
Administrivia

• Responses should be formal, paragraph form

• Writing practice @ Princeton writing center

- Technical writing classes (Y2—)

- Individual appointments to review writing

- http://web.princeton.edu/sites/writing/

• Q: 2 papers on 1 day, or 1 paper over 2 days?

• Start creating project teams: 2-3 people / team



Sockets: Communication between machines

• Datagram sockets: Unreliable message delivery

- With IP, gives you UDP

- Send atomic messages, which may be reordered or lost

- Special system calls to read/write: send/recv

• Stream sockets: Bi-directional pipes

- With IP, gives you TCP

- Bytes written on one end read on the other

- Reads may not return full amount requested—must re-read



Socket naming

• Recall how TCP & UDP name communication

endpoints

- 32-bit IP address specifies machine

- 16-bit TCP/UDP port number demultiplexes within host

- Well-known services “listen” on standard ports: finger—79,

HTTP—80, mail—25, ssh—22

- Clients connect from arbitrary ports to well known ports

• A connection can be named by 5 components

- Protocol (TCP), local IP, local port, remote IP, remote port

- TCP requires connected sockets, but not UDP



System calls for using TCP

Client Server

socket – make socket

bind – assign address

listen – listen for clients

socket – make socket

bind* – assign address

connect – connect to listening socket

accept – accept connection

*This call to bind is optional; connect can choose address & port.



Client interface

struct sockaddr_in {

short sin_family; /* = AF_INET */

u_short sin_port; /* = htons (PORT) */

struct in_addr sin_addr;

char sin_zero[8];

} sin;

int s = socket (AF_INET, SOCK_STREAM, 0);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (13); /* daytime port */

sin.sin_addr.s_addr = htonl (IP_ADDRESS);

connect (s, (sockaddr *) &sin, sizeof (sin));



Server interface

struct sockaddr_in sin;

int s = socket (AF_INET, SOCK_STREAM, 0);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (9999);

sin.sin_addr.s_addr = htonl (INADDR_ANY);

bind (s, (struct sockaddr *) &sin, sizeof (sin));

listen (s, 5);

for (;;) {

socklen_t len = sizeof (sin);

int cfd = accept (s, (struct sockaddr *) &sin, &len);

/* cfd is new connection; you never read/write s */

do_something_with (cfd);

close (cfd);

}



Using UDP

• Call socket with SOCK DGRAM, bind as before

• New system calls for sending individual packets

- int sendto(int s, const void *msg, int len, int flags,

const struct sockaddr *to, socklen t tolen);

- int recvfrom(int s, void *buf, int len, int flags,

struct sockaddr *from, socklen t *fromlen);

- Must send/get peer address with each packet

• Example: udpecho.c



Using UDP

• bind: Kernel demultplexes packets based on port

- So can have different processes getting UDP packets from

different peers

- For security, ports < 1024 usually can’t be bound

• Can use UDP in connected mode (Why?)

- connect assigns remote address

- send/recv syscalls, like sendto/recvfrom w/o last 2 args



Performance definitions

• Bandwidth – Number of bits/time you can transmit

- Improves with technology

• Latency – How long for message to cross network

- Propagation + Transmit + Queue

- We are stuck with speed of light. . .

10s of milliseconds to cross country

• Throughput – TransferSize/Latency

• Jitter – Variation in latency

• What matters most for your application?



Small request/reply protocol

Server
request

reply

Client

• Small message protocols typically dominated by

latency



Large reply protocol

• For bulk tranfer, throughput is most important



Bandwidth-delay

• Can view network as a pipe

- For full utilization want bytes in flight ≥ bandwidth×delay

- But shouldn’t overload the network (congestion control)

• What if protocol doesn’t involve bulk transfer?

- Get throughput through concurrency—service multiple

clients simultaneously



Traditional fork-based servers

• When is a server not transmitting data

- Read or write of a socket connected to slow client can block

- Server may be busy with CPU (e.g., computing response)

- Server might be blocked waiting for disk I/O

• Concurrency through multiple processes (MP)

- Accept, fork, close in parent; child services request

• Advantages of one process per client

- Don’t block on slow clients

- May scale to multiprocessors if CPU intensive

- For disk-heavy servers, keeps disk queues full

(similarly get better scheduling & utilization of disk)



Other methods for concurrency

• One process per client has disadvantages:

- High overhead – fork+exit ∼ 100 µsec

- Hard to share state across clients

- Maximum number of processes limited

• Concurrency through threads (MT)

- Data races and deadlock make programming tricky

- Must allocate one stack per request

- Many thread implementations block on some I/O or have

heavy thread-switch overhead

• Non-blocking read/write calls (SPED)

- Unusual programming model



Non-blocking I/O

• fcntl sets O NONBLOCK flag on descriptor

int n;

if ((n = fcntl (s, F_GETFL)) >= 0)

fcntl (s, F_SETFL, n | O_NONBLOCK);

• Non-blocking semantics of system calls:

- read immediately returns -1 with errno EAGAIN if no data

- write may not write all data, or may return EAGAIN

- connect may “fail” with EINPROGRESS (or may succeed, or

may fail with real error like ECONNREFUSED)

- accept may fail with EAGAIN if no pending connections



How do you know when to read/write?

int select (int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

FD_ZERO (&fdset); // initialize fdset

FD_SET (fd, &fdset); // add fd to fd list to watch

FD_ISSET(fd, &fdset); // if set, read(fd) won’t block

FD_CLR (fd, &fdset); // remove fd from fd list



Using async I/O in libasync

• Event harness controls select, not programmer

• Programmer registers events with harness

• Callbacks (function pointers) triggered when

event fires, e.g.,

- File descriptor is ready for reading/writing: fdcb

- Timer completes: delaycb

- Process receives signal: sigcb



Example: File-descriptor callbacks

• void fdcb (int socket, char op, callback cb);

- op: selread or selwrite

• If select on read, callback cb triggered when:

- Data is available on socket to be read

- EOF received (read returns 0)

- Non-transient error on socket (i.e., not EAGAIN)



Creating callbacks

• Need to “save” state for event triggering

• Create heap-allocated object

- Function pointer to be triggered

- Existing state saved in heap before creating callback

- Return values to be added by triggering function



Function currying with wrap

R func (A, B) { ... }

callback<R, A, B> cb = wrap (func);

(*cb) (A, B);

callback<R, B> cb = wrap (func, A);

(*cb) (B);

callback<R> cb = wrap (func, A, B);

(*cb) ();



Code before “stack ripping”

int query_and_resp (sockaddr_in &sin) {

int nread;

int fd = socket (AF_INET, SOCK_STREAM, 0);

if (connect (fd, (sockaddr *) &sin, sizeof (sin)) == 0)

if (write (fd, req, sizeof (req)) >= 0)

while ((nread = read (fd, resp, sizeof (resp))) > 0)

// handle input of length nread

if (nread == 0)

return 0;

return -1;

}



Code after “stack ripping”

void query_and_resp (sockaddr_in &sin) {

int fd = socket (AF_INET, SOCK_STREAM, 0);

callback<bool> cb = wrap (query_and_resp_2, fd);

connect_ev (fd, (sockaddr *) &sin, sizeof (sin), cb);

}

void query_and_resp_2 (int fd, bool result) {

if (result)

fdcb (fd, selwrite, wrap (query_and_resp_3, fd));

}



Code after “stack ripping” (2)

void query_and_resp_3 (int fd) {

fdcb (fd, selwrite, NULL);

if (write (fd, req, sizeof (req)) >= 0)

fdcb (fd, selread, wrap (query_and_resp_4, fd));

}

void query_and_resp_4 (int fd) {

int nread = read (s, resp, sizeof (resp));

if (nread > 0)

// handle input of length nread

else

fdcb (fd, selread, NULL);

}



Return result in stack ripping

query_and_resp (wrap (query_and_resp_resp));

query_and_resp_resp (int result);

void query_and_resp (sockaddr_in &sin, callback<int> cb);

void query_and_resp_2 (int fd, callback<int> cb, bool result);

void query_and_resp_3 (int fd, callback<int> cb);

void query_and_resp_4 (int fd, callback<int> cb) {

int nread = read (s, resp, sizeof (resp));

if (nread > 0)

// handle input of length nread

else {

fdcb (fd, selread, NULL);

(*cb) (((nread < 0) ? -1 : 0));

}

}


