
Weakest-Precondition Reasoning

l Reference: E.W. Dijkstra, A Discipline of 
Programming, Prentice-Hall, 1976.

l Starting with a post-assertion, what is 
the weakest pre-condition that makes 
the assertion true?

l In other words, what must be true 
before to make the assertion true after?

l [WP ^ [test&action] ] → Assertion

What do we mean by “weakest”?

l If A => B but not (B => A), then B is 
“weaker” than A, and A is “stronger” 
than B.

l The weakest possible predicate is the 
one that is identically

true

since A => true no matter what A is. 
Similarly, the strongest possible 
predicate is

false 

WP for an Assignment Statement

l Consider the assignment statement
x = F(ξ);

where ξ denotes the “state vector” 
(vector of all program variables).

l This statement is “all action”; the test is 
vacuously true.

l If we want P(x) to be true after, what 
must be true before?

WP for an Assignment Statement

l The answer is wp(x = F(ξ);, P) = P(F(ξ))
l The general rule is:
l {P(F(ξ))}  x = F(ξ);  {P(x)}

l Examples, where we show the 
assertions within braces, and the wp to 
be found as ??:
l {??}  x = 5;  {y > x}



WP for an Assignment Statement

l The general rule is:
l {P(F(ξ))}  x = F(ξ);  {P(x)}

l Example:
l {y > 5} x = 5; {y > x}
l i.e. if we want y > x to be true after the 

assignment x = 5; then we need, at a 
minimum, y > 5 before the assignment.

l Identify P(x) as y > x, and F (ξ) as 5, in the 
rule to get WP: y > 5 

WP for an Assignment Statement

l Examples:
l {??} x = x+y; {y > x}

l {??} y = 2*y; {y < 5}

l {??} y = 2*y; {even(y)}

WP for an Assignment Statement

l Examples:
l {y > x+y} x = x+y; {y > x}

i.e. w p(x = x+y;, y > x) = y > x+y

l {2*y < 5} y = 2*y; {y < 5}
i.e. w p(y = 2*y;, y < 5) = 2*y < 5 

l {even(2*y)} y = 2*y; {even(y)}
i.e. w p(y = 2*y;, even(y)) = even(2*y)

WP Convention

l It is common to include logic simplification in 
the WP expression.

l Example: If working in the domain of integers, 
then 

even(2*y)
would simplify to

true
while

i +1 < n
would simplify to

i < n



Predicate Transformers

l A program statement can thus be 
viewed as a “predicate transformer”, 
transforming a post-condition into a 
weakest pre-condition.

Predicates and State Sets

l A program statement can thus be 
viewed as a “predicate transformer”, 
transforming a post-condition into a 
weakest pre-condition.

l But a predicate is just a set of states, 
so that WP transforms the set of states 
after a statement to a set before.

WP Composition Rule

l Suppose we have two statements in a 
sequence:

S; T
l The wp for composite obeys the 

following equation:
wp(S; T,  P) = wp(S; wp(T, P))

l In other words, predicate transformers 
compose in a manner similar to 
functions.

Composition Rule Example

l Consider
{??} x = z+1; y = x+y; {y > 5}

l wp(y = x+y;, y > 5) = x+y > 5
l wp(x = z+1;, x+y > 5) = z+1+y > 5
l So ?? is

z+1+y > 5



Composition Rule Example
l Consider the sequence and post-condition

{??}
s1 = s1 + s2;
s2 = s2 + s3;
s3 = s3 + 6;
i = i+1;
{s1=i3 ÿ s2=(i+1)3-i3 ÿ  s3 = 6*(i+1)}

l Working backward
w p(i=i+1; …) =
{s1=(i+1) 3 ÿ s2=(i+2) 3-(i+1) 3 ÿ  s3 = 6*(i+2)}

Composition Rule Example (2)

Working backword from
{s1=(i+1) 3 ÿ s2=(i+2) 3-(i+1) 3 ÿ  s3 = 6*(i+2)}

l w p(s3 = s3 + 6; …) =
{s1=(i+1) 3 ÿ s2=(i+2) 3-(i+1) 3 ÿ  (s3+6) = 6*(i+2)}

l w p(s2 = s2 + s3; …) =
{s1=(i+1) 3ÿ(s2+s3)=(i+2) 3-(i+1) 3ÿ  (s3+6) =6*(i+2)}

l w p(s1 = s1+s2; …) =
{(s1+s2)=(i+1) 3ÿ(s2+s3)=(i+2) 3-(i+1) 3ÿ  (s3+6) =6*(i+2)}

Using the Composition Rule to Prove 
a Loop Invariant

l An assertion P is a loop invariant provided 
that:
l P is true at the start of the loop
l P => wp(loop-body, P)

l The second condition above is the same as 
the verification condition for the loop body.

Example: Using the Composition 
Rule to Prove a Loop Invariant

l We claim that
{(s1+s2)=(i+1) 3ÿ(s2+s3)=(i+2) 3-(i+1) 3ÿ  (s3+6) =6*(i+2)}

l is implied by the original post-condition of the 
body:
{s1=i3 ÿ s2=(i+1) 3-i3 ÿ  s3 = 6*(i+1)}

l Assume the latter post-condition. Then
l s1+s2 = i3+(i+1) 3-i3

= (i+1) 3

l s2+s3 = (i+1) 3-i3 + 6*(i+1)
= (i+2) 3-(i+1) 3

l s3+6 = 6*(i+1)+6
= 6*(i+2)

This equality is not so obvious.



Showing the Non-Obvious Equality

l Show (i+1)3-i3 + 6*(i+1)= (i+2)3-(i+1)3

l LHS= (i3 + 3i2 + 3i + 1)-i3 + 6i + 6 

= 3i2 + 9i + 7

l RHS= (i3 + 6i2 + 12i+ 8)-(i3 + 3i2 + 3i + 1)

= 3i2 + 9i + 7

WP for a Test

l {??} if( Q(ξ) ) S else T {P(ξ)}

l wp(if(Q(ξ)) S else T, P)(ξ) = 

Q(ξ) → wp(S, P)(ξ)  ̂
¬Q(ξ) → wp(T, P)(ξ) 

WP for a Test - Example

l {??}
if( x > y ) x = x-y; else y = y-x;
{gcd(x, y) = z}

l wp is 

(x > y) → gcd(x-y, y) = z ÿ
¬(x > y) → gcd(x, y-x) = z 

wp’s of the assignment statements

WP for a Test - Example (2)

l {??}
if( x > y ) z = x; else z = y;
{z = max(x, y)}

l wp is 

(x > y) → max(x, y) = x ÿ
¬(x > y) → max(x, y) = y
which simplifies to true. 

wp’s of the assignment statements



When the else part is missing

l If the else part is missing, then T is 
effectively a “no-op” or “skip”:
ξ = ξ; 

l The wp is then
¬Q(ξ) → P(ξ) 
^ Q(ξ) → wp(S, P)(ξ) 

l since wp(ξ = ξ; P) = P 

WP for a Test without else

l {??}
if( x > y ) y = x; 
{y = max(x, y)}

l wp is 

¬(x > y) → y = max(x, y) 
ÿ (x > y) → x = max(x, x) 
which simplifies to true. 

wp’s of the assignment statements

Alternate WP for a Test

l wp(if(Q(ξ)) S else T, P)(ξ) = 

(Q(ξ) ^ wp(S, P)(ξ)) ∨
(¬Q(ξ)  ̂wp(T, P)(ξ))

l To see that this is equivalent to the 
previous version, let wp(S, P) be A and 
wp(T, P) be B. Then we are asking 
whether (Q ^ A) ∨ (¬Q ^ B) is equivalent 
to (Q → A) ^ (¬Q → B) 

Alternate WP for a Test

l (Q ^ A) ∨ (¬Q ^ B) =? (Q → A) ^ (¬Q → B) 
l For Q = true, this becomes A =? A.
l For Q = false, this becomes B =? B

l Therefore the two forms are equivalent.



WP for a Loop

l {??} while(Q) S {P}
l Consider this to be unrolled to a cascade 

of if’s (without else’s)
l if(Q) {S; if(Q) {S; if(Q) {S; … }}}
l So WP is

¬Q(ξ) → P( ξ) ^ 
Q(ξ)  → (w p(S, ¬Q(ξ) → P( ξ) ^

Q(ξ) → (w p(S, …))))

l but this may be difficult to capture in 
closed form.

Example: WP for a Loop

l {??} while(x > 0) x = x-1; {x == 0}
l WP is

¬(x > 0) → x == 0 ^ 
(x > 0) → [¬(x-1 > 0) → x-1 == 0 ^ 

(x-1 > 0) → [¬(x-2 > 0) → x-2 == 0 ^ 
(x-2 > 0) → […  ]]]

which simplifies to

l {??} while(x > 0) x = x-1; {x == 0}
l WP is

x ≤ 0               → x == 0 ^ 
(x > 0) ^ x ≤ 1 → x == 1 ^ 
(x > 1) ^ x ≤ 2 → x == 2 ^ 
(x > 2) ^ x ≤ 3 → x == 3 ^ 
...

which further simplifies to

l {??} while(x > 0) x = x-1; {x == 0}
l WP is

x > 0
l In other words, the loop will terminate with 

x == 0 provided that x > 0 initially.



Recurrence for Loop WP

l {??} while(Q) S; {P}
can be expressed as the predicate H(P) 
= H0(P) ^ H1(P) ^ H2(P) ^ H3(P) ^ …

l where
lH0(P) = ¬ Q → P

lHk+1(P) = Q → w p(S, Hk(P))

Recurrence for Loop WP

l {??} while(Q) S; {P}

l In particular, the WP H is the weakest 
predicate satisfying the recurrence:
lH → (¬ Q → P)

lH → (Q → w p(S, H))

l In this sense, H is like a loop invariant, 
but derived from post-conditions.

Example: Recurrence for Loop WP

l {??} while(x > 0) x = x-1; {x==0}
can be expressed as the predicate H(P) 
= H0(x==0) ÿ H1(x==0) ÿ H2(x==0) ÿ …

l where
lH0(x==0) = ¬ x > 0 → x==0 

lHk+1(x==0) = x > 0 → w p(x=x-1;, Hk(x==0))

Example: Recurrence for Loop WP

l {??} while(x > 0) x = x-1; {x==0}
l Check that H = x > 0 satisfies the 

recurrence:
l x > 0 → (¬ x > 0 → x==0)

which is valid, and 
l x > 0 → (x > 0 → w p(x=x-1;, x > 0))

l But wp(x=x-1;, x > 0) is x > 1, so we 
check
l x > 0 → (x > 0 →  x>1), which is true (for integers)



Another way to approach WP for a loop

l wp(while(B) S, Q) 
l (∃k > 0) Hk(Q)
l where
lH0(Q) = ¬ B ÿ Q 
lHk+1(Q) = (B ÿ w p(S, Hk(Q))) ∨ (¬B ÿ Q)

Example: Alternate way to approach WP 
for a loop

l {??} while(x > 0) x = x-1; {x==0}
can be expressed as the predicate H(P) 
= H0(x==0) ∨ H1(x==0) ∨ H2(x==0) ∨ …

l where
lH0(x==0) = ¬ x > 0 ÿ x==0 

lHk+1(x==0) = (x > 0 ÿ w p(x=x-1;, Hk(x==0)))
∨  (¬ x > 0 ÿ x==0)

l x == 0 ∨  x==1 ∨  x==2 ∨ ...

More on WP for a Loops

l Note that WP for a loop captures total
correctness.

l Since it is generally difficult to derive 
WP in a closed form, we may be 
content with finding a pre-condition that 
satisfies the recurrence but is not the 
weakest.

l Such a condition implies the weakest.

Practical Example of a Loop WP

l Consider the java code:
for( j = 0; j < a.length; j++ )

{
if( a[j] == v )

{
break;
}

}
assert: a[j] == v

l What is the weakest pre-condition?



Practical Example of a Loop WP

l The weakest pre-condition is:

((∃j) (0 < j < a.length) ÿ a[j] == v)

Further Standard Properties of 
wp

l wp(S, false) = false
l wp(S, true) = condition under which S terminates

l wp(skip, Q) = Q
l wp(abort, Q) = false
l If Q → R then wp(S, Q) → wp(S, R)
l wp(S, Q ÿ R) = wp(S, Q) ÿ wp(S, R)
l wp(S, Q) ∨ wp(S, R) → wp(S, Q ∨ R) 

(equality holds for deterministic S)

Structural Induction
l The Structural Induction Principle can also be 

used for proving correctness.

l It generalizes conventional mathematical induction, in 
that it is on the formation of information structures, 
such as lists (of which numbers are a special case).

l It has the advantage of proving total correctness in 
one single technique.

l It is useful for functional and logic programs in 
particular.

l It can also be used for proving properties of 
information structures themselves.

Structural Induction Proof (1)

l Consider the following rex program:
l shunt([ ], M) => M;
l shunt([A | L], M) => shunt(L, [A | M]);

l We want to show:
l (�L)(�M) shunt(L, M) returns the M appended to 

the reverse of L, i.e.

l (�L)(�M) shunt(L, M) == append(reverse(L), M)



Structural Induction Proof (2)

l Show by induction “on L”
(�L)(�M) shunt(L, M) == append(reverse(L), M)

l Basis: Show it true for L = the empty 
list:
l TBS: (�M) shunt([ ], M) == append(reverse([ ]), M)

l From the program, shunt([ ], M) => M.

l But M == append([ ], M) == append(reverse([ ]), M). QED.

Structural Induction Proof (3)

l We are showing:
l (�L)(�M) shunt(L, M) == append(reverse(L), M)

l Induction step: Assume for an arbitrary list L:
l (�M) shunt(L, M) == append(reverse(L), M)

l Show it is true for list [A | L], i.e. show:
l (�M) shunt([A | L], M) == 

append(reverse([A | L]), M)

Structural Induction Proof (4)

l Show (�M) shunt([A | L], M) == 
append(reverse([A | L]), M).

l From the program, shunt([A | L], M) returns 
the result of shunt(L, [A | M]).

l By the inductive hypothesis, this equals 
append(reverse(L), [A | M] ), so we need to 
show 
append(reverse(L), [A | M] ) == 

append(reverse([A | L]), M).

Structural Induction Proof (5)

l To show: append(reverse(L), [A | M] ) == 
append(reverse([A | L]), M).

l append(reverse(L), [A | M]) =

l append(reverse(L), append([A], M)) =

l append(append(reverse(L), [A]), M) = 

l append(reverse([A | L]), M)

associativity of append

from definition of reverse

from definition of append



Try to Prove this by 
Structural Induction

l (�a)(�b)(�c) app(app(a, b), c) ==
app(a, app(b, c))

l Using the definition of app:

app([], b) => b;
app([x|a], b) => [x | app(a, b)];

Structural Induction

l (�a)(�b)(�c) app(app(a, b), c) ==
app(a, app(b, c))

l Induct on a:
l Basis: app(app([], b), c) ==

app([], app(b, c))
l By direct evaluation, this reduces to

app(b, c) == app(b, c), 
which reduces to true.

Structural Induction

l (�a)(�b)(�c) app(app(a, b), c) ==
app(a, app(b, c))

l Induction Hypothesis:
(�b)(�c) app(app(a, b), c) == app(a, app(b, 
c))

l Induction Conclusion:
(�b)(�c) app(app(cons(x, a), b), c)

== app(cons(x, a), app(b, c))

Structural Induction

l TBS:app(app(cons(x, a), b), c)
== app(cons(x, a), app(b, c))

l By two symbolic evaluations, based on the 
definition of app this equation reduces to:

l app(cons(x, app(a, b)), c) == cons(x, app(a, 
app(b, c)))



Structural Induction

l TBS: app(cons(x, app(a, b)), c) == 
cons(x, app(a, app(b, c)))

l By one more symbolic evaluations, this 
reduces to:
cons(x, app(app(a, b), c)) == 
cons(x, app(a, app(b, c)))

l Using the induction hypothesis, this is an 
identity.

“Mathematical Induction”
is a special case of Structural Induction

l Mathematical induction says: “To prove 
a property P for all natural numbers, it 
suffices to prove:
l P(0)

l (�n)(P(n)→ P(n+1))”

l This is structural induction where 
number n+1 is thought to be 
“constructed” from n by the +1 operator.

“Strong form of Mathematical Induction”

l To prove a property P for all natural 
numbers, it suffices to prove:
l (�n)( ((�m<n)P(m)) →  P(n) )

l The strong form allows use of a 
stronger induction hypothesis, which 
may simplify a proof.

l The strong form can be derived from the 
ordinary form.

Notes

l Those items to which we appealed as 
“definitions” on the previous slide could 
themselves be proved as lemmas using 
structural induction.

l Automated tools such as ACL2 can be 
used to do this form of proof on a 
computer.



Overview of ACL2

l ACL2 = “Applicative Common Lisp 2”
l ACL2 is an interactive theorem prover 

based on Lisp and structural induction
l History of ACL2:
l Boyer-Moore Theorem Prover

(Edinborough, PARC, UT Austin)

lNqthm (Computational Logic Incorporated)
l ACL2 (UT Austin)

Theorem Prover 
Use-Case Diagram

ACL2 includes

l Normal Lisp execution
l Symbolic execution
l Automated theorem proving
l Formalism for admitting axioms to the 

system

Sample Function Definition 
in ACL2

ACL2 !> 
(defun app (x y)

(cond ((endp x) y)
(t (cons (car x) 

(app (cdr x) y)))))

endp checks for the list being empty



Sample Evaluations
ACL2 !>(app nil '(x y z))
(X Y Z)

ACL2 !>(app '(1 2 3) '(4 5 6 7))
(1 2 3 4 5 6 7)

ACL2 !>(app '(a b c d e f g) '(x y z)) 
(A B C D E F G X Y Z)

ACL2 !>(app (app '(1 2) '(3 4)) '(5 6))
(1 2 3 4 5 6)

Sample Theorem

ACL2!>
(defthm associativity-of-app

(equal (app (app a b) c)
(app a (app b c))))

This theorem asserts that function app is associative:

This is just what we proved earlier 
by Structural Induction

l (equal (app (app a b) c)
(app a (app b c))))

l In other words, 
(�a)(�b)(�c) app(app(a, b), c) ==

app(a, app(b, c))

ACL2 Theorem Prover Output

(defthm associativity-of-app
(equal (app (app a b) c)

(app a (app b c))))

Name the formula above *1.

Perhaps we can prove *1 by induction.  Three induction schemes are
suggested by this conjecture. Subsumption reduces that number to two.
However, one of these is flawed and so we are left with one viable
candidate.  

(continued)



ACL2 Theorem Prover Output

We will induct according to a scheme suggested by (APP A B).  If we
let  (:P A B C) denote *1 above then the induction scheme we'll use
is
(AND

(IMPLIES (AND (NOT (ENDP A))
(:P (CDR A) B C))

(:P A B C))
(IMPLIES (ENDP A) (:P A B C))).

This induction is justified by the same argument used to admit APP,
namely, the measure (ACL2-COUNT A) is decreasing according to the relation
E0-ORD-< (which is known to be well-founded on the domain recognized
by E0-ORDINALP).  When applied to the goal at hand the above induction
scheme produces the following two nontautological subgoals.

Simplification of the Induction Step

Subgoal *1/2
(IMPLIES (AND (NOT (ENDP A))

(EQUAL (APP (APP (CDR A) B) C)
(APP (CDR A) (APP B C))))

(EQUAL (APP (APP A B) C)
(APP A (APP B C)))).

By the simple :definition ENDP we reduce the conjecture to

Simplification of the Induction Step

Subgoal *1/2'
(IMPLIES (AND (CONSP A)

(EQUAL (APP (APP (CDR A) B) C)
(APP (CDR A) (APP B C))))

(EQUAL (APP (APP A B) C)
(APP A (APP B C)))).

But simplification reduces this to T, using the :definition APP, the
:rewrite rules CDR-CONS and CAR-CONS and primitive type
reasoning.

Simplification of the Basis

Subgoal *1/1
(IMPLIES (ENDP A)

(EQUAL (APP (APP A B) C)
(APP A (APP B C)))).

By the simple :definition ENDP we reduce the conjecture to

Subgoal *1/1'
(IMPLIES (NOT (CONSP A))

(EQUAL (APP (APP A B) C)
(APP A (APP B C)))).

But simplification reduces this to T, using the :definition APP and
primitive type reasoning.



Proof of a Theorem

l Once the theorem is proved, it is saved 
in the system to be used as a rewrite 
rule.

l The system will henceforth rewrite
(app (app x y) z)

as 
(app x (app y z))

l This is not necessarily a good thing.

Controlling Rewrites

l The problem with universal application 
of a rewrite rule is that it can divert from 
the main problem.

l For example, resubmitting the previous 
theorem would cause an infinite loop in 
the form of repeated application of the 
rule.

l This can be avoided, as shown next.

Avoiding automatic rule application

(defthm associativity-of-app
(equal (app (app a b) c)

(app a (app b c)))

:rule-classes nil)

Example Use of the Associativity
Theorem

(defthm trivial-consequence
(equal (app (app (app (app x1 x2) (app x3 x4)) (app x5 x6)) x7)

(app x1 (app (app x2 x3) (app (app x4 x5) (app x 6 x7))))))

ACL2 Warning [Subsume] in ( DEFTHM TRIVIAL-CONSEQUENCE ...):  
The previously
added rule ASSOCIATIVITY-OF-APP subsumes the newly proposed :REWRITE
rule TRIVIAL-CONSEQUENCE, in the sense that the old rule rewrites a
more general target.  Because the new rule will be tried first, it
may nonetheless find application.



Example Use of the Associativity
Theorem

By the simple :rewrite rule ASSOCIATIVITY-OF-APP we 
reduce the conjecture to

Goal'
(EQUAL (APP X1

(APP X2
(APP X3 (APP X4 (APP X5 (APP X6 X7))))))

(APP X1
(APP X2

(APP X3 (APP X4 (APP X5 (APP X6 X7))))))).

But we reduce the conjecture to T, by primitive type 
reasoning.

Q.E.D.

ACL2 System Architecture


