EF Games #2: Inexpressibility Proofs

Christoph Koch

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

Inexpressibility proofs

We use the methodology theorem:

Theorem (Methodology theorem)

Given a Boolean query Q. There is **no** FO sentence that expresses Q if and only if there are, for each k, structures A_k , B_k such that

- $\mathcal{A}_k \vDash Q$,
- $\mathcal{B}_k \nvDash Q$ and
- $\blacktriangleright \mathcal{A}_k \sim_k \mathcal{B}_k.$

To prove inexpressibility, we only have to

- construct suitable structures A_k and B_k and
- ▶ prove that $A_k \sim_k B_k$. (This is usually the difficult part.)

Example: Inexpressibility of the parity query

Definition (parity query)

Given a structure A with empty schema (i.e., only |A| is given). Question: Does |A| have an even number of elements?

• Construction of the structures A_n and B_n for arbitrary *n*:

$$|\mathcal{A}_n| := \{a_1, \ldots, a_n\}$$
 $|\mathcal{B}_n| := \{b_1, \ldots, b_{n+1}\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Lemma

 $\mathcal{A}_n \sim_k \mathcal{B}_n$ for all $k \leq n$.

(This is shown on the next slide.)

- ▶ On the other hand, $A_n \vDash$ Parity if and only if $B_n \nvDash$ Parity.
- It thus follows from the methodology theorem that parity is not expressible in FO.

Example: Inexpressibility of the parity query

Lemma

 $\mathcal{A}_n \sim_k \mathcal{B}_n$ for all $k \leq n$.

Proof.

We construct a winning strategy for Duplicator. This time no strategy trees are explicitly shown, but a general construction is given. We handle the case in which Spoiler plays on A_n . The other direction is analogous. If $S_i \mapsto a$ then

- D_i → b where b is a new element of |B_n| if a has not been played on yet (=no token was put on it);
- If, for some j < i, S_j → a, D_j → b' or S_j → b', D_j → a was played then D_i → b'.

Over k moves, we only construct partial isomorphisms in this way and obtain a winning strategy for Duplicator.

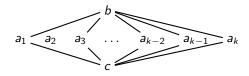
Definition

Eulerian graph: a graph that has a Eulerian cycle, i.e., a round trip that visits each edge of the graph exactly once.

Theorem

The Boolean query "Eulerian Graph" is not expressible in FO.

Proof sketch: Graph A_k :



Graph $\mathcal{B}_k := \mathcal{A}_{k+1}$. For all $k: \mathcal{A}_k \sim_k \mathcal{B}_k$. \mathcal{A}_k is Eulerian if and only if k is even, i.e., iff \mathcal{B}_k is not Eulerian.

Undirected Paths

$$L_n \qquad a_1 - a_2 - a_3 - \dots - a_{i-1} - a_i - a_{i+1} - \dots - a_n$$

$$L_n^{

$$L_n^{>a_i} \qquad \qquad a_{i+1} - \dots - a_n$$
deg a constant to a sin (1)$$

(Nodes a_{i-1}, a_{i+1} are labeled A_i , as adjacent to a_i in L_n).

Lemma (composition lemma for paths) $L_m \sim_{k+1} L_n$ if and only if (1) $\forall a \exists b \ L_m^{\leq a} \sim_k L_n^{\leq b} \land \ L_m^{\geq a} \sim_k L_n^{>b}$ and (2) $\forall b \exists a \ L_m^{\leq a} \sim_k L_n^{\leq b} \land \ L_m^{\geq a} \sim_k L_n^{>b}$

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶

Undirected Paths

Lemma (composition lemma for paths)

Proof.

We define the winning strategy for k + 1 moves as follows:

- W.I.o.g., Spoiler Spoiler chooses node a of structure L_m in the first move.
- Because of (1), there is a *b* in L_n such that Duplicator wins in *k* moves on $L_m^{< a}$, $L_n^{< b}$ and on $L_m^{> a}$, $L_n^{> b}$.
- ▶ We can combine the two winning strategies into one combined strategy:
 - If Spoiler chooses a node ≤ a in L_m in the *i*-th move, then Duplicator answers according to the winning strategy for L_m^{<a} and L_n^{<b}, not counting the moves that were played in the other pair of structures.
 - If Spoiler chooses a node ≥ a, we answer analogously using Duplicator's winning strategy for L^a_p, L^b_p.

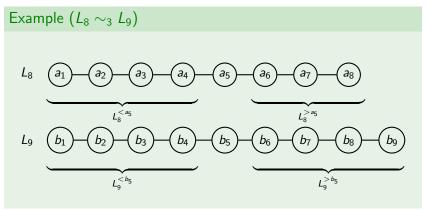
Undirected Paths

It follows:

Theorem

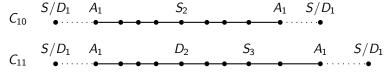
$$L_m \sim_k L_n$$
 if and only if $m = n$ or $m, n \ge 2^k - 1$.

So for $n < 2^k - 1$, $L_n \approx_k L_{n+1}$; for $n \ge 2^k - 1$, $L_n \sim_k L_{n+1}$.



Cycles

- ▶ (Isolated) directed cycles C_n : Graphs with nodes $\{v_1, \ldots, v_n\}$ and edges $\{(v_1, v_2), (v_2, v_3), \ldots, (v_{n-1}, v_n), (v_n, v_1)\}$.
- There is an analogous composition lemma for (directed or undirected) cycles.
- ► After the first move, there is one distinguished node in the cycle, the one with token *S*₁ or *D*₁ on it.
- We can treat this cycle like a path obtained by cutting the cycle at the distinguished node.



• Theorem. If $n \ge 2^k$, then $C_n \sim_k C_{n+1}$.

2-colorability

Definition

2-colorability : Given a graph, is there a function that maps each node to either "red" or "green" such that no two adjacent nodes have the same color?

Theorem

2-colorability is not expressible in FO.

Proof Sketch.

For each k,

- \mathcal{A}_k : C_{2^k} , the cycle of length 2^k .
- \mathcal{B}_k : C_{2^k+1} , the cycle of length $2^k + 1$.
- $\blacktriangleright \mathcal{A}_k \sim_k \mathcal{B}_k.$
- However, a cycle C_n of length n is 2-colorable iff n is even.

Inexpressibility follows from the EF methodology theorem.

From now on, "very long/large" means simply 2^k .

Theorem

Acyclicity is not expressible in FO.

Proof Sketch.

- \mathcal{A}_k : a very long path.
- \mathcal{B}_k : a very long path plus (disconnected from it) a very large cycle.

$$\blacktriangleright \mathcal{A}_k \sim_k \mathcal{B}_k.$$

Theorem

Graph reachability from a to b is not expressible in FO.

a, b are constants or are given by an additional unary relation with two entries.

Proof Sketch.

- ► A_k: a very large cycle in which the nodes a and b are maximally distant.
- ▶ B_k: two very large cycles; a is a node of the first cycle and b a node of the second.

$$\blacktriangleright \mathcal{A}_k \sim_k \mathcal{B}_k.$$