:
- check if $\langle M, w\rangle \in A C C_{T M}$
- construct another TM M^{\prime} and check if $\left\langle M^{\prime}, w\right\rangle \in A C C_{T M}$

Example reduction

Deciding HALT using a procedure that decides $A C C_{T M}$ ("reducing HALT to $A C C_{T M "}$).

- on input $\langle M, w\rangle$
- check if $\langle M, w\rangle \in A C C_{T M}$
- if yes, then know M halts on w; ACCEPT
- if no, then M either rejects w or it loops on w
- construct M^{\prime} by swapping $q_{\text {accept }} / q_{\text {reject }}$ in M
- check if $\left\langle M^{\prime}, w\right\rangle \in A C C_{T M}$
- if yes, then M^{\prime} accepts w, so M rejects w; ACCEPT
- if no, then M neither accepts nor rejects w; REJECT

Recap: Reductions and Negative Results

Want to prove language L is undecidable.
Let $L_{\text {impossible }}$ be some problem that we already know is undecidable (e.g. Halting).

Proof by contradiction: Assume that there were some TM M_{L} that decides L. Show that using M_{L} we could decide $L_{\text {impossible }}$, a contradiction.

How to do this?
Create a Turing Machine N that decides $L_{\text {impossible; }} N$ has "subroutines" calling M_{L}.

Simplest version, "many-one reduction": N takes an input / to $L_{\text {impossible }}$, and construct a new input I^{\prime} to test against M_{L}.

Another example

Try to prove undecidable:

$$
\mathrm{NEMP}=\{\langle\mathrm{M}\rangle: L(\mathrm{M}) \neq \emptyset\}
$$

Reduce from

$$
\text { HALT }=\{\langle\mathrm{M}, w\rangle: \mathrm{M} \text { halts on input } w\}
$$

OK, we want to decide HALT using NEMP
Create a machine N that decides HALT on input $\langle M, w\rangle$ using "subroutines" for NEMP.
N wants to check if $\langle M, w\rangle \in$ HALT

- N constructs another TM M^{\prime} and checks if $\left\langle M^{\prime}\right\rangle \in N E M P$
- M^{\prime} constructed so that $\langle\mathrm{M}, w\rangle \in \mathrm{HALT} \Leftrightarrow\left\langle\mathrm{M}^{\prime}\right\rangle \in$ NEMP

Reducing HALT to NEMP

idea of N (function it computes):

- Given $\langle M, w\rangle$, construct $\left\langle M^{\prime}\right\rangle$; on any input i, M^{\prime} runs M on w and accepts i if M halts
construction of M^{\prime} :
(1) Use 3 states to delete any input (make tape blank)
(2) $|w|$ states print w on input tape
(3) Use copies of M 's states to simulate M on w
(9) ...make sure all states accept.
N constructs M^{\prime} as above (can be done automatically, i.e. N is doing something computable!)

Extra note: this reduction also proves that the problem of recognising whether a TM accepts an infinite number of distinct inputs, is undecidable.

Definition: $A \leq_{m} B(A$ many-one reduces to $B)$ if there is a computable (using a TM) function f such that for all w

$$
w \in A \Leftrightarrow f(w) \in B
$$

Book calls it "mapping reduction".
Example: to show NEMP undecidable, constructed computable f so that $\langle M, w\rangle \in$ HALT $\Leftrightarrow f(\langle M, w\rangle) \in$ NEMP

In this notation: HALT \leq_{m} NEMP

many-one reductions

Definition: $A \leq_{m} B(A$ many-one reduces to $B)$ if there is a computable function f such that for all w

$$
w \in A \Leftrightarrow f(w) \in B
$$

Theorem
If $A \leq_{m} B$ and B is decidable then A is decidable.

Proof:

- decider for A : on input w compute $f(w)$, run decider for B, do whatever it does.

Using many-one reductions

Theorem

If $A \leq_{m} B$ and B is $C E$, then A is $C E$.

Proof:

- TM for recognizing A : on input w compute $f(w)$, run TM that recognises B, do whatever it does.

Main use: given language NEW, prove it is not CE by showing $O L D \leq_{m} N E W$, where $O L D$ known to be not CE.

Applying Reductions to Get Negative Results on Decidability

Theorem

The language
REGULAR $=\{\langle M\rangle: M$ is a TM and $L(M)$ is regular $\}$ is undecidable.

Proof:

- reduce from $A C C_{T M}$ (i.e. show $A C C_{T M} \leq_{m}$ REGULAR)
- i.e. want

M accepts $w \Leftrightarrow f(\langle\mathrm{M}, w\rangle)$ is code of regular language

- what should $f(\langle\mathrm{M}, w\rangle)$ produce?

Undecidability via Reductions

Proof:

- $f(\langle M, w\rangle)=\left\langle M^{\prime}\right\rangle$ described below
M^{\prime} takes input x :
- if x has form $0^{n} 1^{n}$, accept
- else simulate M on w and accept x if M accepts
$M^{\prime}=\left\{0^{n} 1^{n}\right\}$ if $w \notin L(M)$
$=\Sigma^{*}$ if $w \in L(M)$
What would a formal proof of this look like?
- is f computable?
- YES maps to YES? $\langle M, w\rangle \in A C C_{T M} \Rightarrow$ $f(M, w) \in R E G U L A R$
- NO maps to NO?
$\langle M, w\rangle \notin A C C_{T M} \Rightarrow$ $f(M, w) \notin R E G U L A R$
general idea: write pseudo-code that takes description of M as input and produces description of M^{\prime}.
Argue that this pseudo-code could be implemented as a Turing machine with output tape.

Decidable and Undecidable problems

The boundary between decidability and undecidability is often quite delicate

- seemingly related problems
- one decidable
- other undecidable

We will cover most examples in the problem sheet
Problem: Given a context free grammar G, is the language it generates empty? Decidable: i.e. language $\{\langle G\rangle: L(G)$ empty $\}$ is a decidable language.
See problem sheets.

Decidable and Undecidable problems

The boundary between decidability and undecidability is often quite delicate

- seemingly related problems
- one decidable
- other undecidable

We will cover most examples in the problem sheet
Problem: Given a context free grammar G, is the language it generates empty? Decidable: i.e. language $\{\langle G\rangle: L(G)$ empty $\}$ is a decidable language. See problem sheets.

Problem: Given a context free grammar G, does it generate every string? Undecidable: i.e. language $\left\{\langle G\rangle: L(G)=\Sigma^{*}\right\}$ is an undecidable language. In next problem set.

Decidable and Undecidable problems

Problem: Given a NPDA, is the language it accepts empty?

- Decidable. Convert to CFG and use previous result.

Note: reduction to a known decidable problem is device to prove decidability

Decidable and Undecidable problems

Problem: Given a NPDA, is the language it accepts empty?

- Decidable. Convert to CFG and use previous result.

Note: reduction to a known decidable problem is device to prove decidability

Problem: Given a two-stack NPDA, is the language it accepts empty?

- Undecidable. In current problem set.

Post Correspondence Problem

Undecidability can find its way into problems that are not "obviously" about TMs/computation in general. E.g. some puzzle-like problems; PCP is as follows:

$$
\begin{gathered}
P C P=\left\{\left\langle\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)\right\rangle: x_{i}, y_{i} \in \Sigma^{*}\right. \\
\text { and there exists }\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
\text { for which } \left.x_{a_{1}} x_{a_{2}} \ldots x_{a_{n}}=y_{a_{1}} y_{a_{2}} \ldots y_{a_{n}}\right\}
\end{gathered}
$$

PCP example

\leftarrow Input

Solution:

aab	aab	cd	c
a	a	baab	cdc

Idea is a many-one reduction from ACC to PCP: given a TM M and input w, we have an effective procedure that creates a set of tiles $T=f(M, w)$ such that:
M accepts $w \Leftrightarrow$ there is some way of producing a tiling with T.
(I won't cover it in lectures.)

