
Weakest-Precondition Reasoning

l Reference: E.W. Dijkstra, A Discipline of
Programming, Prentice-Hall, 1976.

l Starting with a post-assertion, what is
the weakest pre-condition that makes
the assertion true?

l In other words, what must be true
before to make the assertion true after?

l [WP ^ [test&action]] → Assertion

What do we mean by “weakest”?

l If A => B but not (B => A), then B is
“weaker” than A, and A is “stronger”
than B.

l The weakest possible predicate is the
one that is identically

true

since A => true no matter what A is.
Similarly, the strongest possible
predicate is

false

WP for an Assignment Statement

l Consider the assignment statement
x = F(ξ);

where ξ denotes the “state vector”
(vector of all program variables).

l This statement is “all action”; the test is
vacuously true.

l If we want P(x) to be true after, what
must be true before?

WP for an Assignment Statement

l The answer is wp(x = F(ξ);, P) = P(F(ξ))
l The general rule is:
l {P(F(ξ))} x = F(ξ); {P(x)}

l Examples, where we show the
assertions within braces, and the wp to
be found as ??:
l {??} x = 5; {y > x}

WP for an Assignment Statement

l The general rule is:
l {P(F(ξ))} x = F(ξ); {P(x)}

l Example:
l {y > 5} x = 5; {y > x}
l i.e. if we want y > x to be true after the

assignment x = 5; then we need, at a
minimum, y > 5 before the assignment.

l Identify P(x) as y > x, and F (ξ) as 5, in the
rule to get WP: y > 5

WP for an Assignment Statement

l Examples:
l {??} x = x+y; {y > x}

l {??} y = 2*y; {y < 5}

l {??} y = 2*y; {even(y)}

WP for an Assignment Statement

l Examples:
l {y > x+y} x = x+y; {y > x}

i.e. w p(x = x+y;, y > x) = y > x+y

l {2*y < 5} y = 2*y; {y < 5}
i.e. w p(y = 2*y;, y < 5) = 2*y < 5

l {even(2*y)} y = 2*y; {even(y)}
i.e. w p(y = 2*y;, even(y)) = even(2*y)

WP Convention

l It is common to include logic simplification in
the WP expression.

l Example: If working in the domain of integers,
then

even(2*y)
would simplify to

true
while

i +1 < n
would simplify to

i < n

Predicate Transformers

l A program statement can thus be
viewed as a “predicate transformer”,
transforming a post-condition into a
weakest pre-condition.

Predicates and State Sets

l A program statement can thus be
viewed as a “predicate transformer”,
transforming a post-condition into a
weakest pre-condition.

l But a predicate is just a set of states,
so that WP transforms the set of states
after a statement to a set before.

WP Composition Rule

l Suppose we have two statements in a
sequence:

S; T
l The wp for composite obeys the

following equation:
wp(S; T, P) = wp(S; wp(T, P))

l In other words, predicate transformers
compose in a manner similar to
functions.

Composition Rule Example

l Consider
{??} x = z+1; y = x+y; {y > 5}

l wp(y = x+y;, y > 5) = x+y > 5
l wp(x = z+1;, x+y > 5) = z+1+y > 5
l So ?? is

z+1+y > 5

Composition Rule Example
l Consider the sequence and post-condition

{??}
s1 = s1 + s2;
s2 = s2 + s3;
s3 = s3 + 6;
i = i+1;
{s1=i3 ÿ s2=(i+1)3-i3 ÿ s3 = 6*(i+1)}

l Working backward
w p(i=i+1; …) =
{s1=(i+1) 3 ÿ s2=(i+2) 3-(i+1) 3 ÿ s3 = 6*(i+2)}

Composition Rule Example (2)

Working backword from
{s1=(i+1) 3 ÿ s2=(i+2) 3-(i+1) 3 ÿ s3 = 6*(i+2)}

l w p(s3 = s3 + 6; …) =
{s1=(i+1) 3 ÿ s2=(i+2) 3-(i+1) 3 ÿ (s3+6) = 6*(i+2)}

l w p(s2 = s2 + s3; …) =
{s1=(i+1) 3ÿ(s2+s3)=(i+2) 3-(i+1) 3ÿ (s3+6) =6*(i+2)}

l w p(s1 = s1+s2; …) =
{(s1+s2)=(i+1) 3ÿ(s2+s3)=(i+2) 3-(i+1) 3ÿ (s3+6) =6*(i+2)}

Using the Composition Rule to Prove
a Loop Invariant

l An assertion P is a loop invariant provided
that:
l P is true at the start of the loop
l P => wp(loop-body, P)

l The second condition above is the same as
the verification condition for the loop body.

Example: Using the Composition
Rule to Prove a Loop Invariant

l We claim that
{(s1+s2)=(i+1) 3ÿ(s2+s3)=(i+2) 3-(i+1) 3ÿ (s3+6) =6*(i+2)}

l is implied by the original post-condition of the
body:
{s1=i3 ÿ s2=(i+1) 3-i3 ÿ s3 = 6*(i+1)}

l Assume the latter post-condition. Then
l s1+s2 = i3+(i+1) 3-i3

= (i+1) 3

l s2+s3 = (i+1) 3-i3 + 6*(i+1)
= (i+2) 3-(i+1) 3

l s3+6 = 6*(i+1)+6
= 6*(i+2)

This equality is not so obvious.

Showing the Non-Obvious Equality

l Show (i+1)3-i3 + 6*(i+1)= (i+2)3-(i+1)3

l LHS= (i3 + 3i2 + 3i + 1)-i3 + 6i + 6

= 3i2 + 9i + 7

l RHS= (i3 + 6i2 + 12i+ 8)-(i3 + 3i2 + 3i + 1)

= 3i2 + 9i + 7

WP for a Test

l {??} if(Q(ξ)) S else T {P(ξ)}

l wp(if(Q(ξ)) S else T, P)(ξ) =

Q(ξ) → wp(S, P)(ξ) ̂
¬Q(ξ) → wp(T, P)(ξ)

WP for a Test - Example

l {??}
if(x > y) x = x-y; else y = y-x;
{gcd(x, y) = z}

l wp is

(x > y) → gcd(x-y, y) = z ÿ
¬(x > y) → gcd(x, y-x) = z

wp’s of the assignment statements

WP for a Test - Example (2)

l {??}
if(x > y) z = x; else z = y;
{z = max(x, y)}

l wp is

(x > y) → max(x, y) = x ÿ
¬(x > y) → max(x, y) = y
which simplifies to true.

wp’s of the assignment statements

When the else part is missing

l If the else part is missing, then T is
effectively a “no-op” or “skip”:
ξ = ξ;

l The wp is then
¬Q(ξ) → P(ξ)
^ Q(ξ) → wp(S, P)(ξ)

l since wp(ξ = ξ; P) = P

WP for a Test without else

l {??}
if(x > y) y = x;
{y = max(x, y)}

l wp is

¬(x > y) → y = max(x, y)
ÿ (x > y) → x = max(x, x)
which simplifies to true.

wp’s of the assignment statements

Alternate WP for a Test

l wp(if(Q(ξ)) S else T, P)(ξ) =

(Q(ξ) ^ wp(S, P)(ξ)) ∨
(¬Q(ξ) ̂wp(T, P)(ξ))

l To see that this is equivalent to the
previous version, let wp(S, P) be A and
wp(T, P) be B. Then we are asking
whether (Q ^ A) ∨ (¬Q ^ B) is equivalent
to (Q → A) ^ (¬Q → B)

Alternate WP for a Test

l (Q ^ A) ∨ (¬Q ^ B) =? (Q → A) ^ (¬Q → B)
l For Q = true, this becomes A =? A.
l For Q = false, this becomes B =? B

l Therefore the two forms are equivalent.

WP for a Loop

l {??} while(Q) S {P}
l Consider this to be unrolled to a cascade

of if’s (without else’s)
l if(Q) {S; if(Q) {S; if(Q) {S; … }}}
l So WP is

¬Q(ξ) → P(ξ) ^
Q(ξ) → (w p(S, ¬Q(ξ) → P(ξ) ^

Q(ξ) → (w p(S, …))))

l but this may be difficult to capture in
closed form.

Example: WP for a Loop

l {??} while(x > 0) x = x-1; {x == 0}
l WP is

¬(x > 0) → x == 0 ^
(x > 0) → [¬(x-1 > 0) → x-1 == 0 ^

(x-1 > 0) → [¬(x-2 > 0) → x-2 == 0 ^
(x-2 > 0) → […]]]

which simplifies to

l {??} while(x > 0) x = x-1; {x == 0}
l WP is

x ≤ 0 → x == 0 ^
(x > 0) ^ x ≤ 1 → x == 1 ^
(x > 1) ^ x ≤ 2 → x == 2 ^
(x > 2) ^ x ≤ 3 → x == 3 ^
...

which further simplifies to

l {??} while(x > 0) x = x-1; {x == 0}
l WP is

x > 0
l In other words, the loop will terminate with

x == 0 provided that x > 0 initially.

Recurrence for Loop WP

l {??} while(Q) S; {P}
can be expressed as the predicate H(P)
= H0(P) ^ H1(P) ^ H2(P) ^ H3(P) ^ …

l where
lH0(P) = ¬ Q → P

lHk+1(P) = Q → w p(S, Hk(P))

Recurrence for Loop WP

l {??} while(Q) S; {P}

l In particular, the WP H is the weakest
predicate satisfying the recurrence:
lH → (¬ Q → P)

lH → (Q → w p(S, H))

l In this sense, H is like a loop invariant,
but derived from post-conditions.

Example: Recurrence for Loop WP

l {??} while(x > 0) x = x-1; {x==0}
can be expressed as the predicate H(P)
= H0(x==0) ÿ H1(x==0) ÿ H2(x==0) ÿ …

l where
lH0(x==0) = ¬ x > 0 → x==0

lHk+1(x==0) = x > 0 → w p(x=x-1;, Hk(x==0))

Example: Recurrence for Loop WP

l {??} while(x > 0) x = x-1; {x==0}
l Check that H = x > 0 satisfies the

recurrence:
l x > 0 → (¬ x > 0 → x==0)

which is valid, and
l x > 0 → (x > 0 → w p(x=x-1;, x > 0))

l But wp(x=x-1;, x > 0) is x > 1, so we
check
l x > 0 → (x > 0 → x>1), which is true (for integers)

Another way to approach WP for a loop

l wp(while(B) S, Q)
l (∃k > 0) Hk(Q)
l where
lH0(Q) = ¬ B ÿ Q
lHk+1(Q) = (B ÿ w p(S, Hk(Q))) ∨ (¬B ÿ Q)

Example: Alternate way to approach WP
for a loop

l {??} while(x > 0) x = x-1; {x==0}
can be expressed as the predicate H(P)
= H0(x==0) ∨ H1(x==0) ∨ H2(x==0) ∨ …

l where
lH0(x==0) = ¬ x > 0 ÿ x==0

lHk+1(x==0) = (x > 0 ÿ w p(x=x-1;, Hk(x==0)))
∨ (¬ x > 0 ÿ x==0)

l x == 0 ∨ x==1 ∨ x==2 ∨ ...

More on WP for a Loops

l Note that WP for a loop captures total
correctness.

l Since it is generally difficult to derive
WP in a closed form, we may be
content with finding a pre-condition that
satisfies the recurrence but is not the
weakest.

l Such a condition implies the weakest.

Practical Example of a Loop WP

l Consider the java code:
for(j = 0; j < a.length; j++)

{
if(a[j] == v)

{
break;
}

}
assert: a[j] == v

l What is the weakest pre-condition?

Practical Example of a Loop WP

l The weakest pre-condition is:

((∃j) (0 < j < a.length) ÿ a[j] == v)

Further Standard Properties of
wp

l wp(S, false) = false
l wp(S, true) = condition under which S terminates

l wp(skip, Q) = Q
l wp(abort, Q) = false
l If Q → R then wp(S, Q) → wp(S, R)
l wp(S, Q ÿ R) = wp(S, Q) ÿ wp(S, R)
l wp(S, Q) ∨ wp(S, R) → wp(S, Q ∨ R)

(equality holds for deterministic S)

Structural Induction
l The Structural Induction Principle can also be

used for proving correctness.

l It generalizes conventional mathematical induction, in
that it is on the formation of information structures,
such as lists (of which numbers are a special case).

l It has the advantage of proving total correctness in
one single technique.

l It is useful for functional and logic programs in
particular.

l It can also be used for proving properties of
information structures themselves.

Structural Induction Proof (1)

l Consider the following rex program:
l shunt([], M) => M;
l shunt([A | L], M) => shunt(L, [A | M]);

l We want to show:
l (�L)(�M) shunt(L, M) returns the M appended to

the reverse of L, i.e.

l (�L)(�M) shunt(L, M) == append(reverse(L), M)

Structural Induction Proof (2)

l Show by induction “on L”
(�L)(�M) shunt(L, M) == append(reverse(L), M)

l Basis: Show it true for L = the empty
list:
l TBS: (�M) shunt([], M) == append(reverse([]), M)

l From the program, shunt([], M) => M.

l But M == append([], M) == append(reverse([]), M). QED.

Structural Induction Proof (3)

l We are showing:
l (�L)(�M) shunt(L, M) == append(reverse(L), M)

l Induction step: Assume for an arbitrary list L:
l (�M) shunt(L, M) == append(reverse(L), M)

l Show it is true for list [A | L], i.e. show:
l (�M) shunt([A | L], M) ==

append(reverse([A | L]), M)

Structural Induction Proof (4)

l Show (�M) shunt([A | L], M) ==
append(reverse([A | L]), M).

l From the program, shunt([A | L], M) returns
the result of shunt(L, [A | M]).

l By the inductive hypothesis, this equals
append(reverse(L), [A | M]), so we need to
show
append(reverse(L), [A | M]) ==

append(reverse([A | L]), M).

Structural Induction Proof (5)

l To show: append(reverse(L), [A | M]) ==
append(reverse([A | L]), M).

l append(reverse(L), [A | M]) =

l append(reverse(L), append([A], M)) =

l append(append(reverse(L), [A]), M) =

l append(reverse([A | L]), M)

associativity of append

from definition of reverse

from definition of append

Try to Prove this by
Structural Induction

l (�a)(�b)(�c) app(app(a, b), c) ==
app(a, app(b, c))

l Using the definition of app:

app([], b) => b;
app([x|a], b) => [x | app(a, b)];

Structural Induction

l (�a)(�b)(�c) app(app(a, b), c) ==
app(a, app(b, c))

l Induct on a:
l Basis: app(app([], b), c) ==

app([], app(b, c))
l By direct evaluation, this reduces to

app(b, c) == app(b, c),
which reduces to true.

Structural Induction

l (�a)(�b)(�c) app(app(a, b), c) ==
app(a, app(b, c))

l Induction Hypothesis:
(�b)(�c) app(app(a, b), c) == app(a, app(b,
c))

l Induction Conclusion:
(�b)(�c) app(app(cons(x, a), b), c)

== app(cons(x, a), app(b, c))

Structural Induction

l TBS:app(app(cons(x, a), b), c)
== app(cons(x, a), app(b, c))

l By two symbolic evaluations, based on the
definition of app this equation reduces to:

l app(cons(x, app(a, b)), c) == cons(x, app(a,
app(b, c)))

Structural Induction

l TBS: app(cons(x, app(a, b)), c) ==
cons(x, app(a, app(b, c)))

l By one more symbolic evaluations, this
reduces to:
cons(x, app(app(a, b), c)) ==
cons(x, app(a, app(b, c)))

l Using the induction hypothesis, this is an
identity.

“Mathematical Induction”
is a special case of Structural Induction

l Mathematical induction says: “To prove
a property P for all natural numbers, it
suffices to prove:
l P(0)

l (�n)(P(n)→ P(n+1))”

l This is structural induction where
number n+1 is thought to be
“constructed” from n by the +1 operator.

“Strong form of Mathematical Induction”

l To prove a property P for all natural
numbers, it suffices to prove:
l (�n)(((�m<n)P(m)) → P(n))

l The strong form allows use of a
stronger induction hypothesis, which
may simplify a proof.

l The strong form can be derived from the
ordinary form.

Notes

l Those items to which we appealed as
“definitions” on the previous slide could
themselves be proved as lemmas using
structural induction.

l Automated tools such as ACL2 can be
used to do this form of proof on a
computer.

Overview of ACL2

l ACL2 = “Applicative Common Lisp 2”
l ACL2 is an interactive theorem prover

based on Lisp and structural induction
l History of ACL2:
l Boyer-Moore Theorem Prover

(Edinborough, PARC, UT Austin)

lNqthm (Computational Logic Incorporated)
l ACL2 (UT Austin)

Theorem Prover
Use-Case Diagram

ACL2 includes

l Normal Lisp execution
l Symbolic execution
l Automated theorem proving
l Formalism for admitting axioms to the

system

Sample Function Definition
in ACL2

ACL2 !>
(defun app (x y)

(cond ((endp x) y)
(t (cons (car x)

(app (cdr x) y)))))

endp checks for the list being empty

Sample Evaluations
ACL2 !>(app nil '(x y z))
(X Y Z)

ACL2 !>(app '(1 2 3) '(4 5 6 7))
(1 2 3 4 5 6 7)

ACL2 !>(app '(a b c d e f g) '(x y z))
(A B C D E F G X Y Z)

ACL2 !>(app (app '(1 2) '(3 4)) '(5 6))
(1 2 3 4 5 6)

Sample Theorem

ACL2!>
(defthm associativity-of-app

(equal (app (app a b) c)
(app a (app b c))))

This theorem asserts that function app is associative:

This is just what we proved earlier
by Structural Induction

l (equal (app (app a b) c)
(app a (app b c))))

l In other words,
(�a)(�b)(�c) app(app(a, b), c) ==

app(a, app(b, c))

ACL2 Theorem Prover Output

(defthm associativity-of-app
(equal (app (app a b) c)

(app a (app b c))))

Name the formula above *1.

Perhaps we can prove *1 by induction. Three induction schemes are
suggested by this conjecture. Subsumption reduces that number to two.
However, one of these is flawed and so we are left with one viable
candidate.

(continued)

ACL2 Theorem Prover Output

We will induct according to a scheme suggested by (APP A B). If we
let (:P A B C) denote *1 above then the induction scheme we'll use
is
(AND

(IMPLIES (AND (NOT (ENDP A))
(:P (CDR A) B C))

(:P A B C))
(IMPLIES (ENDP A) (:P A B C))).

This induction is justified by the same argument used to admit APP,
namely, the measure (ACL2-COUNT A) is decreasing according to the relation
E0-ORD-< (which is known to be well-founded on the domain recognized
by E0-ORDINALP). When applied to the goal at hand the above induction
scheme produces the following two nontautological subgoals.

Simplification of the Induction Step

Subgoal *1/2
(IMPLIES (AND (NOT (ENDP A))

(EQUAL (APP (APP (CDR A) B) C)
(APP (CDR A) (APP B C))))

(EQUAL (APP (APP A B) C)
(APP A (APP B C)))).

By the simple :definition ENDP we reduce the conjecture to

Simplification of the Induction Step

Subgoal *1/2'
(IMPLIES (AND (CONSP A)

(EQUAL (APP (APP (CDR A) B) C)
(APP (CDR A) (APP B C))))

(EQUAL (APP (APP A B) C)
(APP A (APP B C)))).

But simplification reduces this to T, using the :definition APP, the
:rewrite rules CDR-CONS and CAR-CONS and primitive type
reasoning.

Simplification of the Basis

Subgoal *1/1
(IMPLIES (ENDP A)

(EQUAL (APP (APP A B) C)
(APP A (APP B C)))).

By the simple :definition ENDP we reduce the conjecture to

Subgoal *1/1'
(IMPLIES (NOT (CONSP A))

(EQUAL (APP (APP A B) C)
(APP A (APP B C)))).

But simplification reduces this to T, using the :definition APP and
primitive type reasoning.

Proof of a Theorem

l Once the theorem is proved, it is saved
in the system to be used as a rewrite
rule.

l The system will henceforth rewrite
(app (app x y) z)

as
(app x (app y z))

l This is not necessarily a good thing.

Controlling Rewrites

l The problem with universal application
of a rewrite rule is that it can divert from
the main problem.

l For example, resubmitting the previous
theorem would cause an infinite loop in
the form of repeated application of the
rule.

l This can be avoided, as shown next.

Avoiding automatic rule application

(defthm associativity-of-app
(equal (app (app a b) c)

(app a (app b c)))

:rule-classes nil)

Example Use of the Associativity
Theorem

(defthm trivial-consequence
(equal (app (app (app (app x1 x2) (app x3 x4)) (app x5 x6)) x7)

(app x1 (app (app x2 x3) (app (app x4 x5) (app x 6 x7))))))

ACL2 Warning [Subsume] in (DEFTHM TRIVIAL-CONSEQUENCE ...):
The previously
added rule ASSOCIATIVITY-OF-APP subsumes the newly proposed :REWRITE
rule TRIVIAL-CONSEQUENCE, in the sense that the old rule rewrites a
more general target. Because the new rule will be tried first, it
may nonetheless find application.

Example Use of the Associativity
Theorem

By the simple :rewrite rule ASSOCIATIVITY-OF-APP we
reduce the conjecture to

Goal'
(EQUAL (APP X1

(APP X2
(APP X3 (APP X4 (APP X5 (APP X6 X7))))))

(APP X1
(APP X2

(APP X3 (APP X4 (APP X5 (APP X6 X7))))))).

But we reduce the conjecture to T, by primitive type
reasoning.

Q.E.D.

ACL2 System Architecture

