

East[®] Orientation Webinar Series: Conducting Sample Size Reassessment with Time-to-event Endpoints

Pantelis Vlachos Pantelis.Vlachos@cytel.com

Agenda

- Methodology
- Case study
- Q/A
- Conclusion

East gives you easy access to the adaptive designs that matter

Today's presentation

East SURVIVAL

Test survival endpoints in superiority and non-inferiority studies

SUCCESSFUL OUTCOME:	Compute events, sample size, study duration, for complex survival designs
Pre-Requisites:	East SEQUENTIAL
Functions:	 Variable and fixed subject follow-up Piecewise hazard rates, accruals, and dropouts Charts for predicting events/sample size, accrual and study duration Simulate non-proportional hazards
New in 6.5:	 Go-No-Go Based on Surrogate Endpoints
Note:	•Cytel also offers Proc East MONITOR as a SAS PROC to facilitate your usage of SAS to monitor trials designed using East SURVIVAL.

East ADAPT / SURVADAPT

Incorporate unblinded sample size re-estimation rules

SUCCESSFUL OUTCOME:	Improve statistical power when results are 'promising'
ADAPT Pre-Requisites: SURVADAPT Pre-Requisites:	East SEQUENTIAL East SURVIVAL
Functions:	 Adaptive rules for increasing sample size, or other possibilities Methods include CHW, CDL, Müller-Schäfer Specific adaptive tools for survival (eg., adapt sample size and events) Müller-Schäfer Method for Interim Monitoring Unique to East: Promising Zone Design based on unblinded interim data Adjusted unbiased point estimates, confidence Intervals, and p-values
New in 6.5:	 SSR for Non-Inferiority designs
Note:	•Cytel also offers Proc East MONITOR as a SAS PROC to facilitate your usage of SAS to monitor trials designed using East ADAPT and SURVADAPT.

Methodology

Traditional vs Adaptive for Confirmatory Trials

• Traditional Design:

- Fix total sample size in advance
- Monitoring accruing data for safety only
- One final efficacy analysis at study end

• Adaptive Design:

- Monitor accruing data for efficacy and safety
- Possibly alter future course of study
- Design changes can utilize unblinded data

Types of Design Changes

- Stop early due to overwhelming efficacy
 - Group sequential efficacy boundaries
- Stop early due to inefficacy or harm
 - Group sequential futility boundaries
- Mid-course corrections to design assumptions
 - Unblinded sample size re-estimation
 - Dropping ineffective doses in multi-arm trials
- Changing goals
 - Biomarker-based population enrichment
 - Switching endpoints from non-inferiority to superiority

Motivation for Mid-Course Sample Size Correction in Pivotal Trials

We don't know what δ and σ to power the study for

- Prior experience limited to small pilot studies
- Improved standard of care dilutes treatment effect
- Powering for **smallest clinically important** effect expensive
- Better safety profile at interim might justify smaller δ
- Opportunity to combine internal and external data

If only σ is unknown, blinded SSR is recommended by FDA

Why not design for the smallest clinically meaningful treatment effect?

Large effects are uncommon, but designing for very small clinically meaningful effects requires huge up-front investments that management will not approve. A strategy of staged investment is more practical

- Unreliability of Pilot Studies: Most large treatment effects emerge from small studies, and when additional trials are performed, the effect sizes typically become much smaller. Well-validated large eff ects are uncommon and pertain to nonfatal outcomes. *Pereira et. al., JAMA. 2012; 308(16): 1676-1684*
- Milestone-Driven Investment: Sunesis Pharmaceuticals to Implement One-Time Sample Size Increase to Phase 3 VALOR Trial in AML. DSMB Recommends Increase Following Single, Pre-Planned Interim Efficacy and Safety Analysis of VALOR; DSMB Recommendation Triggers \$25.0 Million Investment in Sunesis from Royalty Pharma. *Press Release, September 11, 2012. Sunesis Pharma, South San Francisco*

Received 12 December 2009, Accepted 8 September 2010 Published online 30 November 2010 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.4102

Adaptive increase in sample size when interim results are promising: A practical guide with examples

Cyrus R. Mehta^{a,b*†} and Stuart J. Pocock^c

This paper discusses the benefits and limitations of adaptive sample size re-estimation for phase 3 confirmatory clinical trials. Comparisons are made with more traditional fixed sample and group sequential designs. It is seen that the real benefit of the adaptive approach arises through the ability to invest sample size resources into the trial in stages. The trial starts with a small up-front sample size commitment. Additional sample size resources are committed to the trial only if promising results are obtained at an interim analysis. This strategy is shown through examples of actual trials, one in neurology and one in cardiology, to be more advantageous than the fixed sample or group sequential approaches in certain settings. A major factor that has generated controversy and inhibited more widespread use of these methods has been their reliance on non-standard tests and *p*-values for preserving the type-1 error. If, however, the sample size is only increased when interim results are promising, one can dispense with these non-standard methods of inference. Therefore, in the spirit of making adaptive increases in trial size more widely appealing and readily implementable we here define those promising circumstances in which a conventional final inference can be performed while preserving the overall type-1 error. Methodological, regulatory and operational issues are examined. Copyright © 2010 John Wiley & Sons, Ltd.

Keywords: sample size re-estimation; two-stage designs; flexible clinical trials; conditional power; adaptive design; real examples

ADAPT / SURVAdapt: Adaptive Sample Size Re-estimation

CP = Conditional power

The probability of success (statistical significance) at the end of the trial given current data trend

Transparent, pre-specified plan to increase sample size only if interim analysis was in "promising zone"

Case Study: Metastatic Lung Cancer

Two arm, multicenter trial with second line therapy for metastatic nonsmall cell lung cancer

- Primary endpoint is overall survival (OS)
- Median for control arm is 8 months
- Require 90% power to detect HR = 0.7 (median = 11.4 months on experimental arm)
- One-sided level 0.025 test with one interim look for early efficacy or futility stopping
- Design 24 month enrollment and 12 months additional follow-up

Group Sequential Design

Wbk2:Des2	Wbk2:Des3
SU-2S-LRSD	SU-2S-LRSD
Superiority	Superiority
2	2
1–Sided	1–Sided
0.025	0.025
0.9	0.9
1	1
0.7	0.77
Null	Null
Equal	Equal
LD (OF)	LD (OF)
Until End of Study	Until End of Study
1	1
0	0
416	760
415.864	759.763
399.146	728.269
332	618
331.747	617.529
289.991	539.855
36	36
32.453	33.348
31.973	31.936
24	24
23.992	23.993
23.028	22.998
	Wbk2:Des2 SU-2S-LRSD 2 1-Sided 0.025 0.9 1 0.7 Null Equal LD (OF) Until End of Study 1 0 416 415.864 399.146 332 331.747 289.991 36 32.453 31.973 24 23.028

- Uncertainty about HR=0.7;
- HR = 0.77 is still clinically meaningful but requires 760 patients and 618 events.
- Up-front commitment is impossible

Adaptive Strategy

Design optimistically (HR=0.7; 332 events; 416 subjects) One interim analysis after 50% information

- Stop if overwhelming evidence of efficacy ($\widehat{HR} \leq 0.63$)
- Stop if overwhelming evidence of futility ($\widehat{HR} > 1.02$)
- Increase number of events and sample size at the interim if interim results fall in a promising zone
- Can define promising zone in terms of conditional power, or HR, or Z-statistic

Special CP calculator available in East

The Promising Zone Design

Partition the interim outcome into three zones based on the estimated conditional power. For example:

- Unfavorable: CP < 35%; no change in design
- Promising: $35\% \le CP < 90\%$; increase resources
- Favorable: $CP \ge 90\%$; no change in design

Use simulation to experiment with promising zones

Use simulation to experiment with sample size re-estimation rules Use Cui, Hung, Wang (CHW), Chen, DeMets & Lan (CDL) or Mueller and Shaeffer (MS) methods to control type-1 error

Adaptation Principles

Primary driver of power is number of events

FDA guidance recommends increase only, not decrease

- Increase events by amount needed to achieve some target conditional power, subject to a cap
- Compute sample size increase necessary to achieve the desired increase in events without undue prolongation of the trial
- Complex relationship exists between increase in events, increase in sample size and study duration. Best evaluated by simulation

Adaptive Simulation Worksheet

Number of Loo	o <u>k</u> s: 2 ▼		
Simulation Para	ameters Response Generation	Info Accrual/Dropout Info	Sample Size Re-estimation Simulation Control Info
Use Adaptation M ⊙ CHW (1ethod	· · · · · · · · · · · · · · · · · · ·	Required Events
Adapt at: <u>M</u> ax. # of Events in Max. Sample Si <u>z</u> e Upper Limit on Stu Earget CP for Re-e	Look # f Adapt (multiplier; total #): if Adapt (multiplier; total #): udy Duration: estimating # of Events:	1 • 1.498 500 1.498 1144 108 0.9	s 525 490 455 5 25 5 2 5 2
romising Zone Scale:		Cond. Power 🔻 💌	Conditional Power
Promising Zone:	Mi <u>n</u> . CP: Ma <u>x</u> . CP:	0.3	
CP Computation <u>B</u> ased on:		Estimated HR 🔹	¥ 0.4
Accrual <u>R</u> ate After	Adaptation:	No Change 🔹	0 0.2 0.4 0.6 0.8 1 CP (Dsgn. Events, Est. HR)
			Refresh Charts

Operating Characteristics

1. Simulations Under Pessimistic Scenario, $HR = 0.77$ (10,000 simulations)							
		Power		Duration (months)		SampSize	
Zone	P(Zone)	NonAdpt	Adapt	NonAdpt	Adapt	NonAdpt	Adapt
Unf	28%	34%	35%	35	35	419	419
Prom	32%	70%	85%	35	40	419	616
Fav	40%	91%	90%	35	35	419	419
Total		66%	71%	33	34	408	472

2. Simulations Under Optimistic Scenario, HR = 0.7 (10,000 simulations)

		Power		Duration		SampSize	
Zone	P(Zone)	NonAdpt	Adapt	NonAdpt	Adapt	NonAdpt	Adapt
Unf	13%	62%	61%	36	35	419	419
Prom	27%	87%	97%	36	40	419	616
Fav	60%	97%	98%	36	35	419	419
Total		90%	92%	32	33	402	454

Trade-off between Study duration and n

55.46 48.53 Time 41.6 34.66 27.73 -550 700 725 750 525 575 600 625 650 675 Max. Sample Size if Adapt

Avg. Study Duration (All) — Avg. Accr. Duration (All)

Study Duration and Accrual Duration

Concluding Observations

It is believed that true HR is between 0.7 and 0.77

Option 1: Power the trial for HR=0.77 with aggressive early stopping boundaries

- Large up-front commitment is often an obstacle
- Aggressive stopping boundaries require spending more alpha at the interim
- Stopping a trial prematurely with aggressive boundaries is unlikely to alter medical practice
- Overruns can be problematic

Option 2: Power the trial for HR=0.7 and increase resources in promising zone

- Requires a lower up-front commitment
- Additional commitment only called forth if it is needed
- Compromise design: Better than non-adaptive trial powered at HR=0.7 but not as powerful (unconditionally) as the non-adaptive design powered at HR=0.77.

References

- Chen YHJ, DeMets DL, and Lan KKG. Increasing the sample size when the unblinded interim result is promising. Statistics in Medicine 2004; 23, 1023-1038.
- Cui L, Hung HMJ, and Wang SJ. Modification of sample size in group sequential trials. Biometrics 1999; 55:853-857.
- Gao P, Ware JH, and Mehta CR. Sample size re-estimation for adaptive sequential design. J. Biopharmaceutical Statistics 2008; 18, 1184-1196.
- Mehta CR, and Pocock SJ. Adaptive increase in sample size when interim results are promising. Statistics in Medicine 2011; 30: 3267-3284.
- Mueller HH, and Schafer H. Adaptive group sequential designs for clinical trials: combining the advantages of adaptive and classical group sequential approaches. Biometrics 2001; 57: 886-891.

Easy Access to the Adaptive Designs That Matter

Delivered by the Thought Leaders Behind the Methods

Software that is Faster & Easier to Use

Popular Fixed and Adaptive Designs at your Fingertips

Global Products and Services

Statistical Software

Industry standard for trial design, including CID adaptive (East, EOD)

Leader in exact statistical solutions (Xact: StatXact, LogXact, Procs)

Operations software (e.g. ACES, EnForeSys, FlexRandomizer)

All 25 top biopharma companies, the FDA, EMA & PMDA use our software

Strategic Consulting

PhD statisticians expert in innovative design & complex statistical questions

Experts in Data Science, PK/PD, Enrolment & Event Forecasting, Portfolio/Program Optimization (NPV)

Project-Based Services

Reliable Biometrics service provider delivering high quality, on time

Lead staff with over 15 years industry experience on average

Including biostatistics & programming, ISC, data management, PK/PD analysis, medical writing

Functional Services Provision (FSP)

Creation of dedicated teams operating within/as an extension of the client's own biostatistics & programming, data management and PK/PD teams

Leader in offshoring of Biometrics competencies

Conclusion

Final Remarks

- The statistical methodology for adaptive designs is well established
- Operational and regulatory concerns are a greater barrier to implementation
 - Auditable processes for documenting who saw what documentation and when
 - How will knowledge of interim decision affect the investigator behavior?
 - Will FDA/EMEA approve the design?
- Gradually these concerns are being resolved

Upcoming Webinars

Торіс	Date	Time	
Adaptive Umbrella Trial Using MAMS Module	Tuesday, April 14, 2020	11:00AM EDT 16:00 GMT	✓
Phase 1 dose escalation trials with ESCALATE	Wednesday, April 22, 2020	11:00AM EDT 16:00 GMT	✓
Phase 2 Dose-finding Studies with MCP and Modelling Techniques	Wednesday, April 29, 2020	11:00AM EDT 16:00 GMT	✓
Conducting Sample Size Reassessment with Time-to-event Endpoints	Wednesday, May 6, 2020	11:00AM EDT 16:00 GMT	✓
Refocus your Enrollment to the Subpopulation of Interest with ENRICH	Wednesday, May 13, 2020	11:00AM EDT 16:00 GMT	

Respond to survey in post-webinar thank you email to request certificate of attendance for today's webinar. Recordings will be posted to <u>www.cytel.com</u>.

Thank you

Pantelis Vlachos, Ph.D. Pantelis.Vlachos@cytel.com Cytel Inc. | Geneva

in Connect with Pantelis on LinkedIn

Thank you!