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ABSTRACT 
 

The collection of fungi inhabiting the human gut and their genes, known as the ‘human gut 

mycobiome’, have a significant impact on health and disease. While advancements in 

sequencing and computational technologies have expanded the study of microbial 

communities, existing tools primarily focus on bacterial data, with limited user-friendly 

options for analyzing fungal data in shotgun metagenomic datasets. Therefore, in order to 

meet the needs of a mycobiome characterization analysis, an optimized and automated 

pipeline is required. 

This thesis aims to evaluate existing classification tools for fungal identification in 

shotgun metagenomic sequencing datasets for potential inclusion in a Snakemake pipeline 

that provides a taxonomic and functional classification of the mycobiome. To perform this 

evaluation, this thesis first presents five classification tools (Kraken 2, MetaPhlAn 3, 

FindFungi, HumanMycobiomeScan and FunOMIC) and their installation requirements. Two 

mock communities, the mixed mock community (bacterial, viral, fungal, and human 

genomes) and the fungal mock community (50 fungal genomes), are created to generate two 

simulated datasets, one for each mock community. The classification tools are then tested for 

their ability to classify fungal reads from the two simulated datasets.  

The results show that Kraken 2 is able to classify fungal reads with varying levels of 

success based on the reference database used. When mapping against a custom reference 

database comprised exclusively of the 50 fungal genomes present in the fungal mock 

community, Kraken 2 is able to classify 99.83 % of the reads in the fungal mock community 

simulated dataset. MetaPhlAn 3 was able to classify three of the five (60 %) fungal species in 

the mixed mock community and 38 of 50 (76%) fungal species present in the fungal mock 

community. Technical challenges with the codes of FindFungi, HumanMycobiomeScan and 

FunOMIC hindered their implementation, thus evaluation of their fungal classification 

capabilities was not possible. 

Based on the findings in this thesis, there is an urgent need to develop a robust 

pipeline to characterize the mycobiome accurately and efficiently in shotgun metagenomic 

datasets.   
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1 INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 
The human gut is home to trillions of microbes such as bacteria, archaea, viruses, phages, and 

fungi (1, 11, 12), collectively known as ‘human gut microbiota’ (1). The human gut plays a 

critical role in physiological functions and disease development (1). Emerging advancements 

in next-generation sequencing (NGS) and computational technologies have increased ways to 

study the compositional and functional characteristics of microbial communities associated 

with different body sites (2).  

Many of the existing bioinformatics tools available today have been developed for the 

analysis of 16S ribosomal RNA (rRNA) bacterial data and are based on the amplicon 

sequencing method. Few tools employ shotgun metagenomic sequencing, a relatively new 

sequencing approach. Available tools for fungal classification in shotgun metagenomic 

datasets often lack user-friendliness and may not be optimally configured by default.  

1.2 PROPOSED PIPELINE 
An optimized and automated pipeline based on existing classification tools for fungal 

identification in shotgun metagenomic sequencing datasets is required. The pipeline should 

employ an extensive reference database to successfully map fungal reads with high 

specificity and sensitivity. The pipeline should also be user-friendly, modifiable and 

accommodate expansion so others may use it in their research and tailor it to their specific 

needs.  

1.3 CLASSIFICATION TOOLS 
To classify fungal reads in shotgun metagenomic datasets, sequencing reads have to be 

mapped against reference fungal genomes. Kraken 2 (3) and MetaPhlAn 3 (4) are often 

included in customized pipelines. One of the tools mentioned, FunOMIC (5), also performs 

functional annotation. Available classification tools for fungal identification in shotgun 

metagenomic datasets are listed in Table 1. This list is by no means exhaustive. These tools 

have been shortlisted for the purposes of this thesis. 
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Table 1: A selection of classifications tool used for fungal classification in shotgun 

metagenomic datasets. 

Classification tool Outcome of analysis 

Kraken 2 (3) Taxonomic profile 

MetaPhlAn 3 (4) Taxonomic profile 

FunOMIC (5) Functional annotation and 
taxonomic profile 

FindFungi (6) Taxonomic profile 

HumanMycobiomeScan (7) Taxonomic profile 
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2 THE HUMAN GUT MICROBIOME  
The human gut microbiome (the collection of all human gut microbes and their genes) 

contains approximately 100 times more genes than the human genome (1). Additionally, the 

ratio of bacterial cells to human cells is close to 1:1 (1). Phages in turn far exceed the number 

of bacteria present. There are as many as 10-fold more phages than bacteria (8). These 

numbers illustrate the sheer magnitude of this community, and its subsequent potential to 

benefit and/or protect its host. 

A distinction is made between the ‘core human microbiome’ and the ‘variable human 

microbiome’ (Fig. 1). An extensive gene catalog containing 9 879 896 genes showed 

country-specific differences in the microbial composition (9), suggesting environmental and 

lifestyle factors, such as diet, and even host genetics may affect the variable part of the 

microbiome. As part of the MetaHIT (Metagenomics of the Human Intestinal Tract) project, 

124 fecal samples were collected from both healthy and obese individuals and inflammatory 

bowel disease (IBD) patients (10). Almost 35% of the genes in any one sample could be 

found in other samples – indicating the presence of a common ‘core’ genome (10). 

 
Fig. 1. The core and variable human microbiome. The core human microbiome represents the genes present at birth in all or 

the vast majority of humans across different populations, whereas the variable human microbiome is unique to different 
individuals based on various factors such as their environment, lifestyle, genetics and immune system (11). While the 

variable human microbiome is more transient in nature, the components of the core human microbiome are generally stable 
over time (12, 13). Created with BioRender.com.  

 

Itai et. al (12) present two different approaches to describe the microbiome: the 

community-based and the function-based approach. The community-based approach focuses 

more on the species present, i.e., the taxa that are consistently present across the studied 

population (12) – here the human gut microbiome. A function-based definition is centered 

around the functional aspects of the genes present (12). Lozupone et. al (14) argue the latter 

may be a more realistic approach as it acknowledges that different species may play the same 

role in a niche.  
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As our knowledge of the composition of the microbiome and its function increases, so 

does our understanding of its role in human health. The human gut microbiome offers 

numerous benefits to its host, these include gut integrity (15), protection against pathogens 

(16), and regulation of host immunity (17). While a functioning microbiome is of great value 

to the host, a dysfunctional microbiome is equally devastating. Changes in the composition, 

and subsequent function, of the microbiome caused by genetic, dietary, and various 

environmental factors can change intestinal permeability and immune responses (18). 

Disturbances in the intestinal barrier can cause persistent activation of the immune system 

(15) and intestinal inflammation (19). Intestinal barrier dysfunction has also been implicated 

in a number of diseases such as celiac disease (20), IBD (15, 21) and colorectal cancer (CRC) 

(15).  

2.1 FUNGI AS PART OF THE HUMAN GUT MICROBIOME  
Fungi are a highly diverse microorganism in both their morphology and function. They 

belong to the kingdom eukaryotes (22). Despite being ubiquitous and an essential 

evolutionary contributor (23), their taxonomic classification remains largely unexplored. Of 

the total estimated 2.2-3.8 million fungal species that inhabit Earth, an insignificant portion 

(4%) has been cataloged (23). The lack of characterization may be due to several reasons, 

such as phenotypic diversity, genome plasticity, and the inability to culture most species (6).  

The fungal component of the microbiome is called the ‘mycobiome’, a term first 

introduced by Ghannoum et. al in 2010 (24). Despite only constituting a small fraction, 0.1% 

of all microorganisms present in the gut, fungi play an important part in regulating human 

intestinal homeostasis and disease pathogenesis (25).  

In terms of phyla, many studies (26-29) so far suggest that Ascomycota is the most 

predominant phylum found in the gut of healthy individuals, followed by Zygomycota and 

Basidiomycota. Some of the earliest work done on the composition of the mycobiome in 

healthy individuals found three fungal species Galactomyces, Paecilomyces and Gloeotinia to 

be persistent GI inhabitants (30). Scanlan and Marchesi thus concluded that the human gut 

mycobiome had low diversity and was relatively stable (30). While Hallen-Adams et. al also 

found low diversity and abundance in fungi (31), they argue that the mycobiome appeared 

unstable over time, in contrast to gut-associated bacteria (14). Suhr and Hallen-Adams 

postulate that there is little evidence to support the presence of a “core mycobiome” (28). 

According to Suhr and Hallen-Adams, an understanding of fungal physiology and ecology 

suggests even relatively common gut fungi, such as Debaryomyces hansenii and several 
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Penicillium species, are actually allochthonous, i.e., originating elsewhere, and are likely only 

passing through from dietary exposure without exerting influence on the gut mycobiome or 

host (28). To be considered a resident (autochthonous) of the human gut, they argue a fungus 

has to be able to grow at 37 °C (27). Debaryomyces and Penicillium, for example, are 

incapable of doing so (27). The contention on the topic matter amongst researchers underlines 

the importance of and the need for more studies that delve into this relationship. 

2.2 ROLE OF HUMAN GUT MYCOBIOME IN HEALTH AND DISEASE 
During the first year of life, gut fungal α-diversity, i.e., the number of species and their 

abundance within a community or the mean in a collection of communities (32), decreases 

while the bacterial reciprocally increases (33). One noteworthy finding of the study by 

Fujimura et. al (33) was that variations in the fungal β-diversity were a stronger predictor of 

the risk for atopy compared to changes in the bacterial community. This suggests that 

variations in the gut fungal community may be involved in affecting an infant’s vulnerability 

to allergies and asthma during childhood. It is currently unclear whether the connection 

between the onset of immune diseases and the decline in microbial diversity is a result of a 

reduction in the number of microbial species or specifically due to the loss of crucial 

taxonomic or functional groups of microbes that are necessary for the proper development of 

the infant immune system (32). 

Fungal dysbiosis, a term for altered composition of fungal communities (34), which 

includes a loss of symbionts, growth of pathobionts or opportunists and disturbed fungal 

diversity (25), has further been implicated in diseases in practically all parts of the body. 

These include autoimmune diseases such as irritable bowel syndrome (IBS) (35) and Crohn’s 

disease (CD) (36), autism spectrum disorder (ASD) (37), obesity (29) and schizophrenia (38).  

A study showed that children with type 1 diabetes (T1D) had a noticeably higher fungal 

species diversity despite no apparent difference in the total number of fungi present in both 

groups (39). Additionally, the incidence of Candia albicans (C. albicans) was lower in 

children with T1D than in healthy controls – 62% and 85% of all strains identified, 

respectively (39). On the other hand, the growth of C. albicans is seen in many diseases such 

as liver disease (40), asthma (41, 42), and COVID-19 (43). C. albicans, and other fungi, 

secrete prostaglandin-like oxylipin molecules (44), which are potent immunomodulatory 

molecules. This may provide a potential mechanism through which the growth of fungal 

species (e.g., C. albicans) in a mucosal site such as the gut may alter immune responses on 

the mucosa (42).   
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The number of opportunistic fungal infections in immunosuppressed individuals, e.g., 

HIV-positive individuals, those who have undergone organ transplantation or cancer 

chemotherapy, have significantly risen in the past two decades (45), indicating a 

susceptibility for opportunistic fungal infections amongst those with a compromised immune 

system.  
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3 COLORECTAL CANCER 

3.1 EPIDEMIOLOGY 
The amount of CRC cases globally are predicted to increase by 63 % by 2040 (46). CRC is 

the third most common cancer diagnosed and the second deadliest cancer with 935 000 

deaths reported worldwide in 2020 (47). Locally, CRC is the third most common diagnosed 

cancer among both males and females in Norway (48). With an ever-rising number of cases 

being reported, there is an urgent need to figure out what predisposes people to CRC.  

According to Global Cancer Observatory, CRC incidences are higher in the developed 

world (49). Epidemiological studies have shown strong associations with male sex (50). 

Besides sex, the risk of developing CRC increases with age (50), with 60.4% of all cases 

being diagnosed between the ages of 50 and 74 years (46). Genetics may also determine the 

risk of developing CRC. Approximately 5–10% of all CRC cases are hereditary CRC 

syndromes (51). CRC incidence and risk is not entirely dictated by demographic 

characteristics. Indeed, factors increasing CRC risk are modifiable, environmental lifestyle 

factors such as smoking (52), excessive alcohol intake (53), increased bodyweight (54), and 

red and processed meat (50, 55).  

3.2 PATHOGENESIS  
The discovery of various molecular pathways has revealed the heterogeneous nature of CRC. 

The classical pathway, henceforth referred to as the adenoma-carcinoma sequence, is the 

gradual advancement of healthy epithelial cells to abnormal, dysplastic cells and eventually 

to cancer, which results from the accumulation of several clonally selected genetic alterations 

(56, 57).  

3.2.1 Genetic mutations, epigenetic alterations and aberrant signaling pathways  

One of the hallmarks of cancer development is DNA damage. When faulty DNA repair leads 

to mutations and/or chromosomal abnormalities that negatively affect oncogenes and tumor 

suppressor genes, cells undergo transformation leading to malignant growth (58).  

A significant type of genetic change found in colorectal tumors is the mutation of the 

ras gene. In the human body, three ras genes encode four closely related ras proteins. 

Mutated ras genes, when introduced into appropriate recipient cells, are capable of granting 

neoplastic characteristics (59). Of the three human ras isoforms, Kirsten rat sarcoma (KRAS), 
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is the most frequently altered gene with approximately 40% of all CRC cases harboring 

KRAS mutations (60, 61).  

Epigenetics can broadly be described as heritable modifications in gene expression 

that are not driven by alterations in the DNA sequence. The typical epigenome of colon 

cancer contains hundreds to thousands of genes that have abnormal methylation, and it is 

believed that only a portion of these genes are responsible for the development and clinical 

characteristics of CRC (62). Scientists are currently studying the mechanisms that cause 

abnormal DNA hypermethylation and hypomethylation. One proposed explanation for 

increased methylation in tumor promoter regions is the upregulation of DNA 

methyltransferase (DNMT) expression (62).  

Dysregulation of signaling pathways, such as the Wnt signaling pathway (regulates 

cell growth and differentiation of intestinal epithelial cells) and the epidermal growth factor 

receptor/mitogen-activated protein kinase (EGFR/MAPK) pathway (involved in cellular 

growth, proliferation, and survival of normal cells), can also contribute to the development of 

CRC (63, 64).  

3.3 DIAGNOSIS AND TREATMENT 
A CRC diagnosis is made based on factors such as clinical symptoms, laboratory tests, 

pathology, endoscopy, and imaging. Endoscopy is the method of choice for diagnosing CRC 

and can be conducted as a sigmoidoscopy or a total colonoscopy (65). Adenoma, non-

cancerous tumors, detection rates are inversely associated with the risks of interval CRC 

(cancer developed after colonoscopy), advanced-stage interval cancer, and fatal interval 

cancer (66). This is presumed to be due to the detection of precancerous adenomas during 

endoscopy. In case of inadequate or incomplete endoscopy, computed tomography (CT) 

colonography is complementarily used for the diagnosis of polyps and CRC (50). It should be 

noted that CT imaging is not a standard procedure.  

If a diagnosis is made, there are several options for the treatment and management of 

CRC. If the cancer is detected early, it may be possible to treat by resecting malignant polyps 

endoscopically all at once (50). Surgery remains the cornerstone of curative CRC treatment 

(50). A meta-analysis conducted to determine the oncological outcome of laparoscopic CRC 

surgeries found that unsuccessful laparoscopies seemed to be associated with adverse long-

term perioperative outcome (67).  

There are also many systemic treatments available, mainly for metastatic cancer 

where surgery is not an option. These are usually tailored to the individual with patient-
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specific and disease-specific markers (50). Despite the development of modern medicine and 

numerous technological advancements, treatment of CRC continues to produce unsatisfactory 

outcomes, and as a result, mortality remains high. The method of CRC screening is therefore 

crucial to detect the cancer in a timely fashion as survival is best for non-metastasized 

disease, i.e., cancer that has not spread to other areas of the body (50). 

3.4 EARLY DETECTION AND SCREENING  
Early detection and screening are vital to prevent the development of colorectal cancer 

because the disease often does not present symptoms in its early stages. Colonoscopy is the 

most reliable way to prevent colorectal cancer (50). Though it is an invasive procedure, it has 

a high level of accuracy and provides the option of directly removing precancerous lesions 

and early cancer. People with elevated risk factors, such as those with a family history, 

chronic ulcerative colitis, prior adenomas, or colorectal cancer, are recommended to undergo 

regular colonoscopy for monitoring (50). Despite the limitations of current screening 

methods, randomized controlled trials have demonstrated that screening can decrease both the 

incidence (68-70) and mortality (68-71) of CRC. 

3.4.1 The CRCbiome study 

The CRCbiome study is a cohort study that examines the role of lifestyle and the gut 

microbiome in CRC screening participants (55). The primary aim of the study is to develop a 

classification algorithm that can detect advanced colorectal lesions by analyzing the gut 

metagenome, demographics, and lifestyle of the screened individuals.  

Participants are recruited from the Bowel Cancer Screening in Norway (BCSN) trial 

(72). The BCSN study is designed as a randomized experiment that compares a single 

sigmoidoscopy screening with fecal immunochemical test (FIT) tests conducted every two 

years, with a maximum of four rounds (72).  Those who received a positive FIT for occult 

blood were invited to participate in the CRCbiome study. Of the 2426 invited, 1413 (58%) 

agreed to participate (55). FIT measures for hemoglobin in the fecal sample (73), and a 

positive FIT sample is defined as hemoglobin >15 mcg/g feces (55). The reason for this 

inclusion criteria is that these participants are referred to a follow-up colonoscopy and will 

therefore have clinicopathological information available (55). The participants are invited to 

the CRCbiome study before their colonoscopy. They are then asked to give two more fecal 

samples 2- and 12-months post-colonoscopy (55).  
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DNA is extracted from the samples and sequenced into metagenomic datasets. These 

datasets are then analyzed using a customizable workflow manager (55). Publicly available 

tools, such as MetaPhlAn (74) and HUMAnN 3.0 (4), are utilized to carry out taxonomic 

classification and determine the microbial gene content, along with functional annotation 

(using gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases) 

(55). Abundance measures are used to compute taxonomic and functional alpha (within the 

sample) and beta (between samples) diversity, as well as serve as input for machine learning 

approaches that aim to create classifiers for high-risk individuals based on data analysis (55).  

3.5 THE HUMAN GUT MYCOBIOME IN COLORECTAL CANCER  
Fungal dysbiosis has been widely implicated in CRC and polyps showed an overall decreased 

fungal diversity compared to adjacent tissue (75-77). Coker et. al (75) discovered that the 

ratio of Basidiomycota to Ascomycota was greater in CRC patients compared to the control 

group. Another study had previously concluded with similar findings and noted an overall 

increase in the Ascomycota and Basidiomycota abundance in CRC patients (77). A study 

conducted amongst IBD patients found that this same ratio was also significantly different in 

patients with IBD than those in remission (78). Furthermore, it is believed C. albicans may 

potentially promote CRC development through the production of carcinogenic substances, 

inflammation, Th17 response and molecular mimicry (79). With chronic inflammation being 

a precursor for CRC (22, 50), these findings suggest that the Basidiomycota to Ascomycota 

ratio could serve as an indicator of fungal dysbiosis and provide a possible explanation for 

the role of fungal dysbiosis in the development of CRC. 

Evidence points to several fungal species as the culprits for the disruption in the 

composition of the mycobiome. An increase in the opportunistic fungi Trichosporon and 

Malassezia was found to favor the progression of CRC (77). Preliminary results from a pilot 

study conducted in Kuala Lumpur, Malaysia identified the presence of a set of proteins 

secreted by Schizosaccharomyces pombe in stool samples from both CRC patients and 

healthy individuals (80). Results from the study show that the secretome proteins identified 

from the yeast were skewed towards the control samples compared with samples obtained 

from the CRC patients (80).  

Though the role of fungi in the development of CRC, by promoting inflammation and 

disrupting the balance of the mycobiome, has recently gained traction, more research is 

needed to fully understand the relationship between the mycobiome and colorectal cancer. 
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4 SHOTGUN METAGENOMIC ANALYSIS – A RECIPE  
 

There are primarily two culture-independent approaches used to characterize the mycobiome. 

The first approach, called amplicon sequencing, involves using a target, often the fungal 

rRNA gene locus (81), to show what species are present in a sample (Fig. 2A). This region 

includes the genes for the small-subunit (18S) and large-subunit (26S), an alternative to the 

bacterial 16S marker gene (82). These genes are divided by the internal transcribed spacer 

(ITS) regions ITS1 and ITS2 (82). rRNA subunits and ITS regions are used as phylogenetic 

markers to show what species are present in a sample (83). Although powerful, amplicon 

sequencing has its limitations. Firstly, due to various biases associated with PCR, it may miss 

a significant proportion of the diversity present in a community (84, 85). Secondly, amplicon 

sequencing provides insight only into the taxonomic composition of a microbial community, 

and it is not possible to directly determine the biological functions associated with these taxa 

using this method (86). Finally, amplicon sequencing can only be used to analyze taxa for 

which taxonomically informative genetic markers are known and can be amplified (86).  

 
Fig. 2. An overview of the steps involved in shotgun metagenomic analysis of fungi. 2A: For amplicon sequencing, after the 
sample is collected, the extracted DNA from cells in the sample is amplified by polymerase chain reaction (PCR) and the 

18S and/or 26S rRNA gene sequences, or the ITS regions ITS1 and ITS2, are used as phylogenetic markers. 2B: Short-read 
sequencing produces reads of shorter length, as the name suggests. Read lengths are usually up to 600 bases. 2C: Reads are 

typically pre-processed to remove low-quality bases, sequencing artifacts, and potential contaminations. 2D: Taxonomic 
sequence classifiers align or match input reads to nucleotide, protein, or whole genome databases to classify them. These 
classifications generate taxonomic annotations per read, which, when combined, form a taxonomic profile. Created with 

BioRender.com.  
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The second approach is called shotgun metagenomics. The term comes from the 

untargeted (shotgun) sequencing of all (meta) the genomes (genomics) present in the sample 

(87). Shotgun metagenomics entails subjecting DNA extracted from all the cells in a 

community to shotgun sequencing and circumvents a lot of the limitations of amplicon 

sequencing (83, 86). The large number of reads, i.e., base pairs sequenced from a DNA 

fragment, generated by shotgun sequencing allows for high resolution characterization of the 

microbial community, including the identification of rare taxa. Shotgun metagenomics can be 

used to examine the taxonomic makeup and potential functions of the microbial community 

(87), as it allows for the identification of genes and pathways present in the sample. It 

essentially reveals two main characteristics of the sample; what species are present in it and 

their function.  

4.1 SAMPLE COLLECTION AND DNA EXTRACTION 
The process of sample collection and DNA extraction detailed here, while also a part of 

amplicon sequencing, is in the context of shotgun metagenomics. DNA is extracted from 

cells with either mechanical lysis (bead beating) or chemical lysis which causes cell lysis, 

thus releasing the DNA (88). Bead beating is considered superior to chemical lysis (88). 

There are various kits for isolating DNA from a sample and they largely follow the same 

basic protocol with slight modifications based on the specimen used. Extraction of DNA in 

the CRCbiome study is carried out using the QIAsymphony automated extraction system, 

using the QIAsymphony DSP Virus/Pathogen Midikit (Qiagen), and each sample is lysed 

with bead beating (55). The efficiency of DNA extraction may vary depending on the type of 

sample and the microbial community being studied, leading to potential biases in the 

composition of the resulting metagenomic library. Wesolowska-Andersen et. al revealed a 

bias in the distribution of genes related to both taxonomy and function specific to the DNA 

extraction technique employed (89).  

4.2 LIBRARY PREPARATION AND SEQUENCING 
Lysis of the extracted DNA produces small DNA fragments. These DNA fragments are then 

independently sequenced producing reads. Reads can be single-ended or pair-ended. Paired-

end reads are a pair of reads sequenced from the same DNA fragment in opposite directions. 

In contrast, in single-end reading, the sequencer reads a fragment from only one end to the 

other. While short-read sequencing results in shorter read lengths (up to 600 bases) (Fig. 2B), 
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long-read sequencing yields longer reads, usually more than 10 kilobases (90). Both 

approaches have their advantages and drawbacks, and the method of choice ultimately 

depends on the aim of the study. Short-read sequencing technologies are a popular choice due 

to their high throughput (91). There is also some evidence that suggests short paired-end 

reading is more cost effective than long-read sequencing (92).  

The Illumina platform (Illumina HiSeq 2500 or 4000, NextSeq and NovaSeq) 

dominates shotgun metagenomics due to it being widely available, having remarkably high 

outputs and a high accuracy (87, 93). The Illumina platform is a short-read sequencing 

technology. The CRCbiome study employed Illumina NovaSeq for sequencing and read 

length for the paired-end run is 2 × 151 bp (55). 

As the number of outputs achievable during a run is exceedingly high, several 

metagenomic samples can usually be sequenced at once by multiplexing of up to 96 or 384 

samples (87). Multiplexing allows for multiple libraries to be pooled and sequenced together. 

A sample-specific index sequence (a “barcode”) is added to DNA fragments during library 

preparation so reads can be identified and sorted before downstream analyses. This is 

typically done by using dual indexing barcode sets available for various library preparation 

protocols (87). The CRCbiome study prepared the sequencing libraries according to the 

Nextera DNA Flex Library Prep Reference Guide (v07) (Illumina, San Diego, CA, USA) 

(55).  

4.3 QUALITY CONTROL AND TRIMMING 
Before analysis, reads are typically filtered and trimmed (Fig. 2C) to remove low-quality 

reads and other artifacts that can affect downstream analysis. Reads are then generated as 

output data and usually formatted as a FASTQ file. FASTQ files are a standard format used 

to represent the output of high-throughput sequencing (HTS) technologies, such as Illumina, 

PacBio, and Oxford Nanopore, and their quality scores. These files contain the raw 

sequencing data in a four-line format for each read. The first line contains a sequence 

identifier, the second line contains the actual nucleotide sequence, the third line contains a 

separator, usually a plus sign (+), and the fourth line contains the corresponding quality 

scores for each base call in the sequence (94). The quality scores reflect the confidence of the 

base call at each position in the sequence and are represented using ASCII characters (94). 

The higher the quality score, the higher the confidence in the base call.  
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4.4 METAGENOME ASSEMBLY 
Reads are used to construct a metagenome in metagenome assembly. Reads from the same 

genome are aligned and merged to create a longer string of reads called contigs (86, 95). 

Contigs are a continuous length of genomic sequence in which the order of the bases is 

known with a high degree of certainty. Contigs and gaps then together make up scaffolds 

(Fig. 3). Gaps arise when the sequences obtained from the two sequenced ends of a fragment 

overlap with reads from other fragments that are located in two separate contigs (96). The 

difference between contig and scaffold lengths thus correspond to the gaps within scaffolds.  

Longer sequences provide information that is challenging to attain from analyzing 

unassembled raw reads. For example, the genome structure, the organization of genes into 

operons, and the regulatory promoters governing these. Nevertheless, the task of de novo 

metagenomic assembly is complicated and its success relies on factors such as the quantity of 

sequences and the diversity of the microbiome, including the abundance and uniformity of 

the present species (91). Though there is no consensus on how well the various assemblers 

perform in terms of important metrics such as completeness, continuity, and propensity to 

generate contigs (87), modern assemblers have somewhat alleviated this limitation (97).  

 

 
Fig. 3. The hierarchy of scaffolds, contigs and reads. Adapted from a figure found at 

https://mycocosm.jgi.doe.gov/help/scaffolds.jsf [Accessed 24.02.2023]. Created with BioRender.com.  

4.5 READ-BASED PROFILING 
Read-based profiling is a method where unassembled raw reads corresponding to genes in the 

reference database are used to determine the frequency of taxa and their functions, usually 

https://mycocosm.jgi.doe.gov/help/scaffolds.jsf
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employing a taxonomic classifier (Fig. 2D). The outcome of this extensive computational 

process is a collection of high-scoring pairs or matches that indicate potential similarities 

between genes in the dataset and genes in the reference database (98). An analysis is then 

conducted to derive a taxonomic profile and/or functional profile for the input data (98). Due 

to the aforementioned challenges with metagenome assembly, some authors opt to bypass the 

assembly step and instead move straight to the direct annotation of taxonomic and functional 

information from the raw reads (97).  

4.6 LIMITATIONS OF SHOTGUN METAGENOMICS  
Much like all sequencing technologies, shotgun metagenomics too comes with its own 

limitations. The analysis of shotgun sequencing data can be complex, requiring specialized 

bioinformatics expertise and access to high-performance computing resources. Though a 

rapid method to assess microbial populations, the information provided by shotgun 

metagenomics about the functional capabilities of these microorganisms is purely descriptive 

and lacks a prescriptive aspect (99). The presence of a gene may suggest the potential 

presence of a specific metabolic function, but it does not ensure that the associated 

microorganisms will actually exhibit the predicted biological activity. While shotgun 

metagenomics is an effective method for characterizing microbial communities, it is 

important to carefully consider the advantages and limitations of the technology in the 

context of the specific research questions and sample types being studied.  

  



23 
 

5 AIMS 

5.1 PRIMARY AIMS 

• Conduct a literature search for bioinformatic tools for fungal identification in shotgun 

metagenomic sequencing data. 

• Validate the bioinformatic tools with a mock community. 

• Shortlist the best methods for identifying fungal species in metagenomic sequencing 

data based on robustness and user-friendliness. 

• Develop a Snakemake (100) workflow, consisting of the shortlisted bioinformatic 

tools, that identifies fungi in shotgun metagenomic sequencing data. 

5.2 SECONDARY AIMS 
• Taxonomically profile any fungal species present in the FIT samples collected from 

Norwegian CRC screening participants using the Snakemake (100) workflow. 

• Functionally annotate any identified fungal species using the Snakemake (100) 

workflow. 

• Study, identify and describe relationships between the human gut mycobiome and 

CRC based on the results from the functional annotation of the identified fungal 

species.  
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6 MATERIALS AND METHODS 
All analyses, except for those performed in RStudio, were conducted on the supercomputer 

Saga. It is designed to run sequential and parallel workloads and became available for users 

in late 2019. RStudio was run on TSD. TSD is an offline high performance computing (HPC) 

cluster for handling sensitive data.  

6.1 MOCK COMMUNITIES 
During the evaluation process, two mock communities were used to generate simulated 

datasets to measure the performance of the classification tools for their ability to classify 

fungal reads in shotgun sequencing datasets.  

6.1.1 Description 

The first mock community (Table 2), hereafter referred to as the mixed mock community 

(MMC), contained five bacterial genomes, five fungal genomes, five viral genomes and the 

human genome. The MMC was created by one of the supervisors on the project.  

Table 2: An overview of the species included in the mixed mock community. 
Genome Species RefSeq ID 

Fungi 

Klyuveromyces lactis GCF_000002515.2 

Saccharomyces cerevisiae GCF_000146045.2 

Candida albicans GCF_000182965.3 

Encephalitozoon intestinalis GCF_000146465.1 

Malassezia restricta GCF_003290485.1 

Bacteria 

Escherichia coli GCF_000005845.2 

Clostridium perfringens GCF_020138775.1 

Faecalibacterium prausnitzii GCF_003312465.1 

Bacteroides fragilis GCF_016889925.1 

Bifidobacterium longum GCF_000196555.1 

Virus 

Escherichia phage phiX174 GCF_000819615.1 

Clostridium phage c-st GCF_000865225.1 

Gokushovirinae Fen672_31 GCF_001190535.1 

Bacteroides phage B40-8 GCF_000883035.1 

Lambdavirus lambda GCF_000840245.1 

Human Homo sapiens GCF_000001405.40 

 

The second mock community, henceforth referred to as the fungal mock community 

(FMC), consisted of fifty fungal genomes. FMC was constructed by downloading fungal 
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genomes from https://www.ncbi.nlm.nih.gov/genome/ on February 7th, 2023. The sequences 

were downloaded from RefSeq in FASTA format (.fna). In total, 50 fungal genomes were 

collected (1.3 GB). The accession numbers of the fungal genomes are listed in Appendix I.  

6.1.2 Generation of simulated datasets 

Two Illumina (HiSeq 2500) simulated datasets, one for each mock community, were 

generated using ART (101) latest version ART-MountRainier-2016-06-05.  

The MMC simulated dataset was generated by one of the supervisors on the project. 

To generate a simulated dataset from the FMC, the fifty FASTA files for the fungal genomes 

were concatenated with the Python script ‘prepare_fasta.py’ (Appendix II). The Python 

script was curated in-house by the same supervisor who generated the MMC and the MMC 

dataset. The resulting concatenated FASTA file was then used to generate the FMC simulated 

dataset by executing the following command in ART (101): 

$ ./art_illumina -ss HS25 -i ~/filename.fna -l 150 -p -m 500 -s 50  

-c 1000000 -o filename 

The parameters of the command are described in Table 3. The outputs are reads in 

FASTQ format and ALN (alignment) format. As this is a paired‐read simulation, two files are 

produced for each format, giving a total of four files. The files, mock_fungal_paired1.fq/aln 

and mock_fungal_paired2.fq/aln, contain data of the first reads and for the second reads, 

respectively. 

https://www.ncbi.nlm.nih.gov/genome/
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Table 3: Parameters chosen for the fungal mock community (FMC) simulated dataset. 
Parameter Description Value 

-ss --seqSys Name of the Illumina sequencing system 
HiSeq 2500 (125bp, 

150bp) 

-i --in Filename of input DNA reference ~/mock_fungal.fna 

-l --length Length of reads 150 basepairs (bp) 

-p --paired Indicates a paired endread simulation - 

-m --mflen 
Mean size of DNA fragments for paired end read 

simulations 
500 

-s --sdev 
Standard deviation of the DNA fragments for paire 

end read simulations 
50 

-c --rcount Number of reads to be generated per sequence 1 000 000 

-o --out Prefix of output file mock_fungal_paired 

6.2 METAPHLAN 3 
MetaPhlAn 3 (Metagenomic Phylogenetic Analysis) (4) is a bioinformatic tool that identifies 

the microbial composition of a sample based on marker genes. It estimates the relative 

abundance of species by mapping reads against a collection of clade-specific marker 

sequences. These sequences are selected from coding sequences that identify microbial clades 

at the species level or at higher taxonomic levels. MetaPhlAn 3 (4) maps reads from a given 

sample to a catalog spanning over 1 million markers for 13 475 species using bowtie2 (102). 

Reads that belong to clades without an available genome are marked as an ‘unclassified’ 

subclade of their closest ancestor (for which data is available) (74). Clade abundances are 

estimated by normalizing read-based counts by the average genome size of each clade (74). It 

has a classification rate of about 10 000 reads per second (4), thus providing robust high-

throughput assessments of metagenomic data at the species level. MetaPhlAn 3 (4) uses 2.6 

GB memory for a complete taxonomic profiling run (4).  

6.2.1 Mapping the simulated datasets 

MetaPhlAn 3 (version 3.0.7) (4) was loaded into the environment with the following 

command: 

$module load MetaPhlAn/3.0.7-foss-2020b 

To map the raw reads of the simulated dataset from the MMC in MetaPhlAn 3 (4), the 

following commands were executed: 

$metaphlan -input_type fastq ~/inputfile1.fq -o filename1.txt 
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$metaphlan -input_type fastq ~/inputfile2.fq -o filename2.txt 

The first argument -input_type is used to specify the type of input while the second 

argument is the path to the input file. Lastly, -o is used for the name of the output file. 

Similarly, the following commands were executed to map the raw reads of the FMC 

simulated dataset: 

$metaphlan -input_type fastq ~/inputfile1.fq -o filename1.txt  

$metaphlan -input_type fastq ~/inputfile2.fq -o filename2.txt 

6.2.2 Visualizing the MetaPhlAn 3 output  

The phyloseq (103) package in RStudio was used to visualize the output from MetaPhlan 3 

(4). The two MetaPhlan 3 (4) outputs from the MMC simulated dataset were merged using 

the script ‘merge_metaphlan_output.R’ (Appendix III). The merged output was then 

converted to a bar plot in phyloseq using the script ‘Metaphlan2Phyloseq.R’ (Appendix IV). 

The same process was repeated for the FMC simulated dataset.  

6.3 KRAKEN 2 
Kraken 2 (3) is a fast and accurate tool that uses k-mer-based algorithms to classify reads to 

the lowest possible taxonomic rank. K-mers are short genomic substrings of length k and are 

made up of nucleotides, i.e., A, T, C and G. They are used to identify species in metagenomic 

samples. Kraken 2 (3) was developed as an improvement of the large storage requirements of 

Kraken (104). Kraken’s (104) default database can easily exceed 100 GB, especially when 

eukaryotic genomes are included in the reference database. Storage usage has been reduced 

by about 85% for Kraken 2 (3) while maintaining the same accuracy. Additionally, Kraken 2 

(3) processes reads at higher speeds than Kraken (104) at 93.2 Mreads/min compared to 18.4 

Mreads/min, respectively. Kraken 2 (3) can be installed by downloading its source code and 

manually installing the program or through a Conda environment. The source code is open-

source and available in a GitHub repository at https://github.com/DerrickWood/kraken2.  

6.3.1 Curating custom databases 

The standard Kraken 2 (3) database, containing archaea, bacteria, viral, plasmid, human, 

UniVec_Core, does not include fungal genomes and thus does not fulfill the needs of fungal 

reads analyses. A custom Kraken 2 database called PlusPF was downloaded from 

https://benlangmead.github.io/aws-indexes/k2. The database contains the standard Kraken 2 

(3) database plus protozoa and fungi. It has an index size of 69 GB. The contents of the 

https://github.com/DerrickWood/kraken2
https://benlangmead.github.io/aws-indexes/k2
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.tar.gz file were extracted and placed into a specific directory by executing the following 

command: 

$ tar -xvzf filename.tar.gz -C ~/kraken2_analysis 

In addition to downloading the PlusPF Kraken 2 (3) database, an exclusively fungal custom 

database was also curated. This database was called ‘FungiDB’. The first step in building a 

custom Kraken 2 (3) database is installing a taxonomy. This was done with the command: 

$ kraken2-build --download-taxonomy --db FungiDB 

The parameter ‘--db’ denotes the database name. The fungi library provided by Kraken 2 (3) 

developers was then installed with the command: 

$ kraken2-build --download-library fungi --db FungiDB 

Finally, to build the database, the following command was executed: 

$ kraken2-build --build --db FungiDB --threads 24 

No custom k-mer length (k) or minimizer length (l) were specified. The default values of k 

and l are 35 and 31, respectively.  

6.3.2 Using a custom database as a positive control 

To test if Kraken 2 (3) can accurately classify all species present in the FMC, a custom 

database called ‘FMC_DB’ was curated. This database contained all fifty fungal species 

included in the FMC. The analysis run with FMC_DB as the reference database served as a 

positive control against the other Kraken 2 (3) runs.  

6.3.3 Mapping the mixed mock community 

The following command was used to classify the raw reads from the MMC simulated dataset 

against the PlusPF Kraken 2 (3) database: 

$ kraken2 --db ~/PlusPF/ --threads 16  

--unclassified-out filename#.fq  

--classified-out filename #.fq  

--output filename.txt  

--report filename.txt  

--paired --use-names ~/art_dataset_100000_even1.fq 

~/art_dataset_100000_even2.fq   

The options of the command are described in Table 4. 
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Table 4: The options used to classify sequences from the mixed mock community (MMC) 

simulated dataset in Kraken 2 (3). 
Option Description 

--db Name of the Kraken 2 (3) database 

--threads Number of threads 

--unclassified-out Send unclassified reads to a file 

--classified-out Send classified reads to a file 

--output Output file 

--report Sample report file 

--paired Indicates that the input files are paired read data 

--use-names 
Replaces the taxonomy ID column with the scientific name and the 

taxonomy ID in parenthesis 

 

It should be noted that paired read data requires the addition of “#” in the filenames in 

the --unclassified-out and --classified-out options. Kraken 2 (3) will replace this with “_1” 

and “_2” and spread the paired reads across the two files.  

6.3.4 Classifying raw reads from the fungal mock community dataset 

The FMC simulated dataset was mapped against all three custom databases by executing the 

following command: 

$ kraken2 --db $database 

--threads 16 --unclassified-out filename#.fq 

--classified-out filename#.fq  

--output filename.txt  

--report filename.txt  

--paired --use-names ~/mock_fungal_paired1.fq ~/mock_fungal_paired2.fq 

The argument $database is the database of interest (PlusPF/FungiDB/FMC_DB).  

6.3.5 Generating Krona charts 

Krona (105) charts are a type of pie chart with multiple layers that are commonly employed 

in metagenomic visualization for examining data in a phylogenetic hierarchy. By using the 

output from Kraken 2 (3), these charts can be created to represent the proportion of reads 

originating from various taxonomic ranks as percentages. Krona (105) charts can be viewed 

with any web browser and thus does not require installation. The Python script 

‘kreport2krona.py’ converts a Kraken 2 (3) report to a Krona (105) compatible .txt file. The 
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following command was used to convert the Kraken 2 (3) report for the MMC simulated 

dataset to a Krona (105) compatible .txt file:  

$ ./kreport2krona.py -r ~/filename.txt -o filename.txt 

The parameter -r is the Kraken 2 (3) report and -o denotes the output file. The output .txt file 

can be imported into Krona using the option ktImportText with the following command: 

$ ktImportText filename.txt -o filename.html 

The first argument is the path to the Krona-compatible .txt file and the second argument is the 

output file, i.e., the Krona (105) chart, in HTML format.  

6.4 FINDFUNGI  
FindFungi (6) is a pipeline that identifies fungal sequences in metagenomic datasets and 

taxonomically classifies them. Donovan et. al compared five algorithms (BLAST (106), 

DIAMOND (107), Kaiju (108) and two versions Kraken (104)) to identify the best method 

for identifying fungal species. They constructed a test database with nine bacterial genomes 

and one fungal genome. These were then used to generate three simulated metagenomic 

datasets with ART (101) to test the aforementioned algorithms. Their findings demonstrated 

that Kraken showed the highest sensitivity with all three datasets, albeit with lower specificity 

than the three other methods.  

To identify fungi in metagenomic datasets, Donovan et. al applied FindFungi (6) to a 

total of 70 datasets. The FindFungi (6) pipeline identified 77 fungal species in 39 of these 

datasets. To determine whether these included any false positives, Donovan et. al compared 

the results to NCBI nt/nr database by using BLAST (106). Additionally, to minimize these 

false positives, there is a read distribution step in the FindFungi (6) pipeline. A fungal 

genome reference database was constructed by downloading all fungal genomes from 

GenBank. 

The FindFungi (6) pipeline analyzes raw sequences in a FASTQ format, then uses 

Skewer (109) to remove low quality reads, and finally the remaining reads are converted into 

FASTA format. Reads predicted as non-fungal are removed. The best hit for each of the reads 

is then mapped to a pseudo-assembly of the relevant genome using BLAST (106).   

6.4.1 Installation 

All scripts were downloaded from https://github.com/GiantSpaceRobot/FindFungi and added 

to the ~/findfungi_analysis directory. The FindFungi (6) pipeline requires the installation of 

the following external programs to be able to run:  

https://github.com/GiantSpaceRobot/FindFungi
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• gcc version 4.4.4 20100726 (Red Hat 4.4.4-13) (Tested with version 10.3.0) 

• coreutils 8.27 (Tested with version 8.32) 

• python 2.7.13 (Tested with version 3.9.5) 

• skewer 0.2.2  

• kraken 0.10.5-beta (Tested with version 1.1.1) 

• ncbi blast 2.2.30 (Tested with BLAST+ version 2.2.31) 

• Rscript 3.3.3 (packages: wordcloud) (Tested with version 4.1.0) 

• graphviz 2.40.1 (Tested with version 2.47.2) 

All the dependencies were loaded into the environment using the command: 

$module load [name of the external program] 

6.4.2 Implementation 

A SLURM (Simple Linux Utility Resource Management) script was used to run the pipeline. 

SLURM is an open-source job scheduler for Linux and Unix-like operating systems. The 

pipeline was tested with the MMC simulated dataset as the input file. The job was submitted 

to SLURM with the command: 

$ sbatch ~/filename.sh 

The following command was given within the SLURM script to execute the pipeline: 

$ ~/FindFungi-0.23.3.sh ~/inputfile.fq filename 

The first argument provided in the command line, after adding the path to the 

FindFungi (6) script, indicates the location of the input FASTQ file. The second one involves 

assigning a descriptive name to this dataset that FindFungi (6) will utilize. 

6.5 HUMANMYCOBIOMESCAN 
HumanMycobiomeScan (7) is a tool that classifies metagenomic sequencing reads and 

assigns them to specific fungal taxa by using a reference database of fungal genomes. The 

reference database is based on the complete fungal genomes available at NCBI website (7). 

The reference database was constructed in February 2018 (7), and may not have been updated 

since. HumanMycobiomeScan (7) is specifically designed to detect fungi that are commonly 

found in the human body. Still, the databases can be customized to the user’s needs, thus 

making the program capable of working with datasets of various origins (e.g., fungal 

genomes associated with soil, water, air etc.) (7).  

The workflow of HumanMycobiomeScan (7) begins with metagenomic reads being 

aligned to the fungal genome database using bowtie2 (102) to reduce the sample size by 
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removing sequences that do not match the reference database. Reads shorter than 60 bp are 

discarded (7). A double-filtering step is also included in the workflow to remove any possible 

contamination by human and bacterial sequences, as the inputs may stem from human-

associated samples such as feces or tissues. Finally, filtered reads are matched again to the 

fungal database using bowtie2 (102) for taxonomic assignment. An additional step allows 

users to normalize results by the length of the references in the database (7). 

HumanMycobiomeScan (7) is available for download on the website: 

http://sourceforge.net/projects/hmscan.  

6.5.1 Installation 

The HumanMycobiomeScan tool was downloaded from 

https://sourceforge.net/projects/hmscan/ and added to the directory ~/hms_analysis. The tool 

requires a number of programs to run:  

• bowtie2 (Tested with version 2.4.2) 

• Samtools (Tested with version 1.11) 

• R (Tested with version 4.0.3) 

• BLAST+ (Tested with 2.11.0)  

The programs were all tested with the latest version available in Saga at the time of the 

analysis and were loaded into the environment using the command: 

$module load [name of the external program] 

6.5.2 Creating a custom database 

The developers suggest creating a custom database despite a small database being included in 

the tool to cover the needs of the user’s analyses. A total of 2907 fungal genomes were 

downloaded from https://www.ncsbi.nlm.nih.gov/genome/browse#!/eukaryotes/fungi in a 

.csv file. The ‘Assembly’ column of this file was copied to a .txt file and uploaded to 

https://www.ncbi.nlm.nih.gov/sites/batchentrez. The ‘Assembly’ database with GenBank 

source was selected and a compressed FASTA archive for the database was downloaded. The 

size of this database was 26.3 GB. The database was created with the provided 

‘custom_database_creation_large.sh’ script and submitted to SLURM with the command:  

$sbatch hmscustomdb.sh 

The SLURM script ‘hmscustomdb.sh’ can be found in Appendix V.  

6.5.3 Implementation 

Within a SLURM script, the following command was given to run the tool:  

http://sourceforge.net/projects/hmscan
https://sourceforge.net/projects/hmscan/
https://www.ncsbi.nlm.nih.gov/genome/browse#!/eukaryotes/fungi
https://www.ncbi.nlm.nih.gov/sites/batchentrez
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$ ./MScan.sh -p 16 -m ~/HMS/ -d ~/database  

-1 ~/inputfile1.fq -2 ~/inputfile2.fq -o ~/filename 

The arguments provided in the command are explained in Table 5.  

Table 5: The parameters for the implementation of HumanMycobiomeScan (7). 
Parameter Description 

-p Number of threads 

-m Path to HMS directory 

-d Path to database 

-1 Path to input file (if paired end) 

-2 Path to input file (if paired end) 

-o Output folder 

6.6 FUNOMIC 
FunOMIC (5) is a pipeline that maps shotgun sequencing reads to reference databases to 

obtain the taxonomical profile of the mycobiome and functionally annotate it. The pipeline 

includes two built-in fungal databases FunOMIC-T and FunOMIC-P for taxonomical and 

functional annotation, respectively. FunOMIC-T contains 1.6 single-copy genes from almost 

5000 fungal genomes, while FunOMIC-P contains more than 3 million fungal proteins. 

FunOMIC-T is comprised of eight phyla. Of these, Ascomycota, Basidiomycota and 

Mucoromycota represent more than 98% of the genomes (5). Its source code is freely 

available for download at https://github.com/ManichanhLab/FunOMIC. It is worth noting 

that FunOMIC (5) is the first tool of its kind to also provide functional annotation in addition 

to taxonomic profiling.  

6.6.1 Installation  

To successfully implement the FunOMIC (5) pipeline, a number of dependencies need to be 

installed:  

• bowtie2 (Tested with version 2.4.4) 

• Samtools (Tested with version 1.13) 

• FLASH2 (Tested with version 2.2.0) 

• DIAMOND (Tested with version 2.0.15) 

• R – KEGGREST package (Tested with version 4.1.0) 

https://github.com/ManichanhLab/FunOMIC
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All the dependencies were loaded into the environment using the command: 

$module load [name of the external program] 

The pipeline was downloaded from https://github.com/ManichanhLab/FunOMIC and 

added to the directory ~/funomic_analysis.  

6.6.2 Implementation 

The pipeline was tested by executing the following command: 

$./FunOMIC.sh -1 ~/mock_fungal_paired1.fq -2 ~/mock_fungal_paired2.fq  

-p mock_fungal -o mock_fungal_output -a ~/BacterialDB/ -b ~/FunOMIC-Tv1/  

-c ~/FunOMIC.P.v1/ -t 16 

The arguments provided in the command are explained in Table 6. 

Table 6: The parameters for the FunOMIC (5) pipeline execution. 
Parameter Description 

-1 Path to input file 

-2 Path to input file 

-p Output prefix 

-o Output folder 

-a Path to bacterial database 

-b Path to FunOMIC-T database 

-c Path to FunOMIC-P database 

-t Number of threads 

 

The FunOMIC-T, FunOMIC-P and the bacterial databases were downloaded from 

https://manichanh.vhir.org/funomic/.  

6.7 SNAKEMAKE 
Workflow managers in shotgun metagenomic analysis are software tools that help automate 

and streamline the process of analyzing large volumes of genomic data generated from 

metagenomic sequencing experiments. These workflow managers help in managing the 

complexity of the analysis pipeline and facilitate the efficient execution of various analysis 

steps. The tools allow users to configure and customize the analysis steps as per their 

requirements.  

Snakemake (100) is a workflow management system that enables users to execute all 

the steps involved in data analysis, starting from raw data processing to plotting results in 

graphs and tables. Snakemake's (100) main concept is that workflows are defined by breaking 

https://github.com/ManichanhLab/FunOMIC
https://manichanh.vhir.org/funomic/
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them down into steps that are depicted as rules. Each rule outlines the process of obtaining a 

collection of output files from a collection of input files (100). Rules are transformed into a 

job that generates the specified output files. Job dependencies are not explicitly defined but 

are inferred automatically. Snakemake (100) identifies a rule that can generate each input file 

for a job, creating another job accordingly. This process is repeated recursively until all input 

files for all jobs are either generated by another job or already exist in storage. Snakemake 

(100) then uses this inference to automatically generate a directed acyclic graph (DAG) that 

represents the dependencies between the different analysis steps.  

Snakemake (100) uses a Python-based domain specific language (DSL). It also 

supports the integration of external tools and scripts, which allows users to incorporate 

existing analysis pipelines into a Snakemake (100) workflow. When running a data analysis 

workflow, the runtime and resources utilized are primarily influenced by the jobs that are 

executed and the effectiveness of the libraries and tools utilized in these jobs. Snakemake 

(100) was primarily chosen for this project due to the available resources in the research 

group. Though it is entirely possible similar analyses can be conducted with Nextflow (110). 
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7 RESULTS 
 

To evaluate how well a selection of classification tools were able to classify fungal reads, two 

simulated datasets were generated. The five classification tools (MetaPhlAn 3 (4), Kraken 2 

(3), FindFungi (6), HumanMycobiomeScan (7) and FunOMIC (5)) were tested on each of 

these datasets.  

7.1 METAPHLAN 3 
MetaPhlAn 3 (4) was unable to classify all the fungal reads from the two simulated datasets. 

Of the five fungal species present in the MMC simulated dataset, only three of these (C. 

albicans, Malassezia restricta and S. cerevisiae) were classified by MetaPhlAn 3 (4) with the 

provided MetaPhlAn 3 (4) database. A higher proportion of fungal reads in the FMC 

simulated dataset were classified. Of the fifty fungal species in the FMC simulated dataset, 

MetaPhlAn 3 (4) was able to classify thirty eight of these. This gives a total of 76 % 

classified species in the FMC simulated dataset compared to 60% of classified species in the 

MMC simulated dataset. MetaPhlAn 3’s (4) classification of species from the MMC and 

FMC simulated datasets is presented in Fig. 4A and Fig. 4B, respectively. 

A 

 

B 

 

Fig. 4. Classification of the two simulated datasets by MetaPhlAn 3 (4). 4A: MetaPhlAn 3 (4) classified three out of five 
fungal species from the mixed mock community (MMC) simulated dataset. 4B: The genera MetaPhlAn 3 (4) was able to 

classify from the fungal mock community (FMC). Results are visualized in RStudio with the phyloseq (103) package. 

7.1.1 Relative abundance 

The relative abundance of the kingdom Eukaryota in the MMC simulated dataset was 

17.38%. The relative abundances of the three classified fungal species in the MMC simulated 

dataset are presented in Table 7. 
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Table 7: The relative abundances of Candida albicans, Malassezia restricta and 

Saccharomyces cerevisiae in the mixed mock community (MMC) simulated dataset.  
Species Relative abundance 

 Theoretical MetaPhlAn 3 (4) 

Candida albicans 6.25 4.41398 

Malassezia restricta 6.25 8.1684 

Saccharomyces cerevisiae 6.25 4.79846 

 

In the FMC simulated dataset the relative abundance of the kingdom Eukaryota was 

100%. The relative abundances of the five classified fungal genera in the FMC simulated 

dataset are presented in Table 8. 

 

Table 8: The relative abundances of the fungal genera Aspergillus, Candida, Malassezia, 

Pneumocystis and Saccharomyces in the fungal mock community (FMC) simulated dataset.  
Genus Relative abundance 

 Theoretical MetaPhlAn 3 (4) 

Aspergillus 4 7.92668 

Candida 14 35.766155 

Malassezia 4 29.87563 

Pneumocystis 2 16.31203 

Saccharomyces 2 10.119515 

7.2 KRAKEN 2 

7.2.1 Classification of the mixed mock community 

Mapping the MMC simulated dataset against the PlusPF custom Kraken 2 (3) database 

produced 99.99% classified reads (Fig. 5A). The fungal fraction, presented in Fig. 5B, 

showed proportionate levels of classification at 17%, suggesting that almost all of the reads 

were successfully classified by Kraken 2 (3).  
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A 

 
B 

 

 
Fig. 5. Classified species from the mixed mock community (MMC) simulated dataset. 5A: Kraken 2 (3) was able to classify 

all the bacterial and fungal species present in the MMC. Only two of the five viral species were classified. 5B: The classified 
fungal fraction of the MMC. The reference database used for this classification was a custom database (69 GB) curated by 

Kraken 2 (3) developers, and contained fungi and protozoa in addition to the standard Kraken 2 (3) database (archaea, 
bacteria, viral, plasmid, human, UniVec_Core). Results were visualized using KronaTools (105).  

7.2.2 Classification of the fungal mock community 

A large majority of the FMC simulated dataset (72%) remained unclassified when mapped 

against the PlusPF Kraken 2 (3) database (Fig. 6A). When using a custom reference database 

Unclassified   0.004%

k__Archaea   0.002%

all

p__Apicomplexa   0.09%

s__Dictyostelium_discoideum   0.02%

s__Trypanosoma_brucei   0.0002%

s__Phaeodactylum_tricornutum   0.0002%

k__Eukaryota

[other k__Eukaryota]   0.005%
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comprising exclusively of fungal genomes, Kraken 2 (3) classified about 26% of the reads 

from the FMC simulated dataset (Fig. 6B). This contradicts the initial expectation of higher 

classification rates since the reference database is exclusively fungal. The results also suggest 

that this reference database may lack some of the fungal genomes included in the PlusPF 

database. Though when the reference database was customized to include all the fifty fungal 

species present in the FMC simulated dataset, Kraken 2 (3) was able to classify 99.83% of the 

reads from the FMC simulated dataset (Fig. 6C).  

A 

 
B 

 

k__Bacteria   0.8%

k__Archaea   0.02%

k__Viruses   0.005%

all

all
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C 

 
Fig. 6. Classified species from the fungal mock community (FMC) simulated dataset. 6A: The reference database used for 

this classification was a custom database called PlusPF (69 GB) curated by Kraken 2 (3) developers, and contained fungi and 
protozoa in addition to the standard Kraken 2 (3) database (archaea, bacteria, viral, plasmid, human, UniVec_Core). 6B: The 
reference database used was a custom database (16 GB) curated by Kraken 2 (3) developers containing only fungal genomes. 

6C: The reference database used for this classification was a custom database curated in-house with all fifty fungal species 
present in the FMC simulated dataset.Results were visualized using KronaTools (105). 

7.3 FINDFUNGI 
The implementation of the pipeline was unsuccessful. The ‘Run_Statistics’ file (Fig. 7) 

output by FindFungi (6) shows that the input file (the MMC simulated dataset) was read by 

the pipeline. The output ‘Run_Statistics’ file does not provide the number of reads for the 

subsequent steps in the pipeline.  

Unclassif ied   0.2%

all
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Fig. 7. Snapshot of the ‘Run_Statistics’ file output by FindFungi (6). The implementation of the FindFungi (6) pipeline read 
the input MMC simulated dataset and output the number of reads in the dataset. The subsequent steps of the pipeline failed 

to execute. 

The pipeline exited after echoing the number of reads in the raw input (Fig. 8). The 

next step, trimming low quality reads with Skewer (109), failed to run and the number of 

reads after trimming was given as zero (Fig. 7). The input file was successfully trimmed 

using Skewer (109) on the command line.  

 
Fig. 8. Snapshot from the pipeline script ‘FindFungi-0.23.3.sh’. The implementation of the FindFungi (6) pipeline output 

only the number of reads in the input file.  

7.3.1 Contacting the developers 

The attempt to address the issue of the ‘FindFungi-0.23.3.sh’ script terminating after reading 

the raw input involved reaching out to the developers of FindFungi (6) for assistance. It was 

revealed that FindFungi (6) is no longer actively developed or maintained due to the 

developer's departure from the associated laboratory five years ago. As a result, the developer 

was unable to provide any further assistance. Any future updates to FindFungi (6) are 

unlikely.  
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7.3.2 FindFungi adapted for SLURM 

A version of FindFungi (6) adapted for SLURM is available at 

https://github.com/astrophys/FindFungi_adapted_for_slurm. The SLURM adaptation of 

FindFungi (6) read the input file (the FMC simulated dataset) and removed low quality reads 

using Skewer (109). The ‘Run_Statistics’ file (Fig. 9) shows two reads were removed.  

 
Fig. 9. A snapshot of the ‘Run_Statistics’ file output by FindFungi (6) adapted for SLURM. Skewer (109) removed two reads 

from the FMC simulated dataset.  

The subsequent steps of the pipeline failed to execute as the script exited with an 

sbatch error when attempting to run Kraken (104) (Fig. 10).  

 
Fig. 10. Snapshot from the SLURM job output file. The script for FindFungi (6) adapted for SLURM exited after trimming 

reads with Skewer (109). Kraken (104) failed to run due to an sbatch error.  

7.3.3 The original FindFungi script vs. FindFungi adapted for SLURM 

The command bsub is used to submit a script to the job scheduler Load Sharing Facility 

(LSF). The comparison between the ‘FindFungi-0.23.3.sh’ script and the script used in 

FindFungi (6) adapted for SLURM reveals a notable distinction in the usage of bsub 

commands (Fig. 11). The former script employs bsub commands, imposing a memory limit 

on the executed commands. Conversely, the adapted version eliminates the use of bsub, 

thereby removing the memory constraint. 

https://github.com/astrophys/FindFungi_adapted_for_slurm
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A 

 
B 

 
Fig. 11. Snapshots from the two FindFungi (6) scripts. 11A: The command used to execute Skewer (109) in the FindFungi-

0.23.3.sh script. 11B: The command used to execute Skewer (109) in the FindFungi (6) SLURM adaptation.    

7.3.4 Mapping the FMC simulated dataset against FindFungi's 32 Kraken databases 

with Snakemake  

The FMC simulated dataset was mapped against the 32 Kraken (104) databases integrated 

into the FindFungi (6) pipeline using Snakemake (100). The Snakefile (Appendix VI) 

encompasses the necessary commands for mapping the FMC to the 32 Kraken (104) 

databases and consolidating the resulting 32 Kraken (104) reports into a single 

comprehensive report. A small portion (10.4 %) of the FMC simulated dataset was classified 

by the 32 Kraken (104) databases incorporated in the FindFungi (6) pipeline (Fig. 12). 



44 
 

A 

 
B  

 
 

Fig. 12. Mapping the fungal mock community (FMC) against FindFungi’s (6) 32 Kraken (104) databases. 12A: The 
proportion of classified and unclassified reads. 5B: The classified reads of the FMC. The reference databases used for this 
classification were the 32 Kraken (104) databases (16 GB each) incorporated in the FindFungi (6) pipeline. Results were 

visualized using KronaTools (105).  
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7.4 HUMANMYCOBIOMESCAN 
During the attempt to execute the HumanMycobiomeScan (7) tool, it encountered failure and 

did not run successfully. The error message (Fig. 13A) indicated the absence of a required 

file for a successful run. Although the corresponding folder was created, the expected output 

file was not present in this folder. The command where the ‘MScan.sh’ script terminated 

(Fig. 13B) was identified. When contacting the developer for help, it was confirmed that the 

error was indeed due to the non-existence of the file. However, no specific explanation was 

provided for the cause of this occurrence. Insufficient time prevented conducting additional 

testing and evaluation of the software. 

A 

 
B 

 
Fig. 13. Troubleshooting the HumanMycobiomeScan (7) tool. 13A: The error message encountered when running the 
HumanMycobiomeScan (7) tool indicated that it could not find the “mixmock.sam” file to start the analysis. 13B: A 

snapshot from the MScan.sh script shows the command HumanMycobiomeScan (7) was unable to execute. 

7.5 FUNOMIC 
The FunOMIC (5) pipeline encountered multiple challenges during implementation and was 

unable to run successfully. A number of error messages were encountered upon executing the 

pipeline. The taxonomic profiling log (Fig. 14A) indicated that the pipeline was unable to 

provide any output. Additionally, the functional profiling log reported an error related to the 

DIAMOND (107) software (Fig. 14B). The functional log revealed that DIAMOND (107) 

was unable to read the input file due to a seemingly blank first line in the input file. As a 

result, the functional profiling process was abruptly terminated. The first line of the input file 

was investigated, and the resulting output showed that the first line of the input file was not 

blank. Finally, the bacterial log revealed that the FunOMIC (5) pipeline script exited due to a 

bowtie2-align error (Fig. 14C).  
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C 

 
Fig. 14. The taxonomy, functional and bacterial decontamination logs output by FunOMIC (5). 14A: The taxonomy log 

shows the pipeline was unable to read the input FMC simulated dataset and consequently did not align the dataset to 
reference genomes. 14B: The functional profiling log showing the error encountered by DIAMOND (107). 14C: An error 

was encountered with bowtie2-align, as presented in the bacterial decontamination log, that subsequently caused the script to 
exit. 

Throughout the analysis process, encompassing taxonomic profiling, functional 

profiling, and the removal of bacterial reads, FunOMIC (5) consistently encountered 

difficulties in locating the required input file. This was evident in the generation of error 

messages at each step, as depicted in Fig. 15. 

 
Fig. 15. The SLURM job output of the FunOMIC (5) pipeline implementation. The SLURM output showcases the error 

messages encountered during the execution of the FunOMIC (5) pipeline. 

7.5.1 Communication and developer input: insights and contributions 

The developer was contacted regarding the encountered issues during the execution of the 

FunOMIC (5) pipeline. In response, the developer acknowledged an error in the code and 

provided an updated version for further testing and implementation. However, upon 

execution of the new code, error messages were again encountered. The taxonomic profiling 

and bacterial decontamination logs remained the same as previously. The functional profiling 

log (Fig. 16) displayed a different error with the DIAMOND (107) software than the one 

encountered earlier.  
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Fig. 16. The functional profiling log output by FunOMIC (5). DIAMOND (107) encountered an error when opening the 
input file for the functional profiling of the FMC simulated dataset. The functional profiling log shows that no such file 

exists.  

According to the developer, the encountered errors during functional profiling were attributed 

to issues with bacterial decontamination. It was highlighted that if the bacterial 

decontamination process is not successful, it will subsequently affect both taxonomic and 

functional profiling steps. Due to time constraints, it was not possible to conduct further 

testing and evaluation of the software. 
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8 DISCUSSION 

8.1 KEY FINDINGS 
In metagenomic analyses of microbiomes, and by extension the mycobiome, the initial step 

typically involves classifying reads based on their taxonomic information by comparing them 

to a database containing characterized genomes. Five bioinformatic tools, namely MetaPhlAn 

3 (4), Kraken 2 (3), FindFungi (6), HumanMycobiomeScan (7) and FunOMIC (5), and their 

accompanying databases were evaluated for their ability to detect and classify fungal species 

in shotgun metagenomic datasets. Evaluation of the tools was conducted by mapping two 

simulated datasets against the databases of the tools. One simulated dataset, the mixed mock 

community (MMC), contained sixteen genomes (five bacterial, five fungal, five viral and the 

human genome). The second simulated dataset, the fungal mock community (FMC), 

contained fifty fungal genomes. The aim of this validation was to create an automated 

pipeline for mycobiome characterization by incorporating these tools into a Snakemake (100) 

pipeline. Rigorous benchmarking was performed to assess their effectiveness and reliability. 

8.1.1 The impact of reference databases on Kraken 2 performance 

A study conducted by Wright et. al found that the choice of reference database greatly 

impacts taxonomic classification (111). The FMC simulated dataset was mapped against 

three different custom Kraken 2 (3) databases to examine how the selection of a reference 

database impacts Kraken 2’s (122) classification. Two of these databases, called PlusPF 

(available for download at: https://benlangmead.github.io/aws-indexes/k2) and FungiDB (this 

name is given for the purposes of this thesis and denotes the reference fungi library of Kraken 

2 (3)) were curated by Kraken 2 (3) developers. Kraken 2 (3) classified 28.41 % and 25.53 % 

of the FMC simulated dataset when mapped against PlusPF and FungiDB, respectively. 

Despite the databases containing the same fungal genomes (both databases employ the same 

reference fungi library), using PlusPF as the reference database produced more classified 

reads than when using FungiDB. PlusPF contains archaeal, bacterial, viral, plasmid, human 

and a collection of known vectors (UniVec_Core) genomes in addition to fungal genomes. 

FungiDB on the other hand consists solely of fungal genomes. The inclusion of genomic 

content from other species producing a higher classification rate could be indicative of 

improved sensitivity and the ability to detect a broader range of taxonomic groups present in 

the sample. The correlation between the size and comprehensiveness of the reference 

https://benlangmead.github.io/aws-indexes/k2
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database and improved results is widely acknowledged, primarily to avoid inaccurate 

classifications caused by the omission of closely related organisms within a specific 

taxonomic group (112). This raises an important question about Kraken 2’s (3) algorithm: is 

it unable to detect fungal species accurately despite the presence of fungal genomes in 

reference databases?  

A custom Kraken 2 (3) database, called FMC_DB, was curated in-house to answer 

this question. The reference database encompassed all species present in the FMC simulated 

dataset. Kraken 2 (3) demonstrated the highest performance when mapping the FMC 

simulated dataset against the FMC_DB with a classification rate of 99.83 %. It is therefore 

logical to conclude that Kraken 2 (3) can indeed be employed for fungal classification of 

shotgun metagenomic datasets. Recent studies (23, 113, 114) employing Kraken 2 (3) to 

characterize the human gut mycobiome corroborate this conclusion.  

A caveat to consider is that the effectiveness of Kraken 2 (122), and any classification 

tool in this instance, is limited when analyzing samples with novel species. The high 

performance of Kraken 2 (3) when employing FMC_DB shows that curating a custom 

database encompassing all species present in the sample allows it to accurately classify the 

sample. Constructing a sample-tailored database, however, is an impossible task when 

dealing with samples of unknown composition. To address this limitation and confidently 

classify all the sample reads, analyses would need to be conducted with a large enough 

reference database to ensure the inclusion of all possible organisms with classified genomes. 

8.1.2 MetaPhlAn 3 limitations in fungal identification  

MetaPhlAn 3 (4) exhibited limitations in accurately classifying all the fungal species present 

in both the MMC and FMC simulated datasets. The inability to classify certain species raises 

concerns about the comprehensiveness of MetaPhlan 3’s (4) reference database in capturing 

the diversity of fungal taxa. This limitation could be attributed to the lack of eukaryotic 

reference genomes in the MetaPhlAn 3 (4) database. Of the approximately 99 200 reference 

genomes included in the MetaPhlan 3 (4) database, eukaryotic genomes account for only 0.12 

% (or 122) of these (4). Consequently, analyses performed using MetaPhlAn 3’s (4) provided 

database may lead to incomplete or inaccurate results, as researchers may fail to identify 

species that are actually present in a sample simply because they are not in MetaPhlAn 3’s (4) 

provided database. This was shown to be the case for both the MMC and FMC simulated 

datasets where MetaPhlAn 3 (4) classified 60 % and 76 % of the fungal species present, 

respectively. Usyk et. al found an updated version of MetaPhlAn 3 (4), MetaPhlAn 4 (115), 
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was only able to detect fungi in 3.83 % of the samples compared to the ITS1 amplicon 

sequencing that identified fungi in 89.6 % of the samples (116). MetaPhlAn 4 (115) boasts a 

significant improvement in its database from MetaPhlAn 3 (4) with 169.1k reference 

genomes encompassing 31.9k species compared to the latter’s 99.2 k genomes from 13.5 k 

species (115). Despite the expansion of the provided database in the latest update of 

MetaPhlAn, authors acknowledge that the present methods lack comprehensive integration of 

eukaryotic microbial sequences (115). 

A literature search conducted on PubMed using the keywords "(MetaPhlAn 3) AND 

(mycobiome)" gave no hits whereas "(MetaPhlAn) AND (fungi)" returned nine hits. This 

indicates a gap in the current literature and highlights the need for further investigation and 

exploration of MetaPhlAn 3’s (4) potential in studying fungal communities. Researchers 

relying solely on MetaPhlAn 3’s (4) database should be cautious and consider alternative 

approaches or databases that encompass a broader range of species to ensure more 

comprehensive and accurate analysis of their samples. 

8.1.3 Performance discrepancies and usability challenges of FindFungi 

FindFungi (6), published in 2018, was developed with the aim of addressing the existing gap 

in the availability of tools specifically designed for fungal identification in shotgun 

metagenomic sequencing (6). This research objective was motivated by the recognition that 

at the time of publication, available tools in the field did not adequately capture the diversity 

and complexity of fungal communities present in such datasets. By curating a dedicated 

pipeline, FindFungi (6) sought to provide researchers with a valuable resource for accurate 

and efficient identification of fungal species. Donovan et. al tested five tools (BLAST (106), 

DIAMOND (107), Kaiju (108) and two versions of Kraken (104)) to determine the best 

method for classifying fungal reads from metagenomic datasets. Kraken (104) with the 

default k-mer setting of 31, was selected for the FindFungi (6) pipeline due to its speed, the 

amalgamation of excellent sensitivity and specificity, and its capability to assign a lowest 

common ancestor (LCA) prediction to every read (6). When a preliminary version of 

FindFungi (6) gave false positives, a read distribution step was added to the FindFungi (6) 

pipeline to prevent the occurrence of these. Classified reads from Kraken (104) are mapped to 

a simulated-assembly of the relevant genome using BLAST (106). 

Despite the promising nature of the pipeline, the evaluation of FindFungi (6) revealed 

that the pipeline suffers from significant usability issues, making it cumbersome and not user-

friendly. It became apparent that the tool's functionality and usability did not align with the 
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initial claims made by the authors. The setup process involves downloading multiple software 

and databases, as well as granting permissions to run the scripts, which can be challenging for 

users without a certain level of technical knowledge. Consequently, these requirements and 

complexities hinder the ease of getting started with FindFungi (6). Additionally, FindFungi 

(6) demands a substantial amount of storage space, further contributing to its impracticality. 

The need for ample storage capacity can pose challenges, especially for researchers with 

limited resources or those working with large datasets. 

FindFungi’s (6) script appears more tailored for project specific use rather than having 

universal applicability. One aspect that highlights this is the use of bsub commands in the 

script. While this approach may have been employed to optimize resource allocation, it 

inadvertently imposed restrictions on the types of tasks that could be performed. 

Consequently, several tools within the pipeline failed to execute their intended functions, 

leading to unforeseen limitations and reduced performance. One specific challenge faced was 

the incompatibility of the original FindFungi (6) script with the Skewer (109) tool. The input 

file was successfully trimmed using Skewer (109) outside of the FindFungi (6) pipeline. 

When a SLURM adapted version of FindFungi (6) was utilized, Skewer (109) was able to 

function as expected. This result suggests that the removal of bsub commands in the SLURM 

implementation of FindFungi (6) removes any memory restrictions and thus allows Skewer 

(109) to successfully run.  

Though the implementation of FindFungi (6) remained unsuccessful, an attempt was 

made to classify the FMC simulated dataset with Snakemake (100) using FindFungi’s (6) 32 

Kraken (104) databases. Only 10.4 % of the FMC simulated dataset was classified. While 

Usyk et. al were able to recover more fungal species using FindFungi (6) than with ITS1 

amplicon sequencing data; they concluded that the output obtained from FindFungi (6) is 

likely a consequence of incorrect categorization (116). Seen together with the low 

classification rate of the FMC simulated dataset, these results suggest that the reference 

databases used by FindFungi (6) to classify fungal reads are likely to be incomprehensive at 

best and wholly inaccurate at worst.  

Another significant limitation encountered in this study is the lack of maintenance and 

updates for FindFungi (6). FindFungi (6) appears to be stagnant in terms of ongoing support 

and updates for the past five years. This limitation also raises concerns about the tool's 

compatibility with the latest advancements in fungal taxonomy and the availability of up-to-

date reference databases. Without timely updates, FindFungi (6) may lack the inclusion of 
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newly discovered fungal species or taxonomic revisions, rendering it less reliable and 

comprehensive for fungal classification. 

8.1.4 Discrepancies, technical challenges, and the need for benchmarking of 

HumanMycobiomeScan and FunOMIC 

HumanMycobiomeScan (7) and FunOMIC  (5) are two tools that have shown potential for 

analyzing fungal communities in metagenomic studies. However, a closer examination of 

these tools reveals several limitations that need to be addressed before their widespread 

adoption in the field. 

One of the primary limitations is the discrepancies between the information presented 

in the published papers and the actual implementation of the provided code. Both 

HumanMycobiomeScan (7) and FunOMIC (5) suffered from technical issues, with scripts 

frequently generating error messages. The lack of proper error handling and troubleshooting 

support, particularly in the case of HumanMycobiomeScan (7), further compounded the 

difficulties faced by users.  

Moreover, neither of the tools have undergone rigorous benchmarking to evaluate 

their performance in diverse scenarios and against established standards. FunOMIC (5) has 

only recently been published (October 2022). At the time of writing in May 2023, FunOMIC 

(5) has one single citation from March 2023. Notably, this citation was made by one of the 

authors of FunOMIC (5), suggesting that the tool has yet to gain widespread recognition or 

uptake by other researchers in the field. Similarly, HumanMycobiomeScan (7), since its 

publication in June of 2019, has had few citations adopting the tool. To establish the 

credibility and utility of these tools, thorough benchmarking studies should be conducted to 

assess their performance compared to established approaches. This would involve evaluating 

their accuracy, precision, recall, and computational efficiency across a range of datasets and 

experimental conditions.  

8.2 STRENGTHS AND LIMITATIONS 
Unlike targeted approaches such as amplicon sequencing that focus on specific regions like 

ITS (6), shotgun metagenomics allows for the unbiased sequencing of entire microbiomes, 

providing a more comprehensive view of fungal communities, such as the mycobiome. This 

approach enables the identification of not only known fungi but also novel and rare species 

that may have been missed using targeted methods (86). A decrease in sequencing costs has 

given researchers greater access to HTS technologies. Informatics software development is 
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progressing swiftly and improving the ease and effectiveness of metagenomic analysis (86). 

Some challenges remain that hinder widespread adoption of shotgun metagenomic 

sequencing in mycobiome characterization.  

Firstly, there is a clear lack of available literature on human gut mycobiome research 

using shotgun metagenomic sequencing data. PubMed gives eight results when using the 

search query “(shotgun metagenomic sequencing) AND (human gut mycobiome)”. The 

articles are all published within the past four years (the earliest in April 2019). One study 

used fecal shotgun metagenomic sequences CRC patients, individuals with adenomas and 

healthy controls in Hong Kong to characterize the enteric mycobiome in CRC (75). The study 

uncovered fungal dysbiosis in the gut specifically related to CRC (75). This imbalance in the 

mycobiome, marked by changes in fungal composition and ecological patterns, suggests a 

potential involvement of the gut fungal community in the development of CRC (75).  

In the past, the primary emphasis of microbiome research was on the bacteriome, 

resulting in a lack of standardization in techniques for studying the mycobiome in the gut 

(117). Consequently, the progress of these studies is hindered by the absence of standardized 

protocols, technical challenges, a scarcity of reference data, and potential biases in data 

analysis (28).  

Secondly, the availability of reference fungal genomes in reference databases that 

accompany current classification tools is insufficient for conducting fungal classification 

studies. Every metagenomics computational tool depends, to some degree, on the 

accessibility of reference genomes, which means that any prejudices present in the reference 

sequence resources can have an impact on them (99). Additionally, shotgun metagenomics 

sequencing has not yet achieved the degree of standardization that is typical of other more 

established HTS methods (99). The substantial proportion of fungal species from the two 

simulated datasets that could not be classified during the assessments of Kraken 2 (3) and 

MetaPhlAn 3 (4) as well as FindFungi’s (6) reference databases highlights the existing 

constraints of the currently accessible databases. 

Finally, software that is not regularly updated and maintained is a limitation of this 

thesis. FindFungi (6) is not actively maintained and has not received any updates to its code 

since publication in 2018. The absence of user support exacerbated the difficulties associated 

with debugging code and addressing problems related to reproducibility. Ensuring the 

integrity and quality of bioinformatics pipelines is crucial for delivering reproducible and 

high-quality outcomes. Neglecting to regularly update the code may lead to getting trapped in 

repetitive troubleshooting cycles, as was the case with the implementation of FindFungi (6).  
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8.3 FUTURE CONSIDERATIONS  
Fungal genomes exhibit a high level of diversity and complexity compared to bacterial 

genomes. They often possess a variable number of chromosomes, which can complicate the 

process of relative quantification when using certain tools like Kraken 2 (3). Kraken 2 (3) 

quantifies the abundance of different taxa by counting the number of reads assigned to each 

taxonomic group. However, Kraken 2 (3) does not account for variations in genome size 

when estimating abundance. Without considering genome size, the abundance estimates 

obtained may not accurately reflect the true proportions of fungal taxa present in a given 

sample. In contrast, tools like MetaPhlAn 3 (4) take into consideration the genome size of 

different taxa when performing relative quantification. By normalizing the abundance 

estimates by genome size, MetaPhlAn 3 (4) provides a more accurate representation of the 

relative abundance of different microbial species, including fungi. Any future tools developed 

for fungal classification should consider the diverse nature of fungal genomes when curating 

reference databases to obtain more reliable and informative results.  

As mentioned previously under limitations, the lack of fungal reference genomes 

severely impacts the performance of classification tools. Future work surrounding a pipeline 

for mycobiome characterization would require the construction of a sizable and 

comprehensive reference database to ensure adequate classification of fungal species.  

8.3.1 Constructing a Snakemake pipeline for fungal identification in shotgun 

metagenomic datasets 

Due to time constraints and challenges faced during evaluation of the classification tools, the 

aim of developing a Snakemake (100) workflow was not achieved. Suggestions for an 

optimized Snakemake pipeline (100) for fungal identification in shotgun metagenomic 

datasets, based on findings in this thesis, are presented below. 

The process of pipeline development typically involves establishing an infrastructure, 

constructing a computational workflow, and examining the obtained outcomes. Given the 

prevalence of sequencing technology and bioinformatics analysis, it is important to design a 

pipeline that minimizes the need for extensive computational or coding knowledge. Ideally, 

the pipeline should facilitate analysis through a user-friendly graphical user interface (GUI) 

that allows for straightforward point-and-click operations. 

Before incorporating any software or tools within the pipeline, the software/tools 

should be tested in a new, unconfigured environment to ensure that results can be reproduced. 

Additionally, the number of dependencies that require installation before the pipeline is 
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operational should be minimized. By incorporating the installation of the necessary software 

within the pipeline code (as opposed to requiring users to install them separately), users can 

experience a less burdensome installation process. This also mitigates the risk of user error 

during installation and avoids implementation failure. For any dependencies needed, the 

known working version should be included in the documentation of the pipeline. 

The pipeline should contain the following steps: (i) pre-processing of reads, (ii) 

mapping reads to reference genomes, (iii) taxonomic classification, and (iv) functional 

annotation. This provides users with a full-fledged metagenomic analysis of their sample 

from start to finish.  

The reference database employed by the pipeline should comprehensively comprise 

genomes of both fungal and non-fungal origin. Evidence suggests using reference databases 

that consist of a single taxonomic group results in an unacceptably elevated rate of false-

positive findings, primarily due to two factors: (i) mapping to conserved genetic regions in 

reference genomes, and (ii) contamination of sequences in the assembled reference genomes 

(112). To account for the diversity of fungal genomes, the reference database should employ 

marker genes similar to that of MetaPhlAn 3 (4). To meet the needs of the users’ analyses, an 

option to curate a custom database should also be included.  

Finally, the pipeline should be regularly maintained and receive careful attention to 

updates to the code. Additionally, user support should be readily available to facilitate any 

troubleshooting. The rapid developments in the field of microbiome (and mycobiome, albeit 

less rapid) research requires constant updates and maintenance of software. This is a vital 

aspect of software development and developers should ensure allocation of necessary 

resources for the upkeep of any published pipeline to facilitate universal adoption.  
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9 CONCLUSION 
Fungi exhibit a vast array of morphological and ecological variations. This poses difficulties 

in their characterization due to the inherent challenges associated with culturing them. 

Culture-independent methods such as shotgun metagenomic sequencing bypass this 

limitation. This thesis aimed to evaluate and compare five bioinformatic tools (MetaPhlAn 3 

(4), Kraken 2 (3), FindFungi (6), HumanMycobiomeScan (7), and FunOMIC (5)) for their 

ability to detect and classify fungal species in shotgun metagenomic datasets. The findings of 

this thesis shed light on the strengths and limitations of these tools and provide valuable 

insights for researchers interested in studying the mycobiome. 

While HumanMycobiomeScan (7) and FunOMIC (5) showed potential for analyzing 

fungal communities, they also suffered from discrepancies between the published papers and 

the actual implementation of the provided code. Technical issues and a lack of rigorous 

benchmarking studies hinder their widespread adoption and raise concerns about their 

accuracy and performance compared to established approaches.  

FindFungi (6), despite its initial promise of addressing the gap in fungal identification 

tools, suffered from usability challenges and limitations. The setup process, including 

downloading multiple software and databases, and the demand for ample storage space 

makes the tool cumbersome and impractical for users with limited technical knowledge of 

command-line and shell scripts. The tool's script appeared more tailored for project-specific 

use, and its compatibility with other software and tools was limited as a consequence. The 

reference databases used by FindFungi (6) for classification of fungal reads were also found 

to be incomprehensive and inaccurate. Lack of maintenance and updates further raised 

concerns about the tool's reliability and compatibility with the latest advancements in fungal 

taxonomy. 

Kraken 2 (3) and MetaPhlAn 3 (4) are two well-established classification tools with 

hundreds of citations each, but the use of these tools for fungal classification is not without 

challenges. It was found that the choice of reference database greatly affects the tools’ 

classification accuracy. The limited number of eukaryotic genomes included in the provided 

databases raises concerns about the comprehensiveness of capturing the diversity of fungal 

taxa. The inclusion of genomic content from other species in the reference database, in 

addition to fungal genomes, improved the classification rate, indicating the importance of 

comprehensive and diverse reference databases for accurate classification.  
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This thesis has highlighted the strengths and limitations of different bioinformatics 

tools for studying the mycobiome using shotgun metagenomic sequencing. The unbiased 

nature of shotgun metagenomics provides a comprehensive view of fungal communities, 

enabling the identification of known and novel species. However, challenges such as 

technical difficulties and lack of reference data still need to be addressed. Future research 

should focus on developing standardized approaches, improving reference databases, and 

conducting rigorous benchmarking studies to advance our understanding of the mycobiome 

and its role in human health and disease. 
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11 APPENDIX 

11.1 APPENDIX I 
Genome Species RefSeq ID 

Fungi 

Candida albicans SC5314  GCF_000182965.3 
Aspergillus lentulus GCF_010724455.1 
Penicillium rubens Wisconsin 54-1255 GCF_000226395.1 
Saccharomyces cerevisiae S288C GCF_000146045.2 
Malassezia globosa CBS 7966 GCF_000181695.1 
Debaryomyces hansenii GCF_000006445.2 
Candida parapsilosis GCF_000182765.1 
Pichia kudriavzevii GCF_003054445.1 
Nakaseomyces glabratus GCF_000002545.3 
Encephalitozoon cuniculi GB-M1 GCF_000091225.2 
Malassezia restricta GCF_003290485.1 
Trichosporon_asahii  GCF_000293215.1 
Candida tropicalis GCF_000006335.3 
Candida orthopsilosis Co 90-125 GCF_000315875.1 
Candida auris GCF_002775015.1 
Alternaria burnsii GCF_013036055.1 
Alternaria ethzedia GCF_023757985.1 
Candida haemuloni GCF_002926055.2 
Candida subhashii GCF_019202705.1 
Acaromyces ingoldii GCF_003144295.1 
Arthroderma uncinatum GCF_011692745.1 
Ascochyta rabiei GCF_004011695.1 
Ascoidea rubescens DSM 1968 GCF_001661345.1 
Alternaria postmessia GCF_024291825.1 
Alternaria rosae GCF_020736505.1 
Alternaria triticimaculans GCF_023758025.1 
Beauveria bassiana ARSEF 2860 GCF_000280675.1 
Bipolaris sorokiniana ND90Pr GCF_000338995.1 
Blastomyces dermatitidis ER-3 GCF_000003525.1 
Blastomyces gilchristii SLH14081 GCF_000003855.2 
Boeremia exigua GCF_020726555.1 
Brettanomyces bruxellensis GCF_011074885.1 
Botrytis porri GCF_014898465.1 
Chaetomium globosum CBS 148.51 GCF_000143365.1 
Cladophialophora bantiana CBS 173.52 GCF_000835475.1 
Clavispora lusitaniae ATCC 42720 GCF_000003835.1 
Daldinia caldariorum GCF_022478825.1 
Endocarpon pusillum Z07020 GCF_000464535.1 
Filobasidium floriforme GCF_021052385.1 
Fonsecaea nubica GCF_001646965.1 
Gamsiella multidivaricata GCF_025024155.1 
Halteromyces radiatus GCF_025201355.1 
Kluyveromyces lactis GCF_000002515.2 
Kuraishia capsulata CBS 1993 GCF_000576695.1 
Pneumocystis murina B123 GCF_000349005.2 
Pseudozyma hubeiensis SY62 GCF_000403515.1 
Thyridium curvatum GCF_004353045.1 
Verticillium alfalfae VaMs.102 GCF_000150825.1 
Westerdykella ornata GCF_010094085.1 
Aspergillus aculeatinus CBS 121060 GCF_003184765.1 
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11.2 APPENDIX II 
#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
""" 
Created on Mon Sep  5 13:13:39 2022 
 
@author: ekateria 
""" 
 
from Bio import SeqIO 
from Bio.SeqRecord import SeqRecord 
from Bio.Seq import Seq 
import os 
import pandas as pd 
import numpy as np 
 
workdir='/cluster/projects/nn9383k/arfa/mockcommunity/MC_genomes' 
folders=[x[0] for x in os.walk(workdir)] 
 
for f in folders[1::]: 
    files=os.listdir(f) 
    newdir=f.replace('refseq','concatenated') 
    os.mkdir(newdir) 
    for fi in files[1:]: 
        qfasta=SeqIO.parse('/'.join([f, fi]),'fasta') 
        concat=str('')       
        for fasta in qfasta: 
            concat=''.join([concat,str(fasta.seq)]) 
        record = SeqRecord(Seq(concat, name=fi.replace('.fna',''), 
                           id=fi.replace('.fna',''), description='')) 
        SeqIO.write(record,'/'.join([newdir,fi]),'fasta') 
 
##Concatenate all files into 'fungi.fna' using cat *.fna > fungi.fna 
## in terminal 
 
        
## Find lengths of each genome 
workdir='/cluster/projects/nn9383k/arfa/mockcommunity/MC_genomes' 
summary=pd.read_csv('/'.join([workdir, 'Fungal_MC_GCF.txt']), sep='\t') 
fdir='/'.join([workdir, 'concatenated/all']) 
files=os.listdir(fdir) 
for fi in files[1:]: 
    qfasta=SeqIO.parse('/'.join([fdir,fi]),'fasta') 
    for fasta in qfasta: 
        x='_'.join(fasta.name.split('_')[:2]) 
        summary.loc[summary['RefSeqID']==x,'Length, bp']=len(fasta) 
 
summary.to_csv('/'.join([workdir, 'Fungal_MC_GCF.txt']),index=False) 
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##Read the simulated dataset (check 100000 reads per sequence) 
workdir='/cluster/projects/nn9383k/arfa/mockcommunity/MC_genomes' 
qfastq=SeqIO.parse('/'.join([workdir,'MC_100000_1.fq']),'fastq') 
fastq_sum=pd.DataFrame(columns=['ReadName','AvgQual']) 
for seq in qfastq: 
    fastq_sum = pd.concat([fastq_sum, 
pd.DataFrame([['_'.join(seq.name.split('_')[:2]), 
                      np.mean(seq.letter_annotations['phred_quality'])]], 
                      columns=['ReadName', 'AvgQual'])], ignore_index=True) 
 
#Check how many reads per genome there are 
reads_per_seq=fastq_sum['ReadName'].value_counts() 
 
#Check the average quality of the reads per each genome 
qual_per_genome=pd.DataFrame(fastq_sum.groupby('ReadName')['AvgQual'].mean(), 
columns=['AvgQual']) 
qual_per_genome=qual_per_genome.reset_index() 
qual_per_genome=qual_per_genome.rename(columns=(99)) 
summary=summary.merge(qual_per_genome, on='RefSeqID', how='left') 
summary=summary.drop(columns='AvgQual_x') 
summary=summary.rename(columns={'AvgQual_y':'AvgQual'}) 
summary['NumReads']=100000 
summary.to_csv('/'.join([workdir, 'Fungal_MC_GCF.txt']),index=False, sep 
='\t') 
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11.3 APPENDIX III 
""" 
Created on Mon 31 Oct 2022 10:26:40 AM CEST 
 
Author: Arfa Irej Qureshi 
Title: Merging MMC read 1 and read 2  
""" 
#Set working directory 
setwd("/ess/p1068/data/durable/007-f_smei/001-
trro/CRCbiome/development/Arfa/MetaPhlAn/") 
 
#Read metaphlan_read1.txt 
read1 = read.delim("metaphlan_read1.txt", header = TRUE, sep = "\t", quote = 
"", dec = ".") 
 
#Read metaphlan_read2.txt 
read2 = read.delim("metaphlan_read2.txt", header = TRUE, sep = "\t", quote = 
"", dec = ".") 
 
#Merge both files 
read_both = merge(read1, read2, by.x = 1, by.y = 1, all.x = FALSE) 
 
#Check if the files were merged correctly 
head(read_both) 
 
#Write back the file 
write.table(read_both, file = "read_both.txt", col.names = TRUE, row.names = 
FALSE, quote = FALSE, sep = "\t") 
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11.4 APPENDIX IV 
""" 
Created on Thu 24 Nov 2022 03:30:05 PM CEST 
 
Author: Arfa Irej Qureshi 
Title: Converting MetaPhlAn output to PhyloSeq object  
""" 
 
#Set working directory 
setwd("/ess/p1068/data/durable/007-f_smei/001-
trro/CRCbiome/development/Arfa/MetaPhlAn") 
 
#Read table 
taxa <- read.table("read_both.txt", sep = "\t", header = TRUE) 
 
#Run tidyverse 
library(tidyverse) 
 
#Remove NCBI tax id and additional species columns 
taxa %>% 
select(- NCBI_tax_id.x, - NCBI_tax_id.y, - additional_species.x, -
additional_species.y) -> taxa 
 
#Dividing names into unique columns 
taxa %>% 
separate(clade_name, sep = "\\|", remove = FALSE, into = c("Kingdom", 
"Phylum", "Class", "Order", "Family", "Genus", "Species")) %>% 
select(-clade_name) -> taxa 
 
#Filtering for k__Eukaryota 
taxa %>% 
filter(Kingdom=="k__Eukaryota")->taxa 
 
#Removing relative abundance from taxa table 
taxa %>% 
select(1:7) -> tax_mat 
 
#Naming OTU rows 
rownames(tax_mat) <- paste0("OTU", 1:nrow(tax_mat)) 
 
#Must have taxa table in as.matrix format for PhyloSeq 
tax_mat <- as.matrix(tax_mat) 
 
#Create OTU table 
OTU <- taxa[,8] 
OTU <- round(OTU) 
OTU <- as.data.frame(OTU) 
rownames(OTU) <- paste0("OTU", 1:nrow(OTU)) 
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OTU <- as.matrix(OTU) 
 
#Run Phyloseq 
library(phyloseq) 
 
#Transforming to a PhyloSeq object 
OTU <- otu_table(OTU, taxa_are_rows = TRUE) 
TAX <- tax_table(tax_mat) 
 
#Create Phyloseq object 
read_both <- phyloseq(OTU, TAX) 
 
#Create bar graph from Phyloseq object 
plot_bar(read_both, fill = "Species") 
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11.5 APPENDIX V 
""" 
Created on Tue 14 Feb 2023 02:19:23 PM CEST 
 
Author: Arfa Irej Qureshi 
Title: Custom HMS database  
""" 
 
#!/usr/bin/bash 
# Job name:  
#SBATCH --job-name=HMSPipeline 
 
# Project:  
#SBATCH --account=nn9383k 
 
# Wall time limit:  
#SBATCH --time=00-18:00:00 
 
# Memory:  
#SBATCH --nodes=6 
#SBATCH --ntasks-per-node=1  
#SBATCH --cpus-per-task=16 
#SBATCH --mem-per-cpu=6G 
 
## Set up job environment: 
set -o errexit # Exit the script on any error  
set -o nounset # Treat any unset variables as an error 
 
## Enable same name autoswapping 
LMOD_DISABLE_SAME_NAME_AUTOSWAP=no 
 
##Load modules: 
module --quiet purge 
module load Bowtie2/2.4.2-GCC-10.2.0 
module load SAMtools/1.11-GCC-10.2.0  
module load BLAST+/2.11.0-gompi-2020b 
module load R/4.0.3-fosscuda-2020b 
 
##Make custom database:  
bash /cluster/projects/nn9383k/arfa/hms_analysis/custom_db_creation_large.sh -
d Custom_DB.fasta -l 500 -m /cluster/projects/nn9383k/arfa/hms_analysis/ 
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11.6 APPENDIX VI 
""" 
Created on Sun 30 Apr 2023 09:28:58 PM CEST 
 
Author: Arfa Irej Qureshi 
Title: Mapping FMC to FindFungi's 32 Kraken DB 
""" 
 
DBrange=list(range(1,33)) 
rule all:  
    input:  
        expand("/cluster/projects/nn9383k/arfa/kraken2_analysis/FindFungi_32_K
raken/Kraken_{id}/UNCLASSIFIED_{id}#.fq", id=DBrange), 
        expand("/cluster/projects/nn9383k/arfa/kraken2_analysis/FindFungi_32_K
raken/Kraken_{id}/CLASSIFIED_{id}#.fq", id=DBrange), 
        expand("/cluster/projects/nn9383k/arfa/kraken2_analysis/FindFungi_32_K
raken/Kraken_{id}/output_{id}.txt", id=DBrange), 
        expand("/cluster/projects/nn9383k/arfa/kraken2_analysis/FindFungi_32_K
raken/Kraken_{id}/report_{id}.txt", id=DBrange), 
        expand("/cluster/projects/nn9383k/arfa/kraken2_analysis/FindFungi_32_K
raken/combined_classified.fq") 
rule Kraken2: 
    output: 
        output1="/cluster/projects/nn9383k/arfa/kraken2_analysis/FindFungi_32_
Kraken/Kraken_{id}/UNCLASSIFIED_{id}#.fq", 
        output2="/cluster/projects/nn9383k/arfa/kraken2_analysis/FindFungi_32_
Kraken/Kraken_{id}/CLASSIFIED_{id}#.fq", 
        output3="/cluster/projects/nn9383k/arfa/kraken2_analysis/FindFungi_32_
Kraken/Kraken_{id}/output_{id}.txt" 
    threads:  
        16 
    log:  
        "logs/kraken{id}.log" 
    shell: ''' 
    kraken --db 
/cluster/projects/nn9383k/arfa/findfungi_analysis/KrakenDB/Kraken_32DB/Kraken_
{wildcards.id}/ --fastq-input --threads {threads} --unclassified-out 
{output.output1} \ 
    --classified-out {output.output2} --output {output.output3} \ 
    --paired 
/cluster/projects/nn9383k/arfa/mockcommunity/fungalmockcommunity/mock_fungal_p
aired1.fq \ 
    /cluster/projects/nn9383k/arfa/mockcommunity/fungalmockcommunity/mock_fung
al_paired2.fq \ 
    &> {log} 
    ''' 
localrules: krakenreport 
rule krakenreport: 
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    input:  
        expand("/cluster/projects/nn9383k/arfa/kraken2_analysis/FindFungi_32_K
raken/Kraken_{{id}}/output_{{id}}.txt", id=DBrange) 
    output:  
        output="/cluster/projects/nn9383k/arfa/kraken2_analysis/FindFungi_32_K
raken/Kraken_{id}/report_{id}.txt" 
    shell: ''' 
        kraken-report --db 
/cluster/projects/nn9383k/arfa/findfungi_analysis/KrakenDB/Kraken_32DB/Kraken_
{wildcards.id}/ \ 
        /cluster/projects/nn9383k/arfa/kraken2_analysis/FindFungi_32_Kraken/Kr
aken_{wildcards.id}/output_{wildcards.id}.txt \ 
        > {output.output} 
    ''' 
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