
EF Games #2: Inexpressibility Proofs

Christoph Koch

Inexpressibility proofs

We use the methodology theorem:

Theorem (Methodology theorem)

Given a Boolean query Q. There is no FO sentence that expresses Q if

and only if there are, for each k, structures Ak , Bk such that

◮ Ak � Q,

◮ Bk 2 Q and

◮ Ak ∼k Bk .

To prove inexpressibility, we only have to

◮ construct suitable structures Ak and Bk and

◮ prove that Ak ∼k Bk . (This is usually the difficult part.)

Example: Inexpressibility of the parity query

Definition (parity query)

Given a structure A with empty schema (i.e., only |A| is given).
Question: Does |A| have an even number of elements?

◮ Construction of the structures An and Bn for arbitrary n:

|An| := {a1, . . . , an} |Bn| := {b1, . . . , bn+1}

Lemma

An ∼k Bn for all k ≤ n.

(This is shown on the next slide.)

◮ On the other hand, An � Parity if and only if Bn 2 Parity.

◮ It thus follows from the methodology theorem that
parity is not expressible in FO .

Example: Inexpressibility of the parity query

Lemma

An ∼k Bn for all k ≤ n.

Proof.

We construct a winning strategy for Duplicator. This time no strategy
trees are explicitly shown, but a general construction is given.
We handle the case in which Spoiler plays on An. The other direction is
analogous. If Si 7→ a then

◮ Di 7→ b where b is a new element of |Bn| if a has not been played on
yet (=no token was put on it);

◮ If, for some j < i , Sj 7→ a, Dj 7→ b′ or Sj 7→ b′, Dj 7→ a was played
then Di 7→ b′.

Over k moves, we only construct partial isomorphisms in this way and
obtain a winning strategy for Duplicator.

Eulerian graphs

Definition

Eulerian graph: a graph that has a Eulerian cycle, i.e., a round trip that
visits each edge of the graph exactly once.

Theorem

The Boolean query “Eulerian Graph” is not expressible in FO.

Proof sketch: Graph Ak :

b

a1 a2 a3 . . . ak−2 ak−1 ak

c

Graph Bk := Ak+1.
For all k : Ak ∼k Bk . Ak is Eulerian if and only if k is even, i.e., iff Bk is
not Eulerian.

Undirected Paths

Ln a1 a2 a3 . . . ai−1 ai ai+1 . . . an

L<ai
n a1 a2 a3 . . . ai−1

L>ai
n ai+1 . . . an

(Nodes ai−1, ai+1 are labeled Ai , as adjacent to ai in Ln).

Lemma (composition lemma for paths)

Lm ∼k+1 Ln if and only if

(1) ∀a ∃b L<a
m ∼k L<b

n ∧ L>a
m ∼k L>b

n and

(2) ∀b ∃a L<a
m ∼k L<b

n ∧ L>a
m ∼k L>b

n

Undirected Paths

Lemma (composition lemma for paths)

(1) ∀a ∃b L
<a
m ∼k L

<b
n ∧ L

>a
m ∼k L

>b
n

(2) ∀b ∃a L
<a
m ∼k L

<b
n ∧ L

>a
m ∼k L

>b
n

ff

⇔ Lm ∼k+1 Ln

Proof.
We define the winning strategy for k + 1 moves as follows:

◮ W.l.o.g., Spoiler Spoiler chooses node a of structure Lm in the first move.

◮ Because of (1), there is a b in Ln such that Duplicator wins in k moves on
L

<a
m , L

<b
n and on L

>a
m , L

>b
n .

◮ We can combine the two winning strategies into one combined strategy:

◮ If Spoiler chooses a node ≤ a in Lm in the i-th move, then Duplicator
answers according to the winning strategy for L

<a
m and L

<b
n , not

counting the moves that were played in the other pair of structures.
◮ If Spoiler chooses a node ≥ a, we answer analogously using

Duplicator’s winning strategy for L
>a
m , L

>b
n .

Undirected Paths

It follows:

Theorem

Lm ∼k Ln if and only if m = n or m, n ≥ 2k − 1.

So for n < 2k − 1, Ln ≁k Ln+1; for n ≥ 2k − 1, Ln ∼k Ln+1.

Example (L8 ∼3 L9)

L8 a1 a2 a3 a4 a5 a6 a7 a8

︸ ︷︷ ︸

L
<a5
8

︸ ︷︷ ︸

L
>a5
8

L9 b1 b2 b3 b4 b5 b6 b7 b8 b9

︸ ︷︷ ︸

L
<b5
9

︸ ︷︷ ︸

L
>b5
9

Cycles

◮ (Isolated) directed cycles Cn: Graphs with nodes {v1, . . . , vn} and
edges {(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)}.

◮ There is an analogous composition lemma for (directed or
undirected) cycles.

◮ After the first move, there is one distinguished node in the cycle, the
one with token S1 or D1 on it.

◮ We can treat this cycle like a path obtained by cutting the cycle at
the distinguished node.

S/D1 A1 S2 A1 S/D1
C10 b b b b b b b b b b b

S/D1 A1 D2 S3 A1 S/D1
C11 b b b b b b b b b b b b

◮ Theorem. If n ≥ 2k , then Cn ∼k Cn+1.

2-colorability

Definition

2-colorability : Given a graph, is there a function that maps each node to
either “red” or “green” such that no two adjacent nodes have the same
color?

Theorem

2-colorability is not expressible in FO.

Proof Sketch.

For each k ,

◮ Ak : C2k , the cycle of length 2k .

◮ Bk : C2k+1, the cycle of length 2k + 1.

◮ Ak ∼k Bk .

◮ However, a cycle Cn of length n is 2-colorable iff n is even.

Inexpressibility follows from the EF methodology theorem.

Acyclicity

From now on, “very long/large” means simply 2k .

Theorem

Acyclicity is not expressible in FO.

Proof Sketch.

◮ Ak : a very long path.

◮ Bk : a very long path plus (disconnected from it) a very large cycle.

◮ Ak ∼k Bk .

Graph reachability

Theorem

Graph reachability from a to b is not expressible in FO.

a, b are constants or are given by an additional unary relation with two
entries.

Proof Sketch.

◮ Ak : a very large cycle in which the nodes a and b are maximally
distant.

◮ Bk : two very large cycles; a is a node of the first cycle and b a node
of the second.

◮ Ak ∼k Bk .

