Graph Transformer Networks

Léon Bottou

Joint work with Yann Le Cun Yoshua Bengio Patrick Haffner

> AT&T Labs – Research Middletown, NJ

SUMMARY

Graph Transformer Network

Overview

Example: Word Reader

Step by step example Scores vs. Probabilities Training

Example: Check Reader

Graph Composition GTN Building Blocks Real World test.

SDNN

Replicated Convolutional Network In-Seg vs. Out-Seg Animations

DOCUMENT RECOGNITION: THE TRADITIONAL WAY

Built by hand and manually adjusted.

Hand crafted features. Classifier trained on segmented characters.

Built by hand and manually adjusted.

Built by hand and manually adjusted.

WHAT WE REALLY WANT

Train all the parameters in the system to optimize a global performance measure

When the cost function and the learning machine module are differentiable with respect to the parameters, gradient-based methods can be used to minimize the cost function.

The learning machine can be as complex as desired, as long as it is composed of multiple differentiable "modules" [Layers of neurons and weights, RBF,...]

GRADIENT-BASED learning is the unifying concept behind many adaptive pattern recognition methods.

GRADIENT-BASED LEARNING IN MODULAR SYSTEMS

backpropagating gradient through differentiable modules [Bottou & Gallinari 1991]

Multi Layer Network

State variables:

Fixed Size Vectors

Probabilistic Interpretation:

Simple Probability Distribution over Vectors represented by its mean.

Training Procedure:

Optimise Mean Squared Error

Sometimes described as Maximum Likelihood with Gaussian Distributions.

Fixed Size Vectors cannot represent sequential information (e.g. speech recognition, structured images...)

Graph Transformer Network

State variables:

Weighted Graphs
with numerical information attached to the arcs.

Probabilistic Interpretation:

Mixture Distribution over Sequences

Arc weights are mixture coefficient

Graphs can represent alternative hypothesis. Graphs can represent structured information.

WHY GRAPHS?

Graphs with numerical information on the arcs can represent:

- mixture distributions over sequences of symbols, vectors, or other objects (stochastic finite-state grammars).
- alternative interpretations of an input
- relationships between parts (or features) of an object

Question: Can we back-propagate gradients through graph transformer modules?

Graphs Transformation Models

- Extend Graphical Models (hmms, bayesian nets)
- Introduced in Speech and Language analysis [Pereira, Riley, Sprout, 94].

Solid theoretical foundation.

 Our contribution: Global Discriminant Training of Graph Transformation models.

A SIMPLE EXAMPLE: WORD READER

A GTN that picks the best interpretation of a word by segmenting individual characters.

NORMALIZATION AND DISCRIMINATION

Generative (non-discriminant) training

Estimate P(x,y)

define parametric model p(x,y,w)

$$\sum_{x,y} p(x,y,w) = 1 \qquad \text{(for all } w\text{)}$$

maximize

$$\sum_{i} \log p(x_i, y_i, w)$$

Discriminant training

Estimate P(y|x)

define parametric model p(x,y,w)

$$\sum_{y} p(x,y,w) = 1 \quad \text{(for all } x,w)$$

maximize

$$\sum_{i} \log p(x_{i}, y_{i}, w)$$

The difference is the normalization

PROBABILISTIC MODELS

Building models using probability functions

Generative example: Hidden Markov Model

$$p(x,y,w) = p(x,y|w) = \sum_{s[t]:y} \prod_{t} p(s[t] | s[t-1]) p(x[t] | s[t])$$

Probabilistic construction ensures normalization!

Discrimant Example Discriminant Hidden Markov Model

$$p(x,y,w) = p(x,y|w) = \sum_{s[t]:y} \prod_{t} p(s[t] | x[t], s[t-1], ...)$$

Output of the local classifier must be normalized (softmax).

Ensures normalization.but is a BAD idea!

DENORMALIZED MODELS

Building models using "measures" (probabilities minus normalization)

- Use "penalties" instead of probabilities
- penalty
 A "score" e

is almost a probability but without normalization. Additions, multiplications work like probabilities...

Score of a path = Product of the scores of its arcs.

Score of a subgraph = Sum (or Max) of the scores of its paths.

Probabilities can be recovered by normalizing.
 That is only necessary at the global level.

Train by maximizing :
$$\sum_{i} \log \frac{p(x_i, y_i, w)}{\sum_{y} p(x_i, y_i, w)}$$

A Check Reader

[Bottou, LeCun, Burges, Nohl, Bengio, Haffner]

Reading the "Courtesy Amount" (numeric amount)

– Business Checks:

- usually machine printed
- layout not standardized
- amount difficult to find
- amount grammar not standardized (\$****1*234*12*****)
- not always easy to segment and read (dot matrix printers)

– Personal Checks:

- handwritten
- layout more or less standardized
- hard to segment
- hard to read

Check Reader: Recognition Architecture

Check Reader: Training Architecture

gradient-based discriminant training

Graph Transformer Networks:It works!

Partial implentation based on previous work [Burges, Nohl, et al.]

Graph Transformer Network runs

- when the check is determined to be machine printed
- using an uncleaned field image
- LeNet5 bootstraped on 500,000 images of characters from various origins:
 - full printable ASCII set (95 classes)
 - machine printed and handwritten
- Accuracy [1995]: (correct / reject / error)

	old system (was state of the art)	new system (with graph transformers)
654 machine printed checks	68 / 31 / 1	82 / 17 / 1
realistic mixture of 1986 checks	45 / 54 / 1	50 / 49 / 1

Integrated in NCRs check reading machines. Commercially deployed since June 1996.

Current estimates:

- Processes 20,000,000 checks per day
- Or 10% of all the checks in the U.S.

A CLASSIFICATION OF (USEFUL) TRANSFORMERS

field location

segmentation

recognition

- grammatical constraints

sequence normalization

selection of correct paths

viterbi

– k–best paths

Example: a lexicon

Recognition Graph

COMPOSITION TRANSFORMERS

Definition:

Perform a composition with a predefined "transducer" graph.

Remark:

The "transducer graph" is entirely defined by providing two functions: MATCH and BUILD.

[cf. slide about composition]

Examples:

- Graph Expansion Operations
 - field location
 - segmentation
 - recognition
- Graph Filtering and Rewriting
 - grammatical constraints
 - amount normalization

PRUNING GRAPH TRANSFORMERS

Definition:

Remove selected arcs from a graph.

Examples:

- Simple pruning algorithms
- Best path search algorithms
 - Viterbi, K Best Paths, Stack Decoding
 - Heuristic Search (A-star, Beam search).

BACK PROPAGATION THROUGH TRANSFORMERS

Pruning Transformers

- Set all gradients to zero
- Copy gradients from non pruned arcs

Composition Transformers

- Each arc of the output graph comes from an invocation of BUILD.
- BUILD must be a differentiable function.

Image Recognition with "LeNet-5"

- 100,000 free parameters
- Trained with 500,000 character samples (Full ASCII set, machine printed and handwritten)

A simple (and very inefficient) way of avoiding segmentation: character spotting:

Scan the input with a recognizer for single objects

REPLICATED CONVOLUTIONAL NETWORKS FOR MULTIPLE OBJECTS RECOGNITION

(Space Displacement Neural Networks)

Single object convolutional networks are easily transformed into multi-object networks

SPATIALLY REPLICATED Convolutional Network for Object Detection

WITH CONVOLUTIONAL NETS, SHIFT INVARIANCE BY REPLICATION IS VERY CHEAP BECAUSE MOST OF THE COMPUTATION IS SHARED BETWEEN NEIGHBORING INSTANCES.

SDNN HANDWRITING RECOGNIZER

OUTPUT INTERPRETATION WITH A WEIGTHED FINITE STATE MACHINE

SDNN HANDWRITING RECOGNIZER

REFERENCE

Le Cun, Bottou, Bengio, Haffner (1998): Gradient Based Learning applied to Document Recognition

Proceedings of the IEEE 86(11):2278–2324