Administrivia

e Responses should be formal, paragraph form

e Writing practice @ Princeton writing center
- Technical writing classes (Y2—)
- Individual appointments to review writing

- http:/ /web.princeton.edu/sites /writing /
e Q: 2 papers on 1 day, or 1 paper over 2 days?

e Start creating project teams: 2-3 people / team

Sockets: Communication between machines

e Datagram sockets: Unreliable message delivery
- With IP, gives you UDP
- Send atomic messages, which may be reordered or lost

- Special system calls to read /write: send/recv

e Stream sockets: Bi-directional pipes
- With IP, gives you TCP
- Bytes written on one end read on the other

- Reads may not return full amount requested—must re-read

Socket naming

e Recall how TCP & UDP name communication
endpoints
- 32-bit IP address specifies machine
- 16-bit TCP/UDP port number demultiplexes within host

- Well-known services “listen” on standard ports: finger—79,
HTTP—80, mail—25, ssh—22

- Clients connect from arbitrary ports to well known ports

e A connection can be named by 5 components
- Protocol (TCP), local IP, local port, remote IP, remote port
- TCP requires connected sockets, but not UDP

System calls for using TCP

Client Server

socket — make socket
bind — assign address
listen — listen for clients

socket — make socket

bind* — assign address

connect — connect to listening socket

accept —accept connection

*This call to bind is optional; connect can choose address & port.

Client interface

struct sockaddr_in {
short sin_family; /* = AF_INET */
u_short sin_port; /* = htons (PORT) x*/
struct 1n_addr sin_addr;
char sin_zero[8];

} sin;

int s = socket (AF_INET, SOCK_STREAM, 0);
bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (13); /* daytime port */
sin.sin_addr.s_addr = htonl (IP_ADDRESS);

connect (s, (sockaddr *) &sin, sizeof (sin));

Server interface

struct sockaddr_in sin;

int s = socket (AF_INET, SOCK_STREAM, 0);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (9999);

sin.sin_addr.s_addr = htonl (INADDR_ANY) ;

bind (s, (struct sockaddr *) &sin, sizeof (sin));
listen (s, 5);

for (5;) {
socklen_t len = sizeof (sin);
int cfd = accept (s, (struct sockaddr *) &sin, &len);
/* cfd is new connection; you never read/write s */
do_something _with (cfd);
close (cfd);

Using UDP

e Call socket with SOCK_DGRAM, bind as before

e New system calls for sending individual packets

- int sendto(int s, const void *msg, int len, int flags,

const struct sockaddr *to, socklen_t tolen);

- int recvfrom(int s, void *buf, int len, int flags,

struct sockaddr *from, socklen_t *fromlen) ;

- Must send /get peer address with each packet

e Example: udpecho.c

Using UDP

e bind: Kernel demultplexes packets based on port

- So can have different processes getting UDP packets from
different peers

- For security, ports < 1024 usually can’t be bound

e Can use UDP in connected mode (Why?)
- connect assigns remote address

- send/recv syscalls, like sendto/recvfrom w/o last 2 args

Performance definitions

e Bandwidth — Number of bits/time you can transmit

- Improves with technology

e Latency - How long for message to cross network
- Propagation + Transmit + Queue

- We are stuck with speed of light. ..
10s of milliseconds to cross country

e Throughput — TransferSize/Latency
e Jitter — Variation in latency

e What matters most for your application?

Small request/reply protocol
Client Server

request*
/
\
/

e Small message protocols typically dominated by
latency

Large reply protocol

\

e For bulk tranfer, throughput is most important

Bandwidth-delay

e Can view network as a pipe
- For full utilization want bytes in flight > bandwidth xdelay

- But shouldn’t overload the network (congestion control)

e What if protocol doesn’t involve bulk transfer?

- Get throughput through concurrency—service multiple
clients simultaneously

Traditional fork-based servers

e When is a server not transmitting data
- Read or write of a socket connected to slow client can block
- Server may be busy with CPU (e.g., computing response)
- Server might be blocked waiting for disk I/O

e Concurrency through multiple processes (MP)

- Accept, fork, close in parent; child services request

e Advantages of one process per client
- Don’t block on slow clients
- May scale to multiprocessors if CPU intensive

- For disk-heavy servers, keeps disk queues full
(similarly get better scheduling & utilization of disk)

Other methods for concurrency

e One process per client has disadvantages:
- High overhead — fork+exit ~ 100 usec
- Hard to share state across clients

- Maximum number of processes limited

e Concurrency through threads (MT)
- Data races and deadlock make programming tricky
- Must allocate one stack per request

- Many thread implementations block on some I/O or have
heavy thread-switch overhead

e Non-blocking read/write calls (SPED)

- Unusual programming model

Non-blocking I/0

e fcntl sets 0_NONBLOCK flag on descriptor

int n;
if ((n = fcntl (s, F_GETFL)) >= 0)
fcntl (s, F_SETFL, n | O_NONBLOCK) ;

e Non-blocking semantics of system calls:

read immediately returns -1 with errno EAGAIN if no data

write may not write all data, or may return EAGAIN

connect may “fail” with EINPROGRESS (or may succeed, or
may fail with real error like ECONNREFUSED)

accept may fail with EAGAIN if no pending connections

How do you know when to read/write?

int select (int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

FD_ZERO (&fdset); // initialize fdset

FD_SET (fd, &fdset); // add fd to fd list to watch
FD_ISSET(fd, &fdset); // if set, read(fd) won’t block
FD_CLR (fd, &fdset); // remove fd from fd list

Using async I/O in libasync

e Event harness controls select, not programmer
e Programmer registers events with harness

e Callbacks (function pointers) triggered when
event fires, e.g.,
- File descriptor is ready for reading/writing: fdcb
- Timer completes: delaycb

- Process receives signal: sigcb

Example: File-descriptor callbacks

e void fdcb (int socket, char op, callback cb);

- op: selread Or selwrite

o If select on read, callback cb triggered when:
- Data is available on socket to be read
- EOF received (read returns 0)

- Non-transient error on socket (i.e., not EAGAIN)

Creating callbacks

e Need to “save” state for event triggering

e Create heap-allocated object
- Function pointer to be triggered
- Existing state saved in heap before creating callback

- Return values to be added by triggering function

Function currying with wrap

R func (A, B) { ... }

callback<R, A, B> cb

wrap (func);

(xcb) (A, B);

callback<R, B> cb = wrap (func, A);
(xcb) (B);

callback<R> cb = wrap (func, A, B);

(xcb) O;

Code before “stack ripping”

int query_and_resp (sockaddr_in &sin) {
int nread;
int fd = socket (AF_INET, SOCK_STREAM, 0);

if (connect (fd, (sockaddr *) &sin, sizeof (sin)) == 0)
if (write (fd, req, sizeof (req)) >= 0)
while ((nread = read (fd, resp, sizeof (resp))) > 0)
// handle input of length nread
if (nread == 0)
return 0O;

return -1;

Code after “stack ripping”

void query_and_resp (sockaddr_in &sin) A
int fd = socket (AF_INET, SOCK_STREAM, O);
callback<bool> cb = wrap (query_and_resp_2, fd);

connect_ev (fd, (sockaddr *) &sin, sizeof (sin), cb);

void query_and_resp_2 (int fd, bool result) {
if (result)
fdcb (fd, selwrite, wrap (query_and_resp_3, fd));

Code after “stack ripping” (2)

void query_and_resp_3 (int fd) {
fdcb (fd, selwrite, NULL);
if (write (fd, req, sizeof (req)) >= 0)
fdcb (fd, selread, wrap (query_and_resp_4, fd));

void query_and_resp_4 (int fd) {
int nread = read (s, resp, sizeof (resp));
if (nread > 0)
// handle input of length nread
else
fdcb (fd, selread, NULL);

Return result in stack ripping

query_and_resp (wrap (query_and_resp_resp));

query_and_resp_resp (int result);

void query_and_resp (sockaddr_in &sin, callback<int> cb);
void query_and_resp_2 (int fd, callback<int> cb, bool result);
void query_and_resp_3 (int fd, callback<int> cb);
void query_and_resp_4 (int fd, callback<int> cb) {
int nread = read (s, resp, sizeof (resp));
if (nread > 0)
// handle input of length nread
else {
fdcb (fd, selread, NULL);
(xcb) (((nread < 0) ? -1 : 0));

