Weakest-Precondition Reasoning

- Reference: E.W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.
- Starting with a post-assertion, what is the weakest pre-condition that makes the assertion true?
- In other words, what must be true before to make the assertion true after?
- [WP ^ [test\&action]] \rightarrow Assertion

What do we mean by "weakest"?

- If $A=>B$ but not $(B=>A)$, then B is "weaker" than A, and A is "stronger" than B.
- The weakest possible predicate is the one that is identically
true
since $A=>$ true no matter what A is. Similarly, the strongest possible predicate is
false

WP for anA Assignment Statement
- Consider the assignment statement
x $=\mathrm{F}(\xi)$;
where ξ denotes the "state vector"
(vector of all program variables).
- This statement is "all action"; the test is
vacuously true.
- If we want $\mathrm{P}(\mathrm{x})$ to be true after, what
must be true before?

WP for an A ssignment Statement

- The answer is $\operatorname{wp}(x=F(\xi) ;, P)=P(F(\xi))$
- The general rule is:

$$
\bullet\{P(F(\xi))\} \quad x=F(\xi) ;\{P(x)\}
$$

- Examples, where we show the assertions within braces, and the wp to be found as ??:

$$
\bullet\{? ?\} \quad x=5 ;\{y>x\}
$$

WP for an A ssignment Statement

- The general rule is:
- $\{P(F(\xi))\} x=F(\xi) ;\{P(x)\}$
- Example:
- $\{y>5\} x=5 ;\{y>x\}$
- i.e. if we want $y>x$ to be true after the assignment $x=5$; then we need, at a minimum, $y>5$ before the assignment.
- Identify $P(x)$ as $y>x$, and $F(\xi)$ as 5 , in the rule to get WP: $y>5$

WP for an Assignment Statement

- Examples:
- $\{? ?\} x=x+y ;\{y>x\}$
- $\{? ?\}$ y $=2^{*} y ;\{y<5\}$
- $\{? ?\}$ y $=2^{*} y ;\{\operatorname{even}(\mathrm{y})\}$

W/P for an A ssignment Statement

- Examples:
- $\{y>x+y\} x=x+y ;\{y>x\}$
i.e. $w p(x=x+y ;, y>x)=y>x+y$
- $\left\{2^{*} y<5\right\} y=2^{*} y ;\{y<5\}$ i.e. $w p\left(y=2^{*} y ;, y<5\right)=2^{*} y<5$
- $\left\{\operatorname{even}\left(2^{*} \mathrm{y}\right)\right\} \mathrm{y}=2^{*} \mathrm{y}$; $\{$ even $(\mathrm{y})\}$

$$
\text { i.e. } w p\left(y=2^{*} y ;, \text { even }(y)\right)=\operatorname{even}\left(2^{*} y\right)
$$

WP Convention

- It is common to include logic simplification in the WP expression.
- Example: If working in the domain of integers, then
even($\left.2^{*} y\right)$
would simplify to true
while $i+1 \leq n$
would simplify to $\mathrm{i}<\mathrm{n}$

WP Composition Rule

- Suppose we have two statements in a sequence:

S; T

- The wp for composite obeys the following equation:
wp(S; T, P) = wp(S; wp(T, P))
- In other words, predicate transformers compose in a manner similar to functions.

WP Composition_Rule
- Suppose we have two statements in a
sequence:
S; T
- The wp for composite obeys the
following equation:
wp(S; T, P) $=w p(S ;$ wp(T, P))
- In other words, predicate transformers
compose in a manner similar to
functions.

Predicates and State Sets

- A program statement can thus be viewed as a "predicate transformer", transforming a post-condition into a weakest pre-condition.
- But a predicate is just a set of states, so that WP transforms the set of states after a statement to a set before.

[^0]
Composition Rule Example

- Consider the sequence and post-condition \{??\}
$\mathrm{s} 1=\mathrm{s} 1+\mathrm{s} 2$;
s2 $=s 2+\mathrm{s} 3 ;$
$\mathrm{s} 3=\mathrm{s} 3+6$;
$\mathrm{i}=\mathrm{i}+1$;
$\left\{s 1=i^{3} \quad s 2=(i+1)^{3} i^{3} \quad s 3=6^{*}(i+1)\right\}$
- Working backward
wp(i=i+1; ...) =
$\left\{\mathrm{s} 1=(\mathrm{i}+1)^{3} \quad \mathrm{~s} 2=(\mathrm{i}+2)^{3}-(\mathrm{i}+1)^{3} \quad \mathrm{~s} 3=6^{*}(\mathrm{i}+2)\right\}$

Composition Rule Example (2)

Working backword from
$\left\{s 1=(i+1)^{3} \quad s 2=(i+2)^{3}-(i+1)^{3} \quad s 3=6^{*}(i+2)\right\}$

- $w p(s 3=s 3+6 ; \ldots)=$
$\left\{s 1=(i+1)^{3} \quad s 2=(i+2)^{3}-(i+1)^{3} \quad(s 3+6)=6^{*}(i+2)\right\}$
- $w \mathrm{p}(\mathrm{s} 2=\mathrm{s} 2+\mathrm{s} 3 ; \ldots)=$
$\left\{\mathrm{s} 1=(\mathrm{i}+1)^{3}(\mathrm{~s} 2+\mathrm{s} 3)=(\mathrm{i}+2)^{3}-(\mathrm{i}+1)^{3} \quad(\mathrm{~s} 3+6)=6^{*}(\mathrm{i}+2)\right\}$
- $w p(s 1=s 1+s 2 ; \ldots)=$
$\left\{(\mathrm{s} 1+\mathrm{s} 2)=(\mathrm{i}+1)^{3}(\mathrm{~s} 2+\mathrm{s} 3)=(\mathrm{i}+2)^{3}-(\mathrm{i}+1)^{3} \quad(\mathrm{~s} 3+6)=6^{*}(\mathrm{i}+2)\right\}$

Using the Composition Rule to Prove a

- An assertion P is a loop invariant provided that:
- P is true at the start of the loop
- P => wp(loop-body, P)
- The second condition above is the same as the verification condition for the loop body.

Example: Using the Composition Ruleto Proveal Invariant

- We claim that
$\left\{(\mathrm{s} 1+\mathrm{s} 2)=(\mathrm{i}+1)^{3} \quad(\mathrm{~s} 2+\mathrm{s} 3)=(\mathrm{i}+2)^{3-}(\mathrm{i}+1)^{3} \quad(\mathrm{~s} 3+6)=6^{*}(\mathrm{i}+2)\right\}$
- is implied by the original post-condition of the body:
$\left\{s 1=i^{3} \quad s 2=(i+1)^{3}-i^{3} \quad s 3=6^{*}(i+1)\right\}$
- Assume the latter post-condition. Then
- $\begin{aligned} s 1+s 2 & =i^{3}+(i+1)^{3-} i^{3} \\ & =(i+1)^{3}\end{aligned}$ $=(i+1)^{3}$
- $s 2+s 3=(i+1)^{3-i^{3}}+6^{*}(i+1)$ $=(i+2)^{3}-(\mathrm{i}+1)^{3}$
- $s 3+6=6^{\star}(i+1)+6$
$=6^{*}(i+2)$

Showing the Non-Obvious Equality

- Show $(\mathfrak{i}+1)^{3} \mathfrak{i}^{3}+6^{*}(\mathfrak{i}+1)=(i+2)^{3}-(\mathfrak{i}+1)^{3}$
- LHS $=\left(i^{3}+3 i^{2}+3 i+1\right) \dot{i}^{3}+6 i+6$
$=3 i^{2}+9 i+7$
- RHS $=\left(i^{3}+6 i^{2}+12 i+8\right)-\left(i^{3}+3 i^{2}+3 i+1\right)$
$=3 i^{2}+9 i+7$

WP for a Test - Fxample

- \{??\}
if $(x>y) x=x-y$; else $y=y-x$;
$\{\operatorname{gcd}(x, y)=z\}$
- wp is

W's of the assignment statements
$(x>y) \rightarrow \operatorname{gcd}(x-y, y)=z$
$\neg(x>y) \rightarrow \operatorname{gcd}(x, y-x)=z$

W/P for a Test - Fxample
- \{??\} if $(x>y) x=x-y$; else $y=y-x$; $\{\operatorname{gcd}(x, y)=z\}$ - wp is wq's of the assignment statements $\begin{array}{r} (x>y) \rightarrow \operatorname{gcd}(x-y, y)=z \\ \neg(x>y) \rightarrow \operatorname{gcd}(x, y-x)=z \end{array}$

WP for a Test

- \{??\} if($\mathrm{Q}(\xi)$) S else T $\{\mathrm{P}(\xi)\}$
- wp(if($\mathrm{Q}(\xi))$ S else $\mathrm{T}, \mathrm{P})(\xi)=$
$Q(\xi) \rightarrow \mathrm{wp}(\mathrm{S}, \mathrm{P})(\xi)^{\wedge}$
$\neg Q(\xi) \rightarrow \mathrm{wp}(\mathrm{T}, \mathrm{P})(\xi)$

WP for a Test - Fxample (2)

- \{??\}
if $(x>y) z=x$; else $z=y$;
$\{z=\max (x, y)\}$
- wp is
wp's of the assignment statements

$$
(x>y) \rightarrow \max (x, y)=x
$$

$\neg(x>y) \rightarrow \max (x, y)=y$
which simplifies to true.

When the else part is missing
- If the else part is missing, then T is
effectively a "no-op" or "skip":
$\xi=\xi ;$
- The wp is then
$\neg Q(\xi) \rightarrow P(\xi)$
${ }^{\wedge} \mathrm{Q}(\xi) \rightarrow \mathrm{wp}(\mathrm{S}, \mathrm{P})(\xi)$
- since $\mathrm{wp}(\xi=\xi ; \mathrm{P})=\mathrm{P}$

WP for a Test without else
$\begin{aligned} & -\{? ?\} \\ & \text { if }(x>y) y=x ; \\ & \{y=\max (x, y)\} \end{aligned}$
$\text { - wp is } \quad \begin{gathered} \begin{aligned} \neg(x>y) \rightarrow y=\max (x, y) \\ (x>y) \rightarrow x=\max (x, x) \\ \text { which simplifies to true. } \end{aligned} \end{gathered} \text { wp's of the assignment statements }$

Alternate WP for a Test

- wp(if($\mathrm{Q}(\xi))$ S else $\mathrm{T}, \mathrm{P})(\xi)=$
$(Q(\xi) \wedge w p(S, P)(\xi)) \vee$
$\left(\neg \mathrm{Q}(\xi)^{\wedge} \mathrm{wp}(\mathrm{T}, \mathrm{P})(\xi)\right)$

Alternate WP for a Test

- $\left(Q^{\wedge} A\right) \vee\left(\neg Q^{\wedge} B\right)=?(Q \rightarrow A)^{\wedge}(\neg Q \rightarrow B)$
- For $Q=$ true, this becomes $A=$? A.
- For $\mathrm{Q}=$ false, this becomes $\mathrm{B}=$? B
- Therefore the two forms are equivalent.
- To see that this is equivalent to the previous version, let wp(S, P) be A and $w p(T, P)$ be B. Then we are asking whether $\left(Q^{\wedge} A\right) \vee\left(\neg Q^{\wedge} B\right)$ is equivalent to $(Q \rightarrow A)^{\wedge}(\neg Q \rightarrow B)$

WP for a Loop

- \{??\} while(Q) S \{P\}
- Consider this to be unrolled to a cascade of ifs (without else's)
- if(Q) \{S; if(Q) \{S; if(Q) \{S; ... \}\}\}
- So WP is
$\neg Q(\xi) \rightarrow P(\xi) \wedge$

$$
\begin{aligned}
Q(\xi) \rightarrow(w p(S, \neg Q(\xi) & \rightarrow P(\xi) \wedge \\
Q(\xi) & \rightarrow(w p(S, \ldots))))
\end{aligned}
$$

- but this may be difficult to capture in closed form.

Example: WP for a Loop

- $\{? ?\}$ while $(x>0) x=x-1 ;\{x==0\}$
- WP is
$\neg(x>0) \rightarrow x=0^{\wedge}$
$(x>0) \rightarrow\left[\neg(x-1>0) \rightarrow x-1==0^{\wedge}\right.$

$$
\begin{aligned}
(x-1>0) \rightarrow & {[\neg(x-2>0) \rightarrow x-2==0 \wedge} \\
& (x-2>0) \rightarrow[\ldots]]]
\end{aligned}
$$

which simplifies to

- $\{? ?\}$ while $(x>0) x=x-1 ;\{x==0\}$
- WP is
$x \leq 0$
$\rightarrow \mathrm{x}=\mathrm{O}^{\wedge}$
$(x>0)^{\wedge} x \leq 1 \rightarrow x==1^{\wedge}$
$(x>1)^{\wedge} x \leq 2 \rightarrow x=2^{\wedge}$
$(x>2)^{\wedge} x \leq 3 \rightarrow x=3^{\wedge}$
...

which further simplifies to

- $\{? ?\}$ while $(x>0) x=x-1 ;\{x==0\}$
-WP is
$x \geq 0$
- In other words, the loop will terminate with $x==0$ provided that $x \geq 0$ initially.

Recurrence for Loop WP

- $\{? ?\}$ while(Q) $\mathrm{S} ;\{\mathrm{P}\}$
can be expressed as the predicate $H(P)$

$$
=H_{0}(P)^{\wedge} H_{1}(P)^{\wedge} H_{2}(P)^{\wedge} \dot{H}_{3}(P)^{\wedge} \ldots
$$

- where
- $\mathrm{H}_{0}(\mathrm{P})=\neg \mathrm{Q} \rightarrow \mathrm{P}$
- $\mathrm{H}_{\mathrm{k}+1}(\mathrm{P})=\mathrm{Q} \rightarrow \mathrm{wp}\left(\mathrm{S}, \mathrm{H}_{\mathrm{k}}(\mathrm{P})\right)$

Example• Recurrencefor (W) WhP

- \{??\} while $(x>0) x=x-1 ;\{x==0\}$ can be expressed as the predicate $H(P)$

$$
=H_{0}(x==0) \quad H_{1}(x==0) \quad H_{2}(x==0) \quad \ldots
$$

- where
- $H_{0}(x==0)=\neg x>0 \rightarrow x==0$
- $H_{k+1}(x==0)=x>0 \rightarrow w p\left(x=x-1 ;, H_{k}(x==0)\right)$

Recurrence for Loop WP

- \{??\} while(Q) S; \{P\}
- In particular, the WP H is the weakest predicate satisfying the recurrence:
- $\mathrm{H} \rightarrow(\neg \mathrm{Q} \rightarrow \mathrm{P})$
- $\mathrm{H} \rightarrow(\mathrm{Q} \rightarrow \mathrm{w}(\mathrm{S}, \mathrm{H}))$
- In this sense, H is like a loop invariant, but derived from post-conditions.

Fxample• Recurrencefor 1 LW

- \{??\} while $(x>0) x=x-1 ;\{x==0\}$
- Check that $H=x \geq 0$ satisfies the recurrence:
- $x \geq 0 \rightarrow(\neg x>0 \rightarrow x==0)$
which is valid, and
- $x \geq 0 \rightarrow(x>0 \rightarrow w p(x=x-1 ;, x \geq 0))$
- But wp($x=x-1$;, $x \geq 0$) is $x \geq 1$, so we check
- $x \geq 0 \rightarrow(x>0 \rightarrow x \geq 1)$, which is true (for integers)

A nother way to approach WP for a loop

- wp(while(B) S, Q)
- $(\exists k \geq 0) H_{k}(Q)$
- where
- $\mathrm{H}_{0}(\mathrm{Q})=\neg \mathrm{B} \quad \mathrm{Q}$
- $H_{k+1}(Q)=\left(B \quad w p\left(S, H_{k}(Q)\right)\right) \vee(\neg B \quad Q)$

Example: Alternate way to approach WP for a loop

- \{??\} while $(x>0) x=x-1 ;\{x==0\}$ can be expressed as the predicate $\mathrm{H}(\mathrm{P})$ $=H_{0}(x==0) \vee H_{1}(x==0) \vee H_{2}(x==0) \vee \ldots$
- where
- $H_{0}(x==0)=\neg x>0 \quad x==0$
- $H_{k+1}(x==0)=\left(x>0 \quad w p\left(x=x-1 ;, H_{k}(x==0)\right)\right)$
$\vee(\neg x>0 \quad x==0)$
- $x==0 \vee x==1 \vee x==2 \vee \ldots$

Practical_Example of a

- Consider the java code:
for ($\mathrm{j}=0 ; \mathrm{j}$ < a.length; $\mathrm{j}+\mathrm{+}$)
\{
if($\mathrm{a}[\mathrm{j}]=\mathrm{v}$)
break
\}
\}
assert: a[j] == v
-What is the weakest pre-condition?

Structura_Induction

- The Structural Induction Principle can also be used for proving correctness.
- It generalizes conventional mathematical induction, in that it is on the formation of information structures, such as lists (of which numbers are a special case).
- It has the advantage of proving total correctness in one single technique.
- It is useful for functional and logic programs in particular.
- It can also be used for proving properties of information structures themselves.

Further Standard Properties of

 wp- wp(S, false) = false
- $w p(S$, true $)=$ condition under which S terminates
- wp(skip, Q) = Q
- wp(abort, Q) = false
- If $\mathrm{Q} \rightarrow \mathrm{R}$ then $\mathrm{wp}(\mathrm{S}, \mathrm{Q}) \rightarrow \mathrm{wp}(\mathrm{S}, \mathrm{R})$
- wp(S, Q R) \quad wp(S, Q) $\quad w p(S, R)$
- wp(S, Q) $\vee w p(S, R) \rightarrow w p(S, Q \vee R)$ (equality holds for deterministic S)

Structural_Induction Proof (1)

- Consider the following rex program:
- shunt([], M) => M;
- $\operatorname{shunt}([A \mid L], M)=>\operatorname{shunt}(L,[A \mid M])$;
- We want to show:
- (L)(M) shunt(L, M) returns the M appended to the reverse of L, i.e.
- (L) (M) shunt $(L, M)==$ append(reverse(L), M)

Structural Induction Proof (2)

- Show by induction "on L"
$(L)(M)$ shunt $(L, M)==$ append(reverse $(L), M)$
- Basis: Show it true for $L=$ the empty list:
- TBS: (M) shunt([], M) == append(reverse([]), M)
- From the program, $\operatorname{shunt}([], M)=>M$.
- But $M==\operatorname{append}([], M)==\operatorname{append}($ reverse([]), M). QED.

Structural Induction Proof (3)

- We are showing:
- (L)(M) shunt $(L, M)==\operatorname{append}($ reverse $(L), M)$
- Induction step: Assume for an arbitrary list L :
- (M) shunt $(L, M)==\operatorname{append}($ reverse $(L), M)$
- Show it is true for list [A | L], i.e. show:
- (M) $\operatorname{shunt}([\mathrm{A} \mid \mathrm{L}], \mathrm{M})==$
append(reverse([A|L]), M)

Structural_Induction Proof (5)

- To show: append(reverse(L), $[\mathrm{A} \mid \mathrm{M}])==$ append(reverse([A | L]), M).

- append(reverse(L), append $[(A], M))=$

- $\operatorname{append}($ append $($ reverse $(L),[A]), M)=$

\cdots append(reverse([A | L]), M)

Try to Prove this by Structural Induction
- (a)(b)(c) $\operatorname{app}(\operatorname{app}(a, b), c)==$ app(a, app(b, c)) - Using the definition of app: app([], b) $=>$ b; $\operatorname{app}([x \mid a], b)=>[x \mid \operatorname{app}(a, b)] ;$

Structural Induction

- (a) (b)(c) app(app(a, b), c) == app(a, app(b, c))
- Induction Hypothesis:
(b) (c) $\operatorname{app}(\operatorname{app}(a, b), c)==\operatorname{app}(a, \operatorname{app}(b$, c))
- Induction Conclusion:
(b) (c) app(app(cons(x, a), b), c) $==\operatorname{app}(\operatorname{cons}(\mathrm{x}, \mathrm{a}), \operatorname{app}(\mathrm{b}, \mathrm{c}))$

Structural_Induction

- TBS:app(app(cons(x, a), b), c) $==\operatorname{app}(\operatorname{cons}(x, a), \operatorname{app}(b, c))$
- By two symbolic evaluations, based on the definition of app this equation reduces to:
- $\operatorname{app}(\operatorname{cons}(x, \operatorname{app}(a, b)), c)==\operatorname{cons}(x, \operatorname{app}(a$, app(b, c)))

Structural Induction

- TBS: $\operatorname{app}(\operatorname{cons}(x, \operatorname{app}(\mathrm{a}, \mathrm{b})), \mathrm{c})==$ cons(x, app(a, app(b, c)))
- By one more symbolic evaluations, this reduces to:
cons(x, app(app(a, b), c)) == cons(x, app(a, app(b, c)))
- Using the induction hypothesis, this is an identity.
"M athematical Induction" is a special case of Structural Induction
- Mathematical induction says: "To prove a property P for all natural numbers, it suffices to prove:
- $P(0)$
- $(n)(P(n) \rightarrow P(n+1)) "$
- This is structural induction where number $n+1$ is thought to be "constructed" from n by the +1 operator.
- To prove a property P for all natural numbers, it suffices to prove:
- (n) $(((m<n) P(m)) \rightarrow P(n))$
- The strong form allows use of a stronger induction hypothesis, which may simplify a proof.
- The strong form can be derived from the ordinary form.

Notes

- Those items to which we appealed as "definitions" on the previous slide could themselves be proved as lemmas using structural induction.
- Automated tools such as ACL2 can be used to do this form of proof on a computer.

Overview of ACL2

- ACL2 = "Applicative Common Lisp 2"
- ACL2 is an interactive theorem prover based on Lisp and structural induction
- History of ACL2:
- Boyer-Moore Theorem Prover (Edinborough, PARC, UT Austin)
- Nqthm (Computational Logic Incorporated)
- ACL2 (UT Austin)

ACL2indudes

- Normal Lisp execution
- Symbolic execution
- Automated theorem proving
- Formalism for admitting axioms to the system

Sample Evaluations
ACL2 !>(app nil ' $(x$ y z $)$) $(X Y$ Y $)$ ACL2 !>(app '(1 2 3) '(4 56 7)) (1234567) ACL2 ! >(app '(abcdefg) '(x y z)) (A BCDEFGXYZ) ACL2 !>(app (app '(1 2) '(3 4)) '(5 6)) (123456)

Sample Theorem

This theorem asserts that function app is associative:

ACL2!>
(defthm associativity-of-app
(equal (app (app a b) c)
(app a (app b c))))

This is just what we proved earlier by Structural_Induction

- (equal (app (app a b) c)
(app a (app b c))))
- In other words,
(a)(b)(c) app(app(a, b), c) == $\operatorname{app}(a, \operatorname{app}(b, c))$

ACl 2 Theorem Prover Outnut

(defthm associativity-of-app (equal (app (app a b) c) (app a (app b c))))

Name the formula above *1.
Perhaps we can prove $* 1$ by induction. Three induction schemes are suggested by this conjecture. Subsumption reduces that number to two However, one of these is flawed and so we are left with one viable candidate.
(continued)

Simplification of the Induction Step

Subgoal * $1 / 2$
(IMPLIES (AND (NOT (ENDP A))
(EQUAL (APP (APP (CDR A) B) C)
(APP (CDR A) (APP B C))))
(EQUAL (APP (APP A B) C)
(APP A (APP B C)))).

By the simple :definition ENDP we reduce the conjecture to

Simplification of the Basis

Subgoal * $1 / 1$
(IMPLIES (ENDP A)
(EQUAL (APP (APP A B) C) (APP A (APP B C)))).

By the simple :definition ENDP we reduce the conjecture to
Subgoal *1/1'
(IMPLIES (NOT (CONSP A))
(EQUAL (APP (APP A B) C) (APP A (APP B C)))).

But simplification reduces this to T, using the :definition APP and primitive type reasoning

Proof of a Theorem

- Once the theorem is proved, it is saved in the system to be used as a rewrite rule.
- The system will henceforth rewrite (app (app x y) z)
as
(app x (app y z))
- This is not necessarily a good thing.

Controlling Rewrites

- The problem with universal application of a rewrite rule is that it can divert from the main problem.
- For example, resubmitting the previous theorem would cause an infinite loop in the form of repeated application of the rule.
- This can be avoided, as shown next.

Example Use of the Associativity Theorem
(defthm trivial-consequence
(equal (app (app (app (app x1 x2) (app x3x4)) (app x5x6)) x7) $(\operatorname{app} \times 1(\operatorname{app}(\operatorname{app} \times 2 \times 3)(\operatorname{app}(\operatorname{app} \times 4 \times 5)(\operatorname{app} \times 6 \times 7))))))$

ACL2 Warning [Subsume] in (DEFTHM TRIVIAL-CONSEQUENCE ...): The previously
added rule ASSOCIATIVITY-OF-APP subsumes the newly proposed :REWRITE rule TRIVIAL-CONSEQUENCE, in the sense that the old rule rewrites a more general target. Because the new rule will be tried first, it may nonetheless find application.

Example Use of the Associativity Theorem
By the simple :rewrite rule ASSOCIATIVITY-OF-APP we reduce the conjecture to Goal' (EQUAL (APP X1 (APP X2 (APP X3 (APP X4 (APP X5 (APP X6 X7)))))) (APP X1 (APP X2 (APP X3 (APP X4 (APP X5 (APP X6 X7))))))). But we reduce the conjecture to T, by primitive type reasoning. Q.E.D.

[^0]: Composition Rule Example

 - Consider
 $\{? ?\} x=z+1 ; y=x+y ;\{y>5\}$
 - $w p(y=x+y ;, y>5)=x+y>5$
 - $w p(x=z+1 ;, x+y>5)=z+1+y>5$
 - So ?? is
 $z+1+y>5$

