EF Games \#2: Inexpressibility Proofs

Christoph Koch

Inexpressibility proofs

We use the methodology theorem:
Theorem (Methodology theorem)
Given a Boolean query Q. There is no FO sentence that expresses Q if and only if there are, for each k, structures $\mathcal{A}_{k}, \mathcal{B}_{k}$ such that

- $\mathcal{A}_{k} \vDash Q$,
- $\mathcal{B}_{k} \not \models Q$ and
- $\mathcal{A}_{k} \sim_{k} \mathcal{B}_{k}$.

To prove inexpressibility, we only have to

- construct suitable structures \mathcal{A}_{k} and \mathcal{B}_{k} and
- prove that $\mathcal{A}_{k} \sim_{k} \mathcal{B}_{k}$. (This is usually the difficult part.)

Example: Inexpressibility of the parity query

Definition (parity query)

Given a structure \mathcal{A} with empty schema (i.e., only $|\mathcal{A}|$ is given). Question: Does $|\mathcal{A}|$ have an even number of elements?

- Construction of the structures \mathcal{A}_{n} and \mathcal{B}_{n} for arbitrary n :

$$
\left|\mathcal{A}_{n}\right|:=\left\{a_{1}, \ldots, a_{n}\right\} \quad\left|\mathcal{B}_{n}\right|:=\left\{b_{1}, \ldots, b_{n+1}\right\}
$$

Lemma
$\mathcal{A}_{n} \sim_{k} \mathcal{B}_{n}$ for all $k \leq n$.
(This is shown on the next slide.)

- On the other hand, $\mathcal{A}_{n} \vDash$ Parity if and only if $\mathcal{B}_{n} \not \models$ Parity.
- It thus follows from the methodology theorem that parity is not expressible in FO .

Example: Inexpressibility of the parity query

Lemma

$\mathcal{A}_{n} \sim_{k} \mathcal{B}_{n}$ for all $k \leq n$.

Proof.

We construct a winning strategy for Duplicator. This time no strategy trees are explicitly shown, but a general construction is given.
We handle the case in which Spoiler plays on \mathcal{A}_{n}. The other direction is analogous. If $S_{i} \mapsto a$ then

- $D_{i} \mapsto b$ where b is a new element of $\left|\mathcal{B}_{n}\right|$ if a has not been played on yet ($=$ no token was put on it);
- If, for some $j<i, S_{j} \mapsto a, D_{j} \mapsto b^{\prime}$ or $S_{j} \mapsto b^{\prime}, D_{j} \mapsto a$ was played then $D_{i} \mapsto b^{\prime}$.
Over k moves, we only construct partial isomorphisms in this way and obtain a winning strategy for Duplicator.

Eulerian graphs

Definition

Eulerian graph: a graph that has a Eulerian cycle, i.e., a round trip that visits each edge of the graph exactly once.

Theorem

The Boolean query "Eulerian Graph" is not expressible in FO.
Proof sketch: Graph \mathcal{A}_{k} :

Graph $\mathcal{B}_{k}:=\mathcal{A}_{k+1}$.
For all $k: \mathcal{A}_{k} \sim_{k} \mathcal{B}_{k} . \mathcal{A}_{k}$ is Eulerian if and only if k is even, i.e., iff \mathcal{B}_{k} is not Eulerian.

Undirected Paths

$$
\begin{array}{ll}
L_{n} & a_{1}-a_{2}-a_{3}-\cdots-a_{i-1}-a_{i}-a_{i+1}-\cdots-a_{n} \\
L_{n}^{<a_{i}} & a_{1}-a_{2}-a_{3}-\cdots-a_{i-1} \\
L_{n}^{>a_{i}} & \\
a_{i+1}-\cdots-a_{n}
\end{array}
$$

(Nodes a_{i-1}, a_{i+1} are labeled A_{i}, as adjacent to a_{i} in L_{n}).
Lemma (composition lemma for paths)
$L_{m} \sim_{k+1} L_{n}$ if and only if

$$
\begin{aligned}
& \text { (1) } \forall a \exists b \quad L_{m}^{<a} \sim_{k} L_{n}^{<b} \wedge L_{m}^{>a} \sim_{k} L_{n}^{>b} \text { and } \\
& \text { (2) } \forall b \exists a \quad L_{m}^{<a} \sim_{k} L_{n}^{<b} \wedge L_{m}^{>a} \sim_{k} L_{n}^{>b}
\end{aligned}
$$

Undirected Paths

Lemma (composition lemma for paths)

$\left.\begin{array}{l}\text { (1) } \forall a \exists b L_{m}^{<a} \sim_{k} L_{n}^{<b} \wedge L_{m}^{>a} \sim_{k} L_{n}^{>b} \\ \text { (2) } \forall b \exists a \quad L_{m}^{<a} \sim_{k} L_{n}^{<b} \wedge L_{m}^{>a} \sim_{k} L_{n}^{>b}\end{array}\right\} \Leftrightarrow L_{m} \sim_{k+1} L_{n}$

Proof.

We define the winning strategy for $k+1$ moves as follows:

- W.I.o.g., Spoiler Spoiler chooses node a of structure L_{m} in the first move.
- Because of (1), there is a b in L_{n} such that Duplicator wins in k moves on $L_{m}^{<a}, L_{n}^{<b}$ and on $L_{m}^{>a}, L_{n}^{>b}$.
- We can combine the two winning strategies into one combined strategy:
- If Spoiler chooses a node $\leq a$ in L_{m} in the i-th move, then Duplicator answers according to the winning strategy for $L_{m}^{<a}$ and $L_{n}^{<b}$, not counting the moves that were played in the other pair of structures.
- If Spoiler chooses a node $\geq a$, we answer analogously using Duplicator's winning strategy for $L_{m}^{>a}, L_{n}^{>b}$.

Undirected Paths

It follows:
Theorem
$L_{m} \sim_{k} L_{n}$ if and only if $m=n$ or $m, n \geq 2^{k}-1$.
So for $n<2^{k}-1, L_{n} \nsim k_{k} L_{n+1}$; for $n \geq 2^{k}-1, L_{n} \sim_{k} L_{n+1}$.
Example $\left(L_{8} \sim_{3} L_{9}\right)$

Cycles

- (Isolated) directed cycles C_{n} : Graphs with nodes $\left\{v_{1}, \ldots, v_{n}\right\}$ and edges $\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{n-1}, v_{n}\right),\left(v_{n}, v_{1}\right)\right\}$.
- There is an analogous composition lemma for (directed or undirected) cycles.
- After the first move, there is one distinguished node in the cycle, the one with token S_{1} or D_{1} on it.
- We can treat this cycle like a path obtained by cutting the cycle at the distinguished node.

- Theorem. If $n \geq 2^{k}$, then $C_{n} \sim_{k} C_{n+1}$.

2-colorability

Definition

2-colorability : Given a graph, is there a function that maps each node to either "red" or "green" such that no two adjacent nodes have the same color?

Theorem

2-colorability is not expressible in FO.

Proof Sketch.

For each k,

- $\mathcal{A}_{k}: C_{2^{k}}$, the cycle of length 2^{k}.
- $\mathcal{B}_{k}: C_{2^{k}+1}$, the cycle of length $2^{k}+1$.
- $\mathcal{A}_{k} \sim_{k} \mathcal{B}_{k}$.
- However, a cycle C_{n} of length n is 2-colorable iff n is even.

Inexpressibility follows from the EF methodology theorem.

Acyclicity

From now on, "very long/large" means simply 2^{k}.
Theorem
Acyclicity is not expressible in FO.
Proof Sketch.

- \mathcal{A}_{k} : a very long path.
- \mathcal{B}_{k} : a very long path plus (disconnected from it) a very large cycle.
- $\mathcal{A}_{k} \sim_{k} \mathcal{B}_{k}$.

Graph reachability

Theorem

Graph reachability from a to b is not expressible in FO.
a, b are constants or are given by an additional unary relation with two entries.

Proof Sketch.

- \mathcal{A}_{k} : a very large cycle in which the nodes a and b are maximally distant.
- \mathcal{B}_{k} : two very large cycles; a is a node of the first cycle and b a node of the second.
- $\mathcal{A}_{k} \sim_{k} \mathcal{B}_{k}$.

