The commensurability criterion for arithmeticity (after Margulis)	$G = SL(2, \mathbb{R}) (= G(\mathbb{R}) \text{ for } G \text{ simply connected almost-simple / } \mathbb{R})$ Question What are the <i>lattices</i> in <i>G</i> ?
Dave Witte Morris University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca	discrete subgrp Γ , G/Γ has finite Haar measure Example $\Gamma = SL(2, \mathbb{Z}).$
These two talks will state and prove the famous theorem of Margulis that if the commensurator of a lattice in a semisimple Lie group is dense, then the lattice is arithmetic. The first talk will state the main results and provide outlines of their proofs. The second talk will fill in the proofs of key lemmas. Basic facts from ergodic theory (the study of measurable aspects of group actions) will play a crucial role.	Generalization Embed $H := G \times \text{cpct} \hookrightarrow \text{SL}(n, \mathbb{R})$ such that H is defined over \mathbb{Q} . (i.e., $\overline{H_{\mathbb{Q}}} = H$) Then $H_{\mathbb{Z}}$ is a lattice in H . [Borel & Harish-Chandra, 1962] Projection to G is an <i>arithmetic</i> lattice in G .

Defn. Γ ₁ is <i>commensurable</i> to Γ ₂ if $\dot{\Gamma}_1 = \dot{\Gamma}_2$	Γ arithmetic $\Rightarrow \Gamma_{\mathbb{Q}}$ is dense in <i>G</i> .
(\exists finite-index subgroups $\dot{\Gamma}_1, \dot{\Gamma}_2$)	These two talks are about the converse :
Margulis Arithmeticity Theorem (1977, 1992)	Commensurability Criterion (Margulis 1977)
$n \ge 3 \Rightarrow every \ lattice \ in \ SL(n, \mathbb{R}) (G \neq SO(1, k), SU(1, k))$	Γ arithmetic $\Leftrightarrow \Gamma_{\mathbb{Q}}$ is dense in <i>G</i> .
is commensurable to an arithmetic lattice. [Margulis (Corlette, Schoen-Gromov)]	Corollary of:
	Commensurator Superrigidity Thm (Margulis 1977)
Defn. $\Gamma_{\mathbb{Q}} := \operatorname{Comm}_{G}(\Gamma) := \{ g \in G \mid g \Gamma g^{-1} \doteq \Gamma \}.$	Let $\rho: \underline{\Gamma_{\mathbb{Q}}} \to \mathrm{SL}(k, \mathbf{R})$ (with $\mathbf{R} = \mathbb{R}$ or \mathbb{Q}_p)
	• $\overline{\rho(\Gamma_{\mathbb{Q}})}$ Zar-conn, simple • $\overline{\rho(\Gamma)}$ not cpct
Exercise	$\Rightarrow \rho$ extends to a continuous homo defined on G.
Γ arithmetic \Rightarrow Comm _{<i>G</i>} (Γ) is dense in <i>G</i> .	
(<i>Hint:</i> $H_{\mathbb{Q}} \subseteq \text{Comm}_H(H_{\mathbb{Z}})$.)	$ R = ℚp ⇒ extension is trivial ⇒ \overline{\rho(\Gamma)} compact. $

Why superrigidity implies arithmeticity	Step 1. $\gamma_{i,j}$ is algebraic.
Let Γ be a lattice in $G = SL(2, \mathbb{R})$.	Step 2. $\gamma_{i,j} \in \mathbb{Q}$
We wish to embed $G \times \text{cpct} \hookrightarrow \text{SL}(n, \mathbb{R})$, so that $\Gamma \subseteq \text{SL}(n, \mathbb{Z})$, i.e., $\gamma_{i,j} \in \mathbb{Z}$.	Γ f.g., so $\{\gamma_{i,j}\}$ generates "algebraic number fi
Step 0. Use adjoint representation of <i>G</i> .	So $\Gamma \subseteq G_F$. Restriction
Step 1. $\gamma_{i,j}$ is algebraic	Lem. $\Gamma \subseteq G_F \Rightarrow \Gamma_{\mathbb{Q}} \subseteq G_F$
Suppose some $\gamma_{i,j}$ is transcendental. Then \exists field auto φ of \mathbb{C} with $\varphi(\gamma_{i,j}) = ???$. $\varphi \circ \operatorname{Ad} : \Gamma_{\mathbb{Q}} \to \operatorname{SL}(n, \mathbb{C})$ is a representation. Superrigidity: extends to $\hat{\varphi} : G \to \operatorname{SL}(n, \mathbb{C})$. There are uncountably many different φ 's, but <i>G</i> has only finitely many <i>n</i> -dim'l rep'ns (up to change of basis). $\to \leftarrow$	Step 3. $\gamma_{i,j}$ has no denote Actually, show denomina (Then finite-index su Γ f.g., so finitely many pro- Suffices to show each pro- This is <i>p</i> -adic superrigid
Davis Marris (II of Lathlandso) The commencementality anterior IIVA (March 2010) 5	Dava Marrie (II of Lathhuidae) The some

Step 1. $\gamma_{i,j}$ is algebraic.	
Step 2. $\gamma_{i,j} \in \mathbb{Q}$	
Γ f.g., so $\{\gamma_{i,j}\}$ generates finite extension F of \mathbb{Q} . <i>"algebraic number field"</i> So $\Gamma \subseteq G_F$. Restriction of Scalars: $\Gamma \subseteq H_{\mathbb{Q}}$.	
Lem. $\Gamma \subseteq G_F \Rightarrow \Gamma_{\mathbb{Q}} \subseteq G_F$ if G is adjoint.	
Step 3. $\gamma_{i,j}$ has no denominator	
Actually, show denominators are bounded.	

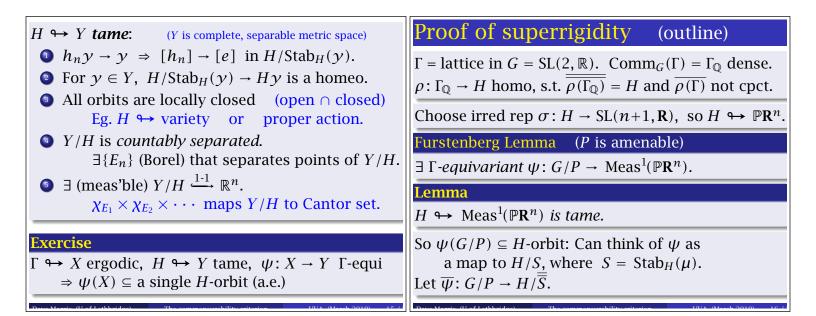
(Then finite-index subgroup has no denoms.) Γ f.g., so finitely many primes appear in denoms. Suffices to show each prime occurs to bdd power. This is *p*-adic superrigidity (**R** = \mathbb{Q}_p).

	Proof of superrigidity (sketch)
We wish to embed $G \times \operatorname{cpct} \hookrightarrow \operatorname{SL}(n, \mathbb{R})$, so that $\Gamma \subseteq \operatorname{SL}(n, \mathbb{Z})$.	Γ = lattice in G = SL(2, \mathbb{R}). Comm _{<i>G</i>} (Γ) = $\Gamma_{\mathbb{Q}}$ dense. $\rho: \Gamma_{\mathbb{Q}} \to H$ homo, s.t. $\overline{\rho(\Gamma_{\mathbb{Q}})} = H$ and $\overline{\rho(\Gamma)}$ not cpct.
We now know $\rho(\Gamma) \subseteq SL(n, \mathbb{Z})$.	Need to extend ρ to a continuous homo $\hat{\rho}: G \to H$.
Step 4. ρ extends to embedding of $G \times \text{cpct}$	$P = \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \subset G \qquad \text{(minimal parabolic)}$
$H = \operatorname{Res}_{F/\mathbb{Q}}G = H_1 \times H_2 \times \cdots \times H_k \times \operatorname{cpct.}$	Starting point
Superrigidity: $\pi_i \circ \rho$ extends to homo ρ_i on G , so $G \to H_1 \times \cdots \times H_k$. Image \hat{G} is Zariski closed (up to finite index). Then $\rho(\Gamma) \subseteq \hat{G} \times \text{cpct}$.	Furstenberg Lemma (probability / functional anal): If Γ acts (by homeos) on cpct metric space Y, then $\exists \Gamma$ -equivariant meas'ble random $\psi : G/P \rightarrow Y$. $(\psi(x) \text{ is a probability distribution on } Y)$
	Roughly, we choose $Y = H/L$ (and Γ acts via ρ).

\exists Γ-equivariant meas'ble <u>random</u> ψ : $G/P \rightarrow H/L$.	Ergodicity vs. tameness
"Ergodicity vs. tameness" (repeatedly) promotes ψ to: well-defined $\Gamma_{\mathbb{Q}}$ -equivariant $\psi' \colon G/P \to H/L'$.	Eg. Let L = closed subgroup of G , so $L \hookrightarrow G$ by (right) translations. G/L is very nice (manifold):
Ergodicity vs. tameness one more time: all <i>G</i> -translates of ψ' are in a single <i>H</i> -orbit: $\forall g \in G, \exists h = h(g) \in H, \forall x,$	$\exists \text{ (measurable) } G/L \xrightarrow{1-1} \mathbb{R}^n.$ Defn. $H \hookrightarrow Y$ is <i>tame</i> if $\exists \text{ (meas'ble) } Y/H \xrightarrow{1-1} \mathbb{R}^n.$
$\psi'(gx) = h \psi'(x).$ Uniqueness implies: • $h: G \to H$ is a homo (meas'ble, so continuous)	Example Zar closed <i>H</i> acts (regularly) on variety
• $h _{\Gamma_Q} = \rho$. So <i>h</i> is the desired extension.	$\Rightarrow every H-orbit is locally closed(open ∩ closed) [Andrei's book, p. 99]\Rightarrow action is tame. [exercise]$

Eg.
$$\Gamma_{\mathbb{Q}} = \underline{\text{dense}}$$
 subgroup of *G*.
 $G/\Gamma_{\mathbb{Q}}$ is terrible: \nexists (measurable) $G/\Gamma_{\mathbb{Q}} \xrightarrow{1-1} \mathbb{R}^{n}$.
Every $\Gamma_{\mathbb{Q}}$ -*inv't meas'ble func on* $G/\Gamma_{\mathbb{Q}}$ *is constant* (*a.e.*)
i.e., the action is "**ergodic**."
Proof. *G* acts on $\{\psi: G \to [0,1]\}_{a.e.}$ by translation:
 $(g * \psi)(x) = \psi(g^{-1}x)$.
For suitable topology, action is continuous.
Exercise
 $\Gamma \hookrightarrow X$ ergodic, $H \hookrightarrow Y$ tame, $\psi: X \to Y$ Γ -equi
 $\Rightarrow \psi(X) \subseteq$ a single *H*-orbit (a.e.)
Can take this as the definition of "tame."
Exercise
 $\Gamma \hookrightarrow X$ ergodic, $H \hookrightarrow Y$ tame, $\psi: X \to Y$ Γ -equi
 $\Rightarrow \psi(X) \subseteq a$ single *H*-orbit (a.e.)
Can take this as the definition of "tame."
 $F \hookrightarrow Z$ and $F \hookrightarrow Z$ and $F \to Y$ tame. $\psi: X \to Y$ Γ -equi
 $\psi: G \to \mathbb{R}$ is P -invariant (and in L^2).
Let $u \in U := \begin{bmatrix} 1 \\ * 1 \end{bmatrix}$, and $a = \begin{bmatrix} 1/2 \\ 2 \end{bmatrix}$.
 $u * \overline{\psi} = u * a^n * \overline{\psi} = a^n * (u^{a^n}) * \overline{\psi} = a^n * \overline{\psi} = \overline{\psi}$.
So $\overline{\psi}$ is *U*-invariant.
 $\langle U, P \rangle = G$, so $\overline{\psi}$ is *G*-inv't, i.e., constant (a.e.).

Part 2	Ergodicity vs. Tameness
Γ = lattice in G = SL(2, \mathbb{R}). Comm _G (Γ) = $\Gamma_{\mathbb{Q}}$ dense.	Ergodic: every meas'ble, inv't func is constant a.e.
Cor (Margulis 1977). Γ <i>is arithmetic.</i>	Examples • $\Gamma_{\mathbb{Q}} \hookrightarrow G$ ($\Gamma_{\mathbb{Q}}$ dense, $\operatorname{Stab}_{G}(\psi)$ closed)
Commensurator Superrigidity Thm (Margulis 1977) Let $\rho: \Gamma_{\mathbb{Q}} \to SL(k, \mathbb{R})$ (with $\mathbb{R} = \mathbb{R}$ or \mathbb{Q}_p) • $H := \overline{\rho(\Gamma_{\mathbb{Q}})}$ Zar-conn, simple • $\overline{\rho(\Gamma)}$ not cpct $\Rightarrow \rho$ extends to a continuous homo defined on G .	• $\Gamma \hookrightarrow G/P$ $\left(P = \begin{bmatrix} * & * \\ 0 & * \end{bmatrix}\right)$ $u * \psi = u * a^n * \psi = a^n * (u^{a^n}) * \psi \doteq a^n * \psi = \psi$ • $\Gamma \hookrightarrow G/A$ $\left(A = \begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix}\right)$
Proof uses "ergodicity vs. tameness."	 Γ ↔ G/P × G/P (doubly ergodic on G/P) P transitive on G/P a.e. ("big cell"), Stab = A. So G transitive (a.e.) on G/P × G/P ≅ G/A.



Γ-equivariant $\overline{\Psi}$: $G/P \to H/\overline{\overline{S}}$, where $S = \text{Stab}_H(\mu)$.	$\overline{\Psi}: G/P \to H/\overline{\overline{S}}$ is $\Gamma_{\mathbb{Q}}$ -equivariant.
Lemma (ergodicity vs. tameness)S is not compact.(because $\overline{\rho(\Gamma)}$ not compact)	Define $\Psi_g(x) = \overline{\psi}(gx)$, so $\Psi: G \to \mathcal{F}(G/P, H/\overline{\overline{S}})_{a.e.}$ $\Psi_{\lambda g}(x) = \overline{\psi}(\lambda gx) = \rho(\lambda) \overline{\psi}(gx) = \rho(\lambda) \Psi_g(x).$ So Ψ is $\Gamma_{\mathbb{Q}}$ -equivariant.
Lemma $\overline{\overline{S}} \neq H$. (stab of measure on $\mathbb{P}\mathbf{R}^n$ is \approx Zariski closed)	Lemma $H \hookrightarrow \mathcal{F}(G/P, H/\overline{\overline{S}})_{a.e.}$ is tame. (because $H/\overline{\overline{S}}$ is variety)
Lemma (ergodicity vs. tameness)	All <i>G</i> -translates of $\overline{\Psi}$ are in a single <i>H</i> -orbit:
$\dot{\Gamma}$ -equi map $G/P \to H/\overline{\overline{S}}$ is unique. (slight exaggeration)	$\dot{\forall} g \in G, \exists! h = h(g) \in H, \dot{\forall} x, \ \overline{\psi}(gx) = h \overline{\psi}(x).$ Uniqueness implies:
For $\lambda \in \Gamma_{\mathbb{Q}}$, let $\lambda \overline{\psi}(x) = \rho(\lambda) \overline{\psi}(\lambda^{-1}x)$. Then $\lambda \overline{\psi}$ is $\dot{\Gamma}$ -equivariant.	• $h: G \to H$ is a homo (meas'ble, so continuous) • $h _{\Gamma_0} = \rho$.
So $\lambda \overline{\psi} = \overline{\psi}$. I.e., $\overline{\psi}$ is $\Gamma_{\mathbb{Q}}$ -equivariant.	So <i>h</i> is the desired extension. \Box

Lemma (ergodicity vs. tameness) $\dot{\Gamma}$ -equi map $\psi: G/P \to H/\overline{\overline{S}}$ is unique. (exaggeration)	
Lemma (ergodicity vs. tameness) $\dot{\Gamma}$ -equi map $\psi: G/P \to H/L$ • L Zariski closed • dim L minimal $\Rightarrow \overline{\psi}: G/P \to H/N_H(L^\circ)$ is unique.	Lemma (Furstenberg (<i>P</i> is amenable)) $\exists \ \Gamma$ <i>-equivariant</i> $\psi \colon G/P \to \text{Meas}^1(\mathbb{P}\mathbb{R}^n)$. Proof.
Proof. $\Psi: G/P \to H/L \times H/L. \text{Ergodicity vs. tameness:} \\ \Psi(G/P) \subseteq H(h_1L, h_2L), \text{ so } \psi_i(x) = h(x) h_i L. \\ h(\gamma x) h_1 L = \rho(\gamma) h(x) h_1 L \\ \Rightarrow h(\gamma x)^{-1} \rho(\gamma) h(x) \in {}^{h_1}L \cap {}^{h_2}L. \\ \text{So } \psi_i: G/P \to H/({}^{h_1}L \cap {}^{h_2}L) \text{ is } \dot{\Gamma}\text{-equi.} \\ \text{Minimality: } h_1^{-1}h_2 \in N_H(L^\circ). \qquad \Box$	{ Γ -equivariant ψ : <i>G</i> → Meas ¹ ($\mathbb{P}\mathbf{R}^n$) } _{<i>a.e.</i>} . Closed, convex subset of Banach space. <i>P</i> acts by right translations. Amenable (solvable) so must have a fixed point.

Lemma (ergodicity vs. tameness)S is not compact.(because $\overline{\rho(\Gamma)}$ not compact)	Lemma $H \hookrightarrow \mathcal{F}(G/P, H/\overline{\overline{S}})_{a.e.}$ is tame. (because $H/\overline{\overline{S}}$ is variety) Proof.
Proof. $\Psi: G/P \times G/P \rightarrow H/S \times H/S.$ Ergodicity vs. tameness: $\Psi(x_1, x_2) = (hy_1, hy_2), \exists h = (x_1, x_2) \in H$ $\Rightarrow \psi(x_1) \in \operatorname{Stab}_H(y_2) \ y_1 = Sy_1$ $\Rightarrow \rho(\Gamma) \subseteq \operatorname{compact} \text{if } S \text{ is compact.}$	Spse $h_n \psi \to \psi$. So (subseq) $h_n \psi(x) \to \psi(x)$ for a.e. $x \in G/P$. Stab _H (ψ) = { $h \in H \mid h \psi(x) = \psi(x)$ for a.e. x } = { $h \in H \mid h \psi(x_i) = \psi(x_i)$ for $i = 1,, k$ } = Stab _H ($(y_1,, y_k)$). Since H is tame on variety $H/\overline{S} \times \cdots \times H/\overline{S}$ and $h_n \cdot (y_1,, y_k) \to (y_1,, y_k)$, we have $[h_n] \to [e]$.

Lemma $\overline{\overline{S}} \neq H$. (stab of measure on $\mathbb{P}\mathbf{R}^n$ is \approx Zariski closed) Idea of proof.	Lemma
Spse $\{a_n\}$ unbounded diagonal matrices in $\overline{\overline{S}}$. $E_n^+ = \text{sum of eigenspaces of largest abs value,}$ $E_n^- = \text{sum of other eigenspaces.}$ $E_n^\pm \to E^\pm$ in Grasmannian. In the limit, a_n contracts complement of E^- to E^+ . Since μ is a_n -inv't, it must be supported on $E^+ \cup E^-$. Choose E of min dimension, such that $\mu(E) > 0$. (So $\mu(E \cap gE) = 0$ unless $gE = E$.) Then S -orbit of E is finite. Stabilizer is a Zar-closed proper subgroup of H .	$H \hookrightarrow \text{Meas}^{1}(\mathbb{P}\mathbb{R}^{n})$ is tame. Idea of proof Spse $h_{n}\mu \to \mu$. $h_{n}E_{n}^{\pm} \to E^{\pm}$ with μ supported on $E^{+} \cup E^{-}$. By induction on dim, $[h_{n}] \approx [e]$ on E^{+} and E^{-} .

References

R. J. Zimmer: *Ergodic Theory and Semisimple Groups,* Birkhäuser, Basel, 1984, MR0776417.

N. A'Campo and M. Burger: Réseaux arithmétiques et commensurateur d'après G. A. Margulis. *Invent. Math.* 116 (1994), no. 1-3, 1-25. MR1253187

G. A. Margulis: *Discrete Subgroups of Semisimple Lie Groups,* Springer, Berlin, 1991, MR1090825.