
148

REFERENCES

[Abram90] Gregory D. Abram and Turner Whitted, “Building Block Shaders”, Proceed-
ings of SIGGRAPH 90 (Dallas, Texas, August 6–10, 1990). In Computer Graphics,
v24n4. ACM SIGGRAPH, August 1990, pp. 283–288.

They present an implementation of Cook’s shade trees [Cook84]. Instead of con-
structing parse trees using an expression parser, the trees are directly constructed by
linking building-block modules together in a graphical user interface.

[Akeley93] Kurt Akeley, “RealityEngine Graphics”, Proceedings of SIGGRAPH 93 (Las
Vegas, Nevada, August 1–6, 1992). In Computer Graphics Proceedings, Annual
Conference Series, ACM SIGGRAPH, August 1993, pp. 109–116.

This paper describes the implementation of the Silicon Graphics RealityEngine.

[Amburn86] Phil Amburn, Eric Grant and Turner Whitted, “Managing Geometric Com-
plexity with Enhanced Procedural Models”, Proceedings of SIGGRAPH 86 (Dallas,
Texas, August 18–22, 1986). In Computer Graphics, v20n4. ACM SIGGRAPH,
August 1986, pp. 189–195.

They describe two ideas for procedural modeling. First is generalized subdivision,
where a representation is subdivided until a transition test triggers a change of repre-
sentation. The new representation may undergo further subdivision or be rendered as a
primitive. Second is communication between models. Two interacting models send
messages to adjust to each other.

[Bajura92] Michael Bajura, Henry Fuchs and Ryutarou Ohbuchi, “Merging Virtual Ob-
jects with the Real World: Seeing Ultrasound Imagery Within the Patient”, Proceed-
ings of SIGGRAPH 92 (Chicago, Illinois, July 26–31, 1992). In Computer Graphics,
v26n2, ACM SIGGRAPH, July 1992.

This paper describes an augmented reality system combining a head-mounted display
and an ultrasound machine. The system gives a physician “x-ray” vision for seeing a
fetus inside the mother. The ultrasound data was rendered using a special-purpose flat
disk primitive on Pixel-Planes 5.

149

[Banks92] David Banks, “Interactive Manipulation and Display of Two-dimensional Sur-
faces in Four-dimensional Space”, Proceedings of the 1992 Symposium on Interactive
3D Graphics (Cambridge, Massachusetts, March 29–April 1, 1992). In Computer
Graphics special issue. ACM SIGGRAPH, March 1992, pp. 197–207.

To help in understanding surfaces in 4D, Banks uses a custom primitive on Pixel-
Planes 5 to display intersection and silhouette curves. He also uses some interesting
shading techniques to light these surfaces.

[Banks93] David Banks, Interacting with Surfaces in Four-dimensional Space Using
Computer Graphics, PhD Dissertation, Department of Computer Science, University
of North Carolina at Chapel Hill, 1993.

This dissertation includes and expands on [Banks92].

[Barr84] Alan H. Barr, “Global and Local Deformations of Solid Primitives”, Proceedings
of SIGGRAPH 84 (Minneapolis, Minnesota, July 23–27, 1984). In Computer Graph-
ics, v18n3. ACM SIGGRAPH, July 1984, pp. 21–30.

Barr introduces deformations like twist, taper, bend, etc. These deformations are stan-
dard transformations parameterized by position.

[Bentley88] Jon Bentley, “Little Languages”, More Programming Pearls. Addison-
Wesley, 1988, pp. 83–100.

This book reprints a number of articles from Jon Bentley’s Programming Pearls col-
umn in the Communications of the ACM. This article includes a definition of little
languages and an argument in favor of their use. Shading languages are a prime exam-
ple of the use of a little language

[Bishop94] Gary Bishop, Henry Fuchs, Leonard McMillan and Ellen J. Scher Zagier,
“Frameless Rendering: Double Buffering Considered Harmful”, Proceedings of
SIGGRAPH 94 (Orlando, Florida, July 24–29, 1994). In Computer Graphics Pro-
ceedings, Annual Conference Series. ACM SIGGRAPH, July 1994, pp. 175–176.

This paper introduces frameless rendering. The frameless rendering technique update
pixels randomly to allow display updates during pixel computation.

[Blinn78] James F. Blinn, Computer Display of Curved Surfaces, PhD Dissertation, De-
partment of Computer Science, University of Utah, 1978.

Blinn introduces an incremental scan-line algorithm for rendering spline curves and
surfaces (also published in [Lane80]). The algorithm uses the points of intersection
between the curve and scan-line as a starting point for a Newton’s iteration to find the
intersection between the curve and the next scan line.

Blinn also (in a seemingly unrelated major contribution) introduces bump-mapping,
where the gradient of a gray-scale texture map is used to perturb the surface normal.

150

For small-scale changes, this gives the appearance that the shaded surface is much
more complicated than the original geometry.

[Blinn82] James F. Blinn, “A Generalization of Algebraic Surface Drawing”, ACM Trans-
actions on Graphics, v1n3. ACM SIGGRAPH, July 1982, pp. 235–256.

This paper presents an algorithm for ray tracing blobby models. Blobs are implicit
functions based on a mixture of Gaussian density function. Uses bounding spheres to
limit the number of active blobs and solves for intersection using a hybrid New-
ton/regula falsi method.

[Blinn85] James F. Blinn, “The Ancient Chinese Art of Chi-Ting”, Proceedings of
SIGGRAPH 85 (San Francisco, California, July 22–26, 1985). Image Rendering
Tricks seminar notes, ACM SIGGRAPH, July 1985.

Blinn presents a collection of rendering tricks from JPL space movies and the Me-
chanical Universe. The first section has text, the rest is in outline form. He has a sec-
tion on specialized primitives that describes his 2 polygon cylinders (also published in
[Blinn89])

[Blinn89] James F. Blinn, “Jim Blinn’s Corner: Optimal tubes”, IEEE Computer Graphics
and Applications, v9n5. ACM SIGGRAPH, September 1989, pp. 8–13.

This paper derives two or three polygon cylinders used in JPL space movies and the
Mechanical Universe. This also appeared in the harder-to-find [Blinn85].

[Briggs92] Preston Briggs, Register Allocation via Graph Coloring, PhD Dissertation,
Department of Computer Science, Rice University, Houston, Texas, 1992.

This dissertation is a thorough work on register allocation and SSA (single static as-
signment) analysis.

[Cabral93] Brian Cabral and Leith (Casey) Leedom, “Imaging Vector Fields Using Line
Integral Convolution”, Proceedings of SIGGRAPH 93 (Anaheim, California, August
1–6, 1993). In Computer Graphics, Annual Conference Series. ACM SIGGRAPH,
August, 1993, pp. 263–272.

This paper introduces line integral convolution as a method for understanding 2D
vector fields. Line integral convolution uses a local directional blurring of an underly-
ing texture. The blur direction lies either along or across the flow direction.

[Cook84] Robert L. Cook, “Shade trees”, Proceedings of SIGGRAPH 84 (Minneapolis,
Minnesota, July 23–27, 1984). In Computer Graphics, v18n3. ACM SIGGRAPH, July
1984, pp. 223–231.

Cook parses arbitrary simple expressions into a parse tree form that is interpreted for
shading. Reasonable speed is obtained though a powerful set of precompiled library
functions.

151

[Cook87] Robert L. Cook, “The Reyes Image Rendering Architecture”, Proceedings of
SIGGRAPH 87 (Anaheim, California, July 27–31, 1987). In Computer Graphics,
v21n4. ACM SIGGRAPH, July 1987, pp. 95–102.

This paper presents the Reyes (Renders Everything You Ever Saw) rendering algo-
rithm. The algorithm works by recursively splitting all objects into sub-pixel micro-
polygons.

[Coquillart90] Sabine Coquillart, “Extended Free-Form Deformation: A Sculpturing Tool
for 3D Geometric Modeling”, Proceedings of SIGGRAPH 90 (Dallas, Texas, August
6–10, 1990). In Computer Graphics, v24n4. ACM SIGGRAPH, August 1990, pp.
187–196.

This paper extends free-form deformations [Sederberg86] by using non-rectangular
lattices.

[Coquillart91] Sabine Coquillart and Pierre Jancène, “Animated free-form deformation:
An interactive animation technique”, Proceedings of SIGGRAPH 91 (Las Vegas, Ne-
vada, July 28–August 2, 1991). In Computer Graphics, v25n4. ACM SIGGRAPH,
July 1991, pp. 23–26.

They animate objects either by animating an EFFD (extended free-form deformation)
containing the object or by moving the object through the space of an existing EFFD.

[Crow82] F. C. Crow, “A More Flexible Image Generation Environment”, Proceedings of
SIGGRAPH 82 (Boston, Massachusetts, July 26–30, 1982). In Computer Graphics,
v16n3, ACM SIGGRAPH, July 1982, pp. 9–18.

Crow presents a testbed renderer, in which a control process does some sorting and
forks off separate processes for each primitive. The image results from each primitive
are later composited together.

[Deering88] Michael Deering, Stephanie Winner, Bic Schediwy, Chris Duffy and Neil
Hunt, “The Triangle Processor and Normal Vector Shader: A VLSI System for High
Performance Graphics”, Proceedings of SIGGRAPH 88 (Atlanta, Georgia, August 1–
5, 1988). In Computer Graphics, v22n4, ACM SIGGRAPH, August 1988, pp. 21–30.

This is the first hardware system I know of that uses deferred shading.

[Dietz92] Henry G. Dietz, “Common Subexpression Induction”, Proceedings of the 1992
International Conference on Parallel Processing (Saint Charles, Illinois, August 1992).
pp. 174–182.

Presents common subexpression induction (CSI), a technique for SIMD compilers
similar to common subexpression elimination, used in traditional compilers. Instead of
combining subexpressions that compute the same value, CSI combines equivalent sec-
tions of code that execute on different processors of the SIMD array. For example,

152

code in the two branches of an if are normally executed sequentially on a SIMD ar-
ray, but with CSI, portions of the two branches can be combined.

[Dunlavey79] M. R. Dunlavey, “The Procedural Approach to Interactive Design Graph-
ics”, Computer Graphics, v13n2. ACM SIGGRAPH, March 1979, pp. 110–147.

This presents a language based CAD system. The user communicates using DL, a sim-
ple stack based language with registers. Objects are created by controlling a turtle with
a milling tool attached.

[Ebert94] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin and Steven
Worley, Texturing and Modeling: A Procedural Approach, Academic Press, Boston,
1994.

This is the book version of their long-running SIGGRAPH course. It includes a great
deal of practical information about creating procedural shaders and some information
on procedural models. The forms of procedural modeling that are covered include hy-
pertexture, volume-based smoke, and fractals (primarily mountains).

[Ellsworth91] David Ellsworth, “Parallel Architectures and Algorithms for Real-time
Synthesis of High-quality Images using Deferred Shading”. Workshop on Algorithms
and Parallel VLSI Architectures (Pont-á-Mousson, France, June 12, 1990).

Ellsworth describes the deferred shading technique, where the surface visible at each
pixel is determined before any shading. This avoids spending time to shade pixels that
will never show up in the final image.

[Eyles97] John Eyles, Steven Molnar, John Poulton, Trey Greer, Anselmo Lastra, Nick
England and Lee Westover, “PixelFlow: The Realization”, Proceedings of the 1997
SIGGRAPH/Eurographics Workshop on Graphics Hardware (Los Angeles, California,
August 3–4, 1992). ACM SIGGRAPH, August 1997, pp. 57–68.

This is a description of the PixelFlow hardware, as it was finally built. It includes a lit-
tle on the PixelFlow software, but mostly covers the hardware architecture.

[Fleischer87] Kurt Fleischer, “Implementation of a modeling testbed”, Proceedings of
SIGGRAPH 87 (Anaheim, California, July 27–31, 1986). Object-Oriented Geometric
Modeling and Rendering seminar notes. ACM SIGGRAPH, July 1987.

This paper has much of the text of [Fleischer88] with a little more detail

[Fleischer88] K. Fleischer and A. Witkin, “A modeling testbed”, Proceedings of Graphics
Interface ’88 (Edmonton, Alberta, June 6–10, 1988). Canadian Inf. Process. Society,
1988, pp. 137–137.

They present a LISP based testbed rendering system. Transformations are generalized
to functions for position, normal, and an inverse position transform. Objects are gener-
alized to parametric functions for surface position and normal and implicit functions

153

for surface position. Shaders use a function of position, normal, and parametric posi-
tion to get the appearance parameters for a reasonably standard shader definition. Also
uses a graphical interface similar to building block shaders for connecting the objects,
transformations, and shaders together.

[Foley90] James Foley, Andries van Dam, Steven Feiner, John Hughes, Computer
Graphics: Principles and Practice, Second Edition, Addison-Wesley, 1990.

This is the de-facto default reference for graphics. It is hard to imagine that a single
book can have both this scope and detail.

[Fuchs82] Henry Fuchs, John Poulton, “Pixel-Planes: A VLSI-Oriented Design for a
Raster Graphics Engine,” VLSI Design, 2(3), 1982, pp. 20-28.

This is an early paper on the Pixel-Planes style of graphics hardware, with hardware
support for evaluating a linear function at every pixel.

[Fuchs85] Henry Fuchs, Jack Goldfeather, Jeff P. Hultquist, Susan Spach, John D. Austin,
Frederick P. Brooks, Jr., John G. Eyles and John Poulton, “Fast Spheres, Shadows,
Textures, Transparencies, and Image Enhancements in Pixel-Planes”, Proceedings of
SIGGRAPH 85 (San Francisco, California, July 22–26, 1985). In Computer Graphics,
v19n3, ACM SIGGRAPH, July 1985, pp. 111–120.

This paper presents the Pixel-Planes 4 architecture. Pixel-Planes 4 was the machine
two generations before PixelFlow, and the first UNC graphics engine to receive day-
to-day use by other projects in the Computer Science Department.

[Fuchs89] Henry Fuchs, John Poulton, John Eyles, Trey Greer, Jack Goldfeather, David
Ellsworth, Steve Molnar, Greg Turk, Brice Tebbs and Laura Israel, “Pixel-Planes 5: A
Heterogeneous Multiprocessor Graphics System Using Processor-Enhanced Memo-
ries”, Proceedings of SIGGRAPH 89 (Boston, Massachusetts, July 31–August 4,
1989). In Computer Graphics, v23n3. ACM SIGGRAPH, July 1989, pp. 79–88.

This paper outlines Pixel-Planes 5 hardware and software.

[Glassner91] Andrew S. Glassner, “Spectrum: A Proposed Image Synthesis Architecture”,
Proceedings of SIGGRAPH 91 (Las Vegas, Nevada, July 28–August 2, 1991). Devel-
oping Large-scale Graphics Software Toolkits seminar notes. ACM SIGGRAPH, July
1991.

This is an initial proposal for the spectrum system described more completely in
[Glassner93]. It includes code from an initial implementation, written in the MESA
language.

154

[Glassner93] Andrew S. Glassner, “Spectrum: An Architecture for Image Synthesis Re-
search, Education, and Practice”, Proceedings of SIGGRAPH 93 (Anaheim, Califor-
nia, August 1–6, 1993). Developing Large-scale Graphics Software Toolkits seminar
notes, ACM SIGGRAPH, August 1993.

Glassner defines a generic architecture for the ultimate testbed rendering system. It is
being implemented in C++ to be freely distributed. Spectrum is designed for radiosity
and ray tracing, but the modules scheduling is also programmable so it could probably
wash your shirts for you. Normal module types are cameras, samplers, reconstructors,
seeders, shaders, shapes.

[Glassner95] Andrew S. Glassner, Principles of Digital Image Synthesis, Morgan Kauf-
man, 1995.

This two volume set contains a wealth of knowledge about graphics. It assumes a
fairly sophisticated reader, but is perfect you want to understand graphics from a
mathematical point of view.

[Grant86] Eric Grant, Phil Amburn and Turner Whitted, “Exploiting classes in modeling
and display software”, IEEE Computer Graphics and Applications, v6n11. IEEE,
November 1986, pp. 13–20.

They discusses class hierarchy for their C++ system. Not directly useful to this work,
but it is the basis for [Grant87].

[Grant87] Eric Grant, “Class Design for a Modeling Testbed”, Proceedings of
SIGGRAPH 87 (Anaheim, California, July 27–31, 1987). Object-Oriented Geometric
Modeling and Rendering seminar notes. ACM SIGGRAPH, July 1987.

This is a discussion of object-oriented testbed approach in [Grant86]. Display classes
divisions exist for Z-buffer, A-buffer, etc. It appears that primitives must either reduce
to polygons or use custom code for each.

[Green88] Mark Green and Hanqiu Sun, “MML: A language and system for procedural
modeling and motion”, Proceedings of Graphics Interface ’88 (Edmonton, Alberta,
June 6–10, 1988). Canadian Inf. Process. Society, June 1988, pp. 16–25.

Based on C, MML is just a preprocessor. It can generate rule or grammar based mod-
els (particle systems, L-systems, graftals, fractals). Objects have state, code for proce-
dural generation, code for motion verbs, and code for rendering. Their examples
eventually render using a existing low-level primitives.

[Gritz96] Larry Gritz and James K. Hahn, “BMRT: A Global Illumination Implementation
of the RenderMan Standard”, Journal of Graphics Tools, v1n3, 1996, pp. 29–47.

They describe BMRT (Blue Moon Rendering Toolkit), a ray tracer implementing the
RenderMan standard [Upstill90]. BMRT implements both the RenderMan API and
shading language.

155

[Guenter95] Brian Guenter, Todd B. Knoblock and Erik Ruf, “Specializing Shaders”,
Proceedings of SIGGRAPH 95 (Los Angeles, California, August 6–11, 1995). In
Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH,
1995, pp. 343–348.

They use a dependency analysis on their shading language to allow interactive modifi-
cation to just one or a couple of parameters. The dependency analysis allows them to
only recompute the intermediate results that change based on the parameters that
change.

[Hall83] R. A. Hall and D. P. Greenberg, “A Testbed for Realistic Image Synthesis”,
IEEE Computer Graphics And Applications, v3n11. IEEE, November 1983, pp. 10–
20.

This is a ray tracing system concerned primarily with the ability to use new illumina-
tion models. It includes spectral distributions instead of just RGB. It also has brief
mention of the typical ray tracing primitive extensibility using functions to find the in-
tersection of the primitive with an arbitrary ray. They claim their testbed could use
other rendering techniques, but it appears that would only be possible for the illumina-
tion calculations; the rendering code would need to be replaced.

[Hanrahan90] Pat Hanrahan and Jim Lawson, “A Language for Shading and Lighting Cal-
culations”, Proceedings of SIGGRAPH 90 (Dallas, Texas, August 6–10, 1990). In
Computer Graphics, v24n4. ACM SIGGRAPH, August 1990, pp. 289–298.

This paper introduces and explains the RenderMan shading language. It includes some
details on compilation issues.

[Hart89] John C. Hart, Daniel J. Sandin and Louis H. Kauffman, “Ray Tracing Determi-
nistic 3-D Fractals”, Proceedings of SIGGRAPH 89 (Boston, Massachusetts, July 31–
August 4, 1989). In Computer Graphics, v23n3, ACM SIGGRAPH, July 1989, pp.
289–296.

They present an algorithm for ray-tracing surfaces defined by the quaternion extension
to the Julia set fractal equation [Mandelbrot77]. The method is based on the ability to
compute bounding spheres guaranteed not to contain the object. A progression of
these unbounding-spheres allow as accurate an approximation of the fractal surface as
necessary.

[Hedelman84] H. Hedelman, “A Data Flow Approach to Procedural Modeling”, IEEE
Computer Graphics and Applications, v3n1. IEEE, January 1984, pp. 16–26.

With this rendering system, a user can hook together procedural models, transforma-
tions, and shaders into a tree. The paper discusses parallel execution of nodes of the
tree. It also discusses high level smart culling by procedural models and multiple level-
of-detail representations of a single object provided by one model procedure.

156

[Heidrich96] Wolfgang Heidrich, Philipp Slusallek, Hans-Peter Seidel, “Sampling of Pro-
cedural Shaders Using Affine Arithmetic”, Technical Report 11/1996, Universität Er-
langen-Nürnburg, 1996.

Introduces the use of affine arithmetic as a method to automatically antialias a proce-
dural shader. Affine arithmetic represents each value as a base value and a number of
noise symbols, which encode the potential error in the value. Using affine arithmetic
for all computations, they are able to compute an average value for a shader over an
area of surface and an error bound on the result.

[Hill97] B. Hill, Th. Roger and F. W. Vorhagen, “Comparative Analysis of the Quantiza-
tion of Color Spaces on the Basis of the CIELAB Color-Difference Formula”, ACM
Transactions on Graphics, v16n2. ACM, April 1997, pp. 109–154.

This paper presents an analysis of the number of bits required for accurate color repre-
sentation in different color spaces based on the just-noticeable-difference between col-
ors. They indicate that 12-13 bits per component are necessary for linear encoding in
either RGB space or CIE XYZ space.

[Kajiya83] J. T. Kajiya, “New techniques for ray tracing procedurally defined objects”,
ACM Transactions on Graphics, v2n3. ACM SIGGRAPH, July 1983, pp. 161–181.

This paper presents three related ray tracing techniques. Fractals are contained within
hierarchical bounding volumes. The sub-volumes (and final primitives) are only com-
puted when a ray intersects the parent volume. For prisms, the ray is projected into the
plane of the prism base and intersection proceeds in 2D. The 2D base is contained by a
strip tree. For surfaces of revolution, the ray is transformed to a parabola in a squared
space and intersection proceeds in 2D as for prisms.

[Kanus96] Urs Kanus, Michael Meißner, Wolfgang Straßer, Hanspeter Pfister, Arie
Kaufman, Rick Amerson, Richard J. Carter, Bruce Culbertson, Phil Kuekes and Greg
Snider, “Cube-4 Implementations on the Teramac Custom Computing Machine”, Pro-
ceedings of the 11th Eurographics Workshop on Graphics Hardware (Poitier, France,
August 26–27, 1996), pp. 133–143.

They present the latest of the Cube architectures for real-time volume rendering.
Cube-4 still uses the cubic frame buffer of the earlier Cube architectures, but uses a
slice-parallel decomposition for parallel rendering. They implemented two versions of
the Cube-4 machine on Teramac, a software-configurable hardware machine.

[Kaufman88] Arie Kaufman and Reuven Bakalash, “Voxel Based Processing”, IEEE
Computer Graphics and Applications, v8n6, November 1988, pp. 10–23.

This paper describes the first Cube architectures for volume rendering. The core of the
Cube architecture is a cubic frame buffer, storing data for every voxel in the volume.
Supporting this frame buffer are three processing units: one for volume acquisition,
one for geometric scan conversion, and one for final rendering.

157

[Kiesewetter80] H. Kiesewetter, “ALGRA, an algebraic-graphic programming language
for modeling”, Eurographics ’80. North-Holland, September 1980, pp. 249–254.

ALGRA is a follow on to DIGRA 73 – algebraic description of models with some
control structures.

[Knoll90a] Thomas Knoll, Filter Module Interface for Adobe Photoshop, Adobe Pho-
toshop Developers Kit 1990.

This is the technical specification for writing plug-in filters for Adobe Photoshop.

[Knoll90b] Thomas Knoll, Writing Plug-in Modules for Adobe Photoshop, Adobe Pho-
toshop Developers Kit, 1990.

This presents an overview of the workings of Photoshop plug-ins.

[Koenderink90] Jan J. Koenderink, Solid Shape, MIT Press, Cambridge, Massachusetts,
1990.

This book gives an introduction to differential geometry as applied to surfaces in 3D.
It avoids proofs and generality in favor of giving a visual understanding of the con-
cepts.

[Kolb92] Craig E. Kolb, Rayshade User’s Guide and Reference Manual, January 1992.

Rayshade is an extensible ray tracer, evolved from [Kuchkuda88]. New primitives or
shading functions require understanding and changing the code. Unfortunately, very
little is said in the documentation on how to go about doing either.

[Kuchkuda88] Roman Kuchkuda, “An introduction to ray tracing”, Theoretical Founda-
tions of Computer Graphics and CAD, volume F40. Springer-Verlag, 1988, pp. 1039–
1060.

This paper includes full C code for a simple ray tracer. The code is designed to make it
simple to add new primitives. Each primitive requires instancing, intersection, and
normal calculation functions and a small amount of extra lex/yacc code and support
code.

[Kumar95] Subodh Kumar, Dinesh Manocha and Anselmo Lastra, “Interactive Display of
Large-scale NURBS Models”, Proceedings of the 1995 Symposium on Interactive 3D
Graphics (Monterey, CA, April 9–12, 1995). ACM SIGGRAPH, April 1995, pp. 51–
58.

They present a method of rendering NURBS (non-uniform rational B-splines) using
dynamic tessellation. Polygons from the tessellated splines are cached and used in later
frames. One implementation used the procedural primitive interface on Pixel-Planes 5,
while another used the API on a Silicon Graphics machine.

158

[Kumar96] Subodh Kumar, “Interactive Rendering of Parametric Spline Surfaces”, PhD
Dissertation, Department of Computer Science, University of North Carolina at
Chapel Hill, 1996.

This dissertation includes the work in [Kumar95].

[Kylander97] Karin Kylander and Olof S. Kylander, Gimp User Manual v0.901,
ftp://ftp.gimp.org/pub/gimp/manual/Gimpmanual_v0.9.01.pdf, 1997.

This is a draft of a manual for the GIMP (Gnu Image Manipulation Program). As the
acronym implies, it is a free image manipulation program similar to Adobe’s Pho-
toshop. The GIMP was initially written by Spencer Kimball and Peter Mattis, but nu-
merous others have contributed to its public software development. It includes a flexi-
ble interface for writing plug-ins and extensions in C. This interface has been used to
add several interpreted scripting languages (scheme, tcl and perl). The most popular,
Script-fu, is based on scheme.

[Lane80] J. Lane, L. Carpenter, T. Whitted and J. Blinn, “Scan line methods for displaying
parametrically defined surfaces”, Communications of the ACM, v23n1. ACM, January
1980, pp. 23–34.

They present three algorithms for scan converting spline surfaces. Blinn’s tracks edges
and silhouettes with Newton’s method. Whitted’s approximates edges and silhouettes
with cubic curves and subdivide when they are not monotonic or not accurate enough.
The Lane-Carpenter algorithm subdivides to a flatness or size limit.

[Lastra95] Anselmo Lastra, Steven Molnar, Marc Olano and Yulan Wang, “Real-time
Programmable Shading”, Proceedings of the 1995 Symposium on Interactive 3D
Graphics (Monterey, California, April 9–12, 1995). ACM SIGGRAPH, 1995, pp. 59–
66.

This paper describes the PixelFlow shading architecture. It includes details about tim-
ing, scheduling, and simulation to show that an animation of the classic Pixar bowling
image could be possible on a reasonably-sized PixelFlow.

[Leech98] John Leech, “OpenGL Extensions and Restrictions for PixelFlow”, Technical
Report TR98-019, Department of Computer Science, University of North Carolina at
Chapel Hill, 1998.

This document presents the PixelFlow extensions to the OpenGL graphics API.

[Lewis81] Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of
Computation, Prentice-Hall, 1981.

This is a text on automata and Turing machines. I include it because it has a simple and
concise definition and explanation of the halting problem: that certain problems simply
cannot be solved by a computer in a finite amount of time.

159

[Lewis89] John-Peter Lewis, “Algorithms for Solid Noise Synthesis”, Proceedings of
SIGGRAPH 89, (Boston, Massachusetts, July 31–August 4, 1989). In Computer
Graphics, v23n3. ACM SIGGRAPH, July 1989, pp. 263–270.

Lewis gives an excellent overview of noise functions.

[Luebke95] David Luebke and Chris Georges, “Portals and Mirrors: Simple, Fast Evalua-
tion of Potentially Visible Sets”, Proceedings of the 1995 Symposium on Interactive
3D Graphics, (Monterey, California, April 9–12, 1995). ACM SIGGRAPH, April
1995, pp. 105–106.

They describe a simple method for reducing the size of the rendered database. The
model is partitioned into cells, and each cell is only rendered if it is visible from the
current position. Visibility is determined by a conservative view-frustum check. The
original implementation was done on Pixel-Planes 5 using the procedural primitive in-
terface.

[Lyon93] Richard Lyon, “Phong Shading Reformulation for Hardware Renderer Simplifi-
cation”, Apple Technical Report #43, Apple Computer, Inc. 1993.

Lyon gives an approximation to Phong shading with much improved error behavior.
Ordinary Phong shading has an error O(� 2) in the output color from an error of � in the
components of the surface normal. His approximation only has an error of O(�).

[Mandelbrot77] Benoit Mandelbrot, The Fractal Geometry of Nature. Freeman, San
Francisco, 1977.

This is the father of all books on fractals by the grandfather of the field.

[MasPar90] MasPar Computer Corporation, MasPar Parallel Application Language
(MPL) User Guide, 1990.

This is the user’s guide for the variant of C used to program the SIMD MasPar MP-1
computer. The language uses singular and plural variable attributes to indicate
that operations should happen once for the entire PE array or separately on each PE.

[Max81] Nelson L. Max, “Vectorized Procedural Models for Natural Terrain: Waves and
Islands in the Sunset”, Proceedings of SIGGRAPH 81 (Dallas, Texas, July 1981). In
Computer Graphics, v15n3. ACM SIGGRAPH, August 1981, pp. 317–324.

He describes details for the creation of a “Waves and Islands in the Sunset” animation.
It uses procedural models for both the waves and islands.

160

[Max89] Nelson L. Max, “Smooth appearance for polygonal surfaces”, The Visual Com-
puter, v5n3, June 1989, pp. 160–173.

Nelson Max uses polygon mesh and vertex normals to define a quadratic Beziér trian-
gle mesh. He can then uses the derived Beziér mesh to render C1 smooth silhouettes,
normals, shadows, and texture coordinates.

[Max90] Nelson L. Max, “Cone-Spheres”, Proceedings of SIGGRAPH 90 (Dallas, Texas,
August 6–10, 1990). In Computer Graphics, v24n4. ACM SIGGRAPH, August 1990,
pp. 59–62.

This paper presents a generalized cylinder primitive: two spheres and a section of cone
tangent to both connecting them.

[Middleton78] T. Middleton, “A Language for Regular Operations in Graphics”, Com-
puter Graphics, v11. ACM SIGGRAPH, March 1978, pp. 39–57.

Middleton argues that a base language without support for graphics makes writing
graphics code unnatural and inconvenient. He presents a 2d system built on ALGOL
68 with a handful of special data types and operations.

[Molnar91] Steven Molnar, “Image Composition Architectures for Real-time Image Gen-
eration”, PhD Dissertation, Department of Computer Science, University of North
Carolina at Chapel Hill, 1991.

This dissertation describes the graphics architecture that became PixelFlow.

[Molnar92] Steven Molnar, John Eyles and John Poulton, “PixelFlow: High-speed ren-
dering using image composition”, Proceedings of SIGGRAPH 92 (Chicago, Illinois,
July 26–31, 1992). In Computer Graphics, v26n2. ACM SIGGRAPH, July 1992, pp.
231–240.

This paper describes the PixelFlow hardware. It lacks the detail of [Molnar91], but the
design that is presented is closer to the final PixelFlow architecture.

[Montrym97] John S. Montrym, Daniel R. Baum, David L. Dignam and Christopher J.
Migdal, “InfiniteReality: A Real-time Graphics System”, Proceedings of SIGGRAPH
97 (Los Angeles, California, August 3–8, 1997). In Computer Graphics, Annual
Conference Series, ACM SIGGRAPH, August, 1997. pp. 293–303.

They describe the architecture of the Silicon Graphics InfiniteReality graphics ma-
chine. This is a large, parallel graphics machine, completed at about the same time as
PixelFlow.

161

[Muchnick97] Steven Muchnick, Compiler Design and Implementation. Morgan Kauf-
mann, San Francisco, CA, 1997.

This is a text on some of the more advanced techniques of compiler design. It consists
of about one chapter on traditional parsing and symbol table concerns, a few chapters
on control flow and data flow analysis, and about a dozen chapters on different forms
of optimization.

[Nadas87] Tom Nadas and Alain Fournier, “GRAPE: An Environment to Build Display
Processes”, Proceedings of SIGGRAPH 87 (Anaheim, California, July 27–31, 1987).
In Computer Graphics, v21n4. ACM SIGGRAPH, July 1987, pp. 75–84.

They have a data flow based C testbed system. The C functions are hooked together in
a directed acyclic graph. The paper also includes excellent overview of other systems
and a good set of references.

[Nakamae90] Eihachiro Nakamae, Kazufumi Kaneda, Takashi Okamoto and Tomoyuki
Nishita, “A Lighting Model Aiming at Drive Simulators”, Proceedings of SIGGRAPH
90 (Dallas, Texas, August 6–10, 1990). In Computer Graphics, v24n4. ACM
SIGGRAPH, August 1990, pp. 395–404.

They present a reflection model for wet roads.

[Neider93] Jackie Neider, Tom Davis and Mason Woo, OpenGL Programming Guide:
the official guide to learning OpenGL release 1. Addison-Wesley, 1993.

This guide explains the OpenGL application-level graphics library.

[Newell75] Martin Newell, The Utilization of Procedure Models in Digital Image Synthe-
sis, PhD dissertation, Department of Computer Science, University of Utah, 1975.

In this dissertation, Newell introduces procedure models. The procedure model is an
object-oriented form of model representation. it takes arbitrary data, which it inter-
prets in whatever way it wants to build the object. It also is able to respond to a couple
of messages: “draw yourself” and “return bounds”. He also includes inheritance, so
some specialized models are derived from more general ones.

[Niimi84] Haruo Niimi, Yoshirou Imai, Masayoshi Murakami, Shinji Tomita and Hiroshi
Hagiwara, “A Parallel Processor System for Three-dimensional Color Graphics”, Pro-
ceedings of SIGGRAPH 84 (Minneapolis, Minnesota, July 23–27, 1984). In Com-
puter Graphics, v18n3. ACM SIGGRAPH, July 1984, pp. 67–76.

This paper describes a graphics architecture based on scan-line rendering. The archi-
tecture consists of a set of parallel scan-line units. Each scan-line unit has a set of pixel
processors that handle a sub-span on the scan line.

162

[Olano97] Marc Olano and Trey Greer, “Triangle Scan Conversion Using 2D Homogene-
ous Coordinates”, Proceedings of the 1997 SIGGRAPH/Eurographics Workshop on
Graphics Hardware (Los Angeles, California, August 3–4, 1997). ACM SIGGRAPH,
August 1997, pp. 89–96.

This paper describes a triangle scan conversion algorithm that completely avoids tradi-
tional clipping tests. Clipping is necessary to avoid potential division problems for ver-
tices that are even with or behind the viewer. The algorithm uses 2D homogeneous
coordinates to avoid the problem divisions.

[ONeill66] Barrett O’Neill, Elementary Differential Geometry, Academic Press, San Di-
ego, CA, 1966.

This is a great resource for differential geometry.

[OpenGL92] OpenGL Architecture Review Board, OpenGL Reference Manual: The Of-
ficial Reference Document for OpenGL, Release 1. Addison-Wesley, 1992.

This reference manual has man-page-like descriptions of all of the OpenGL graphics
library functions. It includes a fold-out graphics system diagram.

[Ostby93] Eben F. Ostby, “Implementation of MENV”, Proceedings of SIGGRAPH 93
(Anaheim, California, August 1–6, 1993). Developing Large-scale Graphics Software
Toolkits seminar notes. ACM SIGGRAPH, August 1993.

Ostby gives background and implementation details on MENV. He includes some in-
formation not found in [Reeves90] on partial updates of models from avar changes.

[Perlin85] Ken Perlin, “An Image Synthesizer”, Proceedings of SIGGRAPH 85 (San
Francisco, California, July 22–26, 1985). In Computer Graphics, v19n3. ACM
SIGGRAPH, July 1985, pp. 287–296.

Perlin presents his ground-breaking pixel stream editor. Essentially it expands Cook’s
shade trees work to a full language [Cook84]. This is the earliest example I have of a
full language for shading. Includes the Perlin noise function, one of the most useful
tools for procedural shading.

[Perlin89] Ken Perlin and Eric M. Hoffert, “Hypertexture”, Proceedings of SIGGRAPH
89, (Boston, Massachusetts, July 31–August 4, 1989). In Computer Graphics, v23n3.
ACM SIGGRAPH, July 1989, pp. 253–262.

They propose a form of procedurally defined solid objects (volume rendered).

163

[Pineda88] Juan Pineda, “A Parallel Algorithm for Polygon Rasterization”, Proceedings of
SIGGRAPH 88 (Atlanta, Georgia, August 1–5, 1988). In Computer Graphics, v22n4,
ACM SIGGRAPH, August 1988, pp. 17–20.

He presents an incremental triangle scan conversion algorithm using the same edge-
equation math as the Pixel-Planes style implicit scan conversion algorithm.

[Pixar89] Pixar Animation Studios, The RenderMan Interface, September 1989.

This provides a technical description of RenderMan, RIB, and the shading language.

[Pixar89b] Pixar Animation Studios, KnickKnack, film short, 1989.

This is last of Pixar’s funny short animations before they started work on the Toy
Story movie. As with all of their animations, it makes extensive use of procedural
shading.

[Pixar97] Pixar Animation Studios, PhotoRealistic RenderMan 3.7 Shading Language
Extensions, March 1997.

This addendum to [Pixar89] defines the recent additions to the RenderMan shading
language standard. These additions include vector, normal and matrix types, matrix
operations, arrays, new noise and step functions, time derivatives, and message passing
between shading stages.

[Potmesil87] Michael Potmesil and Eric M. Hoffert, “FRAMES: Software Tools for Mod-
eling, Rendering and Animation of 3D Scenes”, Proceedings of SIGGRAPH 87,
(Anaheim, California, July 27–31, 1987). In Computer Graphics, v21n4, ACM
SIGGRAPH, July 1987, pp. 85–93.

FRAMES is a testbed rendering system based on UNIX processes. Each stage of the
graphics pipeline is a single process, and the pipeline stages communicate using stan-
dard UNIX command-line pipes. The model enters one end of the pipeline as the stan-
dard input to the first pipeline stage program, and the final frame is produced as the
standard output of the last pipeline stage program.

[Potmesil89] Michael Potmesil and Eric M. Hoffert, “The Pixel Machine: A Parallel Image
Computer”, Proceedings of SIGGRAPH 89, (Boston, Massachusetts, July 31–August
4, 1989). In Computer Graphics, v23n3, ACM SIGGRAPH, July 1989, pp. 69–78.

The AT&T Pixel Machine has a pipeline of DSP processors, corresponding to the
stages of the graphics pipeline, and an array of DSP processors for final rendering. It
had reasonable polygon rendering performance but was really designed for ray-tracing.
It did not quite achieve general real-time ray tracing, but could ray trace a simple one-
plane, one-sphere scene in a small window at interactive speeds.

164

[Prusinkiewicz88] Przemyslaw Prusinkiewicz, Aristid Lindenmayer and James Hanan,
“Developmental Models of Herbaceous Plants for Computer Imagery Purposes”, Pro-
ceedings of SIGGRAPH 88, (Atlanta, Georgia, August 1–5, 1988). In Computer
Graphics, v22n4, ACM SIGGRAPH, August 1988, pp. 141–150.

This is hardly the first work on L-systems (named for Lindenmayer), but a good over-
view. L-systems provide a description of plant and tree branching structures using a
grammar where each symbol (terminal or non-terminal) has some meaning for the
length or branching structure of the plant.

[Reeves83] William T. Reeves, “Particle Systems – A Technique for Modeling a Class of
Fuzzy Objects”, Proceedings of SIGGRAPH 83 (Detroit, Michigan, July 25–29,
1983). In Computer Graphics, v17n3, ACM SIGGRAPH, July 1983, pp. 359–376.

This paper introduces particle systems. Particle systems are form of animated model in
which a large number of particles obey simple rules for generation, movement, and ex-
tinction.

[Reeves90] William T. Reeves, Eben F. Ostby and Samuel J. Leffler, “The MENV Mod-
eling and Animation Environment”, Journal of Visualization and Computer Anima-
tion, v1n1, August 1990, pp. 33–40.

They Describe the MENV system in use at PIXAR. MENV provides a set of cooper-
ating tools that communicate through shared memory, semaphores, and message
passing. All modeling is done using a special purpose modeling language ML. ML
consists of C-like statements, calls to geometric primitives, and calls to geometric op-
erations. Includes distinct concepts of variable scoping hierarchy, object hierarchy, and
transformation hierarchy. Animation is accomplished through the use of articulated
variables (avars).

[Rhoades92] John Rhoades, Greg Turk, Andrew Bell, Andrei State, Ulrich Neumann and
Amitabh Varshney, “Real-time procedural textures”, Proceedings of the 1992 Sympo-
sium on Interactive 3D Graphics (Cambridge, Massachusetts, March 29–April 1,
1992). In Computer Graphics special issue. ACM SIGGRAPH, March 1992, pp. 95–
100.

This work on our previous machine, Pixel-Planes 5, provided some of the inspiration
for this dissertation. Pixel-Planes 5 could do real-time procedural textures, written in
an assembler-like interpreted texture language.

[Rubin80] S. M. Rubin and T. Whitted, “A 3-Dimensional Representation for Fast Ren-
dering of Complex Scenes”, Proceedings of SIGGRAPH 80. In Computer Graphics,
v14n3. ACM SIGGRAPH, July 1980, pp. 110–116.

They use hierarchical bounding boxes to accelerate ray tracing. Ray intersection only
done with bounding boxes, surfaces are rendered by recursive subdivision. They men-
tion the application of recursive subdivision for procedurally defined surfaces.

165

[Sabin79] M. A. Sabin, “Software Interfaces for Graphics”, Methodology in Computer
Graphics, R. A. Guedj and H. Tucker, editors. North-Holland, 1979, pp. 49–78.

Part of the proceedings of the IFIP Workshop on Methodology in Computer Graphics,
Seillac, France, 1976. Sabin gives an overview and comparison of picture description
languages, stream protocols, and procedure libraries. He covers the DRAW, ARTIST,
GPDL, G439, PDL2, MONSTER, and DIGRA languages. The article is followed by a
critique by L. Kjelldahl, and notes taken during Sabin and Kjelldahl’s presentations and
the following panel.

[Sederberg86] Thomas W. Sederberg and Scott R. Parry, “Free-Form Deformation of
Solid Geometric Models”, Proceedings of SIGGRAPH 86 (Dallas, Texas, August 18–
22, 1986). In Computer Graphics Proceedings, v20n4. ACM SIGGRAPH, August
1986, pp. 151–160.

This paper introduces Free Form Deformation (FFD). Objects are embedded in a 3D
tensor product Beziér volume. As the volume is deformed, the objects inside deform
as well. This is a simple and powerful form of non-linear transformation.

[Segal92] Mark Segal, Carl Korobkin, Rolf Van Widenfelt, Jim Foran and Paul Haeberli,
“Fast Shadows and Lighting Effects Using Texture Mapping”, Proceedings of
SIGGRAPH 92 (Chicago, Illinois, July 26–31, 1992). In Computer Graphics Pro-
ceedings, v26n2. ACM SIGGRAPH, July 1992, pp. 249–252.

They Present methods of projecting textures onto surfaces by using perspective trans-
formations of the texture coordinates.

[Slusallek94] Philipp Slusallek, Thomas Pflaum and Hans-Peter Seidel, “Implementing
RenderMan–Practice, Problems and Enhancements”, Proceedings of Eurographics
’94. In Computer Graphics Forum, v13n3, 1994, pp. 443–454.

This paper describes the RenderMan implementation done at the University of Erlan-
gen. Their implementation is based on a Monte-Carlo global illumination algorithm.
They have added some extensions to the shading language to help guide the Monte-
Carlo sampling.

[Slusallek98] Philipp Slusallek, Marc Stamminger, Wolfgang Heidrich, Jan-Christian Popp
and Hans-Peter Seidel, “Composite Lighting Simulations with Lighting Networks”,
IEEE Computer Graphics and Applications, v18n2, IEEE, March 1998, pp. 22–31.

They introduce lighting networks, using a graphical interface to connect LightOp
blocks. Each LightOp handles one form of lighting interaction, and the network as a
whole simulates the global illumination of a scene. With additional tags to indicate
which LightOps apply to which surfaces, they can efficiently handle simple lighting
simulations for some objects and more complex simulations for others.

166

[Snyder92] John M. Snyder and James T. Kajiya, “Generative Modeling: A Symbolic
System for Geometric Modeling”, Proceedings of SIGGRAPH 92 (Chicago, Illinois,
July 26–31, 1992). In Computer Graphics, v26n2, ACM SIGGRAPH, July 1992, pp.
369–378.

Generative modeling is a form of procedural modeling where models are created by
sweeping a generator along some path. A simple language is used to describe both the
generator and the path and the generator can change shapes as it sweeps along the
path.

[Sun89] Sun Microsystems, SunOS 4.1 Math library source code, 1989.

This is the C source code for the math library distributed with SunOS version 4.1.

[Taylor93] Russell M. Taylor II, Warren Robinett, Vernon L. Chi, Frederick P. Brooks,
Jr., William V. Wright, R. Stanley Williams and Eric J. Snyder, “The nanoManipulator:
A Virtual-Reality Interface for a Scanning Tunneling Microscope”, Proceedings of
SIGGRAPH 93 (Anaheim, California, August 1–6, 1993). In Computer Graphics
Proceedings, Annual Conference Series. ACM SIGGRAPH, 1993, pp. 127–134.

The nanoManipulator is a teleoperation system for controlling a scanning tunneling
microscope. The display used a procedural primitive on Pixel-Planes 5.

[Taylor94] Russell M. Taylor II, “The nanoManipulator, A Virtual-Reality Interface to a
Scanning Tunneling Microscope”, PhD Dissertation, Department of Computer Sci-
ence, University of North Carolina, Chapel Hill, 1994.

This dissertation includes the work covered in [Taylor93].

[ThinkingMachines89] Thinking Machines Corporation, Connection Machine Model CM-
2 Technical Summary. Thinking Machines Corporation, Version 5.1, May 1989.

This is a high-level description of the CM-2 and the languages available for program-
ming it.

[Trumbore93] Ben Trumbore, Wayne Lyttle and Donald P. Greenberg, “A Testbed for
Image Synthesis”, Proceedings of SIGGRAPH 93 (Anaheim, California, August 1–6,
1993). Developing Large-scale Graphics Software Toolkits seminar notes, ACM
SIGGRAPH, August 1993.

They have a collection of library routines called by user code to facilitate global illumi-
nation research.

[Upstill90] Steve Upstill, The RenderMan Companion, Addison-Wesley, 1990.

This book/user’s guide is the principle resource for learning the RenderMan scene de-
scription interface and shading language.

167

[vanWijk91] Jarke J. van Wijk, “Spot Noise: Texture Synthesis for Data Visualization”,
Proceedings of SIGGRAPH 91 (Las Vegas, Nevada, July 28–August 2, 1992). In
Computer Graphics, v25n4, ACM SIGGRAPH, July 1991, pp. 309–318.

This paper introduces spot noise. Spot noise is a form of band-limited noise con-
structed by a sparse convolution method [Lewis89], where kernel elements are ran-
domly placed across the surface. Spot noise modifies the shape and orientation of each
kernel spot based on the data to be represented.

[Watt92] Alan Watt and Mark Watt, Advanced Animation and Rendering Techniques:
Theory and Practice, Addison-Wesley, 1992.

This is an excellent general graphics book including coverage of just about everything.
For our purposes, there are important chapters on procedural texture mapping and
modeling, shading languages and RenderMan, deformations, procedural animation,
shadowing, shading, and parametric surfaces.

[Whitted81] T. Whitted and D. M. Weimer, “A software test-bed for the development of
3-D raster graphics systems”, Proceedings of SIGGRAPH 81 (Dallas, Texas, July
1981). In Computer Graphics, v15n3. ACM SIGGRAPH, August 1981, pp. 271–277.

They describe a generalized 3d scan line rendering program with support for C coded
shaders. This is the earliest example of programmable shading I have. They can inter-
polate arbitrary parameters to be used for shading.

[Whitted82] T. Whitted and D. M. Weimer, “A Software Testbed for the Development of
3D Raster Graphics Systems”, ACM Trans. on Graphics, v1n1. ACM SIGGRAPH,
January 1982, pp. 43–57.

This is a more detailed version of their SIGGRAPH 81 paper. Of particular personal
interest, it has more detail on structure for the primitive half of the testbed. Primitives
have a bounding box to determine the span when they are activated and may deposit
new primitives for processing in later spans (ideal for subdivision algorithms).

[Williams78] Lance Williams, “Casting Curved Shadows on Curved Surfaces”, Proceed-
ings of SIGGRAPH 78. In Computer Graphics, v12n3, ACM SIGGRAPH, August
1978, pp. 270–274.

This paper introduces shadow-mapping. In a preliminary pass, an image containing
depths instead of colors is rendered from the point of view of each light source. Dur-
ing the final rendering pass, the surface locations are transformed into the same coor-
dinate system as the depth buffer. This allows the surface depth to be directly com-
pared to the stored depth. If the surface is farther from the light, it is in shadow.

168

[Williams83] Lance Williams, “Pyramidal Parametrics”, Proceedings of SIGGRAPH 83
(Detroit, Michigan, July 25–29, 1983). In Computer Graphics, v17n3, ACM
SIGGRAPH, 1983, pp. 1–12.

Williams introduces MIP-mapping, the widely-used texture anti-aliasing algorithm. A
MIP-map includes a pyramid of pre-filtered scaled images. During rendering, the fil-
tered color is determined by interpolating between these. Also introduces reflection
mapping as a way of using an image texture to simulate reflection in a scene.

[Wyvill85] Geoff Wyvill and Tosiyasu L. Kunii, “A Functional Model for Constructive
Solid Geometry”, The Visual Computer, v1n1, July 1985, pp. 3–14.

They present a CSG system rendered with ray tracing. Primitives are defined with
functional definitions. CSG operations are done on an octree representation, and ray
tracing using the octree and arbitrary functional definitions. The CSG cells can be full,
empty, point to a single object, or nasty (at the octree resolution limit with more than
one object in the cell).

