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Units, conventions and
preliminaries

0.1 Conventions

< A spatial vectox is denoted by a bold font lock. Some vectors, like the mode
are denoted without font lock:. The four-mode:* is defined ag* = (w, k).

» We use unitgi = ¢ = 1 such that [length] = [time] = [energy] = [mass]'.

* The derivative is expressed 8s = 2 with respect to given space-time coor-
dinates.

« Amap¢ € C* denotes thap is continuous and times differentiable.

» 1 denotes differentiation with respect to tinie while 2’ denotes differentiation
with respect to conformal timén.

* For a covariant quantity),,, ¢ denotes the “dotting” with the gamma matrix

@ =7"Qu-
¢ When mentioning théagrangian we alwaysmean the Lagrangian densiyy,

* We use Einsteins summation convention, and sum over adlated indices:
Zg zhr, = aha,.

« Operators) are expressed without the ha:

0.2 Preliminaries from general relativity

These preliminaries are stated without further treatmEot.a thorough introduction
to general relativity, see [3] or [4].

The space-time a$pecial relativityis an important space. It is a place where gen-
eral relativity has no hold, and the concepts of particles\atua thrive.

Definition 0.1. The 4-dimensionaMinkowski spaceM is the setting in which the
theory of special relativity is formulated. It consists dfg&tial and 1 time-like dimen-
sions, and is a flat Riemannian manifold with a metzi¢ with signature(—, +, +, +)
such that the line elementds? = 7, dz#dz” = —dt? + dx?
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Definition 0.2. The connection coefficients (Christoffel symbols in coatdi basis)
Il ; are defined as

1
Fgﬁ = §g/u/ (gl/a,ﬁ + gup,a — gaﬁﬂ/)
and describes the covariant derivative of the basis coardis:

Dye, =19 es (0.2)

g
The curvature tensor will be important when studying thentalsgical perturba-
tions of the metric during inflation.

Definition 0.3. TheRiemann curvature tensois defined by

R, 5= 0.V, — 85T, +TH T, — TV T7,

vaf — ca+ v

TheRicci curvature tensols the contracted Riemann curvature tensor

RMV = RZO'I/

The Ricci curvature tensor provides a way of measuring tigesgeto which the geom-
etry determined by a given Riemannian metric differs froat ¢t ordinary Euclidean
4-space.

Definition 0.4. The scalar curvatureRicci scalaj) of a Riemannian manifoldA
R=Rl (0.2)

is a mapM — R that characterizes the intrinsic curvature of the manifatdevery
x € M. Intwo dimensions the scalar curvature completely chaazes the curvature
of M. For dimensions larger than 2, more information is needed.

Definition 0.5. Areference framds defined as a continuum of non-intersecting time-
like world lines in space-time. Anertial reference frameis a non-rotating set of free
particles.

0.3 Mathematical preliminaries

The reader is expected to be vaguely familiar with the ma#teal context, but most
mathematics in use will be revealed as the introductionve#l Rigorous treatment
is omitted, and the reader is advised to engage other soafdiésrature for a more

detailed discussion [5, 6].



0.3. MATHEMATICAL PRELIMINARIES 3

Metric spaces

Vector
spaces V'

Topological spaces (X, )

Figure 1: Hierarchy of spaces

The machinery of general relativity acts on spaces thatgsssthe structure of a
metric. Metric spaces are topological spaces equipped with angistiunction. The
distance function makes it possible to decide severalioastbetween points in the
space. Atopological spacecan be thought of as setwith a notion ofclosenes®f
points; this ensures the property adntinuity. All vector spaces are metric spaces,
and all metric spaces are topological spaces, see figurd)3.2

Definition 0.6. A metricon a setX is a functionp : X x X — R™ with the following
properties:

1. p(z,y) = 0if and only ifz = y (positive definiteness).
2. p(z,y) = ply,x) forall x,y € X (symmetry).
3. p(z,2) < plz,y) + ply, 2) for all z,y, z € X (triangle inequality).

General relativity acts on metric spaces that behagely. Space-time should be
free of singularities, discontinuous areas and preferpblgsess smoothness allover.
The Riemannian manifold is such a structure.

Definition 0.7. A manifold is a topological spacé M, ) which has the following
properties:

1. M is Hausdorff (any two points can be separated by two disjop@n sets).

2. M has a countable basis for the topologyl§Asisfor a topological space is a
collection B of open sets i such that every open set incan be written as a
union of elements aB).

3. Any pointz € M has an open neighbourhood that is locally homeomorphic to
R™.

Definition 0.8. Let M be a manifold and: € M. Then atangent spaces a real
vector spaceassociated with eachh € M that intuitively describes all the possible
directions a vector can pass through The dimension of the tangent space equals the
dimension of the manifold.
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Definition 0.9. A Riemannian manifold (M, p) is a real, differentiable manifold
where each tangent space is equipped with a continuous jmoeluctp. This gives
rise to various notions such as curve lengths, volumes earmhd curvatures.

All manifolds considered in this thesis are Riemannian matsfolrhe Minkowski
space-timeM, is especially a Riemannian manifold.

When probing the symmetries of the universe, we will encauifite notion of a
group. A group can be thought of as a set closed under a reversitdeyboperation.

Definition 0.10. A group (G, *) is a setG that is closed under a binary operatian
such that the following properties are satisfied:

1. Foralla,b,c € G we have(a = b) * ¢ = a * (b * ¢) (associativity ofx).

2. There exist and elemeit € G such that for alle € G thenid*x =z xid = x
(identity elementd).

3. For eachx € G, there exists a € G such thatz « y = y x x = id (y is the
inverse of x).

The symmetry groups mentioned in chapter two will mostly batimuousLie-
groups reflecting the non-discrete symmetries of the universe.

Definition 0.11. A Lie groupis a group which is a finite-dimensional smooth manifold
where the elements are smooth transformations. A Lie greuftén represented by
matrix algebra.

Thegauge transformationsare smooth maps between Riemannian manifolds. We
will encounter such transformations both in chapter 3 araptdr 5, when discussing
cosmological perturbation theory.

Definition 0.12. A homomorphismis a structure preserving map : A — B such
thato(zy) = ¢(z)¢(y). Two groupsA and B areisomorphicif there exists a bijective
homomorphisnp : A — B. This meansi and B are structurally identical.

Definition 0.13. A diffeomorphismis an invertibleC> function that maps one differ-
entiable manifold to another. It can be viewed as an isomisrplof two manifolds.

Isometries are the elements of the Poincaré-group.

Definition 0.14. Anisometryis a distance-preserving isomorphism between two metric
spaces. An isomorphism from a spa€e— X is called anautomorphism

The Poincaré-group will be important when studying the sytrils of Minkowski
space.

Definition 0.15. The distance-preserving automorphisms (or isometriethjeflinkowski-
space defines theoincaré-groupP(1, 3). Itis a 10-dimensional Lie group, and con-
tains theLorentz groupas a subgroup. Another subgroup is ttianslation group
which is abelian.

Definition 0.16. ThelLorentz Groupis the (6-dimensional) group of abometriesof
the Minkowski-spacerhich leaves the origin fixed The Lorentz group is isomorphic
to SL2(C) @ SLy(C).
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Definition 0.17. Thede Sitter groupP(1,4) is the group of translations and rota-
tions in five-dimensional Minkowski space. This group miaimal extensionof the
Poincaré groupP(1, 3).

Definition 0.18. A generatorof a groupG is an elemeng € G such that the repeated
binary operationg * g spansG. For instance, in the integer grouZ, +) is generated
by —1 and +1, as any element € Z can be expressed as a sumief or —1. For
continuous groups, we refer to thefinitesimal generatorsas elements close to the
identity that repeatedly generates all the elements in thagy

Definition 0.19. Akilling vector fieldis a metric-preserving vector field on a Rieman-
nian manifold. Killing fields are the infinitesimal generet®f isometries.

The Riemannian manifolds considered have the followingertes:
¢ Negative Ricci curvature implies there are no nontrividlikg fields.

« Non-positive Ricci curvature implies that any Killing fiels parallel. i.e. co-
variant derivative along any vector field is identicallyaer

Definition 0.20. Thespecial orthogonal groupSO(n) is the group of alln x n or-
thogonal matrices over real numbers with determinamthere the group operation is
matrix multiplication.SO(n) is a subgroup of the general linear grodpL(n), and is
a Lie group.

Definition 0.21. Thespecial unitary groupSU (n) is the group of alln x n unitary
matrices determinant where the group operation is matrix multiplicatioSU (n) is

a subgroup of the general linear groWpL(n), and is a Lie group. The simplest case
U(1) corresponds to rotation on the circi.

Definition 0.22. A representation of a Lie grou@ on a vector space V is a smooth
group homomorphisnt: — Awt(V') from G to the automorphism group &f. If

a basis for the vector space is chosen, the representation can be expressed as a
homomorphism into the general linear grogfi.(n, K). This is known as anatrix
representation and means that the Lie group operations can be expressedtism
operations.

Definition 0.23. We define th@-sphere as” = {x € R" | |z| = 1}.

Definition 0.24. A Hilbert spaceH is a real or complex inner product space that is a
Banach space under the norm defined by the inner product. dntgm mechanics, it
is the space where the quantum states are defined :

H={l¢),[¥),... }
Definition 0.25. Thegamma functionI” : (R\(—N)) — R is defined as

P(n+1) :/ et dt

0
such that’(n + 1) = nl'(n).
Note thatl'(n) = n! forn € N, whileT'(1/2) = /=.
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Chapter 1

Introduction

1.1 Introduction

In this thesis, we are interested in determining whetherstf@lanckian effects in the
cosmic microwave background are detectable both througkengporary and simu-
lated data. But why are detecting trans-Planckian effetdereésting? First of all,
any detection of these effects would indicate thesvphysics are at work; the trans-
Planckian effects operate on the border of the validity atemporary physics. If these
effects were to be detected, it would revolutionize physigsve know it. Something
newwould actually be happening, something different than athikn and well-tested
physics, whether it be stringy theories or quantum gravigoes. But how are we to
detect these effects?

The trans-Planckian effects are set up during the epochflafion, and co-evolve
with the universe post inflation. We therefore need to engfa@physical theory of cos-
mological inflation. But physical theories are written iretlanguage of mathematics,
so the mathematical language we must speak.

1.1.1 Physical theories

While mathematical structures are universally true, pronigdrously by theorems,

lemmas and propositions, the truthness of a physical theiiforever stay uncertain.

This is because all physical theories are approximationsstiity, and are never a com-
plete description of the system it mimics. If such a theorggdens to neatly describe
a physical phenomena, it does not rule out the possibildy tirere might exist other
equally correct theories describing the same system, htavdifferent take on the
interpretation.

A physical theory therefore has a space of validity. A coogikd theory that has a
large space of validity might for certain limits of obserlegconverge to simpler sub-
theories with smaller spaces of validity. This can be comg#o the natural mathemat-
ical division of sets into subsets (see figure 1.1). As an @@nconsider the theory of
general relativity, which has a larger space of validityntiiae more static Newtonian
gravity. Newton’s theory isn'incorrect but rather inaccurate when describing systems
operating with velocities close to the speed of light. Butrdon-relativistic systems,

9
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Electroweak
theory

Electromagnetic
theory

is TOE bounded?
Figure 1.1: Unifying theories

Newton'’s theory of gravity is perfectly adequate. It can beven that general relativity
converges to the Newtonian limit for low-velocity syster&sentually, general relativ-
ity breaks down for extremely small systems, which marksthendary of its space of
validity.

Another example is the theory of quantum fields and the stana@del. This is
a theory that describes subatomic systems, and each sensegperiment performed
during the past century has strengthened the theory. Buntgurefield theory is just a
neat approximate description of subatomic systems, it esamincorporate the whole
truth. And it can never be proved. As with Newtonian gravataal theory (and general
relativity), QFT breaks down on energy scales larger tharPllanck scale. From a few
eV to a coupleGeV, we know the standard model to be a correct, but not necssari
unique description of subatomic events. But what lies bdyisryet uncertain. It is
possible that certain string theories that converge to @HbBW-energy limits might
suggest an answer, but nothing is certain yet, string teeane still considered to be
pure speculations.

1.1.2 Cosmology

Another successful physical theory is the concordance haidmsmology. The pre-
ferred model of today is thACDM-model, a model where the universe is homoge-
neous and isotropic with dynamics determined by dark matidrvacuum energy\().
Again we press thaACDM is a physical model - it doesot incorporate the whole
truth of the real-world universe, but is témplesttheory thatmost correctlyexplains
the effects we observe in the universe as today. And this doesiean that it is the
only model that fits. Thé.C' D M-model is a phenomenological model, desigaédr
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observations, and is not based on any fundamental physiocaige.

A successful model for explaining problems in standard adsgy is the model of
inflation. During inflation, the universe is supposed to have undergaapid, extreme
accelerated expansion of space. Whether inflation actuapipéned has not been de-
cided, but it is the simplest model that solves several presly unresolved problems
in a swift, effective and beautiful manner. But an even manpartant consequence
from the theory of inflation is that it presents a mechanisat will eventually give rise
to the observed anisotropies in the cosmic microwave backgrand matter densities
observed today. In other words, it is a link that will enab&ta compare observa-
tions with theory. We will investigate the properties of théaton field, its influence
on structure formation and ultimately, how to compare thiewith observations. The
most important observational quantity will turn out to be #mgular power spectrum
an object that will incorporate statistical informatioroabthe parameters used to de-
scribe the cosmic microwave background.

1.1.3 Trans-Planckian effects

The power spectrum mentioned in the previous subsectiat igpsduring the epoch of
inflation. The “standard” inflationary model sets up whataled aflat power spectrum
(Harrison-Zel'dovich scaling), which translates into anreonstant primordial power
spectrum. These are the assumed initial conditions foiytedmiverse. But the epoch
of inflation operates closely to orders of the Planck-scaldich suggests that there
might exist additional effects initiated by unconfirmed theoris instance stringy
ones, that will modulate the scale-free primordial powescspum. In this thesis, we
assume that a string theory model known asHbeava-Wittermodel has modified the
primordial power spectrum to include small oscillationse Will present the necessary
tools for determining these modulations, and will modifylamploy modern compu-
tational packages to determine whether these modulatiendedectable with today’s
and tomorrow’s technology.

1.2 Primary goals

We definethreeprimary goals:

Primary goal 1.1 (PG1) Determine the the primordial spectrum of energy density
fluctuations during the period of inflation and discuss trandard theoretical cosmo-
logical model of today.

Primary goal 1.2 (PG2) Modify standard cosmological software to enable calcula-
tions of trans-Planckian models

Primary goal 1.3 (PG3) Analyze and compare model results with current data and
simulated “perfect” data

1.3 Chapter partitioning

The thesis is partitioned inthireeparts with a total ohine chapters.
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1.3.1 Partl: Introduction

Chapter 1is an introduction to the workings of the thesis.

Chapter 2 contains a quick repetition of modern cosmology. The re&lekpected
to be familiar with the concepts, and most results will beéestavithout proof. This
chapter does not affect any of the primary goals, and can ippestt by experienced
readers.

Chapter 3 discusses the topics of symmetries, conservation lawgegeories, parti-
cle/vacuum concepts and the differences between flat anéaspaces. This chapter
is intended to be more phenomenologically than analytaalmost derivations are
omitted. This chapter contains crucial concepts concgrRial.

1.3.2 Partll: Evolving the universe

Chapter 4 presents a thorough derivation of how the postulated inflésd behaves
in a curved space, especially in the Robertson-Walker brackgl. The chapter cul-
minates with the definition of the Bunch-Davies vacuum. Tdhiapter ensures the
detailed theoretical background for achievirG1.

Chapter 5 concerns cosmological perturbation theory. An expresg&iorthe power
spectrum in a RW background is established, and the mechafscalar perturbations
are developed. The chapter ends with bridging theory wideokations by investigat-
ing the properties of the co-moving curvature scalar anchihgfithe spectral index.
This chapter concludeRG1.

Chapter 6 gives a quick introduction to post-inflationary events ia tmiverse. The
most important effects from the radiation-dominated, eraiominated and cosmolog-
ical constant-dominated epochs are discussed. This atdgees not directly affect any
of the primary goals.

1.3.3 Part lll: Trans-Planckian effects

Chapter 7 gives an introduction to the anisotropies in the cosmic aviave back-
ground, tools for cosmological data analysis and a rougiodiiction to likelihood
analysis. A method for generating data is presented, anthtst common software
packages are mentioned. This chapter does not directlgt afify of the primary goals.
Chapter 8 reviews various papers concerning trans-Planckian sffa¢he cosmic mi-
crowave background. An argument for a modified power specingluding a Planck-
cutoff scale is discussed, and gives a basis for the nunhamedysis in the following
chapter. This chapter is a bridge between theory and oligmrgaand is a build-up for
PG2

Chapter 9 Cosmological software is modified and comparisons betweedets are
performed. The validity of the modulated power spectrunissidered, and WMAP
data are ruled out for determining trans-Planckian effeétperfect data set is gen-
erated, and CosmoMC is modified to employ this new data setul&tions are per-
formed in order to determine the original input parametérfs.continue by investigat-
ing the properties of the exact likelihood functions for thedulating input parameters,
and conclude the thesis with a summary and outlook. Thistehapnclude®G2 and
PG3.
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1.4 A note on notation

Each chapter begins with a short introduction to the subjecfuestion. A chapter
is partitioned into several sections, and each sectionasemted with aection goal
(Except introduction/conclusion sections, which havgdtigoals) . The section goal
is intended to motivate the reason for including the sectioil eventually lead to
fulfilling the primary goals. The reader is advised to coasithe section goals and
determine whether to read or not. Each chapter ends with @wumting section where
a series of conclusions and predictions will be presented.

Important parts of the thesis will be presentetheeprems Most theorems will have
proofs omitted, and the reader is referred to another soibamples are Noethers the-
orem or the fundamental theorem of vector calculus. Otreartsms containing proofs
will often be linked to demma The lemma is a helping-theorem. Direct consequences
of theorems give rise toorollaries while smaller theorems are call@dopositions
Text that isemphasizeds written initalic font lock. New terminology is introduced
in bold font lock.

This thesis is written on a Thinkpad X41 model 2525 using Wbuh04 (Feisty
Fawn). The latex package is pdfTeXk, version 3.141592-3.46utsy Gibbon alpha).
All plots are created in Gnuplot or Matlab, except plot 9.&nfir[7]. All figures are
created in xfig and gimp.
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Chapter 2

Cosmology

Cosmology is the theory that mathematically describes Woéugon of the universe.
In this chapter a quick review of the basics of modern cosgyis presented. No
explicit derivations will be performed, and the reader ipented to be familiar with
most aspects of this section.

Unless otherwise stated, the contents of this chapter esdbas [8], [9] and [4].

2.1 The Robertson-Walker metric

Section goal 2.1.1 Establish the Robertson-Walker (RW) line element

The simplest background for the universe is the Robertsatk& metric. Later,
more general metric spaces will be considered. Inflatioadadtace in a RW universe
called de Sitter space. This will be our starting point.

Definition 2.1. A fluid is considered to beomogeneou# its mass density is uniform.
Isotropyis the property of being independent of direction.

On scales corresponding to large galaxy clusters, the rg@vis assumed to be
spatially homogeneous and isotropic. We introduce an akpgrframe of reference
with the line element

ds* = —dt* + a(t)? [dx® + r(x)?dQ?]

whered(? is thesolid angle «a(t) is thescale factorandt is the cosmic time For
standard clocks at rest with proper timén the expanding systemy = d2 = 0 and
ds? = —dr? = —dt?, hencedt = dr. Using Cartan formalism[4] by introducing an
orthonormal basis, we obtain:

Theorem 2.2. The Robertson-Walker (RW) line element

dr?
1 —kr?

ds* = —dt* + a®(t)[ + 7r2dQ?] (2.1)

is an exact solution of the Einstein field equations

E,, = 87GT,, (2.2)

15
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for a homogeneous, isotropic and expanding/contractingerse provided:(t) andk
satisfy the Friedmann equations (see section 2.2). Héfe,is the Einstein curvature
tensor andl,,, is the energy-momentum tensor. The Robertson-Walker|gneeat is
the unique line-element for a homogeneous and isotropicespa

For a detailed derivation of these equations, see [4]. Now

dr = /1 —kr2dy

andr = {sinhy, x,sin x} for open, flat or closed universes respectively. We will
only consider a flat universe, as recent observational aatfrms the near-flatness of
our universe (if, and only if the Hubble constant is corneatieasured to be around
h = 0.72 4 0.08, whereHy = 100h?(km/s)/Mpcs [10]).

1 T T T T T T T

Inflation Radiation Matter dominated Cosmological constant

091 dominated dominated

0.8
0.7
0.6

05+

size a(t)

0.4

03 ] N

0.2 N

0.1 N

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
time t

Figure 2.1: A schematic diagram of the scale faet@) during different epochs of the
ACDM model.t = 0 represents the beginning of the universe, white 1 represents
today.

2.2 The Friedmann equations
Section goal 2.2.1.Establish the Friedmann equations.
We start by making an assumption:

Definition 2.3. The equation of state of a perfect fluid is characterized biyreedsion-
less numbetv such that the pressugeand energy density are proportional:

p=wp
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The Cartan formalism gives rise to two independent equsatidhese are summa-
rized as thd-riedmann equations with an equation of state= w; p;:

F1: H2(t) = H? (Qr(l +2) + (14 2)* + Qp(1 +2)% + QA)
i 4
F3:p; = —3Hp;(1 +w;)

whered" Q, = 1 for a flat universe. Note that any two of the equations can Ine-co
bined to produce the third. The Friedmann equatibfisand F2 follows from the
Einstein-equations assuming a homogeneous and isotropierse, whileF3 follows
from D, T"” = 0. A nice derivation of the Friedmann equations can be fourjdi1gt

Definition 2.4. Thecritical density

_ 3H§
Peo = G

is the energy density of a spatially flat universe with no asgical constant.

Definition 2.5. TheHubble parametelis defined as

H

M1l
2 le

and describes the rate of expansion of the universe.

Definition 2.6. Theco-moving particle horizoris the maximum co-moving distance
from which particles can have travelled to the co-movingeobsr in a given time
since the beginning the the universe:

t dt/
dyp, = _
oh /oaw)

This definition assumesfiat universe.

2.3 De Sitter space

Section goal 2.3.1.Introduce de Sitter space and give a graphical illustration

2.3.1 Definition

Assume a universe dominated by a cosmological condtamhenF1 reads
H?(t) = H3O

and the scale factor can trivially be found to be
a(t) = eflot=to)

This enables an exponential expansion of the universendiyehe expansion factor
Hj. Note that this scale factor doesn’'t have a solutiorufe) = 0 unlesst — —oc.
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Definition 2.7. The n-dimensionalde Sitter space is the vacuum solution to Ein-
stein’s field equations with a cosmological constant. Th8itker space has constant-
curvature, and is the Lorentzian analog of an n-sphere.

The isometry group of de Sitter space is the Lorentz grogp, n). The metric
therefore has(n + 1)/2 independent Killing vectors and has constant positiveaurv
ture.

2.3.2 Embedding de Sitter space

Topologically, de Sitter space is homeomorphi®teS™ 1, orR x S? in 4 dimensional
space. One can think of the de Sitter space aslamensional expanding sphegg—!
propagating in a straight time-like dimensin

Example 2.8. Assuming a de Sitter universe with only one spatial dimenge shape
of space can be embedded as a cylirfe R (See figure (2.3.2)).

T Ty
X =
L -
St X R = Cylinder

Figure 2.2: An illustrative example: The de Sitter spacé gpatial dimension can be
thought of as a cylinder, where the time-like dimensioR is

2.3.3 Real-life de Sitter

The accelerated expansion in the current stage of our weiismmost likely due to a
cosmological constant, which is believed to couple to the-venishing energy expec-
tation value of the vacuum. A positive cosmological constamresponds to negative
pressure, causing the scale facido increase exponentially. When calculating the ex-
pectation value of the vacuum energy quantum mechani¢chéyexpressions diverge.
This is fixed by regularizing the equations, yielding a fir{ib@it very large) vacuum
expectation value. However, the observed cosmologicateanis very small, giving

a total of120 orders of magnitude difference between theory and obsengtThis is
still an unsolved problem in physics today [11].

The de Sitter space is also the background space in the toéamflation. Pos-
tulating that the primordial universe was filled with a scdield possessing the same
properties as a cosmological constant enables an aceslergpansion of space. This
is done by assuming that the scalar field must be invariantaay Lorentz transfor-
mation, or that the energy-momentum tensor is proportitmg|,,. For the energy-
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momentum tensor for a perfect fluid

T = (p+ p)uyy + PGy

to be proportional tg,,,, the first term must vanish. This gives rise to an equation of
state withw = —1, andp = —p. When this equation of state is inserted I8 we
find thatéd > 0, which describes an accelerating scale factor.

2.4 Conformal time

Section goal 2.4.1.Define the concept of the conformal time

It is sometimes useful to introduce a different concept wfeti Later, when we
explicitly solve the equations of motion for a scalar fieldie RW metric, we will see
much use of this notion. We first state a formal definition:

Definition 2.9. A conformal transformationof a metricg,,,, is a transformation that
is invariant to the geometry of the space-time manifold

(@) — C*(2) g ()

Conformal symmetrys a symmetry under dilatation (scale invariance), and oomial
transformations especially preserve angles.

Definition 2.10. Theconformal timen is defined to be the co-moving distance of the
particle horizon at a given time
B /f dt’
"7y al®

or a®(n)dn? = dt*. This gives rise to a line element on the form

ds* = a*(n)(— dn” + da?)
which is manifest conformally flat.

Note that the definition assumed$lat universe.

2.4.1 Conformal time during inflation

Space-time is de Sitter during inflation, with scale faetax 0. We wish to define

a model in where the universe begins when— —co. At this stage,a(n) = 0.
When inflation endsr( = 0), the scale factor should have grown to a healthy size of
a(n = 0) = 1. We therefore use a slightly modified version of the confdrtinze

boar 1 ra(t)
- /t o) ~ Hoalt) (a(te) -1)

e

wherea(t.) = a(n.) = a(0) = 1 is when inflation ends. We solve for the scale factor
a(n) and find
1

a(n)
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Figure 2.3: The modified scale factefn) for the de Sitter space

This equation diverges for = 1/ H,, but this happenafter inflation, where space
is no longer de Sitter. In the limit where— —oo, we can approximate the scale factor
to

1

a(n) ~ ~od,

(2.4)

Later, we'll see that space-time is essentially Minkowskihis limit, so it is possible
to define a suitable vacuum solution for the inflaton field.

2.4.2 Conformal Hubble parameter

Itis also convenient to express the Hubble parameter ingefroonformal time. Recall
from the definition of conformal time that= dt/dn, so

_dal _dadpl ., 1 1,
_dta_dndta_aa2_a

Definition 2.11. Theconformal Hubble parametef{ is defined as

H=1n

a

We will see more use of the conformal time when investigapiegurbations of the
inflaton.

2.5 The inflation model
Section goal 2.5.1.Motivate the theory of inflation.
There are several good reasons for why the concept of infldtés seen much

success. A few problems with the standard non-inflationapglets are stated here,
without detailed treatment:
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2.5.1 The horizon problem

Inflation solves théworizon problem: the isotropy of the measured CMB temperature
implies that large chunks of the observable universe mus¢ tiave been in thermal
equilibrium, and hence in casual contact. Inflation soltés problem by postulating
that the observable universe today was once squeezed wieihwie particle horizon,
enabling causal contact. During inflation, the co-movingdiple horizon decreased
rapidly, such that scales that once was in causal contdstdatside the horizon and
freezes.

2.5.2 The flatness problem

Let Q = > . Q,;. Observations show that the present universehas~ p.o. F1
then gives)(t) — 1 = . Assuming the universe is dominated by a fluid with
a o tP forp € R, we findaH o tP~! andQ(t) — 1 « t>72P. We see that for
p < 1 the deviation from the critical density increases with timehis is true for
matter-dominatedp(= 2/3) or radiation-dominatedp(= 1/3) universes. Hence the
density must have been even closer to the critical in editiegs. As we are already
close to the critical density today, the universe must haadesl out extremely flat.
This seems unlikely, and would require fine-tuning of iniparameters beyond any
common sense.

2.5.3 The inhomogeneity problem

A universe model that is initially completely homogeneouk vemainso throughout
the evolution of the universe. However, the observed us@&és not homogeneous
on smaller scales. Can the theory of inflation give predngtion how these inhomo-
geneities came into existence?

2.5.4 Introductory inflation

Assume that the universe right after big bang went throughease of rapid accelerated
expansion, so rapid and so vast that it expanded more tharf@@ings. This way,
all eventual geometric structures are smeared flat, solviadlatness problem. The
horizon problem is also solved, by allowing observers kefoflation to be in casual
contact, but not after. But what are the mechanics of suchdeifio

To obtain inflation, we postulate a field that exhibits thesefffof accelerated ex-
pansion. This mearismust be greater than zero, and conditichrequirew < —1/3.
We must also assume the field remains invariant in every ltoreansformation, so
we consider acalar field ¢. We saw previously in this chapter that this requirement
results in a equation of state= —1, such thap = —p. We say the field must possess
the property oihegative pressure This field is promptly called thanflaton. Before
inflation, the only field that existed in the universe was a bgemeous field of inflatons
in a vacuum state. This field was fluctuating strongly, wheraesof these fluctuations
created excited inflaton states (particles). Where this ¢ragah, the inflaton particles
(or excitations in the inflaton field) began driving the aecated expansion of space.

A space that is dominated by a scalar field witk= —1 is a de Sitter space. As the
universe expanded, the energy density of the inflaton fietdedesed, until the inflaton
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field reached its vacuum state. The friction energy releaseidumped to baryonic
matter and photon fields. In the end, the accelerated exgasgipped when the infla-
ton field returned to its vacuum state [9].

The universe following inflation was radiation dominated &lwmogeneous, and a
crucial problem emerges: if the universe started off homegas and isotropic, what
formed the eventual density perturbations? A gas thasstfirhomogeneous wilitay
so. In the following chapters we will see how quantum flucgarat in the inflaton
field gave rise to perturbations in the metaiter inflation. These perturbations in turn
seeded the structure formation, resulting in the anisgtodgserved in today’s cosmic
microwave background.

2.6 Chapter conclusions

In this Introductory chapter we have stated the basic wgskiof modern cosmology.
We mention the most important conclusions

Conclusion 2.1. The conformal time will be essential in chapter 4 and 5.

Conclusion 2.2. Inflation takes place in a de Sitter space, and is driven byadasc
field ¢ possessing negative pressure.

Conclusion 2.3. The particle concept in de Sitter space (see figure 2.4.1)beiks-
tablished in chapter 3.

Readers who aren't quite familiar with the topics in this ptest are advised to
review [12].



Chapter 3

Curved spaces and Symmetries

3.1 Introduction

We proceed by explaining the major differences between eeduspace-time and the
Minkowski space-time. The topics will be mostly conceptbal will find much practi-
cal use in the following chapters. Chapter 3 doesdu&ctly affect any of the primary
goals, but is an important reference for the following ckapt The foundations for
understanding®G1 are defined. This chapter makes use ofrtreghematical prelim-
inaries defined in chapter 0. Unless otherwise stated, the contértgsochapter is
based on [13], [14] and [15].

3.2 Conserved currents

Section goal 3.2.1.Explain the connection between symmetries and conseryesi ph
cal quantities. Establish Noether’s theorem and its ana®fpr curved spaces. Define
the energy-momentum tensor and the covariant derivative.

It seems our physical universe is governed by symmetriess Séttion will give
an introduction to these physical concepts of symmetried,explain how symmetry
transformations give rise to conserved quantities in bathaihd curved spaces. This
will prove important when investigating the propertiesttd energy-momentum tensor
for the inflaton field. Explicit derivations are omitted, anterested readers are advised
to consult [13] and [15].

3.2.1 Symmetries

For a classical system to possesyametry we mean that it invariantunder a group
of transformations on the system. Quantum mechanicallyHamiltonian should
commute with all the symmetry group transformations. Gzdte a (symmetry) group.
We say a systen$ is invariant under the symmetry transformation if for glle G
theng[S] = S.

Example 3.1.LetS = G = S3, the group of permutations of 3 elemefiisb, c}. This
group can be represented as a triangle with three edgésindc. The group elements
g € S3 then act as rotations and mirroring of the triangle.

23
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Figure 3.1: Triangle representationsSf

Example 3.2. LetG = SO(n) andS = S, then-sphere. This is our “most symmet-
ric” example, ass is invariant under any rotation and mirroring, but not saagj.

Example 3.3. LetS be the QED-Lagrangian

§ = Loea = Ha)iPy — mys — 1F (3.1)

and letG be the Poincaré group. The Poincaré group has two subgrabpd,orentz
group and thetranslation group. Lgq is known to be both Lorentz-invariant and
translation-invariant, and therefore invariant under afle symmetry transformations
fromG.

All conservation laws in special relativity can be deriveonf the following theo-
rem:

Theorem 3.4 (Noethers theorem)Any differentiable continuous symmetry transfor-
mation that leaves the Lagrangian invariant corresponda tmnserved current.

We state the formal definition of thenergy-momentum density
Definition 3.5 (Energy-momentum)
2 9(/—gL) oL
T, = =2 — gL
K \/jg 5g/w agm/ 9u
Example 3.6. ConsiderL,.; and letG be the Poincaré group. Translation in space

results in conserved momentuR ¢ p). Translation in time corresponds to conserved
energy ¢; ~ FE). Rotation corresponds to conserved angular momentum.

Another way of writing Noethers theorem for the translatgoup is0*7,, =
0. The Poincaré transformations are all examplesxaérnal symmetries. The ged-
Lagrangian is also invariant faternal symmetries:

Example 3.7. LetG = U(1) andS = L4 as in (3.1). The construction of the co-
variant derivativeD,, = d,, — ieA,, with connection-ieA,, ensures the Lagrangian’s
invariance under local/ (1)-transformations. Another way of interpreting this is say-
ing that a free electron field under the condition that it isaniant under localU (1)
gauge-transformationmustconnect to a Maxwell-field. This is a purely geometric
argument.
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3.2.2 Symmetries in curved spaces

The previous section concernéldt space-time only. We now consider more general
curved spaces, and explain how the covariant derivativacep the partial derivative.

Definition 3.8. Thecovariant derivativeD,, is defined as

0A”

Dud” = 5on

+1 A7
wherel'y , is theconnection

The connection can be interpreted geometricallyjaaseasure of change of the
basis coordinates(Recall from equation 0.1 thd?,.e, = ngeg)

As we now consider curved space-time, translations amefilked. Instead we
consider invariants due to local coordinate transfornmstioThe conservation of the
energy-momentum tensor (3.5) now yields

D", =0
We now state without proof (for a long derivation, see [11]):

Theorem 3.9 (Analogue to Noethers theorem for curved spacé&x)nservation of
physical quantities irturvedspaces are due to invariance with respect to coordinate
transformations, as conservation of physical quantitrea flat space-time are due to
invariance with respect to translations.

3.3 Gauge transformations

Section goal 3.3.1.Explain how gauge transformations reduce to infinitesinuare
dinate transformations.

The theory of gauge transformations will be essential wineastigating the per-
turbed RW metric in chapter 5. This section presents a shimaduction to this theory.

3.3.1 Introduction

In cosmological perturbation theory two different spaiceetmanifolds are dealt with:
the unperturbed background space-tivieand the perturbed physical space-tihe.
In order to relate quantities defined on these distinct stiawes, we must first define
a diffeomorphismD : M — M’.

Definition 3.10. The chosen diffeomorphism
D:M—-M
corresponds to ahoice of gauge

Let x be a set of coordinates defined &t. Then any diffeomorphisr® : M —
M’ will induce a set of coordinates = D(z) on M. Let ¢ be a quantity defined in
the perturbed\t’, and¢, be the unperturbed quantity . Then the perturbation of
¢ is defined as

0¢(x) = o(D(x)) — do(x)
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For a different choice of a diffeomorphisi: M — M, the perturbation is different
6¢(x) = $(D(x)) — o(x)
This induces a coordinate transformation\uty :
o =i =2+
which can be viewed as a coordinate transformatior\¢n
¥ =2+ =D+e) ~2' +eD(x)

for a fixed diffeomorphism. This shows that transforms to a coordinate that can
be expressed ag plus a term proportional to the infinitesimal transformasie on
M. Hence the study of gauge transformations are reduced &iullg of infinitesimal
coordinate changes in the unperturbet We will later engage gauge transformations
when studying scalar perturbations (see chapter 5).

Definition 3.11. We say that a quantity) is gauge invariantif the corresponding
coordinate transformation leave3 invariant. That is, if

Qx) = Qz +¢) =Q'(z) = Q(x) (3.2)

3.3.2 An example from QED

In Quantum Electrodynamics, the electron fieldz) can undergo &/(1) gauge-
transformation that is supposed to leave the Lagrangiaariemt. But for al/(z) €
U(1), the derivative of the transformed fiedt} V' (z ) () is not well-defined:

0V (2 (x) = lim - (V(x + oz + ) — V(@) ()

becausé/(z + ¢) and V' (z) are two different phases. Tlevariant derivative is
defined to include a compensating term, doenparator U (z,y) such thatD,, is in-
variant under thé/(1)-transformation:

DV (x)p(x) = V(2)Duy(x)
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The comparator must then transformiage, y) — V(2)U(z,y)V(y), such that the
covariant derivative transforms as follows:

D,V (z)Y(x) = lim 1(V(:c +e)p(x+e)— V(e +e)U(x+e, x)VT(x)V(x)z/J(x))

e—0 €

=V(z)Duy(x)

Hence the covariant derivativ®,, enables the QED-Lagrangian to beco#i¢l )-
gauge-invariant

3.4 The particle concept
Section goal 3.4.1.Establish the problems with the particle concept in curveaces.
We state a formal definition from a symmetry viewpoint:

Definition 3.12. Anelementary particlds anenergy-eigenstatthat transforms as an
irreducible representatiorof the symmetry group of the universe.

By irreducible, we mean that the representation is nomtriwith no nontrivial
subrepresentations. See the notation chapter for infi@mabout representations.

3.4.1 Flat Minkowski space

The symmetry group of Minkowski space is the Poincaré grégmoring translations,
we consider only the Lorentz group to be the symmetry groupe Oorentz group is
isomorphic toSL2(C) & SLy(C), and has different representations for different spin
n-particles. In flat space there exists a natural set of modes

up = 1 eikm—iwt (33)
2w(2m)3

with a normalized inner product:

(ug, upr) =1 /de\/E(uzaﬂuk/ — (Bpup)up,) = 27)%6(k — k') = [dk,d;i,] (3.4)

These modes are associated with the nat@etngularcoordinate system, and are
in turn associated with the Poincaré group. Recall that ansgtry transformation
from the Poincaré group leaves the Minkowski line elemevariiant. Specifically, the
vector g, is aKilling vector of Minkowski space, orthogonal to the space-likedryp
surfacest = constant. The special modes mentioned areeigenfunctionsf this
killing vector, with eigenvalues-iw for positive frequencies.

Example 3.13. For a Dirac field of spin1/2, the irreducible representation (irrep) is
(3,0) @ (0, 3). This is a direct sum of the left handed and right hantéy/l-spinor
This means an elementary sgif2-particle can be interpreted of as two independent
particle states, one left-handed and one right-handedithaixedthrough the particle
mass.



28 CHAPTER 3. CURVED SPACES AND SYMMETRIES

However, our primary interest resides in the process oftinflawhich is driven by
the inflaton, a scalar field of zero spin. The common irrepdichsa field in Minkowski
space i50,0) the Lorenz scalar representation, and is simpler to work.wit

Note that nature isiot invariant under all transformations of space-time: seglin
(dilatation) is not a symmetry becausmsss not a scale invariant attribute.

3.4.2 Curved spaces

In a curved space, the symmetry group is no longer given b¥Pthiecaré group. It is
therefore hard to decide what the concept of a particley@adlans. A generalization
of the particle concept to curved spaces can be found in [TBg construction of a
Fock space (A Hilbert space made from several single-partidbert spaces), vac-
uum states etc can proceed as described for the Minkows&esgde problem arises
due to the ambiguity of the formalism, as the Poincaré gremmilonger the symmetry
group of the space-time. Then there are no Killing vectomlatith which to define
positive frequency modes.

In someclasses of space-time there may be symmetry under cersdiitted trans-
formations (like rotations), or the de Sitter group (seerdiedin 0.17). But in general,
no such privileged coordinates are available andnatural mode decomposition of
¢ based on the separation of the wave equation will be possiblés violates the
principle of general covariance, thadordinate systems are physically irrelevant

3.5 The troublesome vacuum

Section goal 3.5.1 Defining the quantum mechanical vacuum in flat and curvedespac
Building the foundation for finding a suitable set of vacuaide Sitter space-time.

Definition 3.14. For a field¢, the quantum mechanicahcuum|0) is defined to be the
lowest possible energy stadé the field. Thevacuum expectation valuef a field¢ is

(0l¢|0)

For afield in a quadratic potential, the vacuum expectataunesshould equal zero.
This corresponds to the average, expected value of the fiedstate where there are
no particles Some fields are however described by a different poteatnal,may give
rise to a non-zero vacuum expectation value. At temperatoetow the electroweak
scale, the Higgs-boson is such a particle. Above this stiaéepotential regains its
quadratic form.

We already know that the vacuum defined in the Minkowski sppsitevariant under
the Poincaré group. The question arises as to which set oesngives the 'best’
description of a physical vacuum, i.e. corresponds mosetydo the actual experience
of “no particles”. This is a troublesome question, as evea Minkowski space, a
free-falling detector will not always register the sametipber density as a non-inertial
accelerating detector (the Unruh-effect [11]). The vacunlinkowski space isot
unique, but the conventional vacuum states defined in teftiieanodes is the agreed
vacuum forall inertial observers. This is because the vacuum defined,hy) = 0 is
invariant under the Poincaré group.
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Definition 3.15. The state/0) such thata,|0) = 0 for all & is theground state of
vacuum

Part of the reason for these troubles is due tagilibbal nature of the modes. They
are defined on the whole of space-time, so that a particuksergbr’s specification of
the field mode decomposition will depend on the observetiseepast.

3.5.1 In and out mode-solutions

In many problems the space-time can be treated as asyngtiyptitinkowskian in the
remote past and/or future. Here, the usual choice of thaifaktMinkowskian vacuum
has a well-understood meaning: the absence of particlesdingto all observers in
the asymptotic flat region.

Definition 3.16. The remote past and future are referred to asith@nd out modes
respectively.

Example 1: A universe with both in and out-modes

Out region

In region

Figure 3.2: A universe witl'(n) = A + B tanh(n) is essentially Minkowskian in the
infout regions

Assume a universe described with a line element
ds® = C(n)(—dn* + dz?) (3.5)

where C(n) is a conformal scale factor This form of line element isnanifestly
conformal to Minkowski space, as it is both diagonal and has the sante sig the
Minkowski line element. Assume thét(n) = A+ B tanh(n). We then see that in the
far past and future

Cn)—A+£B for n—+t

In this limit, A andB being only constants, the space-time essentially beconrdhskian.
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Example 2: A de Sitter space

1 T T
0.8
—~ 0.6 [
=
S 0.4}
0.2
0 . '
-10 -8 -6

Figure 3.3: A de Sitter space expressed in conformal timeirgkdvskian in the in
region

Assume a de Sitter space described in equation (2.3). Tagesp very small when
n — —oo, but is close to flat and essentially Minkowski in the in-cagi

3.5.2 The effect of a curved space

Working in the Heisenberg picture (where states are stdatitevoperators are time-
dependent), a vacuum state chosen in an in-mode regionewikin so during its evo-
lution. However, at later times, outside the region, frefaljing observers may still
register particles in this “vacuum” state. In particuldrihiere is also an out region,
then the in-vacuum manot coincide with the out-vacuum. One might say tpatti-
cles have been created by the time-dependent externatafiavial field, or curvature
of space

We will later encounter a special vacuum for the RW metric:

Definition 3.17. In a RW metric, thediabatic vacuums the vacuum that closest re-
sembles the “common” vacuum in flat space-time, i.e wher@tbieability of particle
creation due to curvature effects is minimized.

3.6 Scalar fields

Section goal 3.6.1.Determining the equation of motion for a scalar field in a gahe
metric

The assumption that inflation is driven by a scalar field negus to investigate
the properties of such fields. We first consider a generahséiald in a curved space,
before working explicitly with the RW background. We proddgy determining the
general equation of motion for a scalar field.

Definition 3.18. A (real-valued)scalar fieldis a C* map¢ : X — R, whereX is a
Riemannian manifold. The intrinsic spin of the scalar fisl@i
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3.6.1 Hamilton’s principle and the equations of motion

Even though the reader is expected to be familiar with Hamist principle, an in-
troduction is presented. Recall that the Lagrangian is atfom of coordinates and
their derivativesC = L(¢, 0,.¢), and the action is the space-time integral over the La-
grangianS = [ ,/—gd'zL. Here,g denotes the determinant gf, and,/—g is the
Jacobian.

Definition 3.19 (Hamilton’s principle) The equations of motion for a fieltlis deter-
mined by the condition that the actighis extremal for all infinitesimal variations of
curves which keep; = ¢(7;) and¢. = ¢(7.) rigid,

55 =6 / VL (b, Bud)d z = 0 (3.6)

i

Equation (3.6) can also be expressed as

5/ J=gLd s = /d%\/fg(%w + (%gf@am)) )

where we have used théd,,¢ = 0,,0¢. Partial integration of the last term gives
oL oL oL
= [ d*ay/—g(= -0
(/ g(a¢ 1 9(0,0) (0,9)

The last term is zero due to the conditions thaand¢. remain rigid, so only the terms
in theintegral must vanishThe equation of motion for a general fields then:

oL oL

adgy|
¢ " 9(0,9)

o

)&;s n 5

Ti

3.6.2 Equations of motion for a scalar field
A scalar fieldp in a general space has the Lagrangian

L= 30" 0,006 ~ V(6) 37)
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with corresponding action

1
S = / d*z\/—g ngamayqs ~ V(¢>)] (3.8)
Using the Hilbert-action principléS = 0 we obtain the equation of motion of the field
5S = 5/d4x,c = 5/d4x\/—g [;gwauqsa,,a; — V'qs} =0

which equals

1 1
2=
whereg = det(g,,,). The action principle states that the terms in brackets emsal
zero, which is the equations of motion.

o5 = [ dey=a |y 0(ago0,0) - V|56 =0

Definition 3.20. Thed' Alembertian operator is defined as

1
-9

O

Oy (V=99 90y)

ﬁ

and can be viewed as the covariant version of the lapladidiD,,¢ = O¢, where
Dy A* =0, A" + ATy,

The equation of motion for a scalar field in a general spaceroanbe written as

e

3.7 Chapter conclusions

We conclude this Introductory chapter by stating the mostirtant observations:

Conclusion 3.1. The universe is governed by symmetries. Symmetry invariasalts
in conserved physical quantities such as energy, momentairacge.

Conclusion 3.2.1n curved spaces, global symmetries are reduced to locatstnies.

Conclusion 3.3. Gauge transformations can be reduced to infinitesimal coaie
transformations.

Conclusion 3.4. In curved spaces, particles have no well-defined meaning:stpa-
rated observers measuring the same event in curved spaeewill observe different
particle states.

Conclusion 3.5. The de Sitter space has a well-defined particle state in theade
region, the infinite past.

Conclusion 3.6. The equation of motion of a scalar field has been established.
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Chapter 4

Inflation in the
Robertson-Walker universe

Until now, we've been concerned with purely theoreticaleasp of our universe. We
now proceed by investigating the physical properties ofwflocal universe in its in-

fancy —emphasizing that it was indeed a local event. Thipteléntroduces the theory
of inflation, and describes events that occurred betwée® and10~32 seconds after
t = 0. We will only consider inflationary models wittnescalar field.

The basic differences between a curved and a flat space hameebablished. We
will argue that the space during inflation is the constantigved de Sitter space, and
this will from now on be the standard background space fottteery of inflation. This
chapter will pursud’G1, and culminates in the definition of a suitable vacuum in the
de Sitter inflationary space.

Unless otherwise stated, the contents of this chapter edbas [11], [16], [9] and
8].

4.1 Giving birth to a universe

Assume that a universe is initiatedtat= 0. The scale factor is close to zero, but the
universe is still infinitely large. As an analogue, consitter mapf : R — R that
sendsr — ex. f is still surjective, even though it scales the infinitelyesizspaceR
onto a “more compact” infinite spade (see figure 4.1). Similarly, our universe was
infinitely large when it was initialized - it was just infinljfemore compact than today.

4.1.1 The epoch of unified forces

Very little is known during this first period of the universehich is called thd?lanck
epoch If super-symmetry is correct, then all four known forcesevenified and so
shared a coupling constant. Roughity *3 seconds after the birth, gravity is separated
from the other three forces. The stage after gravity is sgpdrout is called thgrand
unified epoch Eventually, the grand unification is also broken when thergt nuclear
force is separated from the electroweak force.

35
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Figure 4.1: An analogue to the scale fact¢t) at the beginning of the universe. The
scale factor ((z) = ex) maps an infinite spad®) to an infinitely more compact space
(eR ~ R), which is still infinite.

4.1.2 The epoch of Inflation

10—3% seconds after the big bang, the strong nuclear force desddpm the elec-
troweak force. We now need to introduce a first assumptiomehathat the universe
is solely populated by a homogeneous heavy scalar fieldirffteton) in a vacuum
state that fluctuated quantum mechanically (see figure 4.2).

A 2D scalar field potential

Figure 4.2: A two-dimensional schematic diagram of an infigpotentialV (z, y).
Notice the “false vacuum” state at the center of the image.
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In areas where the potential is large, the process of inflatiay start. Here, the
inflaton field is located high up in an excited particle stated proceeds by rolling
slowly down (see figure 4.3). While (slow) rolling, the scdiatd drives the inflation

Inflation can start here

Figure 4.3: Areas in the universe where inflation might happe

and expands the the scale facigr) by ¢°° until the minimum is reached and inflation
stops. However, when the slow-roll conditions break dove, field rolls faster and
doesn't initially settle in the minimum (or vacuum statef)will continue to roll back
and forth while dumping friction energy into other partiéields. In the end, the infla-
ton field has settled in the minimum, meaning it has vaporisaliing only baryons
and photons in the newly created (local) universe (see figde

Vacuum state of the inflaton

Figure 4.4: The field proceeds by slow-rolling down the ptiggnuntil settling in the
safe vacuum state at the minimum. Baryons and photons aatedr&om the friction
energy leftovers.

4.1.3 Inflation consequences

The assumption that the universe before inflation was homemes and isotropic
would classically mean that the univeisiéer the period of inflation would remain so.
We know today that the universe is definitelgt homogeneous and isotropic on small
scales, which means that there must have been a mechanigmnathiaced anisotropies
in the energy density early on. Luckily, the theory of infletidoes not only solve a
number of problems - it also prediotghy andhowthese anisotropies came into exis-
tence.
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Before inflation, more particles were in casual contact tféar inflation, as the co-
moving horizon decreased. The different modes, which weiewithin the horizon
before inflation, ensured causal contact (and thus thermalilerium) between great
portions of space at early times, see figure 4.5.

Before inflation After inflation

Figure 4.5: The decay of the co-moving horizon - before aiet @fflation.

During inflation, the inflaton field fluctuated, enabling creation of particles and
anti-particles. But inflation was so rapid that some of thesicle pairs were sepa-
rated well outside the co-moving horizon, effectively tkieg the homogeneity of the
early universe.

We will in the following chapter explain how the quantum fluationsd¢ in the
inflaton field gave rise to perturbations in the metifter inflation has ended. This
could be problematic, as by now the inflaton had completepoxiaed. Luckily, the
perturbationg ¢ initiated perturbations in the metric during the end of itila, leaving
a fresh radiation dominated universe with small pertudvetiin the metric. Compare
this with a stone hitting a still pond - the stone “disappé#wshe bottom, while the
water “metric” is perturbed. These perturbations wouldiimtseed the anisotropies in
energy densities as observed today.

We proceed by a more quantitative treatment of the introdngresented here.

4.2 The equation of motion

Section goal 4.2.1.Establish the equation of motion of a scalar field in a Rolmerts
Walker background.

Recall from chapter 2 that a scalar field-driven acceleratgghnsion results in a
de Sitter universe. We proceed by deriving the equationsodiomin a de Sitter space,
described by the RW line element.

Proposition 4.1. The equation of motion for a scalar field in a RW background is

b+3Hep — %(vw) +V' =0 (4.1)
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whereV'’ = %- Proof: The RW line element in Cartesian coordinates is
ds? = —dt? + a*(t)dx?

where the metric is

1 0 0 0
(o « 0 o0
9w =10 0 a® 0
0 0 0 a2

such thaty = det g, = —a%. Using (3.8), the action for a scalar fiefdin a RW-
background is

S = / d*za® [+ %Q's? — a%(w»)? + V((;s)} (4.2)

Infinitesimal variations in the scalar fieltdl— ¢ + d¢ applied with Hilbert’s principle
of stationary action.S = 0 gives the equation of motion fafr.

68 = / d*za® [q's&ﬁ - %(w) 5(Vo) +V’5¢}
a N——
=Vso

Noting thatd¢ = %M, extracts¢ and include the determinaat to get
= /d% [jt(a%) —aV%¢p+ aSV’] 5o

Perform the diﬁerentiationg—t(a?’gi)) = 3a2a¢ + ad = a®(3H ¢ + ¢) whereH is the
Hubble parameter. Insertion yields

58S =0 = /d4za’3 {31{45 +é- %(v%) + V’} 8¢

The action principle demands the expression in the brasketish, and the equation
of motion is obtained:

b+ 3Hop — %(v%) LV =0

O

Alternate derivation

The equation of motion can also be obtained from (3.9):

Op+V' =0= O (V/—99" Oug) + V'

L
V=5

The kinetic part is

1 . rw 1 y 1 1
ﬁau(\/—gg Hou0) = $8u(a3g H0,0) = gc?t(a?’(—l)aﬂﬁ) + $V(av¢)
such that
O¢+ V' = —iﬂ(a%) + iv%
T a3 dt a?

This expression equals (4.2) when including the poterdiad, equation (4.1) has been
retrieved.



40 CHAPTER 4. INFLATION IN THE ROBERTSON-WALKER UNIVERSE

4.3 The slow-roll approximation

Section goal 4.3.1 Explain the basics of the slow-roll approximation. Define sfow-
roll parameters.

This section introduces the standard approximation mettidgaflation, theslow-
roll approximation . The reader is expected to be familiar with this topic, sdetiva-
tions are omitted. A proper review of the slow-roll approaimon can be found at

[9].

4.3.1 Introduction

In the previous section, the general equation of motion fecaar field (4.1) was de-
rived. The fieldy is in this section considered to be spatially homogeneo(s:t) —
¢(t). We impose two constraints on the field and its potential deoto simplify the
model.

1. The potential’ exceeds the kinetic energy term,i6rs ¢2.

2. The friction term3H ¢ dominates over the curvatuge

Equation (4.1) can now be expressed as

b+3H)+V' =0 (4.3)
Constraint 2 means that
3Hp~ -V’ (4.4)
andF1 gives
\%4
2
B~

p

4.3.2 The slow-roll parameters

The conditions of successful inflation can be expressed imartsionless form. The
two criteria are reformulated as the slow-roll parameters:

€or = Nf(“//)Q <1 (4.5)

V//
Ner = Mﬁ(v) <1

The subscript omy,. distinguishes the parameter from thenformal timey). As infla-
tion demands the field to roll slowly in the potential, the potential’'s derivativenust
be small. We therefore say that inflation is equivalent wakihge < 1. Thus infla-
tion endswhen the derivative term exceed the potential itself, ormée- 1. When
the era of inflation is complete, the inflaton field has sefittetie vacuum state and the
friction energy has been converted to other particles.
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4.4 Quantizing a scalar field

Section goal 4.4.1.To promote the inflaton field to a field operatori).

We now leave the world of classical mechanics and enter quafield theory.
Quantizing a theory ialwaysa correct choice, as a classical theory has a smaller space
of validity than a quantized. When quantizing the inflatordfi@ will be decomposed
into a set of Fouriemodesk. Each mode corresponds to a plane wave with wavelength
A = 2w /k. These Fourier moddsof a density perturbation corresponds to a variation
in the density of a length scale In linear perturbation theory, the modes will evolve
independentlyfrom each other, reducing a set of coupled partial difféatBguations
to ordinary differential equations.

This will lead to, among othershe primordial spectrum But first we give a re-
minder of how to perform a quantization of a scalar field inthiakowski metric.

4.4.1 Fourier expansion

First, decompose the field into its time and space compobgrespanding into Fourier

modes:
1

P(x,t) = N zkj or(t)e™™. (4.6)

Then promote the Fourier-coefficients to operators. Thd fielnd the canonical con-
jugater = % should now satisfy the commutator relation

[p(X,1), ’/T(X/a t)] = i6) (x— X/)
The Lagrangian densitg for a scalar field in the Minkowski space is given as
1 1. 1
i Moy 2 - 2
L= 350.00"¢ = —3&° + 5(V9)
The Lagrangian L is found by insertion:
1 N . / . ’
_ 3 _ 3 i(k+k")-x 2 i(k+k")x
L—/d xﬁ—ﬁd CL’Z(¢k¢k'€ +E opdpe )
Using that[ d®z exp (i(k — k') - ) = V&), we find
1
L ==
2

The field satisfie®;, = ¢_, SO

/N

brp_ — k2¢k¢—k)

L=

> (102 = wlonl?)

k

N |

wherew;, = v k2. The HamiltonianH = pg — L is
1 .
H=33 (1812 + wilonl?)

The Hamiltonian now describes a one-dimensional harmastdlator for each wave-
number k, whilevy, is the oscillation frequency. The quantization proceddrguch a
Hamiltonian is well-known.
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4.4.2 Quantizing the harmonic oscillator

If one already knows the classical equations of motion foef fiit can be promoted
to the equation for the time-dependent operat@n. This is done in the Heisenberg
picture, where operators become time-dependent whilesstae not. It is in general
always possible to introduce the raising and lowering dpesan the following way:

i (t) = vp(w, t)ax + vj(w, ),
whereu, v satisfy the classical equation of motion. We now rewritedaeonical vari-
ables¢, 7 in terms of raising and lowering operators, using the spectales defined
ineq (3.3 = u* = (2wy) "2

1

or(t=10)= m(a;@—i—atk)

m(t=0) = —i\/?(ak - a1k>

Cumbersome algebra will confirm that the new operatorsfgatie commutator rela-
tion

[ak7a21] = 5k,k’
Including time dependencé,is expressed as

1 —iw Wi
o(t) = 4 /m (apert 4 al  airt) 4.7)

insert into (4.6) and find

dSk 1 —ikx T ikx
(Z)k(X,f,) = / (27T)3 \/ m(ake —aipa )

having used the continuous shift, — V' [ d*k/(27). A similar expression can be
found for the canonical conjugat€Xx, t).

4.5 Perturbing the inflaton

Section goal 4.5.1.To perturb the inflaton and define a set of solutions for theyser
bations in de Sitter space.

45.1 Introduction

Assume our universe starts off completely homogeneoussatibpic. Its only com-
ponent is thenflaton field, the postulated scalar field that drives inflation. The space
is de Sitter, and alperturbations in the metric are neglectethis can be done as long
as a mode stays well inside the horizon. [8]

Thus the only thing we consider are taantum fluctuations of ¢, expressed
as a small perturbation in the field itself. These pertudvatiwill obey the equations
of motion for a scalar field with apecialmass, a mass proportional to the curvature
of the potential V. A rewriting to a more suitable expressiming conformal time is
then performed. This will tune the equations to follow thgaxsion of space and
thus eliminating friction terms. In the end the solutiongte perturbed field will be
scrutinized, and thBunch-Davies vacuumis established.
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4.5.2 Perturbing the inflaton

Assume the quantum fluctuations of the inflaton gives riseettupbations of the form

(b(X, t) = %o (t) + 6¢(X’ t) (48)
N~ N——

classical evolution fluctuations

Proposition 4.2. The curvature of the potentidl gives rise to an effective mass-term:
V// _ m2
This is in analogue with the Higgs-mechanism (See [13], [34j8.

Proof: The potential’ has a minimum for = 0. Expanding V,
1 "2 1 "2
V(6) = V(0) + V"6 = JV"0

The scalar Lagrangian now yields

1 1
— M 42
L= 39"0,00,6— V"

wherei V" ¢? is interpreted as aeffective mass ternHenceV” = m?. O

Lemma 4.3. The perturbed field¢ will satisfy the equation of motion:

8¢+ 3Hdp — 2(v2)5¢ +m25p =0 (4.9)

Proof:
Both ¢ and¢q will obey (4.1):

é+3Hd— ai?(v%) +V' =0 (4.10)
Insertion of (4.8) into (4.1) gives
o + 06 + 3H (o + 88) — 2(V25¢) + V' (¢ +6¢) =0 (4.11)
Returning to the perturbed potential in (4.11), we expadpibtential as follows:
V'(¢o + 8¢0) = V'(¢0) + V" (¢0)d¢ = V' (o) + m*6¢
Insert this potential back into (4.11) and recall that thédfig, alone satisfies (4.1).

Using proposition (4.2) to eliminat&” for m?, the perturbed field¢ then satisfies
(4.9) 0

4.5.3 Fourier expansion

Separating the spatial and time dependence, we perform @eFexpansion of the
perturbed field ¢:

So(x,t) = % Z ka(t)e““'x
k
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wherek is the co-moving wave number. Using
1 .
2 _ E 2 ikx
Vv §¢(X, t) = _V . k Yre

we obtain )

<p+3H<p+($ +m?)p =0
The solutions are the classical mode-functions

up = P (t)eik:-z

4.5.4 Rewriting to conformal time

We proceed by expressing the field equation with respectritoomal time.

,_de _dpdy _ 1
LT _8ndt_<pa
such that (3.4) can be expressed as
O+ 2H, + (k2 + m2a®)pr =0 (4.12)

Lemma 4.4. To first order, the mass-term m? can be neglected during inflation.

Proof: The slow-roll parameter,,. in equation (4.3.2) gives

1

One of the slow-roll conditions for inflation to occur is that,.| < 1. In this limit, the
mass-term can henceforth be neglected.

Proposition 4.5. The friction term in (4.12) vanishes with a suitable choideco-

moving mode functions

ug

Pk = —
a

From a physical viewpoint, the removal of the friction terande explained by a
co-moving observer that is stationary in a co-moving framehis frame,/H = 0 and
the term is effectively removed. One can also interfteds the friction experienced
by the expansion of the universe, assuming a particle faligwa geodesic curve. A
detailed “proof” follows:

O = éu; — éHuk
1
a
insert back into (4.12) to obtain

1

1 1 1 1 1 1 1
O = ——Huj+~u} +=Hup——H up——Hujy = —2—Huf+—uf+~H>*up——H uy,
a a a a a a a a

2 1 1 1 2H 2H? k?
—ZHu), + —ufl + —Hup — —H'up + “—uj, — —up + —u =0
a a a a a a a

which is )

1 1 1 k
fug — *quk — *Hluk + —ur =0
a a a a
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Using thatH’ = &~ — H2:

1 . a”’ N k2u
—Up — —5U —Up =
a® a2k r
which equals
1
ull + (k2 - %)uk —0 (4.13)
From (2.4),a = —1/(Hn):
a’  —2Hn 2
o 3= 2

Inserting into (4.13):
2
ull + <k2 - ?)uk —0 (4.14)
and theu) -term has vanished. Note that at early timgs; —oo and thel /n-term can

be neglected. The classical equation then reduces to tlagh@afmonic oscillator, with
solutions described in (4.7

Letting v, = nug andx = kn, equation (4.14) can be rewritten as

d*vy 2 do (1— 2z
dz?  x dx 22

)Uk:()

The solution for this equation is given by the Bessel-funwdifor? = 1, that isj; (kn)
andy; (kn) and satisfy

ug(n) = Ape k1 <1 . kin> + Byet*n (1 + é) (4.15)

whereAy, B, are the yet unknowBogoliubov-coefficients We

4.5.5 Bogoliubov-coefficients

We perform a small detour to investigate the properties®Bbgoliubov-coefficients.
The field needs to be decomposed iptusitive and negativérequency components
before defining the creation and annihilation operatorss ¢an only be done in space-
times with atimelike Killing vector field . Luckily, the de Sitter space has this property.
The Bogoliubov transformation relates the two differentrctinate systems.

Consider the canonical commutator relation for bosoniatgwa/annihilation oper-
ators:

[a,a7] =1
and define a new set of operators
b= A*a— Bal
bt = Aat — B*at

Definition 4.6. TheBogoliubov-coefficientare the complex coefficientsand B.
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The canonical transformation of these operators is callBdgoliubov transfor-
mation. The commutator of the new operators must satisfy

[b,67) = 1 = [4%a — Bal, A" — B*af] = (JA* — |BJ?)[a,a)
Hence the Bogoliubov-coefficients fulfill
>~ |B] =1

This identity closely resembles the hyperbolic identitiius, the Bogoliubov-coefficients
can be parametrized as

A=¢"Ycoshr and B =e“sinhr

4.5.6 Horizon crossing

We are especially interested in modes ttrass the particle horizanThe modes that
have left the horizortannotbe affected by casual processes. The co-moving wave-
length isA ~ 1/k, and the quantized fluctuations derived will now satisfy

1 dsk kX T oo —ikXx
op(X, 1) = a/w[akuk(n)e + ajug(n)e }
Definition 4.7. A mode isnsidea horizon provided the wavelength is smaller than the
horizon.

Note from (2.4) that the horizon during inflation equals toaformal timen. A
mode is then inside the horizon provided

A<nl = fkp[>1

Similarly, a mode will cross the horizon whekn| = 1 and be outside ifkn| < 1.
During inflationn < 0, hence the absolute sign.

4.6 Bunch-Davies vacuum

Section goal 4.6.1.Establish a suitable vacuum state for the perturbed infldield.
Analyze how the modes of the field cross the inflation horizon.

We consider the early stages of inflation, and investigageptioperties of the in-
flaton. The general solution for the perturbed co-moving esodf ¢ were found to
satisfy (4.15):

2 _m,(l N L) B um<1 i)
ug(n) = Are " + Bye + o
In the previous section we reasoned thaj| > 1 during early stages of inflation.
Equation (4.15) is then approximated to:

uk(n) ~ Akeiikn + Bkeikn

One of the solutions is chosen, and the default one isnttmode(See chapter 3 for
details). In the limit of the infinite past, the modes are iiddity small, and the ef-
fects of the inflationary horizonan be ignored This means space-time is essentially
Minkowski, and there exists a unique vacuum for the inflateldfiThis vacuum is the
Bunch-Davies vacuum
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Definition 4.8. We define thdBunch-Davies vacuunto be the in-mode solution of
(4.15) assuming early stages of inflatighif] > 1)

/1
wy, = %e ken

where the Bogoliubov-coefficiem; = (2k;)—1/2 is decided from the harmonical

oscillator:
1
_ Il
o=y gy lan )

The perturbed inflaton field is then

. 1 .
5¢k _ (pkezkx _ auk(n)ezkx

We conclude this section by the following observation:

Lemma 4.9. The perturbed:;, modes are (conformal) time-dependent within the hori-
zon. The modes will freeze and stay constant when crossisgleuhe horizon. In
other words, when a Fourier mode has left the horizon, thesjglsyon the scal& is not
causally connected, and thus the mode does not evolve.

Proof: Inside the horizonkn| > 1, so

which is dependent of the conformal time Outside,|kn| < 1 and we findjug| ~
1/ 2% 77 |- The perturbed field is

ke _ L
86kl = |1 =\ 575 H

which is (conformal) time-independent.

4.7 Chapter conclusions

We conclude this Introductory chapter by stating the mosgidrtant observations:

Conclusion 4.1. The metric perturbations during inflation are negligiblenly the
guantum fluctuations of the inflaton field are important.

Conclusion 4.2. The de Sitter space has a well-defined particle vacuum gtaifieei
infinite past (Bunch-Davies)

Conclusion 4.3. The perturbed modes are time dependent within the horizon, b
freeze when leaving. This is natural, as modes outside abiotave no causal con-
nection.
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Chapter 5

Cosmological perturbation
theory

This chapter continues the investigation of inflationargtymdations. We will see that
the quantum fluctuations in the inflaton field give rise to acalerturbations in the
metric, seeding the anisotropies in the early universendrend PG1 will be fulfilled.

Unless otherwise stated, the contents of this chapter esb@s[11], [16], [17] and
(8]

5.1 Introduction

We have seen that during early inflation, the quantum flungtin the inflaton field
gave rise to conformal time-dependent modes inside thedmrivhile the modes froze
when leaving the horizon. This is natural, as causal effeotg operates on scales
smaller than a particle horizon. In order to simplify the ations, we also neglected
the perturbations in the metric. This is a valid assumptiaring) the early stages
of inflation, but the metric perturbations become importahen inflation ends. As
the inflaton perturbations¢ slowly regain its vacuum state, the energy leftovers are
dumped into these metric perturbations. We will in this ¢deagee that these metric
perturbations can be divided in tbree classes:scalar, vectorandtensorperturba-
tions, each which will evolve independently. When inflatiorded, the universe was
purely radiation-dominated, but with small tensor, scalad vector perturbations in
the metric. Eventually, as the co-moving particle horiztarted growing, the scalar
perturbations would seed the structure formation of thearse as observed in the
cosmic microwave background today.

5.2 The primordial spectrum

Section goal 5.2.1 Define the power spectrum. Determine the power spectrurhéor t
perturbed inflaton field.

The primordial spectrum describes the properties of thmgndlial fluctuations, or
the density variations in the early universe. These fluginatseeded the structure

49
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formation, and the variations originated as quantum flugna expanded during the
inflation period. We now turn our attention to thewer spectrum

Definition 5.1. A two-point correlation functionp,,, is the correlation between ran-
dom variablest, y at two different points in space-time, and is defined as

) - @)
Y /Var(xz)/Var(y)

For a regular scalar fielg in a vacuum state{¢(z)) = (0|¢(x)|0) = 0. The
two-point correlation function is then

@) — G @@ g
P = Nartom Vo) Voo

Example 5.2. For a scalar field, the two-point correlation function givase to the
Dirac propagator The probability amplitude for a particle to propagate fraito y:

Bp 1

= ip(z—y)
(27m)3 2E,

D(z — y) = (016(x)$(y)[0) = /

Thevacuum fluctuationsare similarly defined, and describes the probability of a
virtual state to be created/annihilated within the undetyaime: (0|¢(x)$(x)|0).

5.2.1 Gaussianity

We assume the fluctuations to follon@aussian distribution. This is a reasonable
assumption, as it is possible to expand a perturbed poltentia

V(9o -+ 66) = Vigo) + 3V"(60)(56)° + £V (60)(56)° + ..

Gaussian Non-Gaussian

In quantum field theory, the second order term gives riseddwho-point correlation
function while the higher-order ternms 3 gives rise to interactions, eertices. These
higher-order terms spoil Gaussianity, and are neglected.

5.2.2 The power spectrum

The power spectrum is a useful quantity when one is intedestelassifying the prop-
erties of perturbations. Assungeis a free field in Minkowski space. The field can be
expanded in Fourier space as

0@) = == 3 (awen(e™ + afi(0e~™)
k

wherep;, = (2k)~/2¢* andw;, = VA2 + m?2 = k (if the field is assumed massless).
The field fluctuates in a vacuum described by a Minkowski-imeaind is a two-point
correlation function given by

(%) = (016210) = 7001 (aron(e ™ +aliof (De™) (apion (0 +al o (D) o)
k,k
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The lowering operator (and the adjoint rising operator}rgs the vacuumy|0) = 0,
so the vacuum expectation value is reduced to

1 . o
(6%) = 501 D axal, [0)pr(t) (1) =
k,k’

The double sum is removed by the commutativityagf, aL,} = 0 fOr k # k', as the
operators are free to “commute” their way out and annihiflagevacuum. The double
sum is only non-vanishing when diagonal fo= £’), and the expression is

1 d®k dk k3 dk
<¢2>:VZVPi\—’/WR%F:/IQWHQZ ?Ai(k)
k

The final step was done rewriting the expression using spderoordinates. Assuming
isotropy, [ d3k = [ dQsk?dk = [ 4nk*dk, wherek? is the Jacobi-determinant.

Definition 5.3. Thepower spectrumﬁi(k) is defined as

k

3
ﬁ\@ﬂ (5.1)

A2 (k) =

and describes thamplitudeof the fluctuations as a function of tkealek.

Definition 5.4. We say that a power spectrumseale invariantif it is independent of
k.

Recall that the vacuum expectation valige = (0|¢|0) for the inflaton is zero.
Thevariance of a variable is defined ag?) — (¢)? and is here reduced t@?). The
power spectrum of a field therefore describes tharianceof fluctuations.

Example 5.5. In Minkowski spacey;, = (2k)~'/? so the power spectrum of the
inflaton fluctuations is

k2

2

5.2.3 Harrison-Zel'dovich scaling

We are interested in describing the power-spectrum in a tier Space. Recall from
(4.5) that a set of new modes in terms of the co-moving coatdmwas expressed as

1
Pk = —Uk

a
We concluded that fluctuatiomutsidethe (co-moving) horizon will be constant and
the scale of the mode will be

ke _ L
668l =11 =/ gz H (52)

Proposition 5.6. The power spectrum during inflation for scalar fluctuationgside
the horizon is given by
H )2

A2 (k) = (ﬂ (5.3)
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Proof: By direct insertion of (5.2) into the expression foe power spectrum (5.1).
O

This shows the power spectrum outside the horizoacele invariantwhen H
is constant. This is called thdarrison-Zel'dovich (HZ) scaling, and is correct in
the limit of infinitely slow rolling of . Modes with different wave-numbets will
leave the (co-moving) horizon at different times, which emkhe HZ scaling inexact
without the slow-roll approximation. This means the scalatentialV ~ +/H will
have different values when the modes cross the horizon.alt ise horizon crossing
that the power spectrum is to be evaluated.

5.3 Cosmological perturbation theory

Section goal 5.3.1.Define cosmological perturbation theory. Pursue scaladfjer-
turbations, and explain why tensor and vector perturbatiare neglected.

We present a short introduction to the theory of cosmoldgiegurbations before
venturing deeper into the theory of scalar perturbations.afcomprehensive introduc-
tion to cosmological perturbation theory, see [14].

5.3.1 The decomposition theorem

The Lagrangian describing the inflaton is naturally depahde the inflaton field itself.
The energy-momentum tensor’s dependence of the Lagrarigiamd,, ¢) is clear from
equation (3.5). Then the Einstein field equations (2.2)bdistaa connection between
the energy-momentum tensor and the curvature of spacehamdtvature is described
by the metric tensog,,,,. Hence scalar perturbations of the form

¢—¢+0o¢
will give rise to perturbations in the metric tensgy,

Juv = Guv + 5guu

Theorem 5.7(Decomposition theorem)Any arbitrary perturbation in the metric can
be expressed as the sunsohlar, vectorandtensorfluctuations.

(59;“/ _ (59;(?:5”—}- 5gl\itlajctor+ 6gzsjalar
These three components can be expanded in terms of sphesmalinates, and will
be orthogonal to each other. They are solved separately, emudve independently
in linear perturbation theory. This means that initial tengerturbations will never
affect scalar or vector perturbations at later times, andesersa.

The scalar perturbations will give rise to density fluctuations, while thtensor
perturbations initiate gravity wave production. The gravity waves haveegligible
effect on physics except for the B-modes of the cosmic miex@background polar-
ization. The tensor perturbations are anyways gauge anvarand evolve identically
with any choice of gauge. Theector perturbations decays rapidly as the universe
expands exponentially, and are ignored [11].
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5.3.2 Perturbing the RW metric
A general first-order perturbation of the RW metric is givgn b
Juv = 9;(3/) + g = a? (Nuw + )

wheren,,,, is the Minkowski metric, and

b 24 B
A\ B =Gy

whereh,,,, has 10 degrees of freedom. We rewrite the line element instarnthe
perturbations:

ds? = a2 [ — (14 24)dn? — 2B;da’dn + (5 + Cl-j)dxidxj}

We state a well-known theorem without proof:

Theorem 5.8(Fundamental theorem of vector calculug) smooth vector field can be
decomposed into irrotationat(rl-free) and solenoidal divergence-frecomponent
vector fields. This implies that any vector fidkd can be considered to be generated
by a pair of potentials: a scalar potentid and a vector potential; such that

B, =—-0;B+YV;
TheC;;-term can similarly be decomposed as
O,;j = 72D§¢j + 287(93E + (97E] + 33E7 + hij

where E and D are scalar potentials anfd; a divergence free vector potential. Both
sides of the equation has 6 degrees of freedom. Note thagtimedt £; 4 0; F; nor-
mally has three degrees of freedom, but the divergenceaelatr; = 0 reduces the
expression to two degrees of freedom. We characterize the tonstituents of the
metric perturbations:

- Contributions to théensor perturbations are given by
ds® = a? [ — d772 + (5@‘ + Hij)dxidxj}

- Contributions to theector perturbations are given by the termg; ando; £; +
0;E;, but will decay rapidly as the universe expands during iititat These
perturbations will give little or no effects.

- Contributions to thescalar perturbations are given by

ds?® = a? —(1+2A)dn2—28inxidn+((1—2D)5ij+2aiajE)dxida:j} (5.4)

The scalar perturbations will be studied in more detail mftiilowing sections. They
will eventually give rise to the density perturbations aeéd the structure formation
in the early universe.
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5.4 Tensor perturbations

Section goal 5.4.1.Describe the tensor perturbations. Reason for why they are n
glected.

Tensor perturbations do not directly affé@G1, but will be treated anyway. This
is because they are both interesting and will give aid to tivestigation of scalar
perturbations. In the previous section, the perturbedimets defined as

gij = a*(8ij + Mij)

where we have chosen to investigate a gravitational waveggeating along the-axis:

he hye 0
Hij=|hx —hy O
0 0 0

H;; has the property that it idivergenceless, traceless and symmet&k'H,;; = 0
andtr(H) = 0. What needs to be done is to derive the Christoffel symbolsr{ection
coefficients), then the Ricci tensor followed by the Ricalac. A thorough derivation
of these quantities can be found in [8] or [11]. We state goetir finding an equation
of motion for the perturbations.

5.4.1 Golden recipe

1. Calculate the connection coefficiets, . They are defined from the metric

1 n
Tas = 59" (G5 + 9pv.e = Gap,)

2. Find the Ricci tensor using the connection coefficientse Ricci tensor is de-
fined as

Ry =10, —T%, , + 15,0, —T4,T0,

J77Ne" po,v

3. Calculations show that tensor perturbatidosiot affect the Ricci scaldto first
order).

4. Determine the (spatial) perturbed Einstein tensor froenRicci-tensor to first
order:

1
5Eij = 6(RLJ - §gin) = 5Rij

5. Use the Einstein equatiai¥’,, = k6T, = 0 for tensor perturbations to first
order.

After performing these steps (see [8]) it follows from thegiein equation that, and
h. obey the equation of motion:

h+2Hh+k*h =0 (5.5)
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5.4.2 Solutions to the wave equation

Recall from chapter 4 that the equation of motion for theyrbed scalar field (4.12)
satisfies

O + 2H@, + (k2 +m?a®)pr = 0 (5.6)

Equation (5.5) equals (4.12) for a massless field, and wasdoigorously in chapter
4. Still, we mention a basic recipe of obtaining the equatibmotion.

First, introduce a new co-moving variable such that theificterms disappear
(see proposition 4.5). The equation of motion should nowhag ¢f an harmonical
oscillator. Quantize the new solution, that is, prombt® an operator and expand in
Fourier space. Let

h(k,n) = v(k,n)ax, + v*(k,n)a}

wherewv are solutions to the classical equation of motion (5.5) amhda' are cre-
ation/annihilation operators. In the end, the generaltsmiuo the equation is given
by the Bessel-functions fat = 1, see equation (4.15). Choose the default in-mode
solution such thaBy, = 0 and the vacuum solution is given by

(&

ikn i
v(k,n) = m(l - %)

5.4.3 Conclusion

The tensor perturbations behave in much the same way as ttedfiions in the in-

flaton field. With the same solutions, their power spectrapgoportional. But the

tensor perturbations evolve independently of scalar awtbveerturbations, and are
untouched by the same physical effects that modify the spaldurbations. Detect-
ing these gravity waves would prove very interesting, ag theuld give a screen shot
of the early universe with more information than the cosmicrawave background.

There have been several proposed experiments that migtstuneethe existence of
gravitational waves, such as LISA [18].

5.5 The freedom of gauge

Section goal 5.5.1 Define different choices of gauge. Reason why the conformat N
tonian gauge is selected.

We now turn our attention to scalar perturbations. The tepsdurbations are all
gauge-invariant, so there was no need for choosing anyfgpgauge. This is not the
case for scalar perturbations. The scalar metric (5.4) bias gerturbing functions:
A, B, D andE. We need to determine whether these functionsgargge invariant
In chapter 3, we saw that the general gauge transformatginés by the infinitesimal
coordinate transformation

ot s gt et

By theorem (5.8), this equation can be separated into sgatafgradient) and a (trans-
verse) vector part:
et = 0te + €l
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such that the metric now transforms as
(ng, - 69;“/ - Duey - DUGN

where the covariant derivative is defined in (3.8). For théysbing functions4, B, D, E
to remain gauge invariant, they need to transform as (F.#)elscalar part of the vari-
ation of the metric perturbations is extracted, they wdhsform as [11]

A— A€ —HE (5.7)
B—-B+e +¢ (5.8)
D — D+ He° (5.9)
E—E+e (5.10)

(5.11)

The physical quantity in question may therefore obtainedéht values depending on
the chosen gauge. This problem needs to be eliminated, aghahis by creating a
gauge-invariant set of potentials from the metric perttions.

5.5.1 The Bardeen potentials

From the transformations in (5.7) we can create a set of fiaterthat transform as
gauge-invariant functions.

Definition 5.9. TheBardeen potentialare defined as
®=A+H(B-FE)+(B-E) (5.12)
V=D-H(B-FE)

Proposition 5.10. The Bardeen potentials are gauge-invariant with respecthi®
transformations of the metric perturbations defined in)5.7

Proof: By direct insertion. Fob,
- A—"-HO+HB+E+e —E —)+ (B ++ —E —¢)
Summarizing terms,
=A+HB-E)Y+ (B —E)—® —HE +H(E +€ — )+ +€ — ¢
=A+HB-E)+ (B —E')=9

A similar calculation shows that — ¥/ = ¥. O

5.5.2 The Newtonian gauge

We now employ the freedom of the choice of gauge to eliminat af the scalar
potentials. This is done by choosia@nde® such thatE and B vanish during trans-
formations. Note that’ transforms as

EFE—FE+e
So if e = —F, this potential will vanish. Similarly,

B—B++¢
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will vanish if ¢ = —B for e = —E. Note that the potentials are n@moved but a
gauge is chosen such that they will always vanish duringdinate transformations.
The Bardeen potentials (5.12) now reduce to

U=A
=D
such that the perturbed (scalar) line element (5.4) in ®Irn i

ds? = a2 [ (14 20)dn? + (1 — 2@)5ijdxidxj} (5.13)

Definition 5.11. The choice of gauge resulting in this line element (5.13pwmad the
conformal Newtonian gauge

The name “Newtonian” reflects the similarity of the weakdidimit of the line
element in the Schwarzschild metric. It is clear from therdgdin of the line element
that it is conformal.

5.5.3 Synchronous gauge

This choice of gauge is preferred for numerical calculaibacause it leads to better-
behaved equations. In the synchronous gaugade® is chosen such that and B
vanish. The line element is then

d52 = a2 [ - d772 + <(1 — 2D)5U + E7¢j>d$idl‘j:|

5.6 The co-moving curvature

Section goal 5.6.1.Establish the co-moving curvatufe. Determine the power spec-
trum of R, and define the spectral index. Couple theory to possiblergbtions.

We are interested in defining a gauge-invariant co-movirantty that is a linear
combination of the fluctuating inflatahy and the perturbation potenti@l. This quan-
tity will continue to exist even though the inflaton field hasiished - and give rise to
the initial conditions of the metric perturbations afteftation.

5.6.1 Introduction

Consider the scalar curvature of a hyper-surface defineddoystant conformal time
dn = 0. From its definition, the Ricci scalar (0.2) depends on theneation coef-
ficients, which in turn are based on the metric. Working withlar perturbations,
choose the conformal Newtonian gauge (5.13) such that thlarscurvature of the
3-space hyper-surfaces is expressed as

R® = %VZD
a

Where D is the perturbed potential from the metric. We denbtas thecurvature
perturbation of the curvature scalar. Recall from the transformation (&)

D — D+ He

that D is not a gauge-invariant variable. We proceed by the construdfangauge-
invariant curvature scalar.
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Lemma 5.12. Scalar field fluctuations¢ transform as
8¢ — 8¢ = 8¢ — €D, h0 (5.14)
wheregy is the non-perturbed background field.
Proof: Recall that a general perturbation of a figli defined as
5 (x) = ¢(x) — ¢o(x) (5.15)

wheregy is the unperturbed background field. The fluctuations t@nsts

36(%) = 6(%) — ¢o(&)
The scalar field is as always invariagt(§) = ¢(z)), while z — z + e. Hence
36(%) = ¢(x) — o + €) = ¢(x) — do(x) —€" Do
~———
3o (x)
Were we used thatis infinitesimal and expandet},. [
Definition 5.13. Theco-moving curvature scalais defined as

0¢
au QSO

R=D+H (5.16)

Theorem 5.14. The co-moving curvature scalar is gauge-invariant

Proof: _
0¢
a/L ¢0

R—-R=D+H

using (5.15) and (5.7) we find

R=D+He + L((W —°9,00) =R
a;ﬂbo

O

5.6.2 The power spectrum ofR

We proceed by deriving the expression for the spectrum ofthmordial curvature
perturbationsPr (k). With the definition of the spectral index, it is possible &rform
comparisons between theory and observations.

The co-moving curvature scalar can be expressed in ternhe &low-roll parame-
tereg,:

R = (1 + EST)];(S¢]€

where¢ and H are now “normal” time dependent quantities. See [11] for itk
derivation of this expression. In the SRA,s considered to be very small, so we
approximate

R~ E(S(ﬁk
¢
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The definition of the power spectrum (5.1) yields
k3 k3 H\2
2 _ v 2_ v (= 2
B(h) = 55 Ral? = 55 () 160w
This expression is to be evaluated at an initial time usudilysen a few Hubble times

after horizon crossing. See [9] for further details. The pospectrum of the perturbed
scalar field was derived in (5.3):

2409 = (57)

The power spectrum is then

H\2/H\?2
AZ (k) = [(7) (7) } 5.17

R( ) ¢ 2T k=aH ( )
whereA% is now evaluated at the horizon crossing- a H. Using the conditions that
H? ~ V and¢? ~ ¢, the power spectrum is expressed in terms of the potentéal an
slow-roll parameters:
V2

Esr

A% (k) ~ (5.18)

5.6.3 FromRto Vv

We did not explicitly show that the perturbing potenti#dsnd® are negligible during
inflation, but mentioned that the co-moving curvature sozda be expressed as

¢

In other words: During the time a mode with wave numberosses the horizofk is
determined entirely by the inflataft But what happens t& when inflation ends, and
¢ vanishes?

It can be shown [8] that after horizon crossing,

3
R=—--U
2

R is aconserved quantitfp, R = 0, see [8]) when the perturbations leaves the horizon.
This means that it is possible to relaie coming out of inflation tod¢ at horizon
crossing. Thus, fluctuations in the inflaton field during itifla gives rise to metric
perturbations after inflation, see figure (5.6.3).

5.7 The Spectral Index

Section goal 5.7.1.Define the spectral index and estimate its value.
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R

Horizon Crossing Inflation ends

Figure 5.1: The co-moving curvature scafaiis a conserved linear combination bf
anddo

5.7.1 Introduction

We are now naturally interested in trying testthe theory of inflation, and this is
performed by comparing theory with experimental data. ftidtagives two general
predictions:

» The fluctuations in the inflaton field gives rise to scalatymdations in the met-
ric after inflation, which seed the large scale structuraestae observed CMB
temperature anisotropies.

* The tensor perturbations give rise to (yet undetected)itgtéonal waves.

So, did inflation occur or not? The only way to decide is by rueiag the properties of
the perturbations that inflation generates, that is, we teeddcide the power spectrum
A% (k) experimentally.

5.7.2 The spectral index

In the regime of the slow-roll approximation, the fiejdand the Hubble parameter
H ~ V vary little. This implies that the power spectrum of the @itre perturbation

is almostscale invariantof &, and all the scales of cosmological interest will cross
the horizon rapidly during inflation. This gives the physicanditions little time to
modify the perturbations, so it is viable to assume a spetthat follows a power-law
behaviour

A% (k) oc k™t (5.19)

wheren is thespectral index General inflation models predict tha < 1, while
complete scale-invariance would impby = 1. A spectrum idlat if n, = 1. Taking



5.8. CONCLUSION AND PREDICTIONS 61

the logarithm on both sides results in:

dln A%
dlnk

X ng — 1
motivated by this, we introduce:
Definition 5.15. Theeffective spectral index (k) is defined as

dln A2
na(k) = 1= o

For an intervalk with n(k) constant, this definition equals our assumption (5.19).
ns(k) can be described by the slow-roll conditions alone.

ng = 1 — 6egy + 27, (5.20)

A nice and exact derivation of this expression can be foufitEjt The spectral index is
an important quantity to measure; an obserwed< 1 but close to 1 would strengthen
the theory of inflation. We quote a statement from [9]:

’ Inflation predicts that the variation of the spectrum is $imen intervalAIn k ~ 1

5.8 Conclusion and predictions

We conclude the theoretical part of the thesis with a set edlistions. These will be
pursued in the following chapters.

Conclusion 5.1. The fluctuations of the inflaton fiefdare nearly Gaussian and isotropic.

Conclusion 5.2. The power spectrum is near scale-invariant; ~ 1, and the fluctu-
ations are equally strong on all scales.

Conclusion 5.3. The conserved co-moving curvature scalarenables the quantum
fluctuations in the inflaton field to give rise to scalar mepg&rturbations after infla-
tion.

Conclusion 5.4. In effect, inflation predicts that, will be close to but less than one
(ns =1- 6687’ + 27757’)'

Conclusion 5.5. Only one variable is needed to describe the initial condisidrom
inflation: The spectral index.

In the end, we have come to understand the primordial spactfuthe energy
density fluctuations during inflation, apdimary goal 1 has been completed.
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Chapter 6

Evolving the universe

In the previous chapters we've been preoccupied with therétieal aspects of infla-
tionary physics.PG1 was completed during chapter 5, and observational prediti
from inflation such as thepectral indexn, was established. The intermediate steps
between inflation and the universe today are important topcehend, as different
physical effects will shape the main observable in cosmgltge cosmic microwave
background. This chapter is more phenomenological than the previodsfaliow-

ing chapter, and is intended to give a brief introductionhe most important post-
inflationary cosmological events. Interested readersavised to look up chapter 4-8
in [8].

Unless otherwise stated, the contents of this chapter exhas [8].

6.1 Introduction

Section goal 6.1.1.Establish the Boltzmann equation and initial conditions tfoe
perturbed metric.

In the previous chapter, the epoch of inflation was treatedw,Nafter inflation,
the inflaton fieldy has regained its vacuum state, and left a perturbed meiri& Y
in a radiation-dominated universe. The evolution of theyrbed metric decoupled
into three independent components, tleetor component that rapidly decayed, the
tensorcomponent that resulted in gravity wave production andstte@ar component
that eventually seeds the perturbations in matter density.therefore the scalar per-
turbations that are of our primary interest.

6.1.1 The Boltzmann equation

In order to understand the anisotropies in the cosmic Hbigidn of photons and the

inhomogeneities in matter distribution, we need to decidéhe equations that govern
the evolutions of these energy components. The correctovdgduce these equations
is through the unintegratdgioltzmann equation

df (t,x,p,p)

SBE — cf) (6.1)
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The Boltzmann equations describes the evolution of thegiitity distribution f, of

a specific particle type around positiarat timet with momentunmp. Equation (6.1)
then says that the number of particles in this phase spasmi@bange unless there
are collisiongC[f]. In chapter 5, the scalar perturbations in the metric wefiaeld as
¥ and®, whered® was the spatial an@ the time-like perturbation. The Boltzmann
equation needs to be solved in this perturbed RW metric faraaticle typesphotons,
neutrinos, baryons (including leptonahd dark matter A proper derivation of the
Boltzmann equations can be found in [8].

The Boltzmann equation for photons

An important step when deriving the Boltzmann equation fatpns is the assumption
that the photon distribution is perturbed. This small perdtion is named, such that
the perturbed photon distribution can be expressed as

R p

f(@,t.p.p) = exp {T(t)(l + O(z,p,t)) }

This perturbation can be expanded in a series of sphericadmics® ~ »°,  ©;Y,
namedmultipoles. These multipoles (and the photon perturbation) will imntine
identified with the anisotropies in the cosmic microwavekgaound, that is© ~
AT, whereAT is the deviation of the observed average temperaturefmdphotons
collide via Compton scattering, which when energy dersigiee high “smooths” the
anisotropies, resulting in negligible multipoles highlkarn 2 as long as photons are
coupled to matter. The complete equations can be found in [8]

The Boltzmann equation for matter

The Boltzmann equations for matter are derived in the sammneras the Boltzmann
equations for photons. When deciding the partial diffeedstithis time higher-order
terms of velocities likep? /c? are neglected. This means that free streaming is sup-
pressed in massive fluids, and higher multipoles can be ctegleCold dark matter is
collision-less, which results in collision-less Boltznmaequations. Ordinary baryons
do however collide via Thompson scattering, which will grise to extra terms in the
equations. The complete equations can be found in [8].

6.1.2 Evolving the primordial power spectrum

Recall that the primordial power spectrum of the metric ymbration ® is assumed
near-scale invariant (see chapter 5). These perturbatidheventually give rise to
energy density anisotropies, and in the end define the aofses in the observed
power spectrum of the cosmic microwave background. Thetilse power spectrum
of ® can then be expressed as
_ prim 9 D1 (a)

Pa(k.a) = PY™ (k) 75T () =
whereT' (k) is theTransfer function and.D;(a) is theGrowth function. The9/10-
term arises from when the universe goes from radiation taendbmination, as de-
rived in [8]. The transfer function describes the effectduiced by evolving from a
radiation to a matter dominated universe, while the growticfion describes how the
matter perturbations grow during late times.
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Gravitational and radiation pressure

Figure 6.1: Radiation versus gravitational pressure

Two physical effects that impact the power spectrumgaesritational attraction
andradiation pressure (see figure 6.1). For a near-homogeneous fluid of photons, an
over-dense area will experience photons streaming away tine overdensities while
and under-dense area will experience photons streamioghatarea (see figure 6.2).
The equations that govern this effect is that of a harmomisaillator. This will induce
sinusoidal oscillations in the power spectrum, first on $reedles (first to cross the

Underdensity /_\ Overdensity
Overdensity Underdensity
Overdensity
Underdensit

Figure 6.2: When a mode enters the horizon, causal effecis lopgrating on the
corresponding scale. Energy will flow from overdensitiesitoler-dense areas, until
the under-dense area has become over-dense. The cycleusmti

horizon) and later on larger scales. However, includinyigyathe effect is altered
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significantly. Gravitation is attractive, making the streag from overdensities less
effective (see figure 6.1). In addition, photons has a tecygémescape (free-stream)
on smaller scales. This will in turn damp the power spectrumsmall scales. The

harmonical oscillator thus becomes driven and damped. Teeten the angular

power spectrum of the CMB will be investigated in the follogichapter (see figure
7.5).

6.2 Post-inflationary events

Section goal 6.2.1.Introduce the different epochs of the universe. State thet o
portant effects.

6.2.1 The radiation-dominated epoch

When inflation ended, the universe was radiation dominatedvir®y the Friedmann

equations for a radiation dominated universe, the scaterfdecomes proportional to
Vt. As the universe expanded, the radiation dominated epstedaintil the energy
density of matter equaled the energy density of radiatign This epoch had notable
effects on the observed power spectrum. Most notably, thenghrco-moving horizon

began to grow, and small-scale Fourier modes of pertuniafiell within the horizon,

enabling causal contact. This in turn gave rise to acoustidlations as mentioned in
the previous section.

The Meszaros effect

The Meszaros effect describes the decaying gravitatioegligation® during the
radiation dominated epoch, and states that the growth ofemaverdensities were
logarithmic(D;(a) ~ lna) . This was due to the high radiation pressure, which ef-
fectively prevented clumping of matter. In the followingagiter, we will explicitly
show how these effects modify the angular power spectrurheotbsmic microwave
background.

6.2.2 The matter-dominated period

As the universe expanded, the energy density of radiationd ¢ —*) eventually was
surpassed by the energy density of matigy, (x «~3). The epoch this occurred is
calledequality. Now, the universe became matter-dominated, and the grofiithe
scale factor became proportionaltd®. This happened abo@ 000 years aftet = 0,
where the radiation pressure now dropped significantly ghooiprevent further decay
in ®. Thus, matter density perturbations began growing stegddportional to the
scale factor D1 (a) ~ a), enabling clumping of matter.

The Sachs-Wolfe effect

A notable event during this epoch was when the energy densiphotons became
less than the binding energies of electrons and protonbliagahe creation of neutral
atoms. At this stage, photons stopped interacting with kbetr@n-proton plasma, en-
abling free-streaming. This is known@scoupling and happened around= 380 000

years. The free-streaming photons defines the cosmic maswackground we ob-
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Cold f Overdense area

e g g T

‘Warm / Underdense area

Figure 6.3: Warm and cold spots in the CMB map correspondsadiemdensities and
over-densities, respectively. This is due to Bechs-Wolfeeffect; that photons trav-
elling from an over-dense area needs to escape the gramahpotential well, losing
energy.

serve today. When these photons left an over-density, théytdalimb a potential
well ¥ and therefore lost energy. If these photons were in an utelesity, they cor-
respondingly gained energy. This effect is called Saehs-Wolfeeffect (see figure
6.4). The observed CMB today is therefore a combinatio® &f ¥, where cold areas
correspond to overdensities and warm spots to under-tensee figure 6.3).

6.2.3 The cosmological constant-dominated period

The universe today is believed to be dominated by a cosneabgonstani\. The en-
ergy density of\ is constant, and is coupled to the divergent energy denkitgauum
(see chapter 2). As the universe expands, there is incogdasitore vacuum and hence
more vacuum energy. We've seen that vacuum energy exerdiveegressure, which

makes the universe expand exponentially. The scale famtiaytis therefore nearing
Hot
an~ e .

A notable effect in the cosmological constant dominatedensk is the integrated
Sachs-Wolfe effect. When photons free-stream through aetsgy they enter and
leave gravitational wells. The overall shift in energy fremtering and leaving these
wells are cancelled as long as the wells are constant, whitlfeicase with a matter-
dominated universe. This is however not the case for a caggiuall constant-dominated
universe, where the gravitational potential will decaytesuniverse expands exponen-
tially. This means that photons might enter the gravitatigrotential well (and gain
energy), but then the potential decays as the universe lEcdominated by a cos-
mological constant. The photon thus gains extra energychwiiéfines the integrated
Sachs-Wolfe effect (ISW) (see figure 6.4). The (late-tim&)4&ffect is an important
observable when determining whether a universe is in a clogjical constant domi-
nated epoch.
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Doppler effect

| Integrated
, Sachs-
Wolfe

Last Scattering Surface

Figure 6.4: Three observable effects: The Sachs-Wolfecieftee Integrated Sachs-
Wolfe effect and Doppler shift.

6.3 The geometry of space
Section goal 6.3.1.Explain how different geometries affect observables

We know from general relativity that freely falling partd follow geodesic curves:
paths that locally minimize lengths. The equations of motian be obtained from the
geodesic equation

(uhy, + I‘Zﬁuo‘)u” =0

whereu is the geodesic curve. Using = %2 -2 one obtains the equation of motion
for a particle

it TE %3 =0

Flat, spherical and hyperbolic space

If the space-time metric is flat, then the connection coeffits vanish and a particle
will follow a straight line: #* = 0. In a curved space, a free particle will follow
the curves of the space. When observing two free propagaéirtgcles in flat space,
their world lines will stay parallel. If the space is sphatigheir paths will eventually
converge before oscillating back and forth. In a hyperbspiace, the particles diverge.
From equations (2.1), this corresponds to a RW line elemé&htiv= 0, £ = 1 and

k = —1, respectively.
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Two particles propagating in flat space Two particles propagating on a sphere
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Figure 6.5: Two particles propagating in flat space and spdiespace

Two particles propagating in hyperbolic space

Figure 6.6: Two particles propagating in hyperbolic spadkdiverge

Measuring the geometry of space

Assume the size of the particle horizon at recombinationthedistance to the last
scattering surface is known. It is then possible to deteentire geometry of space
from the angular size of the horizon. The observed powertgjpaowill be scaled to

larger or smaller scales, regarding whether space is opelosed. This will affect the
angular power spectrum, shifting the graph left or right.
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Flat space Hyperbolic space Spherical space

Figure 6.7: Areas observed in a hyperbolic space will appesller than reality, and
areas observed in a spherical spaced will appear larger.

Current observations indicate that the universe is nearildtthis is only valid if
the Hubble parameter is accurately determined té& be 0.72 + 0.08, where H, =
100A?(km/s)/Mpcs [10].

6.4 Chapter conclusions

Conclusion 6.1. Inflation sets up the initial conditions for the perturbat®in the
metric (&, V).

Conclusion 6.2. The universe after inflation has gone through three majorchpo
Radiation dominated, matter dominated and cosmologicaktant dominated. Each
epoch affects the growth of matter perturbations in difiérgays.

Conclusion 6.3. The cosmic microwave background was created when the phden
coupled from baryons at,... The CMB anisotropies observed today is a combination
of © + W, whereO is the perturbation in the Boltzmann equation for photons.
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Chapter 7

The angular power spectrum

7.1 Introduction

While the previous part was concerned with theoretical aspEdhe evolution of the
universe, we now shift focus to more observational matt@tsge cosmic microwave
background (CMB) anisotropies was established in chaptebé a screen shot of the
anisotropies in the photon distributiéhat a.,. In addition, the Sachs-Wolf effect ex-
plained how the photon’s wavelength was shifted as theliey out of dense/under-
dense areas. In this chapter, we define the tools needed faimgawith the CMB,
and present the standard method of projecting the anisegdmm the sphere onto a
1-dimensional representation, thegular power spectrum

We begin by defining the cosmic microwave background (CMB)ng the most
important experimental data for testing cosmological nidé&/e then relate the CMB
power spectrum to different observables described in tegigus chapter, and end
with a short introduction to the numerical software neededifita analysis.

Unless otherwise stated, the contents of this chapter edbas [8] and [17].

7.1.1 The cosmic microwave background

Section goal 7.1.1.Define the cosmic microwave background (CMB).

We have explained how the quantum fluctuations in the infléitdd gave rise to
the initial conditions of the metric perturbations afteflation. This was a radiation-
dominated period, and the (scalar) metric perturbatione gae to the density inho-
mogeneities observed today.

Definition 7.1. The cosmic microwave backgroun¢iCMB) is an observable near-
isotropic gas of photons resulting from the time when phetamd baryons decoupled
(T = © + ¥ ~ 3000K). This period is called theecombinationera.

The current average temperature in the CMB toda3.18 K, and is steadily de-
creasing due to the expansion of the universe~( 1/a). The anisotropies are due
to the density inhomogeneities initialized by the scalatypbations, as seen in the
previous part.
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7.1.2 The Mollweide projection

The CMB map is defined on the surface of a 2-spliérén order to be able to visualize
a spherical map in flat two dimensions, we need to decide oitab&iprojection from
S? ontoR? that minimizes loss of data. One such projection is define¢derfollowing
way:

Definition 7.2. TheMollweide projectionM (), ¢) : S* — R? is defined as

. 1,20+ sin(20) T
M(A,¢) = ! ;
(A 9) (sm ( m 2\/50050)
wheref = sin"'(y/v/2), (), ¢) are the spherical coordinates on the sph&feand
(x,y) are the Cartesian coordinates in the plaRé. The Mollweide projection sacri-
fices fidelity to angle and shape in favor of accurate depictibarea.

(LLLAAAA%)
N\

Figure 7.1: An example of a Mollweide projection, create€ir+ by the author. The
topmost image isota map on the sphere, and shows the effect of how adap R
would transform.

7.2 CMB analysis

Section goal 7.2.1.Define the standard methods for CMB analysis.

7.2.1 Spherical harmonics

As in the case with the perturbed inflaton fiéld and the Boltzmann equations, it is
useful to decompose the CMB map into Fourier waves with waeeles. The mathe-
matically inclined reader will recognize the following tirem’s importance
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Theorem 7.3(Stone-Weierstrass)An algebraA of continuous real-valued functions
on a compact metric spack that separates points and does not vanish on any points
isdensen C(X). By dense, we mean that any arbitrary open interval'iX') can be
described by the algebra.

Applications of the Stone-Weierstrass-theorem inclutes=purier transforma-
tions: Any real-valued functiorf : R — R can be expanded as a set of wave functions,
the wave functions ardensein C(R). We are interested in decomposing a function
defined on the 2-spherg: S? — R. The wave-equations on the sphere are defined
from Laplace’s equation

V3 =0

and its solutions’,,, are the well-knowrspherical harmonicsfunctions. They are
the analogue to the complex exponenti@l” defined orR, and are described by two
quantum numbers: the modés Z* andm € {—¢,—¢+1,...,0,...,0 —1,(}.

Definition 7.4. Thespherical harmonicsare defined as

20+ 1) (I —m)! ,
Y[m(e’¢) _ \/( 4"7’; ) El " :%IPZ”(COS Q)ezm(b

whereP;" are theassociated Legendre polynomials

We state a corollary from Stone-Weierstrass:

Corollary 7.5. Letn = (0,¢) € S%. Then any bandwidth limited map : S*> — R
can be expanded in spherical harmonics

lmaw

¢
T(n) = Z Z o Yorm (1) (7.1)

=0 m=—4

where the expansion coefficients are given by

Ao = /s2 T(n)Yy, (n)d2 (7.2)

Definition 7.6. The “mode numbers? andm are the analogue of the wave mokle
We denote differerfte Z* asmultipoles ¢ = 0 is called themonopolemomentf = 1
thedipole ¢ = 2 thequadrupoleetc.

A useful formula for deciding the relation between the otssdangleof the skyd
and the multipole in degrees is

180°
Z ~

(7.3)

7.2.2 The angular power spectrum

In chapter 5, thegpower spectrunwas defined (see equation (5.1)). It describes the
amplitudeof the fluctuations as a function of ttsgale There exist several kinds of
power spectra:

* Ps4(k): The power spectrum of the fluctuations in the inflaton field.
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Figure 7.2: The spherical harmonics for= 4 andm = {0,1,2,3,4}, from top-
down left-right respectively. The images are created witbta program written by
the author.

* Pg(k): The power spectrum of the fluctuation in the metric, indubgdthe
fluctuations in the inflaton fieldPg (k) is assumed to be initially scale-free (near-
constant), see chapter 5.

e Ps: The power spectrum of the fluctuations in the matter dengitich also
evolves with the universe.

The angular power spectrum is similarly defined:

Definition 7.7. The angular power spectrummeasures amplitude as a function of
wavelength, and is defined as an average oxdor each?:

14
1 2
C@ = 2674-1 m;é |azm| (74)

Note that the averaging is only well-motivated if the mailisl isotropy. This
means the spherical harmonics coefficients must be independent.

7.2.3 Gaussianity

Assuming that the spherical harmonics coefficients foll@av&aussian distribution,
thenall statistical informationwill be encoded in the coefficients. This requires the as-
sumption that the isotropies in the CMB are due to quantuntufiions in the inflaton
field during inflation (see page 43).

Definition 7.8. The Gaussian distribution faty,,, is given by

1 _lag,|?
P(azm)zme 20,

In this case, the angular power spectrum is\thdanceof the expansion coeffi-
cientsay,,. See section 7.5 for an introduction to Gaussian distidmstand likelihood
analysis.
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7.2.4 Theoretical and observed spectrum

When measuring the cosmic microwave background, we arerp@rfg an experiment
at one specific point in space-time. Theoretically, an efdenf data measured from
several points in space-time should be gathered beforagiwngr. Practically, the mea-
surements would have to be performed either in other gadaatid/or over an interval
of a few hundred hundred years. Needless to say, this isadiple right now. We are
therefore stuck with onlpneobserved CMB map, the one measured from Earth.

Definition 7.9. Given a specific CMB map, the angular power spectrum
1 4
é = m 2
T ot ;Z [aem]
is theobservedower spectrum of a specifiealization

Definition 7.10. Given an ensemble of CMB maps, we defineetisemble-averag®

be ,
o= (5751 X lunl)

From a given set of parameters, the cosmological softwackage CAMB generates
an ensemble-average angular power spectriinas output.
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Figure 7.3: A logarithmic plot of the angular power spectroha simulated\C D M
model (creating an ensemble of maps) compared with obsemAP data (error
bars for both noise andy)

Notice how the error bars in figure 7.3 grow in size when negfia: 0. This effect
is due to thecosmic variance
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7.2.5 Cosmic variance

The CMB observations measure the different valueg'pffor a given multipolef.
When small/ describes large angles across the observed CMB sphere.(8e€ar-
relations between such large angles are hard to deterngribeee is only one sky to
measure - therefore thencertainty(or variance) in the measurements for sntais
large.

Example 7.11. When interested in measuring the quadrupole morhen®, equation
(7.3) shows tha0° of the sky is required for determining one realization. Thhere
are 360°/90° = 4 different areas in which to extract data from, resulting irhigh
cosmic variance.

The dipole moment is usually omitted, because our galaxyasgimg through the
local universe. This will red-and blue-shift half of the CMiBap, resulting in a signal
that is identical with the dipole. The dipole moment was firegasured by George
Smoot [19] in 1977. For largef, there are more correlations from smaller angles on
the map to average over, and the variance is reduced. Natieettie error bars in
figure (7.3) are reduced dsincreases. When the observed angle is smaller than the
measuring devices can handle, the error increases again.

Figure 7.4: The “evil eye” dipole momelf = 1,m = 1) is hard to measure

Proposition 7.12. Thecosmic variances given as

[ 2
\ Var(C'g) = %74—10@

Proof: We have not yet developed the tools for performing fhibof. Se section
7.4.2 for completion.

7.3 Interpreting the angular power spectrum

Section goal 7.3.1.Explain how different physical effects modify the angulawer
spectrum

In chapter 6, we described how physical effects during tlckatin and matter-
dominated phases of the universe would modify a power gpectiVe now give ex-
plicit graphical examples.
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7.3.1 Acoustic oscillations

In the previous chapter, we discussed how density periorizgave rise to acoustic
oscillations (see figure 6.2). These oscillations werergivg a damped, driven har-
monical oscillator. The driving was a result from gravityepenting de-clumping of
matter, while the damping was caused by diffusion of photmmsmall scales. Dur-
ing the radiation dominated epoch, the small scales werri¢o cross the growing
co-moving horizon, so the acoustic oscillations startedasusmall scales. As the
horizon grew, increasingly larger scales fell within theihon, and started oscillating.
The acoustic oscillations should be tinest notableffects in the angular CMB power
spectrum.

Figure 7.5 is a descriptive schematic graph of a simulatetpeal, driven harmon-
ical oscillator. This is what we should expect the angulavgrospectrum to look like.
Compare with the theoretical power spectrum fromAl@&DM-model in figure 7.3.

Angular power spectrum evolution
120 T T T T T T T

éarly agesI
Middle ages
100 Late ages 4
80 E
=
+
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OI f‘/ \
40 / ‘\‘ I\ E
[
O 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Scale (1)

Figure 7.5: A driven, damped, harmonical oscillator in éhstages. Notice the simi-
larity with the observed CMB angular power spectrum. Cre&ieC++ by the author.

7.3.2 The geometry of space

In section 6.3, it was explained how the geometry of spaectffthe measurements
(see figure 6.7). In a closed universe, an observed area lkesihan the actual area
- shifting the angular power spectrum to larger scales)(léft an open universe, an
observed area is larger than the actual area - shifting thalanpower spectrum to

smaller scales (right). See figure 7.6.

7.3.3 The spectral index

As seen in chapter 5, inflation sets up a near scale-free plial@ower spectrum with
ns = 1 — 6eg + 214, such thatPs (k) oc k™~1 ~ constant. But ifn, deviates
significantly from1, then the tilt of the power spectrum will change. This can be
observed in figure 7.6.
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Figure 7.6: Three universe models: th€DM (red line), a lown, universe (green
line), an open universe (blue line)

7.3.4 The baryon density

The baryon density has a significant effect on the angulaepspectrum. The baryons
are responsible for setting up the pressure forces, driviagscillations. Increasing
the baryon density will decrease the frequency of the a@oostillations, because
massive particles are slower than relativistic particlEise massive baryons decrease
the acoustic sound waves. In addition, an increase in batgosity will increase the
effect of gravity, boosting the “drive” in the harmonicalodkator. This will make the
odd acoustic tops taller, and decrease the even tops. See Tigu

9000 T T T T T T T T

LCDM ——
8000 - High Baryon
Low hubble parameter
7000 R

6000 |- / \ g
5000 ‘ \
4000
3000
2000

CI(1+1) in millikelvin

1000 b/
0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
|

Figure 7.7: Three universe models: th€DM (red line), a low-Hubble parameter
universe (blue line), a high baryon universe (green line)

7.3.5 The ISW-effect

The integrated Sachs-Wolfe effect is notable in a cosmo#dgionstant-dominated
universe. As seen in the previous chapter, a photon emitted the last scattering
surface will travel through a landscape of gravitationaieptial wells. If these wells
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are constant, the overall shift in energy will cancel. Tkisiot the case in a universe
dominated by a cosmological constant where space expapdsmentially, decaying
the potentials. This happened during tate stages of a universe, therefore lange
scales. The plateau before the first acoustic top in the angolver spectrum is most
affected by the ISW effect, see figure 7.3. In a matter-dotethaniverse, this top is
much lower than in a late-staggCDM-universe.

7.4 Simulating data

Section goal 7.4.1.Describe a method for simulating data. Present results fsomu-
lations.

7.4.1 Introduction

It is sometimes interesting tsimulatea data set based on a theoretical model. This
data set can then be used in a parameter estimating procestetmine whether pa-
rameters are detectable with more accurate data. We nowtwidbscribe a method
for generating data based on an assumed cosmological mbBilst, the parameters
that describe the cosmological model must be decided. $Hiddlowed by feeding the
parameters into CAMB, creating a theoretical power spettru

The next step is deciding which probability distributiow tthata follows. The sim-
ulated data will be calculated by drawing stochastic vaestirom this probability
distribution. In section 7.2.3, the expectation value eftiamperature fluctuations was
mentioned to be zero, and that the fluctuations (or expartefficientsay,,) follow
a Gaussian distribution. This enabled the definition ofahgular power spectrur@,
of the temperature fluctuations (eq 7.4).

7.4.2 They? distribution

In order to decide how, is distributed, we need to determine h@fnz_e lagm|? is
distributed. As theu,, follows a Gaussian distribution;, will follow the distribution
of the sumof the squareof Gaussian distributed variables.

Proposition 7.13. If a; aren independent, Gaussian distributed random variables with
mean 0 and variance, then the random variable

n
_ 2
C= g a;
i=1

is distributed according to thg? distribution with » degrees of freedom.
Definition 7.14. The? distribution for a continuous, stochastic variablec R* is
defined as

. _ 1 n/2—1_—x/2
f(ac,n) - 2n/21—\(n/2)x €

wheren is thedegrees of freedoniThe? distribution has expectation value) = n
and varianceVar(z) = 2n.
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Summing from—/, ..., ¢, the angular power spectrum h2%+ 1 degrees of free-
dom. Butay,, is a complex number containing a real and an imaginary paith b
following a Gaussian distribution. This results3(2¢ + 1) degrees of freedom. But
the temperature mdp is a real map, imposing constraints on the coefficieptssuch
that the net results &¢ + 1 degrees of freedom. Summarized,

* The expectation value of the angular power spectrum istberetical power
spectrum:{C;) = C;

» The expectation valugr) of thex? distribution with(2¢+ 1) degrees of freedom
is(z)=(20+1)

* The variancéVar(z) of the 2 distribution with(2¢ + 1) degrees of freedom is
Var(z) = 2(2¢0+ 1)
Proof of the cosmic variance

In section 7.2.5, the proof of the cosmic variance was onhitééd/e proceed by pre-
senting a small proof. For stochastic variableandy wherey = bz, it is true that
Var(y) = Var(bx) = b*Var(x). We find

Var(Cy) :Var(ﬁ Z[: |agm|2) _ (%;Hf\/ar( ZI: |a£m|2)
m=—t m——

4

Assuming that,,,, are Gaussian distributed
1
Var(z lagm|?) = 16’?4(% +1)

where the Gaussian distribution has been normalized.tingewe obtain

1
20+ 1

and proposition 7.12 has been proved.

C2

)21024(2” P
4t P

Var(Cy) = 2(

7.4.3 Method

Using the knowledge presented in the previous section, esepit a method for simu-
lating a theoretical model.

« Calculate a theoretical power spectra}ﬁ”‘”y using CAMB
» For eaclY in the power spectrum:

- Draw ax? random variabler with (2/ + 1) degrees of freedom

- We observed thatr) = (20 + 1), such that(x)/(2] + 1) = 1. Let the
simulated data point be calculated as

1

Csim — . Cthcory
! ST

- Calculate the error iC;"™ via the cosmic variancey/Var(C;'™) =
2/(2l+1)C,
- OutputVar(C5™), £ andC;"™ to file
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Implementation

We present a selection of a progrd@enerateData” developed by the author that
implements this methodps contains the theoretical powers spectrum,contains
the simulated datasigma calculates the cosmic variance agchchi generates g2
distributed random number with(2/ 4 1) degrees of freedom.

for (int 1=1;1<2000; |++) {
double s = abs(sigma(l))*(ps[l]); // Cosmic variance
doubl e chi = genchi (2. 0+l +1);
xi[1]1= chix(ps[I])/(2x]+1.0);
fs << | <<" " << xi[lI] <<" " << 5 << endl;

7.4.4 Results

An example of a simulated data set withdata points is shown in figure 7.8.
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6000 B
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1000
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Figure 7.8: A simulated data set (red) compared with thertigal power spectrum
(blue)

7.4.5 Simulating a map from a power spectrum

Having calculated the power spectrum from a simulated ebkeof maps, it is quite
a straight-forward technique to convert the spectrum tosaali spherical map. A
program which does this is HEALPIx. If the coefficients,, is known, one can easily
find a simulated CMB realization by

Lmax L

T(n) =Y > amYm(n)

=0 m=—¢
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-3.500E+02 I TN +3.500E+02

Figure 7.9: An example of a simulated map, created from aréieal AC DM power
spectrum generated by CAMB

7.5 Likelihood analysis

Section goal 7.5.1.Give an introduction to likelihood analysis.

It is important to test theoretical models given a samplefiganation, as in the
case with cosmology. For instance, CosmoMC walks a MontdéoGealk through
the parameter space that is used for creating a power specthis theoretical power
spectrum (generated from the CAMB modules included in Cad@)is tested against
various data - WMAP, Supernovae data, etc. This “testing” dehagainst a sample
configuration of data is callelikelihood analysisin which the likelihood describes
the probability that a certain set of data is created from a given model. KeéHood
function is spawned frorBayes’ theorem

Theorem 7.15(Bayes’ theorem) Let A and B be stochastic events. Then

P(A|B) P(B) = P(B|A) P(A)
———

posterior evidence likelihood prior

Definition 7.16. The likelihood function is the probability for the occurgenof a sam-
ple configurationi = {z1, ..., z,, } given a probability density (x;; p;) with theoretical
model parameters;, or

P(d|]0i) = E(Pi)

Corollary 7.17. Given a constant oflat prior, then the likelihood function is propor-
tional to the posterior:

P(pilw;) o< L(pi)

When estimating parameters, we are interesting in maxigntria posterior proba-
bility. Corollary 7.17 says that in order to maximize the {go®r, we need tonaximize
the likelihood

7.5.1 Gaussian likelihood analysis

We begin by defining the normal (Gaussian) distribution:
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Definition 7.18. The probability distribution
1 (@—m)?
x,U,0) = e 202
f(@,p,0) oot

is called thenormal distribution N (1, o) with meanu and standard deviatios.

An important theorem in statistics follows:

Theorem 7.19(Central limit theorem) Given a set of stochastic variablés; } fol-
lowing a probability density with meam and variances?, the sum of the stochastic

variables .
X=) X
i=1

is N (u, o/n)-distributed.
Assuming thatf is Gaussian,

1 _(@i—py)?

202
/ 2
27r0pi

e i
such that the likelihood function can be expressed as

f(xi;Pi) =

1 7(9”1,*;1,)2

L(xi;pi) = Hf(xi§pi) = H
i 7 ,/271’0‘12)1_

A way to interpret the likelihood function is as follows: Asae the model parameter
p; equals the sample configuratien Then the likelihood probability gets a value of
e” = 1, which means that the data fiierfectlywith the model. The worse a model fits
the sample configuration, the closerttthe likelihood probability gets.

7.5.2 Maximizing a Gaussian likelihood

It is often simpler to work with the natural logarithm of thi&dlihood, or thelog-
likelihood. We find

—2log L(xs;pi) = Z [@2;721%)2 + hlg}i}

Di
For what model datg, is the probability maximized? We differentiate to find
d (w; — po)
—2—1 =0= 2——=
e ogL=0 zl: =
which means

dpg

OZZ(mi—po) :in_N'pO
Po = %Z%

?
In other words, the most probable model value for a Gausssartuition is the average
over the data.

d (zi — po)
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7.5.3 Cosmological model testing

We are interested in comparing CAMB-generated theoreticalels against our “per-
fect” simulated data. As seen, a perfect data set (like thergg¢ed HW universe model)
follows a2 distribution. Thus, the assumption from the previous secshows that

given a theoretical model with power spectrﬂ]‘ﬁe‘”y and a “perfect” simulated sam-
ple configuratiorC;*™, the likelihood function is given as (see [20])

£o<H
Im

e~ laem|?/ (207" TY)

theory
(jl

When summing over then, the log-likelihood can be rewritten as [20]

theory sim
: C
~2log Lz pi) = (20 +1) | In ( i) ey 1 (79)
14

L

which is the log-likelihood we will use when modifying CosM@ to include a set of
“perfect” data.

7.6 Software packages

Section goal 7.6.1.Give an introduction to the most common cosmological saéwa
packages

7.6.1 CAMB

CAMB is an original acronym for “Code for Anisotropies in tihdicrowave Back-
ground”. It is a software bundle created Aptony LewisandAnthony Challinor{21]
and can be downloaded fredlpm http://camb.infa/ It is written in FORTRAN, and
calculates a theoretical power spectrum from an ensemb@®MWB maps generated
by a few cosmological parameters. The main numerical msthisdd in CAMB are
based on the original paper by Uros Seljak and Matias Za#tgy who developed an
improved method for calculating CMB power spectra [22]. CB originally based
on CMBFAST developed by Uros Seljak and Matias Zaldarriaga.

7.6.2 CosmoMC

CosmoMC (Cosmological Monte Carlo) is a software bundlgtemiin FORTRAN

by Antony Lewisand Sarah Bridlethat explores the cosmological parameter space
using a Markov chain Monte Carlo method. The software engp@gMB modules

to calculate the theoretical angular power spectra, angl tirgelikelihood function to
compare data with theoretical models. The time spent e8tigvé parameters by brute
force grid integration scales exponentially with while the MCMC method scales
linearly ind. Markov chains have the property that they always convergestationary
distribution. Markov chains are forgetful, they do not renfeer their past, and the
next position is only dependent on the current position.d@amwalkers are a typical
example of Markov chains.
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The Metropolis-Hastings algorithm

The core of CosmoMC is based on the Metropolis-Hastingsrighgo. When releas-
ing n random walkers from a common initial point indadimensional flat space, the
histogram of the walkers will fon — oo converge to a-dimensional Gaussian distri-
bution with increasing variance. In other words; unretgdc‘drunk” random walkers
will generate a Gaussian distribution. Adding the Metrigélastings algorithm en-
sures that the random walkers widllow a specified distribution, they no longer are
“drunk”. In CosmoMC, the “random walkers” ambulate througltosmological pa-
rameter space, guided by thieelihood function Hence the walkers afercedto con-
verge to a distribution specified by the likelihood functiofhe Metropolis-Hastings
algorithm can be summarized as follows:

« Initialize walkers at random positions ifidimensional parameter space. A sin-
gle walker is denoted = {po, p1,.-.,pd}-

» For a given walker’s parametgy, decide whether it should consider going left or
right in parameter space; = p; + s weres is A P; or —Ap; by 50% probability.

e Calculate the likelihood functiof ;4 atp; andL,,c., atp; + s.
e If Lojg < Lnew then accepp; immediately.
* Else calculate a probability for accepting the new step$9aiL,1q4/Lew-

« Repeat for all parameters for all walkers until walkersvarge to a distribution.

Mechanics of CosmoMC

Let P, denote the parameter space aftateps. The algorithm CosmoMC employs is
summarised as follows:

Initialize P, at random positions in the parameter space.
Call CAMB modules for determining a theoretical powerctpem C; with .

Calculate the likelihood functiofi(P) betweenC; and different data sets.

A w0 dp PR

. Decide a new set of random parametBrsusing the assumed input parameter
distribution andP,.

5. Call CAMB modules for generating a new power spectrdfrusing P;, and
calculate a new likelihood (P; ) by comparingC] with data.

6. Use the Metropolis-Hastings algorithm to decide whetioeaccept this new
point P; in the chain or not using (Py) andL( Py ).

7. If step is accepted, update parameter distributionso Apglate failure status if
not accepted.

8. Go to step 2 until the distributions converge.

The first samples are affected by random initial paramegerd,are usually omitted.
This is namedourn-in time, and CosmoMC usually needs to omit 1000 of its first
samples. The chains eventually converges to their statiahistribution.
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Likelihood contours

If two parameters are successfully estimated and cortklgtieir confidence contours
should resemble those of figure 7.10.

0095 01 0105 011 0115 012 0125
€

Figure 7.10: Parameter estimation &2, with 68% and 95% confidence contours.

7.7 Chapter conclusions

Conclusion 7.1. The CMB anisotropies are decomposed into spherical harosoni
Assuming that the fluctuations are Gaussian, one sumsweTd obtains the angular
power spectrum.

Conclusion 7.2. Following ax? distribution, the angular power spectrum encodes all
statistical information about the distribution of anisopies if the coefficients,,,, are
Gaussian.

Conclusion 7.3. The shape of the angular power spectrum is determined taretiff
physical effects: Whether the universe is open/closedahgn density, the cold dark
matter density, the cosmological constant, energy comgai@ninance, etc.

Conclusion 7.4. The x? distribution is used to create simulated data from a given
theoretical model.

Conclusion 7.5. Likelihood analysis is used to to test a theoretical modelagt data.
We have established a log-likelihood in equation 7.5 fongsperfect” data.



Chapter 8

Paper review

This chapter is devoted to investigating papers concermangs-Planckian effects in
the primordial power spectrum. Wittians-Planckian we mean effects that occur
when gravity becomes non-negligible and Minkowskian quantield theory breaks
down. Even though the underlying physics at the Planck dsajet unknown, it is
still possible to determine a genesédteration on some observables from the trans-
Planckian effects. In our case, the intense curvature @esgithe Planck-scale renders
the inflaton vacuum non-trivial. This results in a postulateodifiedprimordial power
spectrum, no longer scale-free but dependent on two newngdeas: the slow roll
parametek,, and a Planck-cutoff. This modulation representsgenericform for
how trans-Planckian effects modify the primordial poweectpum, and will be used
in the following chapters.

8.1 Introduction

During the inflationary phase in the very early universe njuim gravitational effects
are expected to modify the primordial power spectrum. As $se¢he previous chap-
ters, the primordial fluctuations are the seeds for the #moigies in the CMB and the
large scale structures we observed in the universe toddy. thierefore possible for
cosmological observations to shed light on Planck-scaysiph [7]. The difficult part
is separating the primordial density fluctuations from trespnt-day observable power
spectrum, which will be shown in the following chapter.

The idea from [23] and [24] is that the primordial power spaet becomes mod-
ulated at Planckian scales. We do not know exaathatkind of new physics appear,
whether it be stringy ones or unknown, but it will follow a geit pattern: the inflaton
vacuum becomes nontrivial. The standard calculation ofpmturbations produced
during inflation is based offat-spacequantum field theory, and initial conditions on
¢ are imposed in the infinite past (see chapter 4 and 5). In eh&pive saw how the
vacuum of a scalar field become nontrivial in a curved spatervgravity no longer
can be neglected, as is the case during early inflation. Thiker the primordial
power spectrum with a factor dependent on three paramétgrsnde,,. such that

P0_>P0'f(ka§7€sr)

89
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8.2 Note on inflation and trans-Planckian physics

Section goal 8.2.1.To establish a modified power spectrum of the inflaton fluzinat
that includes trans-Planckian oscillations.

This paper [23] byJIf H. Danielssorconsiders the influence trans-Planckian physics
has on the primordial power spectrum. A practical “toy”-rabd considered, such that
analytical solutions are possible. In the end, the ambgaiih the choice of the vac-
uum will give rise to effects with a magnitude of the ord&f A, whereA is the cutoff
scale for new physics.

8.2.1 Introduction

This section is devoted to the study of the adiabatic vacollmstart off with a scalar
field ¢ in an inflating RW metric. From (4.1) we found that the field lees as

é+3Ho— %(v%) =0 (8.1)

for a zero potential. In terms of co-moving modes and con&btime in Fourier space,
we found this to equal (4.13)

a
pi + (k2 - —)uk =0
with the conjugate momentum

oL ,
m=—=u —H
k ok

The author argues that the Heisenberg picture is the mogén@nt to use when quan-
tizing the system. The field is then quantized:

i) = o (o) +al 4 (0)

with the conjugate
k

mn) = =iy 5 (ax(m) = al ()

8.2.2 Bogoliubov transformation

The author then proceeds by performing a Bogoliubov-t@nsétion of the raising
and lowering operatorésee definition (4.6) The purpose of this transformation is
to fix the oscillators atux(19) = axo While the Bogoliubov-coefficients remain time-
dependent. As stated earlier, we need to decompose thenfiejobsitive and negative
frequency components before defining the creation and sandm operators. Hence

ar(n) = uk(n)ago + 1;(7;)aT_k0

and

a' ,(n) = up(n)al o +v* (n)ako
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The modesy;, and its conjugater;, are now expressed in terms of the B. coefficients.
Define

fr(n) = i (uk(n) + v;’i(n)) (8.2)
and

() = /5 () — i)
such that

u(n) = fe(mao + fi(mal
and

me(n) = —i(gr(n)aro — QZ(U)GT_;CO)
We check by insertion that this is true foy:

e (n) = filmano+fii(n)al o = ;@wm@m»mﬂﬁuﬁwwwwim

which equals
1 ; L/ . 1 ;
() = 5z (wearotve(mal i )+ 37 (wi Mal o rvimare) = /5 (ax(m+al ()

8.2.3 The adiabatic vacuum

The author continues by discussing the choice of vacuumyatieum in the Minkowski-
metric is quite different from a vacuum in a curved spaceetids we saw in chapter
2, symmetry transformations in the flat Minkowski-metriaresponds to conserved
currents. A transformation of a vacuum in curved space doesoessarily result in a
vacuum. In curved space-time, particles might be createdidated by the effect of
curvature.

It is stated that a reasonable vacuum candidate iadfebatic vacuum:

a(k,n0)[0,m0) = [0,7m0) =0
where this corresponds to a class of vacua depending.drfor this particular choice,
a(k,70)10,m0) = (i (n0)a(k, 10) + v(no)a’ (k,10) ) 10,170} = 0

The first term is zero by definition, but the second term do¢stomatically vanish;
hence

vk (o) =0

With this condition, we see that

gr(n0) = k fr(n0)

The conjugate momentum is then simplified as

Tk (10) = ikpk(10)
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8.2.4 Interpretation of the adiabatic vacuum

In the ideal situation, there would only exist a unique dé&bniof the vacuum in the
infinite past and the infinite future. The time evolution oé tinitial vacuum will not
necessary generate the final vacuum, and will give rise tatiore of particles (see
chapter 3). The author argues for the adiabatic vacuum,teeeigh it is not a solution
of the exact field equation, it does corresponddmechoice of vacuum. The adiabatic
vacuum isnot unique but depends an However, in de Sitter space, it happens that
the finite order adiabatic vacuum obtained in the infinitet pasresponds to an exact
solution of the field equations, and is therefore distinigeds[15]. When the modes are
small enough, they are not affected by the (slow) expandidimecuniverse.

There are however also other vacuum choices, like the mimimuocertainty dis-
cussed in the paper. The author then argues that these vagweees to zeroth order,
and it is only in zeroth order that the expansion of the uisigean be ignored, and the
ambiguities are removed.

Note thatthe distinction of various vacua only becomes importantesiwe insist
on imposing the choice of vacuum at a finite time correspantina energy on the
Planck scale Any claim about the structure of the vacuum above the Placele re-
quires knowledge of physics on this scale. Since this kndgéds not yet available,
one can only list various alternatives.

The author continues by deriving a general expression feraetlz order adiabatic
approximation, and the solution of a mode equation coirscigdieh the choice in the
previous section. Hence the vacuum used will be the zeralbr@diabatic vacuum.
8.2.5 The modified primordial power spectrum

The author proceeds by deriving a modified primordial povpectum

Py = (%)2(1 — %sin (%)) (8.3)

For a proper derivation of this expression, see appendixde the following facts:

A signifies the energy scale of where new physics occur (theeRlkscale, stringy
scale etc)

* WhenA increases, the oscillations fluctuate with higher freqiesnas the am-
plitude decreases.

e The original primordial power spectrum (5.3) is regaindtewA — oo

8.3 Can MAP and Planck map Planck physics?

Section goal 8.3.1.To enable the modified power spectrum to possess more familia
parameters

This article [24] byLars BergstrémandUIf H. Danielssoris a follow-up article of
[23]. It explains how to modify the postulated power spettigiven in equation (8.3)
to possess more familiar parameters. The paper startsvirfiggh review of the setup
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of the modified power spectrum and the physics behind. Theduottion discusses a
class a vacua depending gi and when), — —oc, the Bunch-Davies vacuum (see
page 46) is restored. This means it is done at a fixed scaleg fiwtd time, and the
physics willbe independent of time

8.3.1 Whatto look for

In this paperDanielssorandBergstrémdevelop a series of relations between the Hub-
ble parametef, the cutoff scale\ and the slow roll parameteg,., using two auxiliary
parameters and-~y. For a thorough derivation of these relations, see appeddit/e
now definethe Planck-scale cutoff:

Definition 8.1. The Planck-scale cut-off is defined to be proportional to the reduced
Planck-mass:
A=+yM,

wherey ~ 0.01 and M), = 1/v/8nG is thereduced Planck mass
Definition 8.2. Let¢ be

£

H _aVEsr
= = ~4.0-1074 2 8.4
A M, v @4)

Example: the Horava-Witten model

The authors refer to [25] for an introduction to tHerava-Witten (HW) model. Here,
unification occurs roughly at the same time a fifth dimensieodmes visible. As a
rough estimate, the author seéts~ 2 - 1016GeV, and corresponds tg = 0.01. The
Hubble constant during inflation is restricted b~ 7 - 10!2 GeV, corresponding to
€sr ~ 0.01. Using (8.4), we find

€ ~ 0.0004
A 1
Tkmge—wlelnkz (8.5)

which means one oscillation fmgarithmicinterval ink. The authors claim this should
be visible in high-precision CMB observation experiments.

8.3.2 Predictions for CMB measurements

The authors continue to parametrize the primordial powecspm using,, andé =
H, /A, whereH, is evaluated at some particular scale whierdeaves the horizon.
This results in a modified:

H kN —esr

7= <(5)

and enable the authors parametrizehe power spectrum (8.3):

Plear,&,k) = Po(k) (1 - g(%) " sin [% (%)]) (8.6)

where Py (k) is a scale-invariant spectrum. The authors argue that usingtead
of v is advantageous because it is a small parameter that cartrbpaated to zero
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(& ~ 0.0004 in the HW case). The trans-Planckian effects will have arbsaovable
small amplitude in this limit.

The possible variation of,,. is limited by the normalization of the observed tem-
perature fluctuations, so effectively one can choose tordetige effects as being a
oneparameter family of modulating functions, with amplitsdéetermined by.

8.4 Chapter conclusions

We have seen that trans-Planckian effects in the powerrsippectin be expressed as in
equation (8.6), where

Conclusion 8.1. The oscillations in the primordial power spectrum are calbg a
nontrivial vacuum for the inflaton field [23, 26]. The oscilans modify the primordial
power spectrum as given in equation 8.6.

Conclusion 8.2. ¢ is the ratio of the Hubble parameter to the scale where trans-
Planckian effects start, and is chosen tode=~ 4 - 10~*\/e_ /7. v is the scale

of the Planck-mass where trans-Planckian effects occutjgchosen to be = 0.01.

€sr 1S the slow-roll parameter, restricted t01 in our model.



Chapter 9

Trans-Planckian effects

9.1 Introduction

In the previous chapter, we saw how trans-Planckian effaetsupposed to give rise
to agenericmodulated primordial power spectrum. In this chapter, wgirbby sum-
marizing the most important work done on this field, befor6qrening independent
investigations. We will argue that some of the claims from tommunity might be
overly optimistic.

9.1.1 Generic effects

In [23], UIf H. Danielssonconcludes with the following statement:.*. effects of
trans-Planckian physics are possibly within the reach sftamogical observations
even though much more detailed calculations are requireate@ra definite statement”.
Equation 8.6 describes agenericexpression for how trans-Planckian effects would
modify the primordial power spectrum. As seen in the presicapter, these oscilla-
tions are supposed to be caused by a nontrivial vacuum fanfllaéon field [23, 26]. As
the oscillations are expected to contribute to the energgite this could change the
way the universe expands. In a worst-case scenario, théontiay phase could be de-
stroyed. In [26],Danielssonnvestigates this possibility, and concludes that the kbac
reaction is under control and fully consistent with inflatiavith a slow roll found to be
completely dominated by the vacuum energy given the paemisuggested in [2]".

9.1.2 WMAP data and trans-Planckian effects

Earlier data analysis [27] concludes that no significanhalig) from trans-Planckian
effects were found in the CMB. Another analysis [2] claimattthere are some weak
hints in the current data, and these indications have bestigtely stronger with the
WMAP3 data compared to earlier claims by the same authors [A8,29]. The pa-
rameters implied by the data suggests oscillations in anddithat are periodic in the
logarithm of the scale of the CMB fluctuations, just as pretidrom trans-Planckian
physics.

Another paper [7] is less optimistic, and concludes that ‘it is unlikely that a
trans-Planckian signature of this type can be detected iB @Ml large-scale structure
data”. We will follow this line, and show that the current WMB3ata doesiot give

95
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valuable constraints on the slow-roll parameter and Plat&ff scale using MCMC
methods.

9.1.3 Simulated data and trans-Planckian effects

In [1], Jerome Martinand Christophe Ringevaliscuss the so-callezbsmic variance
outliers, i.e. points which lie outside thr cosmic variance error. These outliers are
considered interesting as the probability of their preséaazery small [30]. The au-
thors mention that it has been envisaged that the outliarkldme a signature of new
physics, even though the cosmic variance could be resgerfsifitheir presence. The
conclusion of [1] is that there exist statistical justificatfor a presence of oscillations
in the power spectrum.

Opposing this claim, the conclusion of [7] is that transrleldan effects in CMB
and LSS data are in principle sensitive to modulations inptti@ordial power spec-
trum, but that is practically impossible to make a positiegedtioneven in future high-
precision data This has to do with theatureof the oscillations, “ .. the value of the
likelihood function is extremely sensitive tand¢”. But what is meant by “extremely
sensitive” is not mentioned in [7]. We will later show exjiiexamples ofvhyandhow
this sensitive likelihood function means trouble, and whig renders the underlying
MCMC method in CosmoMC useless.

9.2 The nature of the oscillations

Section goal 9.2.1.Investigate the properties of the oscillations. Verify Wladidity of
the modified code.

From now on, we let denotec,..

9.2.1 Introduction

We continue by investigating the properties of the osadfa in the primordial power
spectrum. CAMB was modified to include two new parameteesstbw-rolle and the
Planck-cutoffé. See appendix A for details on these modifications. We ptesérst
run of CAMB with the modulated power spectrum as given in thevipus section.
Recall from section 8.3.1 that the modulating parametetkérHorava-Witten model
are¢ = 0.0004, v = 0.01 ande = 0.01. This results in a slightly modified power
spectrum, see figure 9.1. A table with the remaining parameiged for this model is
given in table 9.1. These values will be used throughouthbsis.

Definition 9.1. Let AC, denote the difference between a modulated and a non-medulat
power spectrum.

Notice how little the modulated power spectrum deviatesftbe original. Figure
9.3 is more clear on this.



Parameter Value Description
Oy h? 0.022 Baryon density
Qeamhb? 0.12 Cold Dark Matter density
T 0.04 The optical depth
g 0.99 The spectral index
log[1019A,] 2.3 | The amplitude of the primordial power spectry
Q, | 0.71020 Cosmological constant energy dens
Age/GYr | 13.592 Age of the universe in this mode
Hy 70 The Hubble constant today in this mod

w -1 The equation of state = wp

Table 9.1: Parameter values used for the simulated model.
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Figure 9.1: Logarithmic plo = 0.0004, v = 0.01 ande = 0.01
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Figure 9.2: Logarithmic plot = 0.0004, v = 0.01 ande = 0.01
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9.2.2 \Verifying the code

The next thing we do is verifying that the modifications arerect, and this is done
by reproducing data from [7]. Compare with figure 9.5 from, [@hd note that the
modified code generates results in correspondence with [7].
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Figure 9.4: Ratio of modulated to unmodulated power spattar ¢ = 0.0004, v =
{0.01,0.003} ande = 0.01. Compare with figure 9.5 from [7].
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Figure 9.5: Modulated power spectra foe= 0.01, v = {0.01,0.003} from [7].
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9.2.3 \Verifying logarithmic oscillations

In chapter 8, it was predicted that the modulated power specivould exhibit small
oscillations, about one for each logarithntic When plotting figure 9.3 logarithmic,
it is clear this is the case (see figure 9.6). In [1drome Martinargues that these
oscillations could statistically be accounted for by thero variance outliers.

ACqy -~
0.002 ) .
. . j i
§ ' | \ ' ““\‘ .f \
S (0N o , ' N ! ‘\‘ . VT
| ’ ) [
0.002} AR
/ N/
-0.004 . . .
0 2 4 6 8

Figure 9.6: Ratio of modulated to unmodulated logarithnower spectrum fog =
0.0004, v = 0.01 ande = 0.01. Notice that there is approximatelyoscillation pr
logarithmick, as predicted in chapter 8.

9.3 Behaviour of AC for e and &

Section goal 9.3.1.Determine how variou§ ande modulate the angular power spec-
trum. Explain how the modulations are ill-tempered, and give rise to problems
when estimating parameters.

We have seen how the nontrivial vacuum gives rise to smalillaisons in the
power spectrum, but we have not yet analyzed the behavidhesé oscillations. The
solution to understanding the problem with the oscillaidia in their behaviour. By
varyinge and&, two movies were created in order to visualize the erratidllagions.

e : http:/firio.co.uk/projects/thesis/epsilon.avheree € [0.001,0.03].

¢ : http:/firio.co.uk/projects/thesis/xi.avihere¢ € [0.0001, 0.0006].

At the first impression, the oscillations are frantic ando%s” the stationary power
spectrum several times at chaotic intervals. This is thé dign that the parameter
estimation will not be a simple process, as there seems tevaead values fog ande
that fit well with the original input values. As mentioned ifi,[this will have severe
impacts on the likelihood function. The exact likelihooah&tion will be investigated
and presented later.
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9.3.1 The behaviour ofAC; for varying ¢
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Figure 9.7: Modulated power spectra for = 0.01, ¢ =

{0.0001, 0.000406, 0.000985, 0.0019} (blue line) versus the HW-model (red line).

The cutoff parameteg has two impacts on the modulations in the angular power
spectrum, as seen from the movie (see figure 9.7). Firgtjrasreases, the frequency
of the oscillations in the waves decrease. This means tlghgstows down” when
£ increases, making it simpler to determine an upper cutato8dly, theamplitude
of the modulations increase witf) all up to¢ = 1 Hence for a small value o,
the amplitude in the modulations are small, buttagrows, the amplitude grows as
the frequency decreaseThe convergence for largeis discussed in the following
subsection.

Convergence ofAC; for large &

From figure 9.8, we see that a very lgwill result in almost no modulations. The
amplitude of the oscillations continue to grow, until a nmaxim amplitude difference
of 1. As ¢ continue to increases, the amplitude of the modulationgagndowered to
a steady zero. This can also be seen from equation A.1, as

Blim Bsin(2/B) =1

Hence for constant, the primordial power spectrum becomes scale-free foel&rgs
¢ « B. Physically, this means that the Harrison-Zel'dovich midial power spectrum
is restored when the cutaffgoes to infinity.
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Figure 9.8: Difference betweehC' DM and the modulated HW modet:is fixed at
0.01 while ¢ € {0.00001,0.001, 0.1, 10}.

9.3.2 The behaviour ofAC, for varying e

ACYy varies withe in much the same way as wigh but in a more chaotic manner. The
likelihood should hence be even more non-systematic, ddwishown in the end of
this chapter.

Convergence frome

Thee parameter’s impact on the power spectrum behaviour is rit# ga nice as that
of £&. While ¢ for large values makes the power spectrum modulations cgeve zero,
we see from figure 9.10 that this is not the case:-fdt seems that for large values qf
a single peak is prominent. We will later see how this afféoésparameter estimation
success foe.
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9.4 Parameter estimation using WMAP data

Section goal 9.4.1.To show that WMAP data does not give constrainis amde.

TheWilkinson MAP (WMAP) experiment provides a satellite-based measurement

of the cosmic microwave background. The WMAP and 3-year eeMi& MAP3 data

are still the most important observational results for dateing cosmological param-
eters, thus enabling us to determine which of today’s th@alemodel fits best with
results. TheAC' DM model is still standing strong, as can be seen from standard p
rameter estimation [30, 31]. CosmoMC is equipped with thesetWMAP data and
likelihood code, ready for use. We now modify CosmoMC tould the two auxiliary
parameterg ande, and see if WMAP data alone can give constraints on these.

9.4.1 Whatto expect

When plottingAC; (figure 9.3) versus the error bars in the WMAP data, it is cleat t
the constraints 0§ ande will be poor (see figure 9.11). The error bars in the WMAP
data are approximately 1-2 orders of magnitude larger thamptedicted modulations
in the angular power spectrum. The error bars are smalleandiog ¢ = 6 (or £ =
400), but are still about 50 times larger than the predicted rfaddd spectrum. This
should effectively rule out WMAP for detecting trans-Plaiackeffects especially for
low ¢ in the CMB anisotropies, as supported by [7] but opposed]to [1

1000 , , ,

WMAP Error bars
800 - Cosmic variarlce — -

600 |- I

400 |~

ACII+1)
in uK

200 -

-200 ] ] ]

Figure 9.11: Ratio of modulated to unmodulated logarithpower spectrum fof =
0.0004, v = 0.01 ande = 0.01. The red bars are the error bars in the WMAP data,
while the green graph is the cosmic variance. Notice thattbeéulations in the power
spectrum are much smaller than either.
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9.4.2 Results

We let all parameters except = —1 to be allowed to vary. WMAP data was con-
strained with

» HST: Hubble Space Telescope constraint, ensuringffhat 724+8(km/s)/Mpcs.

e Mpk: Matter power spectrum constraint, using the Sloan Digiley Survey
galaxy catalogue.

* Age Tophat Prior: Only models withl0Gyr < Age < 20Gyr were allowed.

The convergence criterion (See the CosmoMC documentajpas settdh — 1 <
0.02, but was never achieved: a#i values of¢ ande were allowed, no convergence
occurred.

Both € and ¢ free

Figure 9.13 The run time was approximétdays, and as seen from the platlt ¢ and
¢ are allowed. This was already predicted in the previoud@®gcas the variations in
the modulated power spectrum were much less than the enrtte WMAP data. It is

also the conclusion of [7].

o1 o1y 012 1085 104 1045 1.05 01 020
an [ B

0.5F

0.45F

0.41

0.351

0.3r 095 1 105 3 81 32 33
: n, log[10'° A]

W 0.25F

0.21

0.15f

07 o075 oe 135 135 13.7 138 139 0z 025 08
2, )

0.1r

0.05F

or
0.02 0.021 0.022 0.023 0.024 07 075 08 085 11112 1.4 116 11.8 5568 70 72 7 76 76
€ % Zre o

Figure 9.12: Likelihoods foe, £. The right-hand side correspondst&f’ (inner) and
95% (outer) confidence contours. Compare with figure 7.10. Nwte the right-hand
figure of marginalized probabilities that all other paraengtconverge nicely, whilg
ande remain near uniform (undetermined). Orgyseems to have a low limit. The
left-hand figure contains 68% and 95% confidence contours.

¢ free

Letting e = 0.01 and¢ € [0.0002,0.0006], we see from figure 9.13 that it is not
possible to determingfor any peak around the original input parametet 0.0004.
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Figure 9.13%¢ € [0.0002, 0.0005] with initial value&, = 0.0004.

e free

Letting ¢ = 0.0004 ande € [0.001,0.3], we see that it is not possible to determine
for any value around the original pealo1.

Figure 9.14: € [0.001, 0.3] with initial valueey = 0.01.

9.5 Increasing accuracy

Section goal 9.5.1.Enabling CAMB to perform more accurate calculations.

In their papers [28, 290 artin andRingevalclaim that it is necessary to increase
the accuracy of the power spectrum used for deciding tréarscRian effects. Also,
the results in [7] are partly due to the inaccuracy of CMBFASBIE predecessor of
CAMB. We boost the accuracy of the calculated power spectimoneasing run time
and accuracy by a tenfold. This is done by modifying the patans in CAMB. This
was not an option in the old version of CMBFAST, and was newsfgomed in [7].
The three parameters are:
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1. accuracy_boostIncreasing this parameter will decrease the time stepegus
morek-values. Sett@, defaultl.

2. |_accuracy_boostinternal variable, increasing will ensure that more teare
kept in the hierarchy evolution. Set 2o defaultl.

3. |_sample_boostincreasing the variable will increase tbe values for interpo-
lation. Set ta2, defaultl.

9.5.1 Results

The parameters used to produce figure 9.18 are given in tahle 9

accuracy_boost

Setting accuracy_boost &y we decrease the time steps and incréasalues used.
The effect on the oscillations are seen in figure 9.15. Thiarpater seems to modify
the amplitude and general form of the modulation.
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Figure 9.15: Boosting accuracy: increasing accuracy_tboos

|_accuracy_boost

Setting |_accuracy_boost &y we keep more terms in the hierarchy evolution. The
effect on the oscillations are seen in figure 9.16. This patanseems to have little
impact on the form of the modulations, except small modiiicet in amplitude.

|_sample_boost

Setting |_sample_boost fy we increas€’,-values for interpolation. The effect on the
oscillations are seen in figure 9.17. This parameter seeimv®a great impact on the
form of the power spectrum, as the larger oscillations arepmsed of several smaller
ones.



9.5. INCREASING ACCURACY 109

0.004

T T
Non-accurate
0.003 Accurate

0.002

0.001

\Delta C_\ell
o

-0.001
-0.002

-0.003

-0.004 I I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

scale |

Figure 9.16: Boosting accuracy: increasing |_accuracgsbo
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Figure 9.17: Boosting accuracy: increasing |_sample_thoos

Maximum accuracy

When let all three parameters be boosted : accuracy boosacedracy boost =
|_sample_boost = 2. The results can be seen in figure 9.18.
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Figure 9.18: The ratio of modulated power spectrum with low high accuracy, all 3
parameters boosted.
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9.6 Parameter estimating with simulated data

Section goal 9.6.1.Determine whether trans-Planckian effects are detectaifitle fu-
ture data. Describe the difficulties with doing so.

In our cosmological model, we have a set of parameters{{,, Q2,., w,...,&, €}
where¢ ande are the trans-Planckian parameters. What we now wish to dodkfyn
CosmoMC to enable model testing against simulated datedadstf theWMAP data.
This is done by replacing the original WMAP likelihood codettwmodified perfect
data likelihood code. The trace of this progress can be fetiagppendix A.

9.6.1 Adding “perfect” data to CosmoMC

In chapter 6, the algorithm for simulating a data set giverodehwas described. The
author created a small utilitfGenerateData”, that generates simulated data given a
model power spectrum. We now wish to generate a “perfect get with only cosmic
variance as uncertainty.

In theory, this means one must gener&te— co simulated sample data sets before
averaging, but this will only resultin a sample data set #uatalsthe theoretical model
power spectrum. This is indeed what is done, and the reguiample data set for
the HW model is stored in “hwmodel.dat”. This file is then @gpinto CosmoMC'’s
WMAP directory. The parameters used for the (flat) model arergin table 9.1.

9.6.2 Verifying the likelihood code

We proceed byemovingthe WMAP likelihood code in CosmoMC. Instead, a “perfect”
data set is added and likelihood code based on 7.5 is includé&drun the modified
CosmoMC job with fixed: and¢ parameters in order to verify that the new likelihood
code works. Observe from figure 9.19 that the likelihood aedelts in relatively good
fits, with most parameters withinZr error. The marginalized mean values are given
in table 9.2.

Notice from table 9.2 how is off mark, and how the amplitudé is neatly esti-
mated. When replacing the likelihood code, we removed adl datl code concerning
polarization. Therefore; cannot be properly estimated.dsandr are degenerate (they
both modify the amplitude).

Parameter Input value Mean value 68% interval | Status
Qyh? 0.022| 0.229053E-01] [0.226171E-01, 0.232458E-01] < 1o
Qeamh? 0.12 | 0.115912E+00 [0.113144E+00, 0.118420E+00] < 20

T 0.04 | 0.228972E-01] [0.100000E-01, 0.253712E-01] < 20

N 0.99 | 0.100671E+01 [0.998136E+00, 0.101679E+01] < 1o

log[1019 A ] 3.13| 0.299447E+01 [0.297254E+01, 0.301722E+01] < 30
N 0.71020| 0.739006E+00 [0.725345E+00, 0.754143E+00] < 30
Age/GYr 13.592| 0.134236E+02 [0.133608E+02, 0.134796E+02] < 20
Hy 70 | 0.729904E+02 [0.716617E+02 0.744625E+02] < 20

Table 9.2: Results from the modified CosmoMC with fixed 0.01 and¢ = 0.0004.
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Figure 9.19: Results from the modified CosmoMC with fixed 0.01 and¢ = 0.0004

9.7 Estimating parameters for the HW universe

Section goal 9.7.1.Use CosmoMC to reproduce the HW parameters with “perfect
HW data

9.7.1 Introduction

We now wish to see if the modulations in the HW power spectram loe detected
with CosmoMC. We use a “perfect data set” created with the Hilameters and try
to see if CosmoMC is able to reproduce the original pararaétande. This might
be problematic, as the modulations are described by a ratfaatic oscillation. The
convergence criteria was set ib— 1 < 0.02, but neithere or £ properly converged
to a stationary value. We will shortly see that this is dueh® montrivial likelihood
function of¢ ande.

9.7.2 Setup

The following initial conditions have been set up:

- A“perfect” data set with only cosmic variance has beenteetan “hwmodel.dat”,
representing the simulated data from a HW universe modegjysi= 0.0004, ¢ =
0.01. The standard model parameters used for creating the dadeesksted in
table 9.1.

- CosmoMC has been modified as in the previous section to @ssithulated
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“perfect” data for likelihood testing instead of WMAP datall éther constraints
like SN data, Age Tophat etc are removed. Only the modifiesglilikbod is used.
9.7.3 Resultsi free

We present four different CosmoMC runs, in order to empleasiz observed effects.
The initial conditions, and step lengti\¢ on e and¢ are given as follows:

- Runl: Conditions fog are:&, = 0.0004, ¢ € [0,0.04], A& = 0.00001.
- Run2: Conditions fo€ are: &, = 0.0004, ¢ € [0.0002, 0.0006], A& = 0.000005.
- Run3: Conditions fog are:&, = 0.0004, & € [0.0001,0.0015], A = 0.00005.

Run4: Conditions fo€ are:&, = 0.0001, £ € [0,0.01], A& = 0.0005.

€ remains constant with valug01.

First of all, notice from figure 9.20 that there is some disagnent with the correct
estimation oft. Run2 peaks arourt@515 - 10~3 with a2 within the input parameter,
while Run2 peaks d.978-10~2 and getsso within the input parameter. Run3 doesn’t
seem to converge, while Run4 has several different pealspatameter estimation of
¢ is severely dependent on selected initial conditions agpl Ieingth. This is a major
indication that¢ doesn’'t modulate the power spectrum in any nice way, as@jrea
seen in section 9.3. If so, then the standard MCMC method faiconverge to any
stationary distribution, and becomes highly dependeniirali parameters and step
length in order to converge to a local minimum. This is mdetlif what is observed
in Run4, a step length was chosen such that the chains staneérging to another
minimum in the likelihood landscape.



9.7. ESTIMATING PARAMETERS FOR THE HW UNIVERSE 113

Figure 9.20: Top left: Results for Runl with mean peak.ars - 10~3. Top right:
Results for Run2 with mean peak@b15 - 10~3. Bottom left: Results for Run3 with
no peak, almost uniform distribution. Bottom right: Resuibr Run4 with several
peaks. Notice how the peaks don't match, where the red lipesents the original
input parametet = 0.0004 for the simulated data.
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Figure 9.21: The remaining free parameters are estimatedatly. This plot shows
the marginalized likelihoods for Runl

9.7.4 Resultsie free

We present three different CosmoMC runs, in order to empbhadkie observed effects.
The initial conditions, and step lengtihe on e and¢ are given as follows:
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- Runl: Conditions fore are:ep = 0.01, € € [0,0.3], Ae = 0.008.
- Run2: Conditions fot are:¢y = 0.01, € € [0, 0.05], Ae = 0.0002.
- Run3: Conditions fot are:¢p = 0.01, € € [0, 0.5], Ae = 0.02.

- £ remains constant with value0004.

Again we note that there is a total disagreement with tharalgnput parameter and
the estimated parameters. Only Run2 came with@@ a&orrect estimation, all other
failed by a factor of ten. The MCMC method produces diffeneasults for different
chosen step lengths and parameter intervals, which agalesrthat the likelihood
function for varyinge and¢ are ill-behaved.

Figure 9.22: Top left: Results for Runl with mean peak.a2. Top right: Results
for Run2 with mean peak @ 037. Bottom left: Results for Run3 with mean peak at
0.101. Notice how the peaks don’t agree for different step lengtiiere the red line
represents the original input parametet 0.01 for the simulated data.
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Figure 9.23¢ is fixed at0.0004 while ¢ varies betweef and0.3.

9.7.5 Results: Both¢ and € free

In the simulations where bothande were free, no convergence occurred whatsoever.
All the distributions turned out grotesque, with no appaf@aussian likelihoods. The
run time on 24 processors was aborted after 4 days, with a&coovergingR — 1 ~

100. See figure 9.24 for the results. This again reflects theutaedehaviour of the
likelihood function for varyings ande.
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Figure 9.24:¢ € [0,0.1] with A¢ = 0.00007 ande € [0,0.5] with Ae = 0.02. Notice
how the distributions never converged.



116 CHAPTER 9. TRANS-PLANCKIAN EFFECTS

9.8 Explaining the results

Section goal 9.8.1.Determining the exact likelihood function for continuoasying
¢ ande. Convince the reader why the MCMC method fails.

We have seen that parameter estimatirande didn’t turn out quite as expected.
In the first parameter estimation f we found a peak located at within3a of the
original input parameter. When changing step lengths, wed@new peak withio.
But when increasing the step length even further, we fourtd hear-uniform likeli-
hoods and likelihoods with different peaks. The same goes fdifferent step lengths
results in different estimated parameters. Clearly tresmmething wrong with using
the MCMC method here.

Earlier in this chapter, it was shown that the oscillatiorestaghly erratic, as seen
in figure 9.10 and 9.8. Recall that the MCMC algorithm is bagsedandom walkers
transversing a parameter space. Together, the walkers apaedistribution, which
then is marginalized (projected) onto one dimension: theupater distribution of
interest. As a walker ambulates, it's probability to susfelty move is dependent on
the likelihood function. If a varying a parameter smoothi\anges the corresponding
graph in a well-behaved manner, the likelihood functiontifiat parameter would most
likely turn out Gaussian around the original input valuet Bthe parameter varies the
likelihood function in a disordered manner, the likelihdadction will be a landscape
of local and semi-global peaks. This means that there esisral values of ande
that will result in similar graphs as generated by the inmrameters. We will show
that this is indeed the case foande.

9.8.1 Detailed likelihood analysis

In order to convince the reader that the MCMC method for tinisl lof modulations is
highly incorrect, we present a “proof”. What does the exdatlihood look like for the
two parameters without sampling from the remaining confian space? We created
a brute force script program that did exactly this - variecand¢ with medium step
lengths, used CAMB to determine the theoretical power spetand calculated the
likelihood between theory and data.
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The exact likelihood function for varying £ and e
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Figure 9.26: Likelihood fo€ € [0.0002, 0.0025] with correct maximum a¢ = 0.0004

Figures 9.10 and 9.8 show a highly irregular oscillationvarying parameters -
and the exact likelihood should reflect this property. Thaults in figures 9.25, 9.26
and 9.27 are convincing. It is clear that the exact likelthéunctions, especially for,
are very hard to match exactly. In order for random walkeigite a nice distribution
around the correct peak, one needs a close initial condiéiggood parameter interval
and a suitable step size. Without this, the walkers wouldttepped” in any of the
other minima, semi-global or local.
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Figure 9.27: Likelihood foe € [0.01, 0.5] with correct maximum a¢ = 0.01

9.8.2 2D exact likelihood landscapes

A different version of the batch script was created to geteegigwo-dimensional ver-
sion of thee-¢ likelihood landscape. Figure 10.1.1 consistd & x 150 points, and
took about 24 hours to compute on a single-processor. Fiya8eis ad0 x 40 zoom of
10.1.1, and emphasizes the ruggedness of the landscapeoifbet maximum likeli-
hood value is marked with a red circle. Both plots shewwn £, such that theninimum
of the graph corresponds to a best-fit valuefande.
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Log-likelihood

Figure 9.29: A zoom of the — ¢ likelihood function—L£ on a40 x 40 lattice. The
exact value is marked with a red circle.



Chapter 10

Conclusions and outlook

10.1 Summary

We have investigated whether general trans-Planckiantefiie the cosmic microwave
background are detectable with today’s and tomorrows’.dgt& has been done in the
following manner: In chapters 1, 2 and 3 we presented a briedduction to standard
cosmology and curved spaces. The mechanics of inflation nvastigated in chap-
ters 4 and 5, before discussing post-inflationary eventhapter 6. Then in chapter
7 the angular power spectrum was introduced, the major whisierthat enables cou-
pling between theory and observations. We presented tooGNB analysis, methods
for simulating data and a short guide to interpretation efahgular power spectrum.
Two papers that discuss implications of trans-Planckifetes in the primordial power
spectrum were reviewed in chapter 8. The papers introdugedatixiliary parame-
terse (slow-roll) and¢ (Planck cutoff scale) that modulated the Harrizon-Zelidhv
scaling effect. We then proceeded by investigating the \iebaof these modulations
in chapter 9, and reproduced the results from [7]. A simdldperfect” data set was
included into CosmoMC, and parameters were incorrectlgrd@hed. In the end, a
small script utility was created in order to calculate thaatikelihood for continuous
varyinge and¢, without MCMC methods.

10.1.1 A commenton [1, 2]

We have seen that previous work, especiallydbsome Martin et al[1, 2, 28, 29] are
overly optimistic about the detection of trans-Planckifieas. Their main argumentin
[1, 2] is that the cosmic variance outliers in the angular @ospectrum could in theory
be explained by the superimposed oscillations. Followirgresults presented in the
previous chapter, we argue that there are three reasondwghyg highly improbable:

1. The oscillation frequency fluctuate too much for varyingnde to actually fit
any cosmic variance outliers. An eventual fine-tuning @inde would be nec-
essary.

2. The amplitude of the superimposed oscillations is tookweee figure 9.11).

3. The exact likelihood function makes the detection of ttamg-Planckian pa-
rameterst ande very hard, and renders the Monte Carlo Markov chain method
useless.
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10.2 Conclusions

In a perfect world, the author would have created the plote@gxact likelihood func-
tionsbeforefutilely trying to parameter estimateande. This would have saved many
hours of despair in which the expressionHy, oh why doesn't the distribution peak
at the correct value?played a major part. Unfortunately, the world doesn’t aier
in such manners, and the results have been presented in-artil@e=d chronological
order. We have reached the following conclusions:

Conclusion 10.1. WMAP data alone does not give enough constraint$ ande; the
likelihoods are uniform and all parameters are allowed. Seetion 9.4 for details.

Conclusion 10.2. Simulated “perfect” data gives upper and lower constraiots¢
and ¢, but the likelihood varies for different initial values amstiep lengths. When
defining “suitable” initial conditions, the parameters aestimated within 20 error.

Conclusion 10.3. The exact likelihood function between the perfect data aodets
for varying¢ ande is a landscape riddled with local and semi-global minimae(Bgure
9.27). This renders the MCMC algorithm used in CosmoMC éwtiffe; for different
initial values and step lengths the likelihood convergeslifferent local/semi-global
minima.

Conclusion 10.4. Future experiments will never provide data nearly as goodhas
simulated data set presented in this thesis. As the exatitidod landscape is chaotic
(see figure 10.1.1), the initial conditions need to be tunediad the correct minimum
with a suitable step length in order to converge propeWe therefore conclude that
detecting trans-Planckian effects will be difficult even thiimproved future data.

10.3 Outlook
10.3.1 Additional data sets

How would additional data sets affect the detection of gerteains-Planckian effects
in the CMB?

SDSS

TheSloan Digital Sky Survey(SDSS) [33] is a comprehensive galaxy catalogue based
on continuous imaging and spectroscopic redshift surviexe she year 2000. For the
detection of generic trans-Planckian effects, the galatglogue would most likely
not help, due to the low-accuracy of data. In addition, theBCpbwer spectrum is
not directly observed, only the matter power spectrum idava. The matter power
spectrum is smoothed by the window function, so any irregiga would be removed.

QUIET

It is uncertain whether QUIET polarization data could hefptlee detection of trans-
Planckian effects.

SN1A

With improved super nova type 1a dafy,, could be determined much better. But this
doesn't affect the other parameters, especiallyermair &.
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10.3.2 Additional methods

We present some additional methods tbaitild be used to estimate the parameters
and¢. We also briefly explain why these methods wold fail.

Gradient method

The gradient method employs a simple solution: test thdili@ed function and climb
towards the nearest maximum. For a smooth, nice-behavelhtlod function, this
would be an effective solution. Needless to say, when |lgpairthe exact two-dimensional
likelihood landscapes 10.1.1 and 9.29, the gradient mdtitscterribly unless the ini-

tial conditions are finely tuned around the correct value.

Brute force

The two-dimensional likelihood landscapes 10.1.1 and ar@%examples of data sets
created by brute force grid integration. The parameterespas defined with rough
intervals on a lattice size of 150 for each parameter. Calitg a single-dimensional
lattice of sizel50 took aboutt ~ 10 minutes. With two free parameters (at low reso-
lution!), t ~ 150 % 10 ~ 24 hours, the time it took creating graphs 10.1.1 and 9.29 .
With 11 free parameters,~ 2.74-10'° years. For few enough parameters, brute force
works, but for a full parameter estimation it is virtually piossible as time scales with
lattice®

10.3.3 Modifying the likelihood algorithm

The exact likelihood function in figure 9.27 should convimest skeptics that any
general exact parameter estimation is difficult. But a fewans are available. One
of the problems with the exact likelihood functionsecdind¢ is the local minima. An
algorithm that would calculate the surrounding likeliheahd eliminate (or smooth)
the local minima could possibly give a better estimatione phoblem is then reduced
to that of the semi-global minima, which could possible belated by the following
algorithm:

1. Generate random initial values foor e.

2. Eliminate the local minima by smoothing.

3. Find a semi-global minima, and save the lowest likelihhotttion value.
4

. Go to 1 until a lowest likelihood function value is obtainerhe distribution in
which the lowest likelihood is detected will be the correseo

However, implementing such an algorithm in CosmoMC woulguiee time beyond
the scope of this thesis.
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Appendix A

Self-references

In order to separate general results from work done by tHeoautve present a review
of independent software, code modifications and other aehients.

A.1 General notice

Even though chapters 2 to 6 contain general results from, [67 816, 11, 9, 15, 13, 5,

3, 14], therepresentatiorof the results have been independent. Chapter 3 is especiall
an example of this, being a mixture of several topics frondikeipline of mathematics
and physics. Another “special” chapter is chapter 7, whavess as a bridge between
the theoretical and the experimental parts of the thesis.

A.2 Graphs and figures

All graphs and figures except figure 9.5 have been createdebguithor. Schematic
figures were created in Xfig, and graphs were made with eitmep(®t or Matlab.
Some “special” figures and graphs are mentioned:

- Figure 2.1 was created with a C++ program “TimeLine” crddig the author.

- Figure 4.2 was created in Matlab using harmonical funstiofhe “false vac-
uum” was created using two two-dimensional Gaussian fanstione almost
cancelling the other.

- Figure 6.5 and 6.3 were created in Matlab to illustrate tifiece of diverging
geodesic curves.

- Figure 7.1 is a screen shot from a C++ program that proj@tterical maps onto
R? using the Mollweide projection. The software is written bg author.

- Figure 7.2 is a screen shot from a C++ program that calculdte spherical
harmonics for a sphere, and presents the map using the Mddévpeojection.
The software is written by the author.

- The driven and damped harmonical oscillators in Figurevwebe created in a
C++ program written by the author.
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- All figures in chapter 9 except 9.5 are based on independasat d

- The movies mentioned in chapter 9 were made using the saiipe fec gener-
ating the exact likelihood, like”. The movies were assembled in “Avidemux”
for Ubuntu.

A.3 Code modification

A.3.1 Modifying CAMB

CAMB contains several files that perform various tasks. Seorgain a set of sub-
routines, other define data structures. The primordial p@pectrum is calculated in
powertilt.f9Q The original line stated:

I nrat = | og(k/P¥%_0O_scal ar)
Scal ar Power =P%8cal ar Power Anp(i n) *
exp((P¥an(in)-1)«Inrat + PY%_run(in)/2«|nratx*=+2)

or

g ()i ()

Ignoring then,...,, we see that
. (nS—l)log(k"—:)) - k\ns—1
P=de - A(ko)

is the power law behaviour. In chapter 8, the modified powecspm (8.3) including
trans-Planckian effects was defined as:

H\2 H . 2A
Po=(5;) (1= s ()
We introduced a parametrized version of the power spectBifi) pased on two pa-
rameters ande, where the slow roll parameter was heavy restricted t0 0.01 by

observations in the CMB anisotropies [24]. This modifiedan is basically depen-
dent on¢ alone, and reads

pc - n(i-¢(5) " 2(2)])

Introducing

we can express (8.6) as

P(e, &, k) = Po(k) (1 ~ Bsin (%)) (A.1)
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A.3.2 Modifying code

CAMB was modified to include three new parameters and~ on command line,
enabling batch-script running. The original data struetur modules.f90vas also
altered to include the new parameters. This makes it pestibéxport CAMB code
directly to CosmoMC. The modified power spectrum code is

function Scal ar Power (k, i n)
real (dl) Scal ar Power, k, | nrat
integer in
real (dl) B,epsilon, xi, ganm
gamma = PY%gamma
epsil on =P%epsil on
Xi = PW%i*sqrt(epsilon)/gama
B = xi*(k/P¥%_0 _scal ar)*+(-epsilon)
Inrat = | og(k/ P¥%_0_scal ar)
Scal ar Power =P¥%&cal ar Power Anp(i n) *
exp((P%an(in)-1))+*abs(1-(B+xsin(2.0/B)))
end function Scal ar Power

whereP is the CAMB data structur€AMBparams

A.3.3 Modifying CosmoMC

The likelihood modifications were mostly done\MMAP_3yr_likelihood.f90lIn this
file, a subroutine namdeASS _COMPUTE_LIKELIHOOEturns the computed WMAP
likelihood between the current model in the MCMC chain amdudated data. Recall
we found the log-likelihood for a perfect data set in equafich:

Cgheo’r'y
sim
CZ

Cgim
) + C;heory -1

~2log L(ziipi) = Y (20 +1) [m (
4

A.3.4 Likelihood code modifications
The original code has been replaced with following algonith

SUBROUTI NE PASS2_COWPUTE_LI KELI HOOD(cl tt, clte, cl ee, cl bb, I'i ke)

(I'nitialize variabl es)
(Load the simulated HWnodel data file)

I' Conpute I|ikelihood

Li keli hood = 0

do i=ttmn,ttmax
work = log(cltt(i)/cl _data(i)) + cl _data(i)/cltt(i) - 1
Li kel'i hood = Likelihood + (2*i+1) *work

enddo

li ke(2: 8)

=0
like(1) 0.5«Li kelihood ! return to CosnmoMC
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end SUBROUTI NE PASS2_COWPUTE_LI KELI HOOD

where thecltt parameter is the model power spectraingenerated from CAMB that
is to be tested.

A.3.5 Additional changes

Additional changes were done in the modules that®dBBROUTINE_PASS2_ COMPUTE_LIKELIHOOD
in order to prevent (log) zero likelihoods. Also, other gast CosmoMC was modified
to include the two new parameterand¢.

A.4 Independent software

Five independenprograms and scripts created by the author have seen use&in th
thesis.

e SH is a program that calculates the spherical harmonics féeréifit/ andm,
and displays them by the Mollweide projection.

* DHO is a small program that calculates the amplitude of a dridemped har-
monical oscillator. The software takes batch input paranset

* Generateis a program that takes a CAMB CMB power spectrum as input, and
outputs a simulateg? data set to file. The program accepts batch input param-
eters.

« TimeLine is a small program that calculates a schematic scale famtdifferent
universe models.

* The most important program written by the author is ilaéch-scriptLike that
generated the exatD and2D likelihood landscapes, as presented at the end of
chapter 9.



Appendix B

A note on trans-planckian
physics

Here, we present a thorough derivation of the modified powectsum (equation 8.3,
page 92) discussed in [23].

B.1 Initial conditions

Section goal B.1.1.Derive an expression fgry |

The author first considers the standard treatment of theuitions in inflation. In
chapter 4 , we found that the general solution to (8.2.1)Msermgby

and

2 ik 2 ik
gr(n) = Ak\/;e_“”’ - Bk\/ze’k’

Where nowA;, and By, are different Bogoliubov coefficients. Working backwande,

find from (8.2) that
vp(n) = uk(n) — \/ggk(n)
2

ue(n) = V2kfie(n) — vi(n) = V2K fr(n) — ur(n) + Zox (1)

and

such that
ur(n) = 5 (VIR filn) + \/fgmn))

When inserting the assumeg and f,, we find
1 —ikn(y L ikn K2 —ikn ikn
uk(n) =3 (Ake (]. k"l]) + Bre (1 -+ k’n) + Ak\/g Bk\/g )
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which in turns give
_ 1 —ikn (o _ L ikni
uk(n) = 2(’4’“6 (2 kn) T Bre kn))
Similarly, we find
* 1 ikn L o 7ikni
v = Q(Bke (2+ k’n) Age k’77> (B.1)

From the hyperbolic identity thdti|?> — |vx|? = 1, we find that| Ax|?> — |By|> = 1
Recall from the choice of vacuum (8.2.3) that(ny) = 0 at some initial momeny.
This means from (B.1) that

B 7.kn(2 7) - A —ikn _°
ke + kn K€ Fn
and hence
672’”67](]

By =Ay—— B.2
o= g ©2)

Squaring this expression and using the hyperbolic identigyfind
|Bi|? = |Ag[?lax]® = [Ax* -1
wherea = i/(2kno + i). Solving for| A, |* we find

[ARl*(1 = Jowl*) =1

such that )

A= ———
A= T

(B.3)

B.2 The fluctuation spectrum

Section goal B.2.1.Derive the expression of the modified power spectrum (8.3)
The power spectrum in co-moving coordinates is given by

1

Py, =—
[ a2

\fk|2

n= 27r2a2

We find| fx|?:

S0 = 1) B ) e

assuming later timeg — 0, so only the second order termssp€ontributes:

1 * *
e = gy (146 +1Bil? = ALBi — 4,7

The power spectrum is then

1

_ 2 2 * *
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Using that B, |? = |Ax|?> — 1 and thaty) = —1/aH, we get
H\?2 H\2 1 1
Py = (5-) (larlP-1-4iBi-aiB;) = (o) (2= gt s (AR Bk Ak B) ) | Ax?
¢ (27r (I d kDT ’f) (27T ( |Ak|2+|Ak|2( Brt+AiBi) )| Arl

Using equation (B.3), we get

Py = (£)2(1+| Po L (aB+a B*))L
* = \or ST AR VTR T R )T a2
Finally, from (B.2) note that
A;:Bk = ‘Aklz(i€72ikno)a
and similarly _
ApBy, = |Ak\2(iezlk"0)o¢*
such that
HA2 ) . 1
P, = (7) (1 2 —2ikno __ % 2ikng )
) o + || — e a* et T Jorf?

The author then does something “different”: for a givenchooser, such that the
physical momentum correspondingkads given by some fixed scalk. A signifies the
energy scale of the new physics, e.g the Planck scale. SofoA we have

A

k=ap=al=———
g noH

meaning
A

™= TkE
The author then makes the assumption thak >> 1. This meangnyk| > 1, which

implies early in the inflation period. Then from equation3Bwe find thatj«|? ~ 0,
anda ~ 4L We then find

2 A
Py = (%)2@ - %sin (%)> (B.4)

which is the desired result.
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Appendix C

Can MAP and Planck map
Planck physics?

In chapter 8 we used both familiar and new parameters to teettre modified power
spectrum (8.3). In this section, we present the derivatiadh@relations between the
parameters, e,,., H,v andA

C.1 Parameter relations

Section goal C.1.1.Derive the relations betweehe,,., v, H and A

When a mode crosses the horizén a H), H is to beevaluated We differentiate
and find
dk = Hda + adH ~ Hda

where we have used that varies very little. Using thada = adt = k dt, we have
dk = kHdt

from slow roll condition 2 (4.4), we findt:

g __V
dt 3H
3H

and we find

3H H?

Using thatV" ~ H?/3M 7, we find

reorganizing, we find
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So, how much doe# vary with respect td&?

dH _ MJV'dH
de — k V do

using the SRAH ~ +/V such that

dH MV 1, M’?(V/)Q\/V

R ~
~

dk  k Vayv k

Recognizing the slow roll-parameter afij we finally end up with a relation between

H, k ande:
dH_ €sr H

Ak k
Integrating this separable first order differential equmtiwve find

H o~ fcr

This k-dependence will translate into a modulation of the powecspmP(k), with
a period given by

Ak mH
k eA
Recall that the power spectrum of the co-moving curvatuaégasavas given by (5.17)
H\2/H\?2
2 — - R
s = () (2)],., e

Using the slow roll conditions, this may be written as

1 Vv

2
Arlk) = 24m2 M ¢,

(C.2)

Measurements restrict this value to be

V1/4

1/4
634

~ 0.027M,, = BM,

Using the Friedmann equations

this means
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