
OverviewOverview

TutorialTutorial
www.csim.com

July 6, 2023

chein@csim.com

http://www.csim.com/

2

Outline

● Session 1: (Day 1, 9:00-12:00)
– Simulation Modeling Concepts
– CSIM Overview

• Session 2: (Day 1, 1:00-4:30)
– Installation and Set-up
– Tool Usage and Techniques
– Hands-On Examples

• Session 3: (Day 2, 8:30-11:30)
– Core Performance Modeling Library
– General Blocks Library
– Multi-Simulation Interface (MSI), HLA
– Development Techniques / Workshop

• Session 4: (Day 2, 12:30-4:30)
– LAN / WAN IP-Network Modeling
– Visualizations

• Session 5: (Day 3, 8:30-11:30)
– Processor System Modeling
– Modeling Workshops

• Session 6: (Day 3, 12:30-3:30)
– Scenario Modeling

3

CSIM Overview

– Simulation concepts - virtual prototyping

– System modeling examples

– CSIM tools and their flow

– Structure description - graphical editor (GUI)

– Behavior description - language constructs

– Model Attributes

– Simulator - building + running simulations

– Analysis tools - viewing results

– Application libraries and domains

4

Why Simulate ?

System Challenges:
● Modern systems are too complex to manually predict or

 understand all potential issues
● Difficult to comprehend all system and mission interactions/sequences
● Integrations occur late in project cycles –> problems found too late
● Detailed implementations take too long, cost too much to get wrong
● Need comprehensive prototyping, early and often
● Systems are too large to run detailed models within project schedules
● Ad hoc models cost too much, lack credibility
● Need efficient rapid virtual prototypes

 (Yet, many challenges to system modeling)

Reasons to Simulate:
● Network or Architecture - Evaluation, Optimization, or Selection
● Functional allocation & optimization
● Hardware / Software mapping & scheduling
● Risk reduction: logic, timing & performance issues
● Customer prototyping & demonstrations
● Early integration & testing – Find & address risks early

5

Simulator Requirements

● Arbitrary modeling Abstraction & Detail of:
● Functions, behaviors, values
● Structure / Architectures / Interfaces
● Timing relationships, sequences, delays

● Easy to use, rapid model construction, Graphical Diagram Editor
● Available model libraries, Enable rapid Model Re-Use
● Support multiple domains (Networks, Logic, Electrical, Work-flows, ...)
● Platform independent / portable
● Modeling language same as embedded system (C)
● Standards based – C, XML, HLA, ...
● Rich visualization capabilities
● Must be validated, proven, trustworthy, efficient, scalable, fast

System Modeling & Simulation Requires Tools:

Modelled System Real System

6

Overview

What is CSIM?
– A general-purpose system simulation environment

● Discrete event simulator – simulates time & sequences
● Hierarchical block diagrams connect models
● Model functions are described in standard C language.
● Model integrator – manages concurrency, time coordination

- Quickly model & test complex systems: Networks, Tasks, Architectures, Logic, ...

- Supports system trades: Performance, rates, latency, bandwidth, ...

– Both Graphical and Textual development methods.

– Several domain Model-Libraries speed system modeling

- Supports multiple abstraction levels

Discrete Event EngineDiscrete Event Engine

Block Diagram ManagerBlock Diagram Manager

Domain Model LibrariesDomain Model Libraries

7

Modeling Concepts

● Abstraction versus resolved Detail
● Speed, scalability
● Visibility
● Accuracy vs. Precision

● High Abstraction is lower Detail, & vice verse
● A given system, or component, may be

 described at many different abstraction levels
● A given model may be composed out of

 a combination of lower level models
● Detail does not imply accuracy

● Before modeling a system, consider:
● What are your goals ?
● System concerns ?
● What do you need to investigate ?
● What should models contain ?
● How to test your system & models ?

Tools must support multiple abstraction levels.

8

The Power of Abstraction

9

Modeling Concepts

Three Axes of Description:

● Structure or Architecture
● Instantiates the components
● Shows how the components are inter-connected
● Displayed in Block Diagrams
● Can have hierarchy (more detail later)

● Functionality
● What a component does, or how it does it
● Described in equations or code

● Time
● Delays, rates, relationships, sequences

A = B + C;

TimeFunction

Structure

Behavior = Time + Function

DELAY(20 mSec);

10

Simple Example of a System Model

Something happens here.
Time delay of 1.2 seconds.
Something else happens.
Send data out.

Something happens here.
...
Wait for data to arrive.
...
Something more happens.

Something is happening here.

Can you identify:
- Structure ?
- Timing information ?
- Functionality ?

11

Example of multiple abstraction level modeling

● Multi-Vehicle scenario resolves
 interactions between platforms
 within a realistic mission scenario

● Algorithmic level model
resolves functions
within the vehicle
systems above,
but not computing
system details

● Multi-processor computer architecture
simulation resolves the hardware,
software, and data transactions
through time to accomplish the
above algorithms

12

Example Computer Hardware & Software Model

● Networks of processors can accelerate difficult computing tasks
● But coordinating software & data on complex networks is difficult
● CSIM provides tools to understand & optimize parallel systems

(1) Model Software Applications separate from (2) Physical Architectures
(3) Simulate the Software models executing on the Architecture models

(Hardware / Software Co-simulation)
(4) Visualize the performance, identify issues, improve the system

4. Activity Time-Line

1. Software Application Model Diagram 2. Multi-Computer Hardware Architecture Model

3. Simulate

13

Terminology

Model – (noun) A description of a component, that when executed
within a simulator, exhibits the behavior of the intended component,
such as responding to external events, stimulus, and internal states.

Model – (verb) To create a description of a component in a form that
can be connected to other component models and executed

 within a simulator.
Simulator – (n) A tool that integrates (connects) models for the purpose
 of executing (running) them, and for observing their interactions,
 and collecting results. Simulators posses common infrastructure
 that enables coordinated execution of models, but which is not
 specific to a particular system being modeled. Such infrastructure
 includes the synchronization and management of simulated time.
Simulate – (v) To execute models within a simulator. To run simulator.
Simulation – (n) A simulator configured with specific models.

Model

Model

Model

Simulator

Simulation

14

How simulations can be used

● Simulator is re-used without modification across many projects by
attaching different models

● Simulator enables models to be re-used and integrated to simulate new
systems without modifying the models themselves

● Virtual Prototyping:
● Iterative modeling at progressive

 detail levels reduces design
 from requirements down
 to physical system

● Testing and evaluation
 occurs throughout process

● Design is documented as
 Executable Specification

● Design alternatives are
 maintained in trade-off
 database

Trade-off
Database

15

Base Model Libraries

Core Models - Hardware/Software Architecture Performance models.
 Processor, Bus, Crossbar, Memory, Board & Rack models.
 Data Flow Graphs (DFG's), Static&Dynamic Scheduler.
- About 30 models. Some very complex.

General Blocks - BONES-like basic function boxes.
- Includes resource, queuing, and statistics models.
- About 340 models. Most simple, but some are complex.

Human Factors - MicroSaint-like (MAD) work-flow models.
- Includes Task, Queue, Switch, and Resource models.

LAN/WAN - IP-based network models.
- Includes routers, firewalls, switches, hosts, IDS, INE, SONET, hub,
 subnet, monitor, etc. (VNS like/related)
- About 15 models.

Wireless - Simple radio components models.

16

Base Model Libraries - continued

Vehicles Platforms Terrains (VPT) - 3-space models w/movement,
trajectories, way-points, mission-plans, spatial-services, maps, vis..

Distributed Simulation Functions - Wormhole model, HLA interface,
Multi-Simulator Interface (MS)

User Contributed Models - General purp. functions, slider & button
control boxes, generic Pub/Sub messaging functions, etc.

Experimental or Example Libraries: (Not production level)
 Economic / Social models - Efficient, scalable to large populations.
 Complex Vector Math function boxes - Matrix and vector math func.,

 FFT, image processing, etc..
- About 50 models.

 Digital Logic - Includes basic logic function, and SSI parts, registers, ALUs,
 general purpose testbench. Includes inertial+transport delays.
- About 60 models.

 Analog logic - Continuous systems w/inertia, frict., energy, momentum.
- Can model simple analog RLC electrical circuits, thermodynamic
 systems, mechanical mass/spring/damper systems, fluid reservoir systems
- Scalable with optimal convergence.

17

Simulator In-the-Loop
• Simulations can be attached to real systems, or ...
● Actual application source code can run as if in actual system.

– Minimal functional, temporal, or structural distinctions.
– Enables early and continuous integration and testing.

• Developed, validated application software emerges directly from
verification models; not separate translation & development process.

* Graphics from Altia Faceplate

Virtual Rapid-Prototype

18

CSIM Model Description

CSIM models consist of two distinct forms of description:

1.) Architectural or Structural Description:
– Described graphically (Block diagrams).
- Edited with GUI.
– Topology - What connects to what, and how.
– Model Instantiation – Sets model-type for each box.

2.) Behavioral Description: (Function + Timing)
– Described textually (C or C++ code).
- Edited with any text editor.
– Model Type Definitions - Describes each model-type's

Functional & timing behavior

Example:

Example: A = B + C;
Delay(20 mSec);

19

A Simple Example:

• Structural description of a system:

• Behavioral description of an model-type (box):
DEFINE_DEVICE_TYPE: MC68030
 PORT_LIST(ioprt);

 /* Local Variables */
 long message, length;

 DEFINE_THREAD: start_up
 { /* Any C-code can go between here, */
 message = 1;
 SEND(“ioprt”, message, 1);
 RECEIVE(“ioprt”, &message, &length);
 printf(" Received reply.\n");
 } /* ... and here. */
 END_DEFINE_THREAD.

END_DEFINE_DEVICE_TYPE.

Simple example system.

Name = processor_A
(Type= MC6800)

Name = processor_B
(Type= MC6800)Half-duplex

20-MB/S

20

Basic Tool Flow

21

Other Tool Flows

22

Structural Definition

● A structural block diagram describes the topology of a module.
● A module diagram contains boxes connected by links.

– Boxes represent entities or sub-modules.
Leaf-entities represent behavioral nodes (contain C-code).
Sub-modules produce hierarchy by referencing lower diagrams.

– Links represent connections between boxes.
• Module-boxes are drawn with thicker lines than leaf-entity-boxes.
• Double-clicking, or opening, a module-box, opens sub-module diagram.
• Attributes:

– Boxes: Instance Name, Type.
– Links: Direction (smplx, hdplx, fdplx) (* = full-duplex),

 Transfer Rate (* = infinity MB/S),
 Fixed Overhead (* = 0.0 uS),
 Queue/Buffer Size (* = Messages/-Bytes).

• The highest module in the hierarchy is called top_level.

23

Graphical User Interface

- GUI provides convenient entry/editing of structure diagrams.
- Buttons for building & running simulations.
- Controls for running & visualizing simulations.

24

Box Behavior Description

Thread – Software-process, shares variables with other threads in a box (entity).
• All boxes must have a thread called start_up.
• The start_up thread is started in each entity at the start of a simulation.
• Threads trigger the activation of other threads, created/ended dynamically.
• Multiple threads can be active concurrently within each entity.

Variable Scoping Levels - Three distinct levels of variable scoping:
1. Global - Globally accessible to all entity boxes and all threads within them.
2. Shared - Shared by all threads within an entity. Local to each entity instance.
3. Local - Local to each thread instance in each entity.

Threads and Variable
Scoping

25

Box Behavior Definition

The behavior of each model-type must be defined.

DEFINE_DEVICE_TYPE: MC68030
 /* Shared Variables */
 long message;

 DEFINE_THREAD: start_up
 {
 if (strcmp(MY_NAME,"/Kingpin")==0)
 {

 message = 1;
 SEND(“port1”, (void *)message, 1.0);
 TRIGGER_THREAD(gen, 100.0, THREAD_VAR);
 }
 }
 END_DEFINE_THREAD.

 DEFINE_THREAD: gen
 {
 message = message + 1;
 SEND(“port1”, message, 1.0);
 TRIGGER_THREAD(gen, 100.5, 0);
 DELAY((double)message + 10.0);
 TRIGGER_THREAD(gen, 20.0, 0);
 }
 END_DEFINE_THREAD.

END_DEFINE_DEVICE_TYPE.

 Keyword to begin definition
 Name of entity type.
Shared variables to each instance

of this model type.
Keyword to begin thread.
Name of thread.

Code Thread.
 (Any C-code, plus CSIM extensions.)

Keyword to end thread.

Code Thread.
 (Any C-code, plus CSIM extensions.)

Keyword to end definition

26

Behavior Definition

Data type definitions, data structures, global variables, C-macros, and
common subroutines are defined in common area.

DEFINE_GLOBAL:

int population;
float clock_frequency=80e6;

int scale_vector(x, y)
{ /* C-subroutine code*/

...
}

END_DEFINE_GLOBAL.

These objects can be accessed from any of the threads.

#includes should also be placed in these sections.

Anything outside Define_... blocks is ignored !!!

27

Model Behavior Definition

C Construct Extensions for Behavior Descriptions:

 Standard predefined variables:
MY_NAME - Entity instance name (char string).
CSIM_TIME - Double floating-point value current simulation time (ex. Seconds).
THREAD_VAR - Pointer to thread-unique variables.

 Predefined Functions:
DELAY(delay_amt) - Causes thread to sleep for specified duration

relative to current time.

TRIGGER_THREAD(thread, delay_amt, thread_var)
- Spawns the start of the specified thread within entity after delay_amt.

SEND(port, message_ptr, length) - Causes message-data to be sent out
specified port to another entity.

RECEIVE(port, &message, &length) - If incoming message has arrived and
is waiting on the specified port’s queue, then it will be
dequeued and returned in the message variable.
Otherwise, the thread will block (sleep) until the requested
data length arrives.

CHECK(port, &status) - Checks for pending messages without blocking
or dequeuing.

28

Modeling Constructs

● Including files: GUI: File / Import / By-Reference
Inserts:

%include
- Works like the regular C #include, but expanded by CSIM preprocessor.
- Generated by Import-by-Reference in GUI.
Example:

%include subroutines.sim

• Halting simulation from within model:
halt();

- Causes the simulation to pause, returns control to user.
- User can resume or quit.
Example:

if (unexpected_event)
halt();

Useful for:
• Inserting conditional breakpoints into a simulation.
• Breaking in (or on) specific subroutines or lines of code.
• Calling attention when assertions have been violated.
• Stepping by significant events instead of time amounts.
• Detecting and forcing a simulation end-point.

 See CSIM_HALT_POPUP(“Message”); - for graphical sims.

29

Animation Control

User Customizable Animations:

Box, Link Colors:
• Boxes and links change colors from
 user’s code during simulation.

highlight_box(color);
highlight_link(port_name, color);

Annotations:
• Annotate writes textual information
 on the graphical display near boxes
 during simulations.

Annotate(char_string, color, xoffset, yoffset);
Annotate(“Transmitting Pulse 5A”, Green, 0.0, -0.5);

• Use to view changing state information or to note specific or unusual events.
• More visual than prints because it is placed with respective box in diagram.

 Supports Third-party Visualizations - Altia Faceplate, WinFrame-3D, Otk, etc.

30

Pop-up Messages From Models

– A model can popup a message window. Call the following:

CSIM_HALT_POPUP(char *message)

Your message as the argument.

– A popup window appears with your message in it.
– Popup has a OK button on it.

Example:
CSIM_HALT_POPUP("Special event occurred.");

Or,
// Copy your message into a string ...
char mymssg[60];
sprintf(mymssg,"%s Over temperature by %f degrees", MY_NAME, x);
CSIM_HALT_POPUP(mymssg);

31

More Modeling Constructs

● WAIT and RESUME: (Basis of wireless models)
- Controls thread execution, or synchronizes threads to events.
- Convenient for implementing general resource models.
- WAIT causes thread to sleep until awoken by RESUME in

another thread.
- WAIT and RESUME operate on SYNCHRON variables.
- WAITs and RESUMEs can be queued or not-queued.

Example:
DEFINE_DEVICE_TYPE: Model_XYZ
 SYNCHRON *synchpt_A;

 DEFINE_THREAD: start_up
 {

synchpt_A = NEW_SYNCHRON();
TRIGGER_THREAD(processB, 0.0, 0);
DELAY(100.0);
RESUME(&synchpt_A, NONQUEUABLE); /* NOTE the & */

 }
 END_DEFINE_THREAD.

 DEFINE_THREAD: processB
 {

WAIT(&synchpt_A, QUEUABLE); /* NOTE the & */
csim_printf("Process_B awake\n");

 }
 END_DEFINE_THREAD.

END_DEFINE_DEVICE_TYPE.

32

Instance Attributes

– Specify distinct arbitrary attributes for each box instance.
– Attributes can be specified at any level of the hierarchy in GUI.
– Assign attributes to a model-box when editing it’s properties.
– Attributes work like macros. One attribute equation per line.

attribute_name = value/expression

 Example:
Xproduce = 5
Yconsume = Xrate * 50.1

– Access attribute values within models: CSIM_GET_ATTRIBUTE()
CSIM_GET_ATTRIBUTE(char *attribute_name, char *value, int maxstrlen)

– Attributes inherit downward through graph hierarchy.
 Can be specified at any level.

top_level (A = 2, B = 3)

Module_P Module_Q (A = 7, C = 10)

Box1 Box4 (A = 100, C = 75)Box2 Box3

33

Instance Attributes - continued

Model code within the boxes (on previous slide) sees the following attribute values:

Module_P/Box1: A = 2, B = 3

Module_P/Box2: A = 2, B = 3

Module_Q/Box3: A = 7, B = 3, C = 10

Module_Q/Box4: A = 100, B = 3, C = 10, D = 75

34

CSIM Installation

Platform Method

- Linux (Redhat, Ubuntu, ...) 1. tar xfz csim_vxx.tgz
2. sh csim_xx/install_csim_posix.sh
3. start by double-clicking csim desktop icon

- MS Windows 1. unzip csim_vxx.zip
2. Run mswin_installer_gui
3. Drag start-icon to desktop

- Mac OSx 1. Install Oracle VirtualBox
2. Import csim_xx.ova
3. Start VM, double-click csim icon

* The VirtualBox method can also be used on the other platforms
 including Linux, Microsoft, and Sun Solaris.
* Detailed install instructions are included with each release package.

35

CSIM Package Directories

$CSIM_ROOT
tools

general_utilities
model_libs

core_models
general_blocks
lan_lib
digilogic
user_contributed

demo_examples
demo0
...
demo7

(Main tool
directory)

(base component models)

● Always source $CSIM_ROOT/setup prior to all sessions.

• Then you may want to export CSIM_GUI_SETUPS to your own
 customized gui_setup file. (export is Linux bash syntax)
● Set text editor: export CSIM_TEXT_EDITOR myeditor.
● You work with your models in your own (arbitrary) directories
 while referencing tools and models under $CSIM_ROOT as
 needed.

36

Tool Usage

• GUI - Capturing/editing design diagrams

• CSIM PreProcessor - Building simulations

• ROUTER - Building routing tables

• SCHEDULER - Generating application software

• SIMview - Running simulations

• XGRAPH - Viewing results

• TIMELINE Postprocessor - Customizing activity timeline plots

• CONTENTION_VIEWER - Viewing network contentions

• C-2-HTML - Auto-documentation of model code for understanding.

• ITERATOR - Multiple simulation launcher / aggregater.

• ScenGen - Scenario entry tool and generator.

• WinFrame-3D (WF3D) - Animation Viewer

37

CSIM - GUI

GUI
• CSIM's main graphical interface & diagram editor.
• Preferences file: export GUI_SETUP_FILE

(defaults to: $CSIM/tools/$CSIM_MTYPE/gui_setups)
– Sticky vs. non-sticky draw mode. – Snap/Gravity settings.
– Background colors and box styles. – Grid on/off/size setting.
– Initial window size, etc.. – Display settings.
– Preferred Text Editor, Printer, etc.. – Journaling period.

• Hierarchy-by-Reference - Diagrams, Modules-Boxes, Bundles-Links.
– Double-clicking module opens sub-diagram.
– Sub-diagram is common to all instance of given module type!

• Accessing Object-Attributes, Graph-Parameters, Macros, or
Variables.

– All are in common name-space. Can reference one another.
– Edit global attributes under Edit/Macro or Edit/Variables.
– Edit object attributes under selected object’s Properties popup.

38

CSIM - GUI (continued)

• Export diagrams directly to Office tools. (File / Print / To File / Office).
• Save image files for documents. (File / Print / To File / Image).
• Link directions, simplex = uni-directional, duplex = bi-directional
• Bundles: Sub-diagrams for wire-groups. Like Module is to Box.
 – Port-names become concatenated across levels. Must be Unique.

39

Building Simulations

1. Define system architecture structure
 and model behaviors.
 – These may be placed in a single or
 separate files via file/import menu.

2. Run CSIM preprocessor from Tools menu.
 – Analyzes and processes the files, and
 links CSIM simulation kernel to produce
 executable simulation file.

3. Run simulation by selecting Run under
 the Tools menu or by calling sim.exe.

 – Two simulation modes are available:
• Text Mode - Good for batch script
 driven, automatic overnight runs.
• Graphical Control Panel - Good for
 animations. Easy to learn and use.

40

- Interactive simulations can be run from SimView control panel.

Running Simulations

41

SimView - Simulation Control Panel

SimView -
 • Run control - Run, Crawl, Step, Stop, Breakpoints.
 • Navigate diagrams as in the main CSIM-GUI.
 • Time & Status Displays.
 • Animation Options:

– Animation On/Off
– Time Display Updating
– Animation types, links/boxes, concurrency, built-in/user.

 • View Options:
– Port names
– Aspect Ratio Lock
– Flatten hierarchies

 • Option Menu:
– Scrolling verbosities
– Examine model state variables
– Examine link states
– List event queue.

 • Tools:
– View Time Activity Plots.
– Print diagrams/images.

42

Text-Mode Simulation

• Alternative to SimView graphical simulation. Great for batch jobs!
• Build with: csim -nongraphical arch.sim (or Tools/Modify GUI menu.)
• Run simulation by invoking sim.exe
• When simulation comes up, you will see the simulation prompt.
• At the prompt, you can type h for help at any time.
• It is common to set simulation displays and break-points at this time.
• You can initiate and control the simulation by run, step, or crawl.

Example:
sim> s

(step amount = 1.0, stepping by 1.0)
 or

sim> step 0.25
(step amount = 0.25, stepping by 0.25)

sim> s
(step amount = 0.25, stepping by 0.25)

• Crawl can be used to sequence by single events.
• crawl xx - sequences to event-xx within the current time.
• run - Starts simulation running until breakpoint or end, also r.
• quit - Exits from simulation, also q.
• sim_status - tells what device is being serviced, what event is being
 processed, and what event the simulator is on within the time instant.

43

Running Simulations

Summary of run-time commands:

verbosity settings, (v), under view menu.
run - Run or resume, button.
step - Step by time amount (s or step xx), button.
crawl - Step by a event(s), (c or c xx), button.
break-points - Set break-points, (b), button.
show_links - Show status of all links.
examine_link - Examine status and queue of specific link.
stats - Send link utilization statistics to file.
sim_status - Tells what is about be executed, device, event, delta-cycle, etc..
show_active_links - Show just the active links.
show_event_queue - Show the current event queue.
fshow_links - Dump links status snap-shot to a file.
list_devices - Show a list of all the devices names in the simulated system.
list_variables - Show a list of the shared variables contained by a box and

their current values.
time - Print the current simulation time.
q = exit

44

The Simulation Cycle

45

Iterator Tool & iGUI

46

Iterator Tool & iGUI (continued)

47

Time-Line Tool & GUI

48

Models & Modeling

– Techniques and Conventions
– CSIM language features and extensions (general)
– Performance modeling concepts
– Performance modeling library - modeling hardware
architecture
– Data Flow Graphs - describing application software
– Model Calibration, Validation & Verification

49

Performance Model Libraries

• Performance Model => Time-related
aspects,
= Structure + Timing only,
(almost no Functional detail)

• A set of special purpose utilities support the
 performance models.

• The performance models are intended to
 investigate system architecture related
 issues, such as:

– Network topologies,
– Bottlenecks
– Scenario-to-network task mappings,
– Resource utilization
– Time-lines of proposed systems.
– Determine total system processing
 throughputs and latencies.

50

Hw/Sw-Architecture Paradigm
(Computer Hardware / Software modeling)
(Multi-core, Multi-processor, and/or multi-process systems)

Network Hardware Architecture:
Processor, Memory, and Switch Nodes Connected by Network Links

Primitive Tasks and their Data Dependencies as Data Flow Graph
(DFG)

Software Application Flow Diagram:

51

System Architecture Simulation

52

Application Data Flow Graph

53

Example Data Flow Graph

54

Software Application Program

55

Software Application Programs Model

Four Primary Instruction Types:

RECV(message_ID, message_length)
SEND(message_ID, destination_PE, message_length, priority)
COMPUTE(time_delay, task_name)
LOOP

Example Program for /Board1/ce1:
recv 10 16384 -- Get input data for one range-pulse
compute 2160.0 Polarization1_Range1 -- Perform range-processing on data
send 1 2 2048 2 -- Distribute corner-turn data to neighboring send 1 3 2048 2 -- ...
. . .

send 1 8 2048 2
recv 10 16384 -- Get input data for new range-pulse
compute 2160.0 Polarization1_Range9 -- Perform range-processing on data
send 1 2 2048 2 -- Distribute corner-turn data to neighboring . . .
recv 8 131072 -- Get corner-turn data
compute 1730.0 Polarization1_Azimuth1 -- Perform azimuthal processing for one image raster

CSIM's SCHEDULER tool takes care of
the complex message indexing

56

Software Application Programs Model

• It would be very tedious to manually convert flow graph descriptions
into pseudo-code programs for each PE.

• Making the message-IDs match in corresponding PE files can be very
Complex. (message indexing)

• An automatic pseudo-code generator is available to ease this task.
• It is called the SCHEDULER.
• The SCHEDULER converts DFG descriptions into pseudo-code
programs.

• Map_PE assignment of each node is optional.
• If you do not assign it, the SCHEDULER will assign automatically.
• The Partitioning/Mapping/Scheduling problem is NP-complete.
• These tools are aids to finding optimal solutions.

57

Computer Hardware Architecture Models

● Hardware architectures are composed of building-block models.

● Generic models of:
– Processor Elements
– Memories
– Buses
– Crossbars
– I/O units

• Many specific variants of these have been generated for special purposes.

• All are based on common message token definition for interoperability.

58

Message Token Definition

Goal: Represent Message Transfers Through Circuit-Switched Protocol
Network By Using Tokens.

Must account for message transfer time as function of traffic.
Note: Circuit-switched protocol exhibits blocking: it affects performance.

Approach 1: Six Token Types(purpose) Approach 2: Four Token Types
1. REQ - Request path through network
2. ACK - Grant request, path allocated
3. NACK - Request blocked
4. DATA - Data begins moving
5. DONE - Transfer complete, reallocate path
6. PREEMPT - Transfer preempted

1. REQ - Request path through net
2. NACK - Request blocked
3. DONE - Transfer done, reallocate path
4. PREEMPT - Transfer preempted

59

Processing Element
Model

● For Architecture Performance Modeling
● Local memory for storage of local data and software.
● Two concurrent processes:

- Computation agent interprets application software.
- Communication agent provides reliable asynchronous
 reception and transmission of messages through network.

Simple abstract PE model

60

● Processor Element models read respective files at start-up:
– Program files,
– Routing file.

• Bus Elements do not read any files.

System Architecture Model

61

Generic Bus Model

62

Generic Bus Model (continued)

63

Generic Bus Model (continued)

64

Tool Flow

Performance Modeling Simulation
Environment

65

Routing Tables

• Generating a routing path to reach another PE would be time-consuming
if conducted during runtime, because common paths are used repeatedly
and architectures are complex.
• The Perf.Mod.Lib models use pre-prepared routing tables.
• The number of entries in a routing table is: NxNxM

Where N is the number of devices in the system,
and M is the number of alternate paths to store.

• It would be tedious to correctly prepare such tables manually.
• An automatic router is available, called: ROUTER

● ROUTER interprets your architecture description via a CSIM netinfo file.
• Produces routing table in the format expected by Perf.Mod.Lib. PEs.

66

Post Processing Results

– Several methods to view results, several pathways.
– You can customize new post-processors.
– Results can be archived, analyzed later, and compared.

67

Viewing Simulation Results

– Example time-line from
XGRAPH.

Activity for each device versus time

68

Development
Techniques

– Distributing Simulations
– Animating
– Annotating
– Debugging
– Log-files
– Handling threaded
software
– Modifying routing tables

69

Model Calibration - Validation

70

Multi-Simulation Interface
(MSI)

• A simulation interconnection engine.
• Like MSCO High Level Architecture HLA.
• Open Freeware - Gnu Public License.
• See: http://msi.sourceforge.net/

71

MSI Information

• Based on XML socket stream.

• Usable from any programming
 language.

• C, C++, Java, Ada, Perl, etc.

• No library dependencies.

• Cross-platform code, portable to all major OS platforms
 (Linux-PC, Solaris, Irix, HP-UX, Mac OS X, MS Windows, FreeBSD, etc.).

• Provides managed federation start-up (join) control.

• MSI is a single executable file.

• Distributed with example code for simulator (federate) side
interface.

72

MSI Description Concepts

• Data exchange formats
 - Instead of forcing clients to
 convert all shared data to neutral formats,
 Meta-data is added to each exchange,
 enabling envelope parsing; ==> Verbose.
 - Avoids high processing and bandwidth costs
 for transforming and packing all data.

• MSI Rosetta Stone approach
 - Instead of transforming data on input, MSI leaves data in original form
 for efficient transfer.
 - MSI client-side library transforms data to best local form.
 - If receiving simulation can parse incoming data, then no translation
 overhead incurred.
 - XML enables context insensitive parsers and transformability.
 - XSLT can specify arbitrary transforms; ==> Supports direct inter-ontology
 mappings .

73

WinFrame 3D - Viewer
(WF3D)

● For visualizing simulated platform locations,
 movements, and activities.

XML
Files

Simulator

WF3D

● Accepts input from files or sockets.
● XML format.
● See documentation, tutorial, and examples on
 CSIM web-page under WF3D

74

WinFrame 3D - Viewer

1. Specify Initial Camera Settings
– View position, field of view, depth of field.

<set_camera>
<frustum fov="", near_field="", far_field="" />
<position x="", y="", z="" />
<pointat x="", y="", z="" />

</set_camera>

2. Define the object types
– Type humv shape and color is ...

<def_obj> type_name
<col r="" g="" b="" t=""/>
<quad> <vrt x="" y="" z="" /> </quad>

...

</def_obj>

75

3. Instantiate Objects -
 – Object Q is of type humv at location x1,y1,z1.
 – Object W is of type humv at location x2,y2,z2.

 <inst_obj name="" kind="" x="" y="" z="" xang="" yang="" zang="" />

4. Move Objects -
– Move object Q to position x,y,z by time T.

<mo obj="" T1="" T2="" x="", y="", z="" />

WinFrame 3D - Viewer

76

Vehicle Platforms Terrains (VPT)

Spatial Modeling Library - VPT

• Manages platform positions over time.

• Way-point based.

• Services Provided:
- VPT_Get_Neighbors(myplatform, radius);
 Returns list of nearby neighboring platforms.
- VPT_Get_Position(platform, time, &x, &y, &z);
- VPT_Get_Heading(platform, time, &heading);
- VPT_Get_Velocity(platform, time, &vx, &vy, &vz);
- VPT_Set_Velocity(platform, time, vx, vy, vz);
- Coordinate conversion routines.
 UTC, Cartesian (x,y,z), Lat-long, polar, ...

• Compatible with ScenGen - Scenario Entry Tool (SET),
 and WF3D - Scenario Visualization Tool.

77

Debugging Tips

● Raise verbosity. Most CSIM tools have a -v command-line option.
csim -v 1000 testarch.sim

• Use Debugger. View variable interactively. Stops simulation on error line.
gdb sim.exe
run
print xyz

 Or, use ddd for graphical debugger.

• Use -trace. CSIM inserts unique Debug xx printf between every line of models.
csim -trace arch.sim

• Capture output to log file. Search with grep/more/editor.
sim.exe > log

• Use -nomarks. Errors reported relative to intermediate file out.c.
csim -nomarks arch.sim

• Raise model and/or simulator verbosities.

78

General Utilities

General Utilities Directory:
- A set of utilities especially useful for working with
 simulation data files and complex projects.
- Under tools for each platform.

Ex. $CSIM_ROOT/tools/linux_2.3/general_utilities

Tools List:
 - c2html - Convert C-code to HTML, routine, index, hyper-text, call-tree, ..
 - draw_tree - Draws a printable directory tree, showing space used, dates, ..
 - disk_usage - Shows space used by directory branches.
 - nesting_list - Shows nesting level of code. Produces annotated listings.
 - scengen - Scenario Generator, entry tool, for VPT and wireless models.
 - line_diff - Compare files and show line by line differences.
 - compare_dir - Compare whole directories to other directories.
 - filter - Globally replace phrases without editing files.
 - scz_compress - Simple lossless compression. CSIM tools decompress on-the- fly.
 - scz_decompress - Opposite of above.
 - xyz2wf - Plot matrix data in 3D by converting to WF3D format.
 - SimDiff - Compares diagram versions.

79

Modeling Workshop

– Enhancing hardware-architecture models,

– Debugging models and building simulation,

– Extending application-scenario graphs

– Running simulations, and analyzing results

80

Documentation

● Current documentation, examples, new, & information
 are maintained on-line at:

www.csim.com

CSIM Web Page

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

