CSIM

Overview
Tutorial

WWW.CSIm.com

July 6, 2023

chein@csim.com

http://www.csim.com/

Outline CSIM

e Session 1: (Day 1, 9:00-12:00)
— Simulation Modeling Concepts
— CSIM Overview
» Session 2: (Day 1, 1:00-4:30)
— Installation and Set-up
— Tool Usage and Techniques
— Hands-On Examples
» Session 3: (Day 2, 8:30-11:30)
— Core Performance Modeling Library
— General Blocks Library
— Multi-Simulation Interface (MSI), HLA
— Development Techniques / Workshop
» Session 4: (Day 2, 12:30-4:30)
— LAN / WAN IP-Network Modeling
— Visualizations
» Session 5: (Day 3, 8:30-11:30)
— Processor System Modeling
— Modeling Workshops
» Session 6: (Day 3, 12:30-3:30)
— Scenario Modeling

CSIM Overview CSIM

- Simulation concepts - virtual prototyping

- System modeling examples

- CSIM tools and their flow

- Structure description - graphical editor (GUI)
- Behavior description - language constructs
- Model Attributes

- Simulator - building + running simulations

- Analysis tools - viewing results

- Application libraries and domains

Why Simulate ? CgﬂM
=

System Challenges:

* Modern systems are too complex to manually predict or
understand all potential issues

* Difficult to comprehend all system and mission interactions/sequences

* Integrations occur late in project cycles —> problems found too late

* Detailed implementations take too long, cost too much to get wrong

* Need comprehensive prototyping, early and often

* Systems are too large to run detailed models within project schedules

* Ad hoc models cost too much, lack credlblllty

* Need efficient rapid virtual prototypes
(Yet, many challenges to system modeling)

Reasons to Simulate:
* Network or Architecture - Evaluation, Optimization, or Selection
* Functional allocation & optimization
* Hardware / Software mapping & scheduling
* Risk reduction: logic, timing & performance issues
e Customer prototyping & demonstrations
* Early integration & testing — Find & address risks early i

Simulator Requirements CSIM

v " system Modeling & Simulation Requires Tools: N

* Arbitrary modeling Abstraction & Detail of:

* Functions, behaviors, values

» Structure / Architectures / Interfaces

* Timing relationships, sequences, delays

* Easy to use, rapid model construction, Graphical Diagram Editor

* Available model libraries, Enable rapid Model Re-Use

* Support multiple domains (Networks, Logic, Electrical, Work-flows, ...)
* Platform independent / portable

* Modeling language same as embedded system (C)

» Standards based — C, XML, HLA, ...

* Rich visualization capabilities

* Must be validated, proven, trustworthy, efficient, scalable, fast

Modelled System

Real System

4

"
4

' What is CSIM?

Overview CSIM

- A general-purpose system simulation environment

* Discrete event simulator - simulates time & sequences

* Hierarchical block diagrams connect models

 Model functions are described in standard C language.
 Model integrator - manages concurrency, time coordination

- Quickly model & test complex systems: Networks, Tasks, Architectures, Logic, ...

- Supports system trades: Performance, rates, latency, bandwidth, ...

- Both Graphical and Textual development methods.

- Several domain Model-Libraries speed system modeling

- Supports multiple abstraction levels

b,

~ Discrete Event Engine

L . -
e e.Block Diagram Managg_;

\% \4

Modeling Concepts

Abstraction versus resolved Detalil
* Speed, scalability
* Visibility
* Accuracy vs. Precision

High Abstraction is lower Detalil, & vice verse

A given system, or component, may be
described at many different abstraction levels

A given model may be composed out of
a combination of lower level models

Detail does not imply accuracy

Before modeling a system, consider:
* What are your goals ?
* System concerns ?
What do you need to investigate ?
What should models contain ?
How to test your system & models ?

Tools must support multiple abstraction levels.

forfinatoN-1loo
for!ini toN-1loop
ql=wrr-x*sr,
Q2:=ql+w*si-x*ri;
engi ‘{'OgF o

er%ﬂgop; pay

e

=
iSSPt
(P oW

-

i -

Software

CSIM

System Platform

Boards

mponent

Co

The Power of Abstraction cgnM

Comparative Simulation Speeds

Simulated Equiv.

Time Processing
Rate (/Sec)

Abstract Arch. Model

2> -node Network 60-Mins 0.4-Min 12,856,500,000
Zpigg mﬁpauntgarj w;tchjf-cl)rk SR 3-Mins 28,570,000
e ork 5.0-Secs 7-Mins 3,081,000
Detailed Model of 1 5.0-mS 12-Hours 5

Computer

(*All were CSIM simulations, except last, which was VHDL.)

Simulations predicted performance to within 7% accuracy of final system.

Modeling Concepts

Three Axes of Description:

A
Function

e Structure or Architecture
* Instantiates the components
* Shows how the components are inter-connected
* Displayed in Block Diagrams
* Can have hierarchy (more detail later)

* Functionality
 What a component does, or how it does it
* Described in equations or code

* Time
* Delays, rates, relationships, sequences

| Behavior = Time + Function |

"A=B+C:

'DELAY(20 mSec);

Simple Example of a System Model CSIM

Something happens here.

Something happens here. e .
Time delay of 1.2 seconds. Wait for data to arrive.
Something else happens.

Send data out. é.omething more happens.

Something is happening here.

Can you identify:
- Structure ?
- Timing information ?
- Functionality ?

10

Example of multiple abstraction level modeling CgﬂM

* Multi-Vehicle scenario resolves
interactions between platforms
within a realistic mission scenario

Siailat ion Gentral Paral

* Algorithmic level model 5 === i

resolves functions :T ﬂ
within the vehicle —, [
systems above, —
but not computing s
system details T

;;;;;;;

simulation resolves the hardware,
software, and data transactions » ==
through time to accomplish the
above algorithms

Example Computer Hardware & Software Model

* Networks of processors can accelerate difficult computing tasks

CSIM

* But coordinating software & data on complex networks is difficult
* CSIM provides tools to understand & optimize parallel systems
(1) Model Software Applications separate from (2) Physical Architectures

(3) Simulate the Software models executing on the Architecture models
(Hardware / Software Co-simulation)

(4) Visualize the performance, identify issues, improve the system

1. Software Application Model Diagram

Medde: vtz

o

3. Simulate

4. Activity Time-Line

2. Multi-Computer Hardware Architecture Model

—
HirE: 9,000

E N [—

Proes s T e Pt

A

N
\\

Terminology CgﬂM

Model — (noun) A description of a component, that when executed
within a simulator, exhibits the behavior of the intended component,
such as responding to external events, stimulus, and internal states.

Model — (verb) To create a description of a component in a form that
can be connected to other component models and executed
within a simulator.

Simulator — (n) A tool that integrates (connects) models for the purpose
of executing (running) them, and for observing their interactions,
and collecting results. Simulators posses common infrastructure
that enables coordinated execution of models, but which is not
specific to a particular system being modeled. Such infrastructure
includes the synchronization and management of simulated time.

Simulate — (v) To execute models within a simulator. To run simulator.
Simulation — (n) A simulator configured with specific models.

Simulation

. - Model

[~ = Model

Simulato

13

How simulations can be used

* Simulator is re-used without modification across many projects by

attaching different models

* Simulator enables models to be re-used and integrated to simulate new
systems without modifying the models themselves

* Virtual Prototyping:

* |terative modeling at progressive
detail levels reduces design
from requirements down
to physical system

* Testing and evaluation
occurs throughout process

* Design is documented as
Executable Specification

Complex
Requirements

(TestBenches)

Feedback

lReq’ts
I
I

Design Solution(s)
(Abstract Model(s))

A
Decompose Calibrate

* Design alternatives are
maintained in trade-off

Detailed Design Models

database

Synthesize
Compile

T Calibrate

Production Target
(Hardware / Software)

Trade-off

Database

CSIM

¥

14

M Base Model Libraries Cgm

5

Core Models - Hardware/Software Architecture Performance models.
Processor, Bus, Crossbar, Memory, Board & Rack models.
Data Flow Graphs (DFG's), Static&Dynamic Scheduler.
- About 30 models. Some very complex.

General Blocks - BONES-like basic function boxes.
- Includes resource, queuing, and statistics models.
- About 340 models. Most simple, but some are complex.

Human Factors - MicroSaint-like (MAD) work-flow models.
- Includes Task, Queue, Switch, and Resource models.

LAN/WAN - IP-based network models.
- Includes routers, firewalls, switches, hosts, IDS, INE, SONET, hub,
subnet, monitor, etc. (VNS like/related)
- About 15 models.

Wireless - Simple radio components models.

15

M Base Model Libraries - continued CgﬂM

Vehicles Platforms Terrains (VPT) - 3-space models w/movement,
trajectories, way-points, mission-plans, spatial-services, maps, vis..

Distributed Simulation Functions - Wormhole model, HLA interface,
Multi-Simulator Interface (MS)

User Contributed Models - General purp. functions, slider & button
control boxes, generic Pub/Sub messaging functions, etc.

Experimental or Example Libraries: (Not production level)
Economic | Social models - Efficient, scalable to large populations.
Complex Vector Math function boxes - Matrix and vector math func.,
FFT, image processing, etc..
- About 50 models.
Digital Logic - Includes basic logic function, and SSI parts, registers, ALUS,
general purpose testbench. Includes inertial+transport delays.
- About 60 models.
Analog logic - Continuous systems w/inertia, frict., energy, momentum.
- Can model simple analog RLC electrical circuits, thermodynamic
systems, mechanical mass/spring/damper systems, fluid reservoir systems
- Scalable with optimal convergence.

16

Simulator In-the-Loop C§HM

/ . Slmulatlons can be attached to real systems, or .
y * Actual application source code can run as if in actual system. \
" - Minimal functional, temporal, or structural distinctions.

- Enables early and continuous integration and testing.

Virtual Rapid-Prototype

CSIM Models
yAuxPow >tores “‘y Aux System

/’ Scenarios

| I:I—l__l_l

———3

Power Control
=I—?

4_:_;#- S35 E _‘)
_‘:':.:|_E:—=|
&

Processmg Subsyste

i |
.!—

| —— | T
e

R

/
/

/

/

®* Developed, validated application software emerges directly from
\ verlﬁcatlon models; not separate translation & development process. /

* Graphics from Altia Faceplate 17

CSIM Model Description

CSIM models consist of two distinct forms of description:

1.) Architectural or Structural Description:
- Described graphically (Block diagrams).

- Edited with GUI.

- Topology - What connects to what, and how.
- Model Instantiation - Sets model-type for each box.

Example:

2.) Behavioral Description: (Function + Timing)
- Described textually (C or C++ code).

—

- Edited with any text editor.
- Model Type Definitions - Describes each model-type's
Functional & timing behavior

Example:

A=B+C;
Delay(20 mSec),

CSIM

18

A Simple Example:

e Structural description of a system:
Name = processor_A < - Name = processor_B
(Type= MC6800) Half-duplex (Type= MC6800)
20-MB/S

Simple example system.

 Behavioral description of an model-type (box):

DEFINE_DEVICE TYPE: MC68030
PORT_LIST(ioprt);

/* Local Variables */
long message, length;

DEFINE THREAD: start up
{ /* Any C-code can go between here, */
message = 1;
SEND(“ioprt”, message, 1);
RECEIVE(“ioprt”, &message, &length);
printf(* Received reply.\n");
‘ } /¥ ... and here. */
END DEFINE THREAD.

\ END_DEFINE DEVICE TYPE.

Basic Tool Flow

CSIM GUI

CSIM Builder

Libraries -~
\1______),_,) i]
*"| Text Editor .

CSIM Simulator
(sim.exe)

Simulator GUI

(Control Panel)

Results -

TIMELINE’//"\T/
‘ XGRAPH I

CSIM
N

N
\
\\

Configure Models

Describe Systems

Build Simulation

Simulate
View Animations

Collect Data

Analyze Results

20

Other Tool Flows

Hw/Sw Performance Modeling Tool Flow

Libraries
\“'--._.___._.-/“

L

TIMELINE

Text Editor
éﬂllanj {domain specific) Tools

CSIM Builder

CSIM Simulator
(sim.exe)

Simulator GUI

(Control Panel)

Results |

v

CSIM

N

— Configure Models

— Describe Systems

— Build Simulations

— Simulate
— View Animations

— Collect Data

— Analyze Results

N
\\

Structural Definition CSIM

A structural block diagram describes the topology of a module.
A module diagram contains boxes connected by /inks.
- Boxes represent entities or sub-modules.
Leaf-entities represent behavioral nodes (contain C-code).
Sub-modules produce hierarchy by referencing lower diagrams.
- Links represent connections between boxes.

Module-boxes are drawn with thicker lines than leaf-entity-boxes.

Attributes:
- Boxes: Instance Name, Type.
- Links: Direction (smplx, hdplx, fdplx) (* = full-duplex),
Transfer Rate (* = infinity MB/S),
Fixed Overhead (* = 0.0 uS),
Queue/Buffer Size (* = Messages/-Bytes).

* The highest module in the hierarchy is called top level,

Duall Dual2
procl proci

io_port io_pairt
e Il N Exct | KO P 'l
xbar 3 xbar
o2 [=F]
[L
io_poirt

O_port

proc2 proc2

Double-clicking, or opening, a module-box, opens sub-module diagram.

A

- GUI provides convenient entry/editing of structure diagrams.
- Buttons for building & running simulations.
- Controls for running & visualizing simulations.

ke, _H
. =, i _H

Hireratt_Burireask
Va5

Box Behavior Description CSIM

Threads and Variable

Thread - Softvé%quaegs, shares variables with other threads in a box (entity).
| * All boxes must have a thread called start_up.
» The start _up thread is started in each entity at the start of a simulation.
* Threads trigger the activation of other threads, created/ended dynamically.
* Multiple threads can be active concurrently within each entity.

Variable Scoping Levels - Three distinct levels of variable scoping:
1. Global - Globally accessible to all entity boxes and all threads within them.
2. Shared - Shared by all threads within an entity. Local to each entity instance.
3. Local - Local to each thread instance in each entity.

Var Scope 1 - Global to all.

Box M2 (Type Xyz).

Var scope 2

Box M1 (Type Xyz).

Var scope 2 - Shared within this box-entity.

,f/_ Thread A -\\\ { Thread B ™

Var scope 3 - local to this thread. Var scope 3
While true o
‘ For (i=0; i!=
Part_R - RECFEL*’E:’;‘JDH_Q X); { test w();} Port Q Port_R

X=X+1; S=Thresh(

SEND(port_R, x); \ /
_

24

/

Box Behavior Definition
/he behavior of each model type must be defined.

P -

DEFINE DEVICE TYPE: MC68030 <
/* Shared Variables */
long message; <

S —

DEFINE THREAD: start up ~—

{

if (strcmp(MY_NAME,"/Kingpin")==0)
{

message = 1;
SEND(“portl”, (void *)message, 1.0);

}
}
END_DEFINE_THREAD.

A

TRIGGER_THREAD(gen, 100.0, THREAD VAR);

s

——— Shared variables to each instance

\7 Keyword to begin thread.

~— Code Thread.

CSIM

_—Keyword to begin definition
~ Name of entity type.

of this model type.

Name of thread.

(Any C-code, plus CSIM extensions.)

DEFINE THREAD: gen

{

message = message + 1;

SEND(“portl”, message, 1.0);
TRIGGER_THREAD(gen, 100.5, 0);
DELAY((double)message + 10.0);
TRIGGER _THREAD(gen, 20.0, 0);
}
END DEFINE THREAD.

A

~— Code Thread.

Keyword to end thread.

(Any C-code, plus CSIM extensions.)

END_DEFINE_DEVICE TYPE.

Keyword to end definition

.

25

/
/
/
7

A\

Behavior Definition CSIM
%

Data type definitions, data structures, global variables, C-macros, and
common subroutines are defined in common area.

DEFINE _GLOBAL.:

int population;
float clock frequency=80e6;

int scale vector(x, y)
{ /* C-subroutine code*/

}
END DEFINE GLOBAL.

These objects can be accessed from any of the threads.
#includes should also be placed in these sections.
Anything outside Define ... blocks is ignored !!!

\\

26

Model Behavior Definition CSIM

/ C Construct Extensions for Behavior Descriptions:

Standard predefined variables:
MY NAME - Entity instance name (char string).
CSIM_TIME - Double floating-point value current simulation time (ex. seconds).
THREAD VAR - Pointer to thread-unique variables.

Predefined Functions:
DELAY(delay amt) - Causes thread to sleep for specified duration
relative to current time.

TRIGGER _THREAD(thread, delay amt, thread var)
- Spawns the start of the specified thread within entity after delay_amt.

SEND(port, message_ptr, length) - Causes message-data to be sent out
specified port to another entity.

RECEIVE(port, &message, &length) - If incoming message has arrived and
is waiting on the specified port’'s queue, then it will be
dequeued and returned in the message variable.
Otherwise, the thread will block (sleep) until the requested
data length arrives.

CHECK(port, &status) - Checks for pending messages without blocking

or dequeuing.

27

Modeling Constructs CSIM

-+ Including files: GUI: File / Import / By-Reference
Inserts:
%include
- Works like the regular C #include, but expanded by CSIM preprocessor.
- Generated by Import-by-Reference in GUI.
Example:
%include subroutines.sim

- Halting simulation from within model:
halt();
- Causes the simulation to pause, returns control to user.
- User can resume or quit.
Example:
if (unexpected event)
halt();

Useful for:
* Inserting conditional breakpoints into a simulation.
* Breaking in (or on) specific subroutines or lines of code.
» Calling attention when assertions have been violated.
» Stepping by significant events instead of time amounts.
» Detecting and forcing a simulation end-point.

. See CSIM_HALT POPUP(“Message”); - for graphical sims.

28

\
\

\ Supports Third-party Visualizations - Altia Faceplate, WinFrame-3D, Otk, etc.

/ //
4

"4
4

Animation Control

User Customizable Animations:

Box, Link Colors:

Annotations:
« Annotate writes textual information
on the graphical display near boxes
during simulations.

* Boxes and links change colors from
user’s code during simulation.

highlight _box(color);
highlight_link(port_name, color),

fle Amaten Ve Optens Toos Hap | Hpe

Shaslatien Centrol Para)
Pt

M W
vl | L

:

aF
St et -
SIRL

ﬂfﬂ:ﬂH

Annotate(char _string, color, xoffset, yoffset),
Annotate(“Transmitting Pulse 5A”, Green, 0.0, -0.5);

* Use to view changing state information or to note specific or unusual events.
* More visual than prints because it is placed with respective box in diagram.

/////
3’
//
4

//
4
/

Pop-up Messages From Models CSIM

- A model can popup a message window. Call the following:
CSIM_HALT POPUP(char *message)
Your message as the argument.

- A popup window appears with your message in it.
- Popup has a OK button on it.

Example:
CSIM_HALT POPUP("Special event occurred.");
Or,
// Copy your message into a string ...
char mymssg[60];
sprintf(mymssg," %s Over temperature by %f degrees", MY _NAME, x),
CSIM_HALT POPUP(mymssg),

30

More Modeling Constructs

- * WAIT and RESUME: (Basis of wireless models)

- Controls thread execution, or synchronizes threads to events.

- Convenient for implementing general resource models.

- WAIT causes thread to sleep until awoken by RESUME in
another thread.

- WAIT and RESUME operate on SYNCHRON variables.

- WAITs and RESUMEs can be queued or not-queued.

Example:

DEFINE DEVICE TYPE: Model XYZ
SYNCHRON *synchpt A;

DEFINE THREAD: start_up
{
synchpt A = NEW_SYNCHRON(),
TRIGGER _THREAD(processB, 0.0, 0);
DELAY(100.0);
RESUME(&synchpt A, NONQUEUABLE); /* NOTE the & */

F
END_DEFINE_THREAD.

DEFINE_THREAD: processB

{
WAIT(&synchpt A, QUEUABLE), /¥ NOTE the & */

csim_printf("Process B awake\n");

F
END_DEFINE_THREAD.

\\‘ END_DEFINE _DEVICE TYPE.

CSIM

31

Instance Attributes CSIM

- Specify distinct arbitrary attributes for each box instance.

- Attributes can be specified at any level of the hierarchy in GUI.
- Assign attributes to a model-box when editing it's properties.
- Attributes work like macros. One attribute equation per line.

attribute_name = value/expression

Example:
Xproduce = 5
Yconsume = Xrate * 50.1

- Access attribute values within models: CSIM_GET _ATTRIBUTE()
CSIM_GET ATTRIBUTE(char *attribute_name, char *value, int maxstrlen)

- Attributes inherit downward through graph hierarchy.
Can be specified at any level.

top_level (A=2,B =3)

Module P Module Q (A=7,C =10)

Box1 Box2 Box3 Box4 (A=100,C=75)

32

Instance Attributes - continued CSIM

Model code within the boxes (on previous siide) Sees the following attribute values:
Module P/Box1l: A=2,B=3
Module P/Box2: A=2,B=3
Module Q/Box3: A=7,B=3,C=10

Module Q/Box4: A=100,B=3,C=10,D=75

33

CSIM Installation CSIM

Platform Method
- Linux (Redhat, Ubuntu, ...) 1. tar xfz csim _vxx.tgz
2. sh csim_xx/install _csim_posix.sh
3. start by double-clicking csim desktop icon
- MS Windows 1. unzip csim_vxx.zip
2. Run mswin_installer _gui
3. Drag start-icon to desktop
- Mac OSx 1. Install Oracle VirtualBox
2. Import csim_xx.ova
3. Start VM, double-click csim icon
* The VirtualBox method can also be used on the other platforms
including Linux, Microsoft, and Sun Solaris.
* Detailed install instructions are included with each release package.

34

CSIM Package Directories CSIM

$CSIM_ROOT — (Main tool
— tools directory)
_general_utilities

—— model_libs
core_models ™
general_blocks
lan lib > (base component models)
digilogic
user_contributed —

- demo_examples
Ldemoo
Elémo7
* Always source $CSIM_ROQOT/setup prior to all sessions.

 Then you may want to export CSIM_GUI_SETUPS to your own
customized gui_setup file. (export is Linux bash syntax)

» Set text editor: export CSIM_TEXT EDITOR myeditor.

* You work with your models in your own (arbitrary) directories
while referencing tools and models under $CSIM_ROOT as
needed. y

35

Tool Usage CSIM

 GUI - Capturing/editing design diagrams

e CSIM PreProcessor - Building simulations

« ROUTER - Building routing tables

« SCHEDULER - Generating application software

 SIMview - Running simulations

e XGRAPH - Viewing results

* TIMELINE Postprocessor - Customizing activity timeline plots
« CONTENTION_VIEWER - Viewing network contentions

e C-2-HTML - Auto-documentation of model code for understanding.
 ITERATOR - Multiple simulation launcher / aggregater.

« ScenGen - Scenario entry tool and generator.

e WinFrame-3D (WF3D) - Animation Viewer

36

v

CSIM - GUI

 CSIM's main graphical interface & diagram editor.
* Preferences file: export GUI SETUP FILE
(defaults to: $CSIM/tools/$CSIM_MTYPE/qui setups)
- Sticky vs. non-sticky draw mode. - Snap/Gravity settings.
- Background colors and box styles. - Grid on/off/size setting.
- Initial window size, etc.. - Display settings.
- Preferred Text Editor, Printer, etc.. - Journaling period.
* Hierarchy-by-Reference - Diagrams, Modules-Boxes, Bundles-Links.
- Double-clicking module opens sub-diagram.
- Sub-diagram is common to all instance of given module type!
e Accessing Object-Attributes, Graph-Parameters, Macros, or
Variables.
- All are in common name-space. Can reference one another.
- Edit global attributes under Edit/Macro or Edit/Variables.
- Edit object attributes under selected object’s Properties popup.

=

we | SETETES e

Hode Properties:

Instance Mame: I Medicallnitld

,7} H‘ttr‘ibutesl]]Dc:umen‘tsl 77} X

i R
Edit Model Text| LifeCucle|
i |
e] = i
ricens
s 0K Cancel
i _I _I Disniss
o

Type—Hame :

| Defribulator

Types

= r
Bl ¢ccee i
B »pswo

PP
oD =m0 D

m
— > 2
27 S eae el

CSIM - GUI (continued)

CSIM

Export diagrams directly to Office tools. (File / Print / To File / Office). h
Save image files for documents. (File / Print / To File / Image).

Link directions, simplex = uni-directional, duplex = bi-directional
Bundles: Sub-diagrams for wire-groups. Like Module is to Box.

- Port-names become concatenated across levels. Must be Unique.

Link Direction Types:

Basic Types Further Sub-divided
Simple
Uni-directional _L
Half-Duplex
.
Bi-Directional
Full-Duplex
-

\ . .
(On closerinspection, R,
we can see that afull-duples -
link is actually composed of -

two simplexlinks back-to-back, = = gy
bt dra\ﬁn asone.) k -

Top Diagram

Al ini ~ind

A2 inz | in2

__________________ ﬁ'___ "\\%)‘___""""""_"""""‘h

/' Bundle Diagram-C
g —"—— |

Expanded Bundle View

Al |FE1T Il ni/hd r1
el -]
g
B
A2 FCH1 In2/h1 n2/hi r1
f::}-‘—h—
FG2 In2h2) |ho/h2 r2 &
~at Lt [E o

Building Simulations

1. Define system architecture structure
and model behaviors.

- These may be placed in a single or

separate files via file/import menu.

Yiew

Opt ions Tools | Help | ﬁ;gg¥

CSIM

¥

Mode=

Edit HW Graph

2. Run CSIM preprocessor from Tools menu.
- Analyzes and processes the files, and
links CSIM simulation kernel to produce
executable simulation file.

~Node

3. Run simulation by selecting Run under
the Tools menu or by calling sim.exe.

- Two simulation modes are available:
» Text Mode - Good for batch script
driven, automatic overnight runs.
e Graphical Control Panel - Good for
animations. Easy to learn and use.

Edit Sk Graph

Build HH Sim
Build Fouting Tahle

Build SH
Flot Idesl Timeline

Fun Simulation
Flot Proc Timeline

Plot Comm+Proc TLine
Flot Link Timeline

Post Analyze EventHist
Plot EventHizt

39

Running Simulations CS1

- Interactive simulations can be run from SimView control panel.

[*] =im,exe

File Animation View Options Mode Help | Rurning

Simulation Control Panel izl

Runftnntinuel null M4

null M5

e ‘il fe
([W =]
Siliafy jd . null M7

Boardg

Crawl ﬂ . Al s Four Board

STOF

rull L7 Boardl

Tt

Set Breakpoint

P2, 0] ex_bioar
null M1

Open ModulesSubGraph uI

Cloze ModulesSubGraph “I

Zoom—1In I
Zoom—Out I

null M4
e

Zoom—To-Fit I A—pP

null HME

SimView - Simulation Control Panel CSIM

i N
/' SimView -
| * Run control - Run, Crawl, Step, Stop, Breakpoints.
* Navigate diagrams as in the main CSIM-GUI.
 Time & Status Displays.
* Animation Options:
- Animation On/Off
- Time Display Updating
- Animation types, links/boxes, concurrency, built-in/user.

* View Options: -
B Port names ile hination iew ions aills Hel TIME: 340,729
- Aspect Ratio Lock - “—j' - - = * | humire
- Flatten hierarchies i
e Option Menu: BUVEOE ot e
B SCFO”Ing VerbOSItleS Step M Select Animation Type:
Tine Disela ~ 4 Nogess Individual Events

- Examine model state variables
- Examine link states

2, Modes: Concurrent Activities
3, Modes: User/Model Defined

Crawl | ﬂ

- LI St eve nt q u e u e . STOR 1, Links? Individual Events
) TOO I S: 2, Lirks? Concurrent Activities
_ V| eW T| m e ACtIVIty P | Ots . Sat Br‘eakpointl 3, Linkss User/Model Defined
\ - Print diagrams/images. Misable B riction
N Dizable Link Animation —

41

Text-Mode Simulation CSIM

~ Alternative to SimView graphical simulation. Great for batch jobs! X
e Build with: ¢sim -nongraphical arch.sim (or Tools/Modify GUI menu.)
* Run simulation by invoking sim.exe
 When simulation comes up, you will see the simulation prompt.

» At the prompt, you can type h for help at any time.
* It is common to set simulation displays and break-points at this time.
* You can initiate and control the simulation by run, step, or crawl.
Example:
sim>s
(step amount = 1.0, stepping by 1.0)
or
sim> step 0.25
(step amount = 0.25, stepping by 0.25)
sim>s
(step amount = 0.25, stepping by 0.25)
* Crawl can be used to sequence by single events.
» crawl xx - sequences to event-xx within the current time.
e run - Starts simulation running until breakpoint or end, also r.
* quit - Exits from simulation, also q.
» sim_status - tells what device is being serviced, what event is being

\\ processed, and what event the simulator is on within the time instant. y

42

Running Simulations CSIM

//

Summary of run-time commands: \

verbosity settings, (v), under view menu.

run - Run or resume, button.

step - Step by time amount (s or step xx), button.

crawl - Step by a event(s), (c or c xx), button.

break-points - Set break-points, (b), button.

show links - Show status of all links.

examine _link - Examine status and queue of specific link.

stats - Send link utilization statistics to file.

sim_status - Tells what is about be executed, device, event, delta-cycle, etc..
show_active links - Show just the active links.

show _event queue - Show the current event queue.

fshow links - Dump links status snap-shot to a file.

list devices - Show a list of all the devices names in the simulated system.

list_variables - Show a list of the shared variables contained by a box and
their current values.

time - Print the current simulation time.

g = exit

43

The Simulation Cycle CSIM
N

Advance time to next scheduled event. S

While there are processes scheduled to execute at this time.
—

Execute any processes scheduled for this time
[

a.) Schedule new events and processes,
b.) Assign new values to variables.
c.) Record new values to be assigned to ports.

)

Time Advance Loop

Advance schedule to new events.

Delta Cycle Loop

- Delta represents sequence only (infinitesimal delay), without time increment.

Time Line

4A * *
@ 3A * * * *
g 24 * % * % KN *
Ll

1A W K KX K * X3 * .

e lime /:
10 ms 20ms 30ms 40ms 50ms 60ms y-

Time /

Iterator Tool & iGUI CSIM|

iGUI Iterator Tool

. f
Control
le

A

Iterator:
* Launch multiple simulations,
* Sweep parameters over specified ranges and step sizes for recursions, or,
*Vary parameters randomly over ranges - Monte Carlo simulation,
* Change parameters without re-building/re-compiling.
* Aggregate the results of multiple simulations for listing and/or plotting.
* Plot histograms.
* Optimize control variables.

Iterator-GUI (iGUI)

|. Set-up parameters/ranges and statistics to be gathered,
ll. Launch recursions/simulation(s),

lll. View results from the multiple runs.

45

T A7 'F . i o %ﬂh‘k%@% - }Jﬁf‘i’!
Pl B .,.. I f
Vi I y l. ‘r!‘.ﬁé.;‘_ 'F ;:[E;';:;;-;A;,. o S

iGUI Guides Each Step.
1. Set up,
2. Running,
3. Viewing Results.

Ttaration Sunwmarat Sun Jam § 20+11330 2003
l:::l I:ﬁ:lliltl:l Fl.ml:d.l:l R0 mtmp=d 00000
nd =i ~batch

+1.1 r in O,066EET mirubes,

Me=mn=3E, 500000
Mir=1, 000000,

Ha K_JU':' DOC
Std, Dew, =10, 355073

PLOT 1. wit
n@r‘aph —p] —Wlu‘na 1 2 —ole Graen graphlodat &

Histograw Plat 2.

\
\
\
\
\

Time-Line Tool & GUI

4 Time-Line GUI

[*] tlpp_aui

File Ot ion= Help |

Wer=ion 1.0

Timel ine—FF GUI

1. Choose “berin®/ end” Events: ﬂ
Set "HeginAOn® Evant:l I_?I:EEjn
Set 'End/0ff' Event: | IEr‘d

2. Anmotations Style: ﬂ

w 0. Mo Anmotations ™ 3. Event string
s 1, Ewvent MHumnbe-

e 2, Ewvent MHane ~ 9, Hyper-note

w d, Full svent =tring

3. Style of Bar-endxz: ﬂ
& 0, Equare w 1. Tick-marks

4, Re-ZEequence Devices: j
Edit Dewic= Yertical Pozition=

5. Set Event Colors: j
Set/Edit D:nlnr'sl

6. Range of Devices to Plot: j
“* All -~ Rarge: | - |

T. Time Zpan to Plot: ﬂ
ALl e Renget | - |

2. Zave Zeltings, Process, and Plot: ﬂ

A.l Savel B.) Gererate TL|

C.) wieu TL|

\ Exit I

N

XGRAPH

Time-Line-PP

TL-PostProcesso
4 '“-
__;{__\I h.:
. camw ﬁ Plot. darJ
Fle . _Fie

TLPP-GUI & TL-PP:
- Produce highly customized time-line graphs.

- Optional - some models produce plots directly.

- GUIl guides through each step.
« GUI produces tl.com file. Can be re-used for

repetitive sims.

- Control following aspects:
* Order of devices on the y-axis,
* Colors of specific event-types,

* Annotation styles,
* Sub-sets of devices displayed,

* Time ranges displayed
* Graph titles.
* Styles and thickness
of time-line bars,

CSIM

Models & Modeling

- Techniques and Conventions

- CSIM language features and extensions (general)
- Performance modeling concepts

- Performance modeling library - modeling hardware
architecture

- Data Flow Graphs - describing application software
- Model Calibration, Validation & Verification

48

Performance Model Libraries

e Performance Model => Time-related
aspects,

= Structure + Timing only,

(almost no Functional detail)

* A set of special purpose utilities support the |

9

performance models.

* The performance models are intended to
investigate system architecture related
issues, such as:

- Network topologies, |

- Bottlenecks |

- Scenario-to-network task mappings,

- Resource utilization

- Time-lines of proposed systems.

- Determine total system processing
throughputs and latencies.

Performance Modelin
P

System Network™

RTL < Network Component

Systemns

Board Level

Gate

49

Hw/Sw-Architecture Paradigm CSIM

/ (Computer Hardware / Software modeling) \\
(Multi-core, Multi-processor, and/or multi-process systems) S

Network Hardware Architecture:
Processor, Memory, and Switch Nodes Connected by Network Links

nM Ii—_l S H%ll—lml I_I— S | I_—F',_I
MR T @
(S (S |
W—%HS HEHM| IMHEF S F%I—!ﬁl

1

Software Application Flow Diagram:
Primitive Tasks and their Data Dependencies as Data Flow Graph

(DFG) — . S— . — —
Ceon—@E—C) VM%K}T}/ Thresh)—Sink)
El [U

VM

FIR)—(FFT ”@%PJXM&/
\ (FIR)—(FFT)— (VMUY DOT)(Thresh /

50

System Architecture Simulation CSIM

Model of Network System

Ec_BEhaVi_(;:S
EEE | PE[SE]|ME |

Ne Structure:

Network Topology

CSIM Simulation
(HW/SW-cosimulation)

Application
Scenario
Programs

for each PE
Board1/CE1
Recv 1024

I//'

N ==
Analysw/, =

Application Scenarios A

(Partition)

¥
(Map / Allocate)
(S,che*dme)

_.—-—-"'"

Compute 3.2-us
Send 512 2
Send5?2r3

Recw 1024

A\

/ //
4

X
Threshold Amt_

~_Application Data Flow Graph CSIM

» Flow graphs conveniently describe many applications.

Arc
Produce Amt 3

Node

“Operation Name”
Compute_Time

Iterations
Map_PEs

Consume_Amt_

A2 —F
Threshold Amt 2

Consume_Amt_2

Arc4d
Produce Amt 4

« Node is said to be ready to fire when all input-arc queue-lengths > arc thresholds
and output-arc queue-lengths are < limits.
» To fire, a processor element must be available to execute the task.
« When node fires:
— Consume_Amount data is removed from each input arc.
— Node task begins [terations-executions (normally, iteration=1).
« Each execution iteration lasts Compute_Time usS.
« After each execution iteration, Produce_Amount of data is placed on each output arc.
« Task node can be assigned or mapped to execute on specific processor elements.

//// :
I~ \

4

N
.y _ .

o 1

/
A
/
/

~ Example Data Flow Graph CSIM

\
P=100
P=produce_amount, T=Threshold_amount, C=consume_amount.
*START produces 100 on arc each time it fires.
OP1 consumes 10 from arc each time it fires.
y

53

//

Software Application Program CSIM

/
7

« The application flow graph must be partitioned, mapped, and scheduled
onto the available processor elements of a candidate architecture.
« The result is to be used to drive or control the PE hardware models.
Arcl

T=200—_
C=200

=" task_name=FFT \
#5%20 ; ompute_time=fft_time gg‘ﬂ
—100 > iterations=1 -

C=100

Arc3 —— T\ map_PEs=8,2,24 | ———

T=2) P=60
c=2

« A typical flow graph node can be expressed as a group of simple instructions.

RECV(arc1, 200 bytes)
RECV(arc2, 100 bytes)
RECV(arc3, 2 bytes)
COMPUTE(fft_time, FFT)
SEND(arc4, PE4, 30 bytes)
SEND(arc5, PE14, 60 bytes)

" «These pseudo-code instructions are interpreted by the PE hardware mndels.//

54

v

" Four Primary Instruction Types:

RECV(message ID, message length)

SEND(message ID, destination_PE, message_length, priority)
COMPUTE(time_delay, task_ name)

LOOP

Example Program for /Boardl/cel:
recv 10 16384 -- Get input data for one range-pulse
compute 2160.0 Polarizationl Rangel -- Perform range-processing on data
send 1 2 2048 2 -- Distribute corner-turn data to neighboring send 1 3 2048 2 -- ...

send 1 8 2048 2

recv 10 16384 -- Get input data for new range-pulse

compute 2160.0 Polarizationl Range9 -- Perform range-processing on data
send 1 2 2048 2 -- Distribute corner-turn data to neighboring . ..

recv 8 131072 -- Get corner-turn data

Software Application Programs Model CSIM

compute 1730.0 Polarizationl Azimuthl -- Perform azimuthal processing for one image raster

CSIM's SCHEDULER tool takes care of
the complex message indexing

55

Software Application Programs Model CSIM

v

- ¢ |t would be very tedious to manually convert flow graph descriptions
into pseudo-code programs for each PE.

 Making the message-IDs match in corresponding PE files can be very
Complex. (message indexing)

 An automatic pseudo-code generator is available to ease this task.

e Itis called the SCHEDULER.

e The SCHEDULER converts DFG descriptions into pseudo-code

programs.

T

- C | _PE_Op rogj

5 N«
E-PE c | » SCHEDULER 1{

PE_1.prog |

-

- N e
""1 PE_89.prog

« Map PE assignment of each node is optional.
 If you do not assign it, the SCHEDULER will assign automatically.
* The Partitioning/Mapping/Scheduling problem is NP-complete.

\ These tools are aids to finding optimal solutions. y

56

- Computer Hardware Architecture Models ngg[M

Hardware architectures are composed of building-block models.

Generic models of:
- Processor Elements
- Memories
- Buses
- Crossbars
- 1/0 units

Many specific variants of these have been generated for special purposes.

All are based on common message token definition for interoperability.

57

Message Token Definition

/ //

' Goal: Represent Message Transfers Through Circuit-Switched Protocol

Network By Using Tokens.

CSIM

Must account for message transfer time as function of traffic.
Note: Circuit-switched protocol exhibits blocking: it affects performance.

enum message tyvpe { REQ, ACK, NACEK, PREEMPT };
Tﬂ'ken struct message_ struct
{

PUFDUSE int sre, dst, mid;
Message_l[} enum message type purpose;
Pri(}rity J:ﬂt .'_en%',rth:] 1 St message length in bwtes */

int packet_ length;
Length int route list[MAX ROUTE], route_index:
R{jute int prierity;

float launch time;

int mbody;

Approach 1: Six Token TypeSumose
. REQ - Request path through network

. ACK - Grant request, path allocated

. NACK - Request blocked

. DATA - Data begins moving

. DONE - Transfer complete, reallocate path
. PREEMPT - Transfer preempted

oA WN R

Approach 2: Four Token Types

1. REQ - Request path through net
2. NACK - Request blocked

3. DONE - Transfer done, reallocate path
4. PREEMPT - Transfer preempted

58

- Processing Element CSIM

Model

Simple abstract PE model

\-.__‘______j___../
SW Computation Agent
~_Program___J (thread)

— > 1

> !

Communications
Agent

Network

* For Architecture Performance Modeling

* Local memory for storage of local data and software.
« Two concurrent processes:

- Computation agent interprets application software.
- Communication agent provides reliable asynchronous
reception and transmission of messages through network.

System Architecture Model CSIM

4 N
4 Files Models A

pe 1 prog

(generic_ pe}
pe_2.prog

-
'[99”9”'5 pe) | local_bus
(Ibus)

pe_3.prog {genenc pe)

* Processor Element models read respective files at start-up:
- Program files,

\ - Routing file.

\ * Bus Elements do not read any files.

y
/
A
y
/
N /

60

Generic Bus Model

Ty Funnel -

Actual CSIM code for a Bus Model

fE T A XA A XA A AT A A A A A A A AT AN AA A A A A A A AT A A A AT A A A A A A A A A A A A O A A A A A4
/ /

/* CSIM Model of Ceneric Local Bus (LBUS) *
J.'"""-' *J."'
/* This models a common bus by funneling all incoming packets */
/* one-at-a-time through a single internal gqueue. Each input */
/* port of the bus has a process walting for a packet to *f
/* arrive. When a packet arrives on the port, the process */
/* pushes the packet onto the “funnel” gqueue. Concurrently */
/* arriving packets pass through the funnel cne-at-a-time and */
/* are routed out to their respective destination port. *
f * * f
/* One process handles the funnel-gqueue by receiving messages */
/* on the internal gqueue and dispatching them to the */
/* appropriate output ports. */
Jl.-'-.'c*'.-r-.'c*r*r**r*r**r-k***1-.--.*.-*r*r**r*r**r-.'c*-k*r**r*r**r*r**r****r**r*'.-r-.'c*;.-'

DEFINE_DEVICE_TYPE: Bus /* N-port data funnel */

PORT_LIST(p0, pl, p2, p3, p4, p5);

/* Local wvariables to device instance. */
double link usage;)
char **port_names; /

int nports; ////
float times in, times out;)

~ Generic Bus Model (continued) CSIM

DEFINE THREAD: start_up

J*¥ Initialize
times _in = 0.0

times_out = 0.0;

statistics reporting */

port_names = list_in ports(&nports);

/* Start the internal funnel-gqueue handler. */
TRIGGEEERE_THREAD(port_handler, 0.0, 0);

;%
¢

Start the internal funnel-queue handler. */
TRIGGER_THREAD(f_handler, 0.0, 0);

WAIT(&CSIM_EndofsSim, NONQUEUABLE) ;

ceim printf(*Utilization = %f percenti\n®, (times_out - times_in) / CSIM_TIME) ;
}
END DEFINE_ THREAD.
DEFINE_ THREAD: port_handler /* Port handler process. */
struct header_struct *message; /* Local wvariables to thread instance. */
int length;
while (1)
{

RECEIVE_ANY (port_names, &message, &length) ;
times_in = times_in + CSIM_TIME;
SEND (| “funnel_in", messadge,

message—>packet_length) ;

}

} V.
\\\END_DEFINE_THREAD.

Y.
N

~ Generic Bus Model (continued) CSIM
> N

,/ // \\\\
DEFINE THREAD: f handler)
{
struct header_struct *fmessage; /* Local wvariables. */
int flength, pnum;
while (1) /* Do forever. */
RECEIVE(“funnel_out”, &fmessage, &flength); /* Wait for full packet. */
times_out = times_out + CSIM_TIME; /* Record usage stats. */
pnum = fmessage->route_list|[fmessage->route_index]; /* Handle routing. */
fmessage->route_index = fmessage->route_index + 1; /* Increment packet’'s hop. *;

SEND (port_names [pnum], fmessage, flength); /*Send packet out respective port*/

}

}
END DEFINE THREAD.

END_DEFINE DEVICE TYPE.

L

funnel_in f funnel_out
//

Tool Flow

»

4

/ Performance Modeling Simulation
| Environment

Simulation Setup

CSIM

Simulation Post Processing
/_d-r""__ T
—1_Archsim ?H’"'*a
_) P
% fSharc wllnkim CSIM Builds / / -~ B
— [preproc} — sim. ___,P"——.—"
g)] _LANaisim r - Im.exe o _!Ezer_*ntHlst.d_at
h o — Models 17 -
M‘f['f'“ sw'_tf_r_'_;}" %_. ROUTER K T
netlnfo - —/4# ‘Llink_use.daj
e —
', T j Time_line
I'. F“--T —-"'i Displayer
.I | __tlinedat _
o ==\
X ./..f H\ I|| |
g — o I‘ ,—--"‘_ Ty XGRAPH
3 Application SCHEDULER ——F pe0.prog W
' DFG
\.R____ ____,/ H\J;Elll?llti prog S

/ Routing Tables CSIM
//” : \\\

* Generating a routing path to reach another PE would be time-consuming
' if conducted during runtime, because common paths are used repeatedly
and architectures are complex.

 The Perf.Mod.Lib models use pre-prepared routing tables.
* The number of entries in a routing table is: NxNxM
Where N is the number of devices in the system,
and M is the number of alternate paths to store.
* It would be tedious to correctly prepare such tables manually.
 An automatic router is available, called: ROUTER

[“g}zh .si}:f_{j "E‘“neunfﬁ’ ROUTER routerte

« ROUTER interprets your architecture description via a CSIM netinfo file.
* Produces routing table in the format expected by Perf.Mod.Lib. PEs.

|
\ /
A\ /
\ /
/
/
\ /
N

65

Post Processing Results CSIM

/ T \I
Simulation | Launching Post Processing Viewing Tools
Simulator é [Post P Grapher

| ' : / OST Frocessor __ﬁ\ YCRAPH
/ | \ |"" ﬁ_ | Post Processor \ f,/ |" Plotter

Tl I ANES S
||3||0’[(Datar ;j.‘._”,_:._.,_ : J\P[PlOtT "-.\H i
lles : :

SN —— e ———————

- Several methods to view results, several pathways.
- You can customize new post-processors.
- Results can be archived, analyzed later, and compared

| |
\ /
\ Y/
\ y
A\ /
’ ’] y,
/
g

66

Viewing Simulation Results CSIM

- Example time-line from
XGRAPH.

Activity for each device versus time

/fpcap2_mcm2_pe3
/fpcap2_mcm2_pe2
/fpcap2_mcm2_peT
/fpcap2_mcm1_pe4
/fpcap2_mcm1_pe3
o /fpcap2_mcm1_pe2
E /fpcap2_mcm1_pe]
E /fpcap1_mcm2_pe4

E!fpcamecmE_peB

/fpcap1_mcm2_pe2

/fpcap1_mcm2_peT

/fpcap1_mcm1_pe4

/fpcap1_mcm1_pe3

/fpcap1_mcm1_pe2

/fpcap1_mcm1_peT

50 55 60 65 7t
Time (Seconds)

67

Development
Techniqgues

- Distributing Simulations
- Animating

- Annotating

- Debugqging

- Log-files

- Handling threaded
software

- Modifying routing tables

CSIM

68

WD ey Eer P

Model Calibration - Validation CSIM

Process for accurate abstraction:
Calibrate \‘

Estimates Model(s)

Parametric Expressions,
coef, curve Titting

"
| -
- L
Benchmark(s) or Detailed Model(s)
Application Benchmarks Communication Benchmarks
Generalized Canonical Benchmarks ABCD
Applications -
5td benchmarks Published tables Assess linear additive/predictability
Published tables vs. chaotic elements
B B Ao : Execution Aate (in bFLO P sfSec) v Weetor-Length
Link Modeling: Effect of Protocols [o inc HAGE M go i on the BTAr AGSE 21562 "
(,.., (0.01-persistent 2 o — o
= on Nonpersistent CSMA a
=
s 0.1-persistent CSMA N A
= .- a .
§ - E % e Escpamad s View of Graph Alsove Seoond Begion of Inlersst
= ¢ Shtiod L i T Bl R e s
E— / ALCHA -perssstent -?E_"._i.itﬂ'_i'cs."l{_-!l = el R VN I U S I R S
. ¢ ALl o g e e
100 — w — DE‘I‘I‘IBIII'IdEd L'oad E ey -- -------------
eetor) Comparison of Link utilization versus demanded load for E s BAL i Wi CHTTEH
ArIOne o aecoas protocole. E bbb e .
(Model reflects choice of link protocol.) T T , m.,ﬁ'ﬁ{,.“dﬂ’“ TR

Accuracy + Abstraction /

Multi-Simulation Interface

> (MSI)

e A simulation interconnection engine.

e Like MSCO High Level Architecture HLA.

e Open Freeware - Gnu Public License.
e See: http://msi.sourceforge.net/

CSIM

70

MSI Information CSIM

*

=
"
~ + Based on XML socket stream.
e Usable from any programming XML
language. Socket

e C, C++, Java, Ada, Perl, etc.

MSI Server

No library dependencies.

Cross-platform code, portable to all major OS platforms
(Linux-PC, Solaris, Irix, HP-UX, Mac OS X, MS Windows, FreeBSD, etc.).

Provides managed federation start-up (join) control.

MSI is a single executable file.

* Distributed with example code for simulator (federate) side
interface.

\
\
\
\ 4
£
oy /

MSI Description Concepts CSIM

—
>
>

/ N
'« Data exchange formats)

- Instead of forcing clients to & b
convert all shared data to neutral formats, SEZERTESS
Meta-data is added to each exchange, TEEEET
enabling envelope parsing; ==> Verbose. | EEssuseamees

- Avoids high processing and bandwidth costs | .
for transforming and packing all data. Direct face-to-face
mappings
* MSI Rosetta Stone approach

- Instead of transforming data on input, MSI leaves data in original form
for efficient transfer.

- MSI client-side library transforms data to best local form.

- If receiving simulation can parse incoming data, then no translation
overhead incurred.

- XML enables context insensitive parsers and transformability.

- XSLT can specify arbitrary transforms; ==> Supports direct inter-ontology

mappings .

e

! WinFrame 3D - Viewer CSIM|

/ ” (WF3D)

* For visualizing simulated platform locations, \
movements, and activities.

Simulator

* Accepts input from files or sockets.
\ « XML format.

« See documentation, tutorial, and examples on j
CSIM web-page under WF3D /

WinFrame 3D - Viewer CSIM

1. Specify Initial Camera Settings
- View position, field of view, depth of field.

<set camera>

<frustum fov="", near_field="", far_field="" />
<position X="", y=IIII’ Z=IIII />
<p0intat X="", y=llll’ Z=IIII />

</set camera>

2. Define the object types

- Type humv shape and color is ...
<def obj> type name

<col r=""g="" b=""t=""/>

<quad> <vrt x=""y=""z="" /> </quad>



</def obj>

74

//
/

WinFrame 3D - Viewer

CSIM

3. Instantiate Objects -

- Object Q is of type humv at location x1,y1,z1.
- Object W is of type humv at location x2,y2,z2.

<inst_obj name:llll kind=llll X=IIII y=llll Z=IIII Xang=

4. Move Objects -

- Move object Q to position x,y,z by time T.

<mo Obj=”" T1=IIII T2=IIII X=IIII’ y=llll’ Z=IIII />

yang=

Zang="” />

75

- Vehicle Platforms Terrains (VPT)

Spatial Modeling Library - VPT
 Manages platform positions over time.
* Way-point based.

e Services Provided:
- VPT_Get Neighbors(myplatform, radius);
Returns list of nearby neighboring platforms.
- VPT_Get Position(platform, time, &x, &y, &z);
- VPT_Get Heading(platform, time, &heading);
- VPT_Get Velocity(platform, time, &vx, &vy, &vz);
- VPT_Set Velocity(platform, time, vx, vy, vz);
- Coordinate conversion routines.
UTC, Cartesian (x,y,z), Lat-long, polar, ...

 Compatible with ScenGen - Scenario Entry Tool (SET),
and WF3D - Scenario Visualization Tool.

CSIM

76

Debugging Tips CSIM

» Raise verbosity. Most CSIM tools have a -v command-line option.
csim -v 1000 testarch.sim

* Use Debugger. View variable interactively. Stops simulation on error line.
gdb sim.exe
run
print xyz
Or, use ddd for graphical debugger.

Use -trace. CSIM inserts unigue Debug xx printf between every line of models.
csim -trace arch.sim

Capture output to log file. Search with grep/more/editor.
sim.exe > log

Use -nomarks. Errors reported relative to intermediate file out.c.
csim -nomarks arch.sim

Raise model and/or simulator verbosities.

77

General Utilities CSEIM

~ General Utilities Directory:

- A set of utilities especially useful for working with
simulation data files and complex projects.

- Under tools for each platform.

Ex. $CSIM _ROOQOT/tools/linux 2.3/general utilities

Tools List:

- c2html - Convert C-code to HTML, routine, index, hyper-text, call-tree, ..

- draw_tree - Draws a printable directory tree, showing space used, dates, ..
- disk_usage - Shows space used by directory branches.

- nesting_list - Shows nesting level of code. Produces annotated listings.

- scengen - Scenario Generator, entry tool, for VPT and wireless models.

- line_diff - Compare files and show line by line differences.

- compare_dir - Compare whole directories to other directories.

- filter - Globally replace phrases without editing files.

- scz_compress - Simple lossless compression. CSIM tools decompress on-the- fly.
- scz_decompress - Opposite of above.

- xyz2wf - Plot matrix data in 3D by converting to WF3D format.

- SimDiff - Compares diagram versions.

78

Modeling Workshop

- Enhancing hardware-architecture models,
- Debugging models and building simulation,
- Extending application-scenario graphs

- Running simulations, and analyzing results

CSIM

79

Documentation

 Current documentation, examples, new, & information
are maintained on-line at:

WWW.CSIm.com

CSIM Web Page

@ Cvernview

i Modeling
Language
& Simulator

3 -"C:—\;I Router Tool

" N Wiewing
“!-j;‘!",& Results

a' WE-3D

E—EI Tutorials

. Diagram
B P

TR]
S Scenaro Entry

e e
|

/ : TimeLine
== Plotter

===

E Multi-Sirm

A Examples

CSIM

———— Do crisnnen tation

Models
Library

- Software
il Scheduler

o lterator
Cptimizer

TR
% mm}ld XGraph

T General
L Ulities

? Index

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

