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Purpose - In this paper, a novel Ant Colony Optimization (ACO) approach to optimal
control is proposed. The standard ACO algorithms have proven to be very powerful
optimization metaheuristic for combinatorial optimization problems. They have been
demonstrated to work well when applied to various NP-complete problems, such as the

traveling salesman problem. In this paper, ACO is reformulated as a model-free learning
algorithm and its properties are discussed.
Design/methodology/approach - First, it is described how quantizing the state space

of a dynamic system introduces stochasticity in the state transitions and transforms the
optimal control problem into a stochastic combinatorial optimization problem, motivat-
ing the ACO approach. The algorithm is presented and is applied to the time-optimal
swing-up and stabilization of an underactuated pendulum. In particular, the effect of

different numbers of ants on the performance of the algorithm is studied.
Findings - The simulations show that the algorithm finds good control policies rea-
sonably fast. An increasing number of ants results in increasingly better policies. The

simulations also show that although the policy converges, the ants keep on exploring the
state space thereby capable of adapting to variations in the system dynamics.
Research limitations/implications - This research introduces a novel ACO approach
to optimal control and as such marks the starting point for more research of its properties.

In particular, quantization issues must be studied in relation to the performance of the
algorithm.
Originality/value - The work presented is original as it presents the first application
of ACO to optimal control problems.

Keywords: ant colony optimization; optimal control; combinatorial optimization; under-
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actuated pendulum

Papertype: Research Paper

1. Introduction

Ant Colony Optimization (ACO) is a metaheuristic for solving combinatorial opti-

mization problems [Dorigo and Blum (2005)]. Inspired by ants and their behavior in

finding shortest paths from their nest to sources of food, the virtual ants in ACO aim

at jointly finding optimal paths in a given search space. The key ingredients in ACO

are the pheromones. With real ants, these are chemicals deposited by the ants and

their concentration encodes a map of trajectories, where stronger concentrations

represent the trajectories that are more likely to be optimal. In ACO, the ants read

and write values to a common pheromone matrix. Each ant autonomously decides

on its actions biased by these pheromone values. This indirect form of communica-

tion is called stigmergy. Over time, the pheromone matrix converges to encode the

optimal solution of the combinatorial optimization problem, but the ants typically

do not all converge to this solution, thereby allowing for constant exploration and

the ability to adapt the pheromone matrix to changes in the problem structure.

These characteristics have resulted in a strong increase of interest in ACO over the

last decade since its introduction in the early nineties [Colorni et al. (1992)].

The Ant System (AS), which is the basic ACO algorithm, and its variants, have

successfully been applied to various optimization problems, such as the traveling

salesman problem [Dorigo and Stützle (2004)], load balancing [Sim and Sun (2003)],

job shop scheduling [Huang and Yang (2008); Alaykran et al. (2007)], optimal path

planning for mobile robots [Fan et al. (2003)], and telecommunication routing [Wang

et al. (2009)]. An implementation of the ACO concept of pheromone trails for real

robotic systems is described in [Purnamadjaja and Russell (2005)]. A survey of

industrial applications of ACO is presented in [Fox et al. (2007)]. A survey of ACO

and other metaheuristics to stochastic combinatorial optimization problems can be

found in [Bianchi et al. (2006)].

This paper introduces a novel method for applying an ACO algorithm to the

design of optimal control policies for continuous-time, continuous-state dynamic

systems and extends the original contribution by the authors of this paper in [van

Ast et al. (2008)]. In that paper, the continuous model of the system to be con-

trolled was transformed to a stochastic discrete automaton after which a variation

of the Ant System was applied to derive the control policy. In the current paper,

the algorithm is directly applied to the equations of the system dynamics and the

transformation to a stochastic automaton is merely used as a way of analyzing and

discussing the performance of the algorithm. [Birattari et al. (2002)] is the first work

linking ACO to optimal control. Although presenting a formal framework, called

ant programming, they neither apply it, nor do they study its performance. Our al-

gorithm shares some similarities with a particular reinforcement learning algorithm,

Q-learning. Earlier work by Gambardella and Dorigo [1995] introduced the Ant-Q
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algorithm, which is the most notable other work relating ACO with Q-learning.

However, Ant-Q has been developed for combinatorial optimization problems and

not to optimal control problems. Because of this difference, our ACO approach for

an optimal control algorithm is novel in all major structural aspects of the Ant-Q

algorithm, namely the choice of the action selection method, the absence of the

heuristic variable, and the choice of the update set of ants. Furthermore, our algo-

rithm is very straightforward to apply, as there are fewer parameters that need to be

set a priori, compared to Ant-Q and the well-known benchmark ACO algorithms.

The effectiveness of our method is demonstrated by applying it to the control task

of swinging up and stabilizing an underactuated pendulum. The pendulum problem

is a nice abstraction of more complex robot control problems, like the stabilization

of a walking humanoid robot. Finding the optimal control policy by interacting with

the system is a challenging task. The results show that a near optimal controller

is found quickly with the proposed ACO method. We study the influence of the

number of ants on the convergence of the policy for this particular optimal control

problem.

The remainder of this paper is structured as follows. Section 2 reviews the basic

ACO heuristic and two of its variants, namely the Ant System and the Ant Colony

System. Section 3 formalizes the type of control problems we aim to solve, discusses

the stochasticity introduced by quantizing the continuous dynamics of the system

to be controlled, and presents our ACO algorithm for optimal control problems.

In Section 4, the underactuated pendulum swing-up and stabilization problem is

formalized including a discussion of the parameters used in our algorithm and the

results of applying our algorithm to this control problem with a special focus on

the influence of the number of ants. Section 5 concludes this paper.

2. Ant Colony Optimization

2.1. Framework for ACO Algorithms

ACO algorithms have been developed to solve hard combinatorial optimization

problems [Dorigo and Blum (2005)]. A combinatorial optimization problem can be

represented as a tuple P = 〈S, F 〉, where S is the solution space with s ∈ S a

specific candidate solution and where F : S → R+ is a fitness function assigning

strictly positive values to candidate solutions, where higher values correspond to

better solutions. The purpose of the algorithm is to find a solution s∗ ∈ S, or set of

solutions S∗ ⊆ S that maximize the fitness function. The solution s∗ is then called

an optimal solution and S∗ is called the set of optimal solutions.

In ACO, the combinatorial optimization problem is represented by a graph con-

sisting of a set of vertices and a set of arcs connecting the vertices. A particular

solution s is a concatenation of solution components (i, j), which are pairs of a

vertex i and an arc that connects this vertex to another vertex j. The concatena-

tion of solution components forms a path from the initial vertex to the terminal

vertex. How the terminal vertices are defined depends on the problem considered.
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For instance, in the traveling salesman problema, there are multiple terminal ver-

tices, namely for each ant the terminal vertex is equal to its initial vertex, after

visiting all other vertices exactly once. For the application to control problems, as

considered in this paper, the terminal vertex corresponds to the desired state of

the system. Two values are associated with the arcs: a pheromone trail variable τij
and a heuristic variable ηij . The pheromone trail represents the acquired knowledge

about the optimal solutions over time and the heuristic variable provides a priori

information about the quality of the solution component, i.e., the quality of moving

from a vertex i to a vertex j. In the case of the traveling salesman problem, the

heuristic variables typically represent the inverse of the distance between the respec-

tive pair of cities. In general, a heuristic variable represents a short-term quality

measure of the solution component, while the task is to acquire a concatenation of

solution components that overall form an optimal solution. A pheromone variable,

on the other hand, encodes the measure of the long-term quality of concatenating

the respective solution component.

2.2. Ant Systems and Ant Colony Systems

The most basic ACO algorithm is called the Ant System (AS) and works as follows.

A set of M ants is randomly distributed over the vertices. The heuristic variables ηij
are set to encode the prior knowledge by favoring the choice of some vertices over

others. For each ant c, the partial solution sp,c is initially empty and all pheromone

variables are set to some initial value τ0. In each iteration, each ant decides based on

some probability distribution, which solution component (i, j) to add to its partial

solution sp,c. The probability pc{j|i} for an ant c on a vertex i to move to a vertex

j within its feasible neighborhood Ni is defined as:

pc{j|i} =
ταijη

β
ij

∑

l∈Ni
ταilη

β
il

, ∀j ∈ Ni, (1)

with α ≥ 1 and β ≥ 1 determining the relative importance of ηij and τij respectively.

The feasible neighborhood Ni is the set of not yet visited vertices that are connected

to the vertex i. By moving from vertex i to vertex j, ant c adds the associated

solution component (i, j) to its partial solution sp,c until it reaches its terminal

vertex and completes its candidate solution.

The candidate solutions of all ants are evaluated using the fitness function F (s)

and the resulting value is used to update the pheromone levels by:

τij ← (1− ρ)τij +
∑

s∈Supd

∆τij(s), (2)

aIn the traveling salesman problem, there is a set of cities connected by roads of different lengths

and the problem is to find the sequence of cities that takes the traveling salesman to all cities,
visiting each city exactly once and bringing him back to its initial city with a minimum length of
the tour.
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with ρ ∈ (0, 1) the evaporation rate and Supd the set of solutions that are eligible to

be used for the pheromone update, which will be explained further on in this section.

This update step is called the global pheromone update step. The pheromone deposit

∆τij(s) is computed as:

∆τij(s) =

{

F (s) , if (i, j) ∈ s

0 , otherwise.

The pheromone levels are a measure of how desirable it is to add the associ-

ated solution component to the partial solution. In order to incorporate forget-

ting, the pheromone levels decrease by some factor in each iteration. This is called

pheromone evaporation in correspondence to the physical evaporation of the chem-

ical pheromones with real ant colonies. By evaporation, it can be avoided that

the algorithm prematurely converges to suboptimal solutions. Note that in (2) the

pheromone level on all vertices is evaporated and only those vertices that are asso-

ciated with the solutions in the update set receive a pheromone deposit.

In the following iteration, each ant repeats the previous steps, but now the

pheromone levels have been updated and can be used to make better decisions

about which vertex to move to. After some stopping criterion has been reached, the

values of τ and η on the graph encode the solution, in which the optimal (i, j) pairs

are defined in the following way:

(i, j) : j = argmax
l

(τil), ∀i.

Note that all ants are still likely to follow suboptimal trajectories through the

graph, thereby exploring constantly the solution space and keeping the ability to

adapt the pheromone levels to changes in the problem structure.

There exist various rules to construct Supd, of which the most standard one

is to use all the candidate solutions found in the trial Strial
b. This update rule is

typical for the Ant System (AS) [Dorigo et al. (1996)]. However, other update rules

have shown to outperform the AS update rule in various combinatorial optimization

problems. Rather than using the complete set of candidate solutions from the last

trial, either the best solution from the last trial, or the best solution since the

initialization of the algorithm can be used. The former update rule is called Iteration

Best in the literature (which should be called Trial Best in our terminology), and

the latter is called Best-So-far, or Global Best in the literature [Dorigo and Blum

(2005)]. These methods result in a strong bias of the pheromone trail reinforcement

towards solutions that have been proven to perform well and additionally reduce the

bIn ACO literature, the term trial is seldom used. It is rather a term from the reinforcement
learning (RL) community [Sutton and Barto (1998)]. In our opinion it is also a more appropriate
term for ACO, especially in the setting of optimal control, and we will use it to denote the part of
the algorithm from the initialization of the ants over the state space until the global pheromone

update step. The corresponding term for a trial in the ACO literature is iteration and the set of
all candidate solutions found in each iteration is denoted as Siter. In this paper, equivalently to
RL, we prefer to use the word iteration to indicate one interaction step with the system.
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computational complexity of the algorithm. As the risk exists that the algorithm

prematurely converges to suboptimal solutions, these methods are only superior to

AS if extra measures are taken to prevent this. Two of the most successful ACO

variants in practice that implement the update rules mentioned above, are the Ant

Colony System (ACS) [Dorigo and Gambardella (1997)] and theMAX -MIN Ant

System [Stützle and Hoos (2000)].

An important element from the ACS algorithm, which acts as a measure to avoid

premature convergence to suboptimal solutions is the local pheromone update step,

which occurs after each iteration with the trials and is defined as follows:

τij ← (1− γ)τij + γτ0, (3)

where γ ∈ (0, 1) is a parameter similar to ρ, ij is the solution component (i, j)

just added, and τ0 is the initial value of the pheromone trail. The effect of (3) is

that during the trial visited solution components are made less attractive for other

ants to take, in that way promoting the exploration of other, less frequently visited,

solution components. In this paper, the ACO for optimal control algorithm is based

on the AS combined with the local pheromone update step of the ACS algorithm.

3. ACO for Optimal Control

3.1. The Optimal Control Problem

Assume that we have a nonlinear dynamic system, characterized by a continuous-

valued state vector x =
[

x1 x2 . . . xn

]T
∈ X ⊆ R

n, with X the state space and n the

order of the system. Also assume that the state can be controlled by an input u ∈ U

that can only take a finite number of values and that the state can be measured

at discrete time steps, with a sample time Ts with k the discrete time index. The

sampled system is denoted as:

x(k + 1) = f(x(k),u(k)). (4)

The optimal control problem is to control the state of the system from any given

initial state x(0) = x0 to a desired goal state x(K) = xg in an optimal way, where

optimality is defined by minimizing the following quadratic cost function:

J =

K−1
∑

k=0

eT(k + 1)Qe(k + 1) + uT(k)Ru(k), (5)

with e(k + 1) = x(k + 1) − xg the error at time k + 1 and Q and R positive

definite matrices of appropriate dimensions. The problem is to find a nonlinear

mapping from the state to the input u(k) = g(x(k)) that, when applied to the

system in x0 results in a sequence of state-action pairs (u(0),x(1)), (u(1),x(2)), . . .,

(u(K−1),xg) that minimizes this cost function. The function g is called the control

policy. We make the assumption that xg is reachable in at most K time steps. If this

is not the case, a minimal cost J will not correspond to a sequence of state-action

pairs that ends in xg. The quadratic cost function in (5) is minimized if the goal is
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both reachable and reached in minimum time respecting the dynamics of the system

in (4) and the restrictions on the size of the input. The matrices Q and R balance

the importance of speed versus the aggressiveness of the controller. This kind of cost

function is frequently used in the optimal control of linear systems, as the optimal

controller minimizing the quadratic cost can be derived as a closed expression after

solving the corresponding Riccati equation using the Q and R matrices and the

matrices of the linear state space description [Åström and Wittenmark (1990)].

In our case, we aim at finding control policies for non-linear systems which in

general cannot be derived analytically from the system description and the Q and R

matrices. Note that our method is not limited to the use of quadratic cost functions.

Figure 1 presents a schematic layout of the ACO algorithm for control problems.

Note that each ant interacts with a copy of the system and contributes to the

learning of one joint control policy. The details of the algorithm are described in

Section 3.4.

ACO

Policy Systemu(k) x(k + 1)

Fig. 1. Layout of the ACO control scheme.

3.2. Markov Decision Processes

The control policy we aim to find with our ACO algorithm will be a reactive policy,

meaning that it will define a mapping from states to actions without the need of

storing the states (and actions) of previous time steps. This poses the requirement

on the system that it can be described by a state-transition mapping for a quantized

state q and an action (or input) u in discrete time as follows:

q(k + 1) ∼ p(q(k),u(k)), (6)

with p a probability distribution function over the state-action space. In this case,

the system is said to be a Markov Decision Process (MDP) and the probability

distribution function p is said to be the Markov model of the system. Our ACO

approach for optimal control problems requires an MDP. This means that the state

vector q should be large enough to represent an accurate Markov model of the

system. Most reinforcement learning algorithms are also constructed to deal with

MDPs [Sutton and Barto (1998)].
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Note that finding an optimal control policy for an MDP is equivalent to finding

the optimal sequence of state-action pairs from any given initial state to a cer-

tain goal state, which is a combinatorial optimization problem. When the state

transitions are stochastic, like in (6), it is a stochastic combinatorial optimization

problem. As ACO algorithms are especially applicable to (stochastic) combinatorial

optimization problems, the application to deriving control policies is evident.

3.3. Stochasticity Through Quantization

Assume a continuous-time, continuous-state system and sampled with a sample

time Ts. In order to apply ACO, the state x must be quantized into a finite number

of bins to get the quantized state q. Depending on the sizes and the number of

these bins, portions of the state space will be represented with the same quantized

state. One can imagine that applying an input to the system that is in a particular

quantized state results in the system to move to a next quantized state with some

probability. In order to illustrate these aspects of the quantization, we consider the

continuous model to be cast as a discrete stochastic automaton.

Definition 3.1. An automaton is defined by the triple Σ = (Q,U , φ), with

• Q: a finite or countable set of discrete states,

• U : a finite or countable set of discrete inputs, and

• φ : Q× U ×Q → [0, 1]: a state transition function.

Given a discrete state vector q ∈ Q, a discrete input symbol u ∈ U , and a

discrete next state vector q′ ∈ Q, the (Markovian) state transition function φ

defines the probability of this state transition, φ(q,u,q′), making the automaton

stochastic. The probabilities over all states q′ must each sum up to one for each

state-action pair (q,u). An example of a stochastic automaton is given in Figure 2.

In this figure, it is clear that, e.g., applying an action u = 1 to the system in q = 1

can move the system to a next state that is either q = 1 with a probability of 0.2,

or q = 2 with a probability of 0.8.

The probability distribution function determining the transition probabilities

reflects the system dynamics and the set of possible control actions is reflected

in the structure of the automaton. The probability distribution function can be

estimated from simulations of the system over a fine grid of pairs of initial states and

inputs, but for the application of ACO, this is not necessary. The ACO algorithm

can directly interact with the continuous-state dynamics of the system, as will be

described in the following section.

3.4. ACO Algorithm for Optimal Control

At the start of every trial, each ant is initialized with a random continuous-valued

state of the system. This state is quantized onto Q. Each ant has to determine



Novel Ant Colony Optimization Approach to Optimal Control 9

φ(q = 2, u = 1, q′ = 2) = 1

q = 2q = 1

φ(q = 1, u = 1, q′ = 1) = 0.2

φ(q = 2, u = 2, q′ = 2) = 0.1φ(q = 1, u = 2, q′ = 1) = 1

φ(q = 1, u = 1, q′ = 2) = 0.8

φ(q = 2, u = 2, q′ = 1) = 0.9

Fig. 2. An example of a stochastic automaton.

which action to choose from. It is not known to the ant to which state this action

will take him, as in general there is a set of next states to which the ant can move,

according to the system dynamics. Each ant adds the state-action pair to its partial

solutions.

No heuristic values are associated with the vertices, as we assume in this paper

that no a priori information is available about the quality of solution components.

This is implemented by setting all heuristic values to one. It can be seen that ηij
disappears from (1) in this case. Only the value of α remains as a tuning parameter,

now in fact only determining the amount of exploration as higher values of α make

the probability higher for choosing the action associated with the largest pheromone

level. In the Ant Colony System, there is an explicit exploration-exploration step

when the next node j associated with the highest value of ταijη
β
ij is chosen with some

probability ǫ (exploitation) and a random action is chosen with the probability (1−ǫ)

according to (1) (exploration). In our algorithm, as we do not have the heuristic

factor ηij , the amount of exploration over exploitation can be tuned by setting

the value of α as mentioned before. For this reason, we do not include an explicit

exploration-exploitation step based on ǫ. Without this and without the heuristic

factor, the algorithm needs less tuning and is easier to apply.

The probability of an ant c to choose an action u when in a state qc is:

pc{u|qc} =
ταqcu

∑

l∈Uqc

ταqcl

. (7)

The pheromones are initialized equally for all vertices and set to a small positive

value τ0. During every trial, all ants construct their solutions in parallel by inter-

acting with the system until they either have reached the goal state, or the trial

exceeds a certain pre-specified number of iterations Kmax. After every iteration, the

ants perform a local pheromone update, equal to (3), but in the setting of our ACO

for optimal control framework:

τqcuc
(k + 1)← (1− γ)τqcuc

(k) + γτ0.
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After completion of the trial, the pheromone levels are updated according to the

following global pheromone update step:

τqu(κ+ 1)← (1− ρ)τqu(κ) + ρ
∑

s∈Strial;
(q,u)∈s

J−1(s), ∀(q,u); ∃s ∈ Strial; (q,u) ∈ s,

with Strial the set of all candidate solutions found in the trial and κ the trial counter.

This type of update rule is comparable to the AS update rule, with the important

difference that only the pheromone levels are evaporated that are associated with

the elements in the update set of solutions. The pheromone deposit is equal to

J−1(s), the inverse of the cost function over the sequence of state-action pairs in s

according to (5).

The complete algorithm is given in Algorithm 1. In this algorithm the function

xc ← random(X ) selects for an ant c a random state xc from the state space X with

a uniform probability distribution. The function qc ← quantize(xc) quantizes for

an ant c the state xc into a quantized state qc using the prespecified quantization

bins from Q. A flow diagram of the algorithm is presented in Figure 3.

Algorithm 1 The ACO algorithm for optimal control problems.

1: κ← 0

2: τqu ← τ0, ∀(q,u) ∈ Q× U

3: repeat

4: k ← 0; Strial ← ∅

5: for all ants c in parallel do

6: sp,c ← ∅

7: xc ← random(X )

8: repeat

9: qc ← quantize(xc)

10: uc ∼ pc{u|qc} =
τα

qcu∑
l∈Uqc

τα

qcl

, ∀u ∈ Uqc

11: sp,c ← sp,c
⋃

{(qc,uc)}

12: xc(k + 1)← f(xc(k),uc)

13: Local pheromone update:

τqcuc
(k + 1)← (1− γ)τqcuc

(k) + γτ0
14: k ← k + 1

15: until k = Kmax

16: Strial ← Strial
⋃

{sp,c}

17: end for

18: Global pheromone update:

τqu(κ+1)← (1−ρ)τqu(κ)+ρ
∑

s∈Strial;
(q,u)∈s

J−1(s), ∀(q,u); ∃s ∈ Strial; (q,u) ∈ s

19: κ← κ+ 1

20: until κ = κmax
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We categorize our algorithm as model-free, as the ants do not have direct access

to the model of the system and must learn the control policy just by interacting with

it. Note that as the ants interact with the system in parallel, the implementation

of this algorithm to a real system requires multiple copies of this system, one for

each ant. This hampers the practical applicability of the algorithm to real systems.

However, when a model of the real system is available, the parallelism can take

place in software. In that case, the learning happens off-line and after convergence,

the resulting control policy can be applied to the real system.

3.5. Selection of the Parameters

In order to run the algorithm, some parameters need to be selected. The matrices

Q and R from the cost function (5) need to be selected based on the performance

criteria of the optimal control policy with a trade-off between the responsiveness

(control speed) and aggressiveness (control power). Based on the system dynamics,

the sampling time Ts and the quantization space for the state Q and the action U

must be chosen properly. Faster sampling and finer quantization of the state space

make the discretized representation less stochastic, but the number of iterations

needed to move from an initial state to a given goal state larger. As such, the task

for the ants to find the optimal paths will be more difficult and a longer convergence

time can be expected. Furthermore, a larger Q requires more memory to store the

pheromone matrix.

For the algorithm itself, the maximum number of time steps per trial Kmax and

the maximum number of trials per run of the algorithm κmax need to be chosen.

Each of them must be respectively set to a sufficiently large number for the ants to

be able to reach the goal state from any given initial state and for the pheromone

matrix to converge. The initial pheromone level τ0 needs to be set to a small positive

value. The local and global pheromone levels, γ and ρ respectively, need to be set

to a specific value in the range (0, 1). Values of γ = ρ = {0.01, 0.1} are typically

used in literature (see, e.g., [Dorigo et al. (1996)] and [Dorigo and Gambardella

(1997)]). Because we want the local pheromone update (causing exploration) to have

a somewhat lower influence on the pheromone update than the global pheromone

update (assigning the credit of the obtained solutions), a good choice is to take

γ = 0.01 and ρ = 0.1.

The value of α from the action selection step in (7) trades-off the amount of

exploration versus exploitation of the state space by the ants. In our algorithm, in

contrast to the Ant System and Ant Colony System algorithms, there is no explicit

exploitation rule. A value of α = 2 is most common in the literature, but in order

to make the action selection step to focus a bit more on the current optimal action,

we have observed that a slightly larger value of α = 3 works better.

Another important parameter to consider is the number of antsM . Larger values

of M are expected to result in a better sampling of the state-action space and as

such to improve the convergence to the optimal policy. In the following section,
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Fig. 3. Flow diagram of the ACO algorithm for optimal control problems. The numbers between
parentheses refer to the respective lines of Algorithm 1.
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our algorithm is applied to the optimal control of an underactuated pendulum. In

particular we study the influence of the number of ants on the performance of the

algorithm.

4. ACO Optimal Control of an Underactuated Pendulum

In this section, we will apply our ACO algorithm to the optimal swing-up and

stabilization of an underactuated pendulum. We will focus on the performance of

the algorithm with respect to the number of ants.

4.1. Underactuated Pendulum Swing-Up and Stabilization

The underactuated pendulum swing-up and stabilization problem is a challenging

control problem due to the narrow solution space. The pendulum is modeled as a

pole, attached to a pivot point at which a motor exerts a torque. The objective is to

get the pendulum from a certain initial position to its unstable upright position, and

to keep it stabilized within a certain band around that unstable position. The torque

is, however, limited such that it is not possible to move the pendulum to its upright

position in one movement. The pendulum problem is a nice abstraction of more

complex robot control problems, like the stabilization of a walking humanoid robot.

The behavior can be easily analyzed, while the learning problem is challenging.

The non-linear state equations of the pendulum are given by:

Jω̇(t) = Ku(t)−mgR sin(θ(t))−Dω(t), (8)

with θ(t) = x1(t) and ω(t) = x2(t) the state variables, representing the angle and

angular velocity of the pole in continuous time respectively. The signs of the state

variables are indicated in Figure 4(a). Furthermore, u is the applied torque and the

other parameters with their values as used in the simulations are listed in Table 1.

Table 1. The parameters of the pendulum model and their values used in the experiment.

Parameter Value Explanation

J 0.005 kg ·m2 pole inertia

K 0.1 motor gain

D 0.01 kg · s−1 damping

m 0.1 kg mass

g 9.81 m · s−2 gravitational acceleration

R 0.1 m pole half-length

The system is sampled in time and the states θ and ω are quantized according
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(b) A particular (equidistant) quanti-
zation of θ with 16 bins.

Fig. 4. Schematic of the pendulum and quantization of its angle.

to:

θq = i, if θ (mod 2π) ∈ (bθ,i, bθ,i+1],

ωq = i, if ω ∈ (bω,i, bω,i+1],

with bθ,i and bω,i respectively the ith element of the ordered sets

Bθ =

{

π

Nθ

,
3π

Nθ

, . . . ,
(2Nθ − 1)π

Nθ

}

Bω =

{

−∞,−ωmax,−ωmax +
2ωmax

Nω − 2
, . . . , ωmax,+∞

}

,

where Nθ and Nω ≥ 3 are the number of quantization bins for θ and ω respectively

and ωmax is the maximum (absolute) angular velocity expected to occur. Note that

Nθ must be even to make sure that both equilibria fall within a bin and not at the

boundary of two neighboring bins, which would result in chattering of the quantized

state when the pendulum is near one of the equilibria. For similar reasons, Nω must

be odd.

4.2. Simulation Parameters

The ants sample the non-linear state dynamics from (8) with a sample time of Ts =

0.1 s. The number of bins for quantizing the states with a homogeneous distribution

are Nθ = 40 and Nω = 41 for the angle and angular velocity respectively. The

maximum angular velocity expected to occur is set to ωmax = 9 rad · s−1. The

action set consists of only three actions, namely plus and minus the maximum

torque of 0.8 Nm and the zero torque. The total number of quantized states is
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40× 41 = 1640. All the ants are initialized with a random state at the start of each

trial. In each trial, the ants get Kmax = 300 iterations to find the quantized goal

state containing the goal state xg, which is sufficiently long for the ants to swing

up and stabilize the pendulum. The simulation runs for a maximum of κmax = 100

trials. The global and local evaporation rates of the pheromone levels are fixed to

ρ = 0.1 and γ = 0.01 respectively. The value of α from the action-selection step in

(7) is chosen to be equal to 3. We repeat the experiment for different number of

ants M ∈ {100, 250, 500, 1000, 1250, 1500, 1750, 2000}.

4.3. Simulation Results

During the experiments, the quality of the control policy derived from the

pheromone matrix is evaluated at each trial. For a set of initial states, homoge-

neously distributed over the state space, the trajectories starting from these states

and following the current best policy are evaluated over the cost function (5). For

the various experiments, with different numbers of ants, the plot of the progress of

this cost throughout the experiments is shown in Figure 5. The solid line represents

the mean of this cost over all trajectories and the boundaries of the shaded area

correspond to the maximum and minimum cost from this set. The shaded area can

be interpreted as being the confidence of the ants in finding the optimal policy.

It can be seen that for M ≥ 250, the mean of the cost converges. For increasing

numbers of ants, the converged mean of the cost slowly decreases. For M ≥ 1250,

it appears to have reached its minimum. The size of the shaded area also decreases

with increasing M . The peaks in the shaded area are caused by some ants that could

not reach the goal state within the maximum number of iterations in the given trial.

These results show that for an increasing number of ants, the performance of the

policy and the confidence of the ants that this policy is optimal increases. The

convergence speed, however, does not seem to be much influenced by the number

of ants. For M ≥ 250, convergence occurs after about 25 to 50 trials.

During the experiments, we have also recorded the cost of the trajectories that

the ants have followed. Figure 6 shows these results, with the solid line representing

the mean and the shaded area representing the area bounded by the maximum and

the minimum cost over the set of trajectories.

It can be observed that for the cases when the policy converges, the means of

these costs converges as well, but the areas bounded by the maximum and minimum

costs remain large. This indicates that the ants keep on exploring the state space

and as such do not converge themselves to always following the found policy.

The resulting policy of the controller derived from the pheromone trail after 100

trials, when the simulation is finished, is depicted in Figure 7 for the experiments

with M = 250 and M = 2000. In this figure, the optimal action as a function of the

quantized state is depicted in a shaded grid, where black represents full negative

torque, grey represents zero torque, and white represents full positive torque. In

Figure 7(a), the resulting policy for M = 250 is much less structured than the



16 J.M. van Ast, R. Babuška, and B. De Schutter
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Fig. 5. During each experiment, after each trial, the policy is evaluated by computing the cost

for a set of trajectories starting from a set of initial states, homogeneously distributed over the
state space and following the policy. These figures show the progress of this cost over the trials
in the experiments with different numbers of ants. The solid line is the mean of the cost and the
boundaries of the shaded area correspond to the maximum and minimum cost over the set of

trajectories.
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Fig. 6. The cost of the trajectories followed by the ants during each trial. The solid line is the mean

of the cost and the boundaries of the shaded area correspond to the maximum and minimum cost
over the set of trajectories.
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policy depicted in Figure 7(b) for M = 2000. It can be observed most clearly from

Figure 7(b) that the policy is to apply the torque in the direction of movement for

angles near 0, or 2π rad. This corresponds to a destabilizing action with the purpose

of swinging the pendulum up higher by accumulating energy. There is a ridge on the

diagonal near the goal state in π rad and 0 rad · s−1, where the destabilizing action

changes to a stabilizing action by applying the torque in the opposite direction of

the movement. In the quantized goal state, the policy is to apply the zero torque

action. There seems to be a chaotic pattern of states for which the policy is to apply

the zero torque action throughout the white and black regions. It is a property of

motion systems that the inertia masks the clear effect of a certain action and in

particular the zero torque action in some of the states. It turns out that there is

no clear optimal action in these states. With 250 ants, the policy contains many

more of such states. Applying this policy to control the pendulum shows that the

converged policy is too sub-optimal to swing up and stabilize the pendulum. The

policy plots for the experiments with numbers of ants between 250 and 2000 are not

shown here, but reveal an increasing ordered pattern from the plot in Figure 7(a)

to the plot in Figure 7(b).
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Fig. 7. Control policy for the simulations with 250 and 2000 ants. The shaded rectangles indicate
the optimal action in the respective state. Black represents the full negative torque, grey represents
the zero torque, and white represents the full positive torque action.

The behavior of the original continuous model of the pendulum controlled by

the control policy as depicted in Figure 7(b) is presented in Figure 8. The figures

show the behavior of the pendulum for a set of initial angles and zero velocity.

Starting from, e.g., the initial state x(0) = (0, 0)T, the optimal policy is to swing the

pendulum first to about 1
2π rad and then swing it back and brake in time to stabilize
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it hanging upside down. The little chattering around the unstable equilibrium is due

to the quantization of the state and action space. It is almost impossible to reach

an exact angle of π by only applying full positive, full negative, or zero torque in

discrete states.

4.4. Summary

The results from Section 4.3 show that when the number of ants is low, the policy

does not converge at all. For larger values ofM , the mean of the cost associated with

the pheromone matrix does converge, but the confidence remains low, meaning that

the pheromone matrix still changes considerably at every trial. For even larger values

of M , the mean of the cost associated with the pheromone matrix decreases and the

confidence increases. This indicates that the ants have found a more optimal policy

that does not vary too much with the progress of the algorithm. The convergence

speed does not seem to depend much on the number of ants.

Interestingly, the ants themselves do not converge to a situation in which they all

follow the optimal policy, even if the policy itself does converge. This indicates that

the ants keep on exploring the state space, thereby potentially capable of tracking

changes in the system dynamics.

5. Conclusions and Future Research

This paper has introduced a new method for the design of optimal control policies

for continuous-time, continuous-state dynamic systems based on Ant Colony Opti-

mization (ACO). We have discussed how a sampled and quantized version of such

a system behaves as a stochastic automaton. The problem of finding an optimal

control policy as such can be viewed as a stochastic combinatorial optimization

problem. Our novel ACO algorithm is based on the combination of the Ant System

and the Ant Colony System, but it has some particular characteristics. The action

selection step does not include an explicit probability of choosing the action associ-

ated with the highest value of the pheromone matrix in a given state, but only uses

a random-proportional rule. In this rule, the heuristic variable, typically present

in ACO algorithms, is left out as no action can be marked as being favored over

other actions in a particular state a priori. The absence of the heuristic variable

makes our algorithm straightforward to apply. Another particular characteristic of

our algorithm is that it uses the complete set of solutions of the ants in each trial

to update the pheromone matrix, whereas most ACO algorithms typically use some

form of elitism, selecting only one of the solutions from the set of ants to perform

the global pheromone update. In a control setting, this is not possible, as ants ini-

tialized closer to the goal will have experienced a lower cost than ants initialized

further away from the goal, but this does not mean that they must be favored in

the update of the pheromone matrix.

Using basically standard settings of the parameters, we have demonstrated that

the ants can quickly find a solution to the underactuated pendulum swing-up and
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Fig. 8. Controller derived by the ACO algorithm applied to the original continuous system for
different initial angles and zero initial angular velocity. In each plot, the solid line represents the

angle θ (x1), the dashed line represents the angular velocity ω (x2), and the horizontal dotted
lines indicate the desired goal state (with mod 2π).
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stabilization problem. In particular, we have studied the influence of the number of

ants on the performance of the algorithm. For the underactuated pendulum prob-

lem, we have shown that an increasing number of ants results in improved conver-

gence of the policy. This is because larger numbers of ants are capable of sampling

the state-action space much better. We have also shown that the convergence speed

does not depend much on the number of ants. Another result shows that although

the ants have jointly worked to converge the policy, they will themselves not con-

verge to all following the found policy. This indicates that the ants are capable of

constantly monitoring changes in the system dynamics and of adapting a converged

policy to new circumstances.

The quantization of the state space introduces stochasticity in the system. Due

to this, a particular policy applied to the system may result in different trajectories

of the state. For the underactuated pendulum problem, we have demonstrated that

regardless of this issue, the ants are capable of finding good policies for solving the

control problem. However, with a different, more coarse quantization of the state

space, the stochasticity may become too large and the probability of finding a control

policy too low. Moreover, depending on the system dynamics, a smaller sampling

time and finer quantization may be necessary to capture the system dynamics in

the quantized domain properly. Such an increasing size of the quantization space

increases the memory requirements of the algorithm and more ants may be needed

to sample the quantized state space properly, which leads to an increase in the

computational requirements of the algorithm as well.

Our current research focuses on using fuzzy membership functions for the para-

metric approximation of the state space in order to be able to maintain a continuous

representation of the state in the algorithm. With such a continuous representation

of the state, the state transitions are no longer stochastic. Furthermore, the number

of parameters in the approximation is typically much smaller than the number of

quantization levels needed to capture the system dynamics to the same extend. We

expect that our ACO approach to optimal control will be much broader applicable

with the fuzzy approximation of the state space. Future research must study to

what extend this expectation can be met.

The ACO approach to optimal control, as described in this paper, currently lacks

the possibility of incorporating prior knowledge of the system, or of the optimal

control policy. However, sometimes prior knowledge of such kind is available and

using it could be a way to speed up the convergence of the algorithm and to increase

the optimality of the derived policy. Future research must focus also on this issue.

Furthermore, this paper does not compare the proposed algorithm to any other

method in order to benchmark its performance. Generally, a comparison with an

arbitrary other method on a single example is not meaningful, unless it is a well-

established benchmark problem with a suite of results already published in the

literature. A fair comparison to existing techniques is part of our plans for future

research.
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Finally, future research will focus on a theoretical analysis of the algorithm.
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