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Units, conventions and
preliminaries

0.1 Conventions

• A spatial vectorx is denoted by a bold font lock. Some vectors, like the modek,
are denoted without font lock:k. The four-modekµ is defined askµ ≡ (ω, k).

• We use units~ = c = 1 such that [length] = [time] = [energy]−1 = [mass]−1.

• The derivative is expressed as∂µ ≡ ∂
∂xµ with respect to given space-time coor-

dinates.

• A mapφ ∈ Ck denotes thatφ is continuous andk times differentiable.

• ẋ denotes differentiation with respect to timedt, whilex′ denotes differentiation
with respect to conformal timedη.

• For a covariant quantityQµ, 6Q denotes the “dotting” with the gamma matrix
6Q ≡ γµQµ.

• When mentioning theLagrangian, wealwaysmean the Lagrangian density,L.

• We use Einsteins summation convention, and sum over all repeated indices:
∑3

0 x
µxµ ≡ xµxµ.

• OperatorsÔ are expressed without the hat:O.

0.2 Preliminaries from general relativity

These preliminaries are stated without further treatment.For a thorough introduction
to general relativity, see [3] or [4].

The space-time ofspecial relativityis an important space. It is a place where gen-
eral relativity has no hold, and the concepts of particles and vacua thrive.

Definition 0.1. The 4-dimensionalMinkowski spaceM4 is the setting in which the
theory of special relativity is formulated. It consists of 3spatial and 1 time-like dimen-
sions, and is a flat Riemannian manifold with a metricηµν with signature(−,+,+,+)
such that the line element isds2 = ηµνdx

µdxν = −dt2 + dx2

1
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Definition 0.2. The connection coefficients (Christoffel symbols in coordinate basis)
Γµ

αβ are defined as

Γµ
αβ =

1

2
gµν

(

gνα,β + gνβ,α − gαβ,ν

)

and describes the covariant derivative of the basis coordinates:

Dµeν = Γσ
µνeσ (0.1)

The curvature tensor will be important when studying the cosmological perturba-
tions of the metric during inflation.

Definition 0.3. TheRiemann curvature tensoris defined by

Rµ
ναβ ≡ ∂αΓµ

νβ − ∂βΓµ
να + Γµ

σαΓσ
νβ − Γµ

σβΓσ
να

TheRicci curvature tensoris the contracted Riemann curvature tensor

Rµν ≡ Rσ
µσν

The Ricci curvature tensor provides a way of measuring the degree to which the geom-
etry determined by a given Riemannian metric differs from that of ordinary Euclidean
4-space.

Definition 0.4. The scalar curvature (Ricci scalar) of a Riemannian manifoldM

R = Rµ
µ (0.2)

is a mapM → R that characterizes the intrinsic curvature of the manifoldat every
x ∈ M. In two dimensions the scalar curvature completely characterizes the curvature
of M. For dimensions larger than 2, more information is needed.

Definition 0.5. A reference frameis defined as a continuum of non-intersecting time-
like world lines in space-time. Aninertial reference frameis a non-rotating set of free
particles.

0.3 Mathematical preliminaries

The reader is expected to be vaguely familiar with the mathematical context, but most
mathematics in use will be revealed as the introduction evolves. Rigorous treatment
is omitted, and the reader is advised to engage other sourcesof literature for a more
detailed discussion [5, 6].
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Vector
spaces V

Topological spaces (X, τ)

Metric spaces
(M, ρ)

Figure 1: Hierarchy of spaces

The machinery of general relativity acts on spaces that possess the structure of a
metric. Metric spaces are topological spaces equipped with a distance function. The
distance function makes it possible to decide several relations between points in the
space. Atopological spacecan be thought of as asetwith a notion ofclosenessof
points; this ensures the property ofcontinuity . All vector spaces are metric spaces,
and all metric spaces are topological spaces, see figure (3.2.1).

Definition 0.6. A metricon a setX is a functionρ : X ×X → R
+ with the following

properties:

1. ρ(x, y) = 0 if and only ifx = y (positive definiteness).

2. ρ(x, y) = ρ(y, x) for all x, y ∈ X (symmetry).

3. ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for all x, y, z ∈ X (triangle inequality).

General relativity acts on metric spaces that behavenicely. Space-time should be
free of singularities, discontinuous areas and preferablypossess smoothness allover.
The Riemannian manifold is such a structure.

Definition 0.7. A manifold is a topological space(M, τ) which has the following
properties:

1. M is Hausdorff (any two points can be separated by two disjointopen sets).

2. M has a countable basis for the topology (Abasisfor a topological spaceτ is a
collectionB of open sets inτ such that every open set inτ can be written as a
union of elements ofB).

3. Any pointx ∈ M has an open neighbourhood that is locally homeomorphic to
R

n.

Definition 0.8. Let M be a manifold andx ∈ M. Then atangent spaceis a real
vector spaceassociated with eachx ∈ M that intuitively describes all the possible
directions a vector can pass throughx. The dimension of the tangent space equals the
dimension of the manifold.
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Definition 0.9. A Riemannian manifold (M, ρ) is a real, differentiable manifold
where each tangent space is equipped with a continuous innerproductρ. This gives
rise to various notions such as curve lengths, volumes, angles and curvatures.

All manifolds considered in this thesis are Riemannian manifolds. The Minkowski
space-timeM4 is especially a Riemannian manifold.

When probing the symmetries of the universe, we will encounter the notion of a
group. A group can be thought of as a set closed under a reversible binary operation.

Definition 0.10. A group (G, ∗) is a setG that is closed under a binary operation∗
such that the following properties are satisfied:

1. For all a, b, c ∈ G we have(a ∗ b) ∗ c = a ∗ (b ∗ c) (associativity of∗).

2. There exist and elementid ∈ G such that for allx ∈ G thenid ∗ x = x ∗ id = x
(identity elementid).

3. For eachx ∈ G, there exists any ∈ G such thatx ∗ y = y ∗ x = id (y is the
inverse of x).

The symmetry groups mentioned in chapter two will mostly be continuousLie-
groups, reflecting the non-discrete symmetries of the universe.

Definition 0.11. A Lie group is a group which is a finite-dimensional smooth manifold
where the elements are smooth transformations. A Lie group is often represented by
matrix algebra.

Thegauge transformationsare smooth maps between Riemannian manifolds. We
will encounter such transformations both in chapter 3 and chapter 5, when discussing
cosmological perturbation theory.

Definition 0.12. A homomorphismis a structure preserving mapφ : A → B such
thatφ(xy) = φ(x)φ(y). Two groupsA andB are isomorphicif there exists a bijective
homomorphismφ : A→ B. This meansA andB are structurally identical.

Definition 0.13. A diffeomorphismis an invertibleC∞ function that maps one differ-
entiable manifold to another. It can be viewed as an isomorphism of two manifolds.

Isometries are the elements of the Poincaré-group.

Definition 0.14. An isometryis a distance-preserving isomorphism between two metric
spaces. An isomorphism from a spaceX → X is called anautomorphism.

The Poincaré-group will be important when studying the symmetries of Minkowski
space.

Definition 0.15. The distance-preserving automorphisms (or isometries) ofthe Minkowski-
space defines thePoincaré-groupP (1, 3). It is a 10-dimensional Lie group, and con-
tains theLorentz groupas a subgroup. Another subgroup is thetranslation group,
which is abelian.

Definition 0.16. TheLorentz Groupis the (6-dimensional) group of allisometriesof
the Minkowski-spacewhich leaves the origin fixed. The Lorentz group is isomorphic
to SL2(C) ⊕ SL2(C).
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Definition 0.17. The de Sitter groupP (1, 4) is the group of translations and rota-
tions in five-dimensional Minkowski space. This group is aminimal extensionof the
Poincaré groupP (1, 3).

Definition 0.18. A generatorof a groupG is an elementg ∈ G such that the repeated
binary operationg ∗ g spansG. For instance, in the integer group〈Z,+〉 is generated
by −1 and+1, as any elementn ∈ Z can be expressed as a sum of+1 or −1. For
continuous groups, we refer to theinfinitesimal generatorsas elements close to the
identity that repeatedly generates all the elements in the group.

Definition 0.19. A killing vector field is a metric-preserving vector field on a Rieman-
nian manifold. Killing fields are the infinitesimal generators of isometries.

The Riemannian manifolds considered have the following properties:

• Negative Ricci curvature implies there are no nontrivial Killing fields.

• Non-positive Ricci curvature implies that any Killing field is parallel. i.e. co-
variant derivative along any vector field is identically zero.

Definition 0.20. Thespecial orthogonal groupSO(n) is the group of alln × n or-
thogonal matrices over real numbers with determinant1 where the group operation is
matrix multiplication.SO(n) is a subgroup of the general linear groupGL(n), and is
a Lie group.

Definition 0.21. Thespecial unitary groupSU(n) is the group of alln × n unitary
matrices determinant1 where the group operation is matrix multiplication.SU(n) is
a subgroup of the general linear groupGL(n), and is a Lie group. The simplest case
U(1) corresponds to rotation on the circleS1.

Definition 0.22. A representation of a Lie groupG on a vector space V is a smooth
group homomorphismG → Aut(V ) from G to the automorphism group ofV . If
a basis for the vector spaceV is chosen, the representation can be expressed as a
homomorphism into the general linear groupGL(n,K). This is known as amatrix
representation, and means that the Lie group operations can be expressed as matrix
operations.

Definition 0.23. We define then-sphere asSn = {x ∈ R
n

∣
∣
∣ |x| = 1}.

Definition 0.24. A Hilbert spaceH is a real or complex inner product space that is a
Banach space under the norm defined by the inner product. In quantum mechanics, it
is the space where the quantum states are defined :

H = {|φ〉, |ψ〉, . . . }

Definition 0.25. Thegamma functionΓ : (R\(−N)) → R is defined as

Γ(n+ 1) =

∫ ∞

0

e−ttn dt

such thatΓ(n+ 1) = nΓ(n).

Note thatΓ(n) = n! for n ∈ N, while Γ(1/2) =
√
π.
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Chapter 1

Introduction

1.1 Introduction

In this thesis, we are interested in determining whether trans-Planckian effects in the
cosmic microwave background are detectable both through contemporary and simu-
lated data. But why are detecting trans-Planckian effects interesting? First of all,
any detection of these effects would indicate thatnewphysics are at work; the trans-
Planckian effects operate on the border of the validity of contemporary physics. If these
effects were to be detected, it would revolutionize physicsas we know it.Something
newwould actually be happening, something different than all known and well-tested
physics, whether it be stringy theories or quantum gravity effects. But how are we to
detect these effects?

The trans-Planckian effects are set up during the epoch of inflation, and co-evolve
with the universe post inflation. We therefore need to engagethe physical theory of cos-
mological inflation. But physical theories are written in the language of mathematics,
so the mathematical language we must speak.

1.1.1 Physical theories

While mathematical structures are universally true, provedrigorously by theorems,
lemmas and propositions, the truthness of a physical theorywill forever stay uncertain.
This is because all physical theories are approximations toreality, and are never a com-
plete description of the system it mimics. If such a theory happens to neatly describe
a physical phenomena, it does not rule out the possibility that there might exist other
equally correct theories describing the same system, but with a different take on the
interpretation.

A physical theory therefore has a space of validity. A complicated theory that has a
large space of validity might for certain limits of observables converge to simpler sub-
theories with smaller spaces of validity. This can be compared to the natural mathemat-
ical division of sets into subsets (see figure 1.1). As an example, consider the theory of
general relativity, which has a larger space of validity than the more static Newtonian
gravity. Newton’s theory isn’tincorrect, but rather inaccurate when describing systems
operating with velocities close to the speed of light. But for non-relativistic systems,

9
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Newtonian
theory

General relativity
Electroweak

theory

Electromagnetic

theory

Theory of everything Grand unified theory

is TOE bounded?

Figure 1.1: Unifying theories

Newton’s theory of gravity is perfectly adequate. It can be shown that general relativity
converges to the Newtonian limit for low-velocity systems.Eventually, general relativ-
ity breaks down for extremely small systems, which marks theboundary of its space of
validity.

Another example is the theory of quantum fields and the standard model. This is
a theory that describes subatomic systems, and each subsequent experiment performed
during the past century has strengthened the theory. But quantum field theory is just a
neat approximate description of subatomic systems, it can never incorporate the whole
truth. And it can never be proved. As with Newtonian gravitational theory (and general
relativity), QFT breaks down on energy scales larger than the Planck scale. From a few
eV to a coupleGeV , we know the standard model to be a correct, but not necessarily
unique description of subatomic events. But what lies beyond is yet uncertain. It is
possible that certain string theories that converge to QFT in low-energy limits might
suggest an answer, but nothing is certain yet, string theories are still considered to be
pure speculations.

1.1.2 Cosmology

Another successful physical theory is the concordance model of cosmology. The pre-
ferred model of today is theΛCDM-model, a model where the universe is homoge-
neous and isotropic with dynamics determined by dark matterand vacuum energy (Λ).
Again we press thatΛCDM is a physical model - it doesnot incorporate the whole
truth of the real-world universe, but is thesimplesttheory thatmost correctlyexplains
the effects we observe in the universe as today. And this doesnot mean that it is the
only model that fits. TheΛCDM -model is a phenomenological model, designedafter
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observations, and is not based on any fundamental physical principle.

A successful model for explaining problems in standard cosmology is the model of
inflation . During inflation, the universe is supposed to have undergone a rapid, extreme
accelerated expansion of space. Whether inflation actually happened has not been de-
cided, but it is the simplest model that solves several previously unresolved problems
in a swift, effective and beautiful manner. But an even more important consequence
from the theory of inflation is that it presents a mechanism that will eventually give rise
to the observed anisotropies in the cosmic microwave background and matter densities
observed today. In other words, it is a link that will enable us to compare observa-
tions with theory. We will investigate the properties of theinflaton field, its influence
on structure formation and ultimately, how to compare theory with observations. The
most important observational quantity will turn out to be the angular power spectrum,
an object that will incorporate statistical information about the parameters used to de-
scribe the cosmic microwave background.

1.1.3 Trans-Planckian effects

The power spectrum mentioned in the previous subsection is set up during the epoch of
inflation. The “standard” inflationary model sets up what is called aflat power spectrum
(Harrison-Zel’dovich scaling), which translates into a near-constant primordial power
spectrum. These are the assumed initial conditions for today’s universe. But the epoch
of inflation operates closely to orders of the Planck-scale -which suggests that there
might exist additional effects initiated by unconfirmed theories, for instance stringy
ones, that will modulate the scale-free primordial power spectrum. In this thesis, we
assume that a string theory model known as theHorava-Wittenmodel has modified the
primordial power spectrum to include small oscillations. We will present the necessary
tools for determining these modulations, and will modify and employ modern compu-
tational packages to determine whether these modulations are detectable with today’s
and tomorrow’s technology.

1.2 Primary goals

We definethreeprimary goals:

Primary goal 1.1 (PG1). Determine the the primordial spectrum of energy density
fluctuations during the period of inflation and discuss the standard theoretical cosmo-
logical model of today.

Primary goal 1.2 (PG2). Modify standard cosmological software to enable calcula-
tions of trans-Planckian models

Primary goal 1.3 (PG3). Analyze and compare model results with current data and
simulated “perfect” data

1.3 Chapter partitioning

The thesis is partitioned intothreeparts with a total ofninechapters.
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1.3.1 Part I: Introduction

Chapter 1 is an introduction to the workings of the thesis.
Chapter 2 contains a quick repetition of modern cosmology. The readeris expected
to be familiar with the concepts, and most results will be stated without proof. This
chapter does not affect any of the primary goals, and can be skipped by experienced
readers.
Chapter 3 discusses the topics of symmetries, conservation laws, gauge theories, parti-
cle/vacuum concepts and the differences between flat and curved spaces. This chapter
is intended to be more phenomenologically than analytical,as most derivations are
omitted. This chapter contains crucial concepts concerning PG1.

1.3.2 Part II: Evolving the universe

Chapter 4 presents a thorough derivation of how the postulated inflaton field behaves
in a curved space, especially in the Robertson-Walker background. The chapter cul-
minates with the definition of the Bunch-Davies vacuum. Thischapter ensures the
detailed theoretical background for achievingPG1.
Chapter 5 concerns cosmological perturbation theory. An expressionfor the power
spectrum in a RW background is established, and the mechanics of scalar perturbations
are developed. The chapter ends with bridging theory with observations by investigat-
ing the properties of the co-moving curvature scalar and defining the spectral index.
This chapter concludesPG1.
Chapter 6 gives a quick introduction to post-inflationary events in the universe. The
most important effects from the radiation-dominated, matter-dominated and cosmolog-
ical constant-dominated epochs are discussed. This chapter does not directly affect any
of the primary goals.

1.3.3 Part III: Trans-Planckian effects

Chapter 7 gives an introduction to the anisotropies in the cosmic microwave back-
ground, tools for cosmological data analysis and a rough introduction to likelihood
analysis. A method for generating data is presented, and themost common software
packages are mentioned. This chapter does not directly affect any of the primary goals.
Chapter 8 reviews various papers concerning trans-Planckian effects in the cosmic mi-
crowave background. An argument for a modified power spectrum including a Planck-
cutoff scale is discussed, and gives a basis for the numerical analysis in the following
chapter. This chapter is a bridge between theory and observations, and is a build-up for
PG2.
Chapter 9 Cosmological software is modified and comparisons between models are
performed. The validity of the modulated power spectrum is considered, and WMAP
data are ruled out for determining trans-Planckian effects. A perfect data set is gen-
erated, and CosmoMC is modified to employ this new data set. Simulations are per-
formed in order to determine the original input parameters.We continue by investigat-
ing the properties of the exact likelihood functions for themodulating input parameters,
and conclude the thesis with a summary and outlook. This chapter concludesPG2and
PG3.
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1.4 A note on notation

Each chapter begins with a short introduction to the subjectin question. A chapter
is partitioned into several sections, and each section is presented with asection goal
(Except introduction/conclusion sections, which have trivial goals) . The section goal
is intended to motivate the reason for including the section, will eventually lead to
fulfilling the primary goals. The reader is advised to consider the section goals and
determine whether to read or not. Each chapter ends with a concluding section where
a series of conclusions and predictions will be presented.

Important parts of the thesis will be presented astheorems. Most theorems will have
proofs omitted, and the reader is referred to another source. Examples are Noethers the-
orem or the fundamental theorem of vector calculus. Other theorems containing proofs
will often be linked to alemma. The lemma is a helping-theorem. Direct consequences
of theorems give rise tocorollaries, while smaller theorems are calledpropositions.
Text that isemphasizedis written in italic font lock. New terminology is introduced
in bold font lock.

This thesis is written on a Thinkpad X41 model 2525 using Ubuntu 7.04 (Feisty
Fawn). The latex package is pdfTeXk, version 3.141592-1.40.3 (Gutsy Gibbon alpha).
All plots are created in Gnuplot or Matlab, except plot 9.5 from [7]. All figures are
created in xfig and gimp.



14 CHAPTER 1. INTRODUCTION



Chapter 2

Cosmology

Cosmology is the theory that mathematically describes the evolution of the universe.
In this chapter a quick review of the basics of modern cosmology is presented. No
explicit derivations will be performed, and the reader is expected to be familiar with
most aspects of this section.

Unless otherwise stated, the contents of this chapter is based on [8], [9] and [4].

2.1 The Robertson-Walker metric

Section goal 2.1.1.Establish the Robertson-Walker (RW) line element

The simplest background for the universe is the Robertson-Walker metric. Later,
more general metric spaces will be considered. Inflation takes place in a RW universe
called de Sitter space. This will be our starting point.

Definition 2.1. A fluid is considered to behomogeneousif its mass density is uniform.
Isotropy is the property of being independent of direction.

On scales corresponding to large galaxy clusters, the universe is assumed to be
spatially homogeneous and isotropic. We introduce an expanding frame of reference
with the line element

ds2 = −dt2 + a(t)2
[
dχ2 + r(χ)2dΩ2

]

wheredΩ is thesolid angle, a(t) is thescale factorand t is thecosmic time. For
standard clocks at rest with proper timeτ in the expanding system,dχ = dΩ = 0 and
ds2 = −dτ2 = −dt2, hencedt = dτ . Using Cartan formalism[4] by introducing an
orthonormal basis, we obtain:

Theorem 2.2. The Robertson-Walker (RW) line element

ds2 = −dt2 + a2(t)
[ dr2

1 − kr2
+ r2dΩ2

]
(2.1)

is an exact solution of the Einstein field equations

Eµν = 8πGTµν (2.2)

15
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for a homogeneous, isotropic and expanding/contracting universe provideda(t) andk
satisfy the Friedmann equations (see section 2.2). Here,Eµν is the Einstein curvature
tensor andTµν is the energy-momentum tensor. The Robertson-Walker line element is
the unique line-element for a homogeneous and isotropic space.

For a detailed derivation of these equations, see [4]. Now

dr =
√

1 − kr2dχ

and r = {sinhχ, χ, sinχ} for open, flat or closed universes respectively. We will
only consider a flat universe, as recent observational data confirms the near-flatness of
our universe (if, and only if the Hubble constant is correctly measured to be around
h = 0.72 ± 0.08, whereH0 = 100h2(km/s)/Mpcs [10]).
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Figure 2.1: A schematic diagram of the scale factora(t) during different epochs of the
ΛCDM model.t = 0 represents the beginning of the universe, whilet = 1 represents
today.

2.2 The Friedmann equations

Section goal 2.2.1.Establish the Friedmann equations.

We start by making an assumption:

Definition 2.3. The equation of state of a perfect fluid is characterized by a dimension-
less numberw such that the pressurep and energy densityρ are proportional:

p = wρ
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The Cartan formalism gives rise to two independent equations. These are summa-
rized as theFriedmann equations with an equation of statepi = wiρi:

F1 : H2(t) = H2
0

(

Ωr(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ

)

F2 :
ä

a
= −4

3
πG

∑

i

ρi(1 + 3wi)

F3 : ρ̇i = −3Hρi(1 + wi)

where
∑

Ωi = 1 for a flat universe. Note that any two of the equations can be com-
bined to produce the third. The Friedmann equationsF1 and F2 follows from the
Einstein-equations assuming a homogeneous and isotropic universe, whileF3 follows
fromDνT

µν = 0. A nice derivation of the Friedmann equations can be found at[11].

Definition 2.4. Thecritical density

ρc0 =
3H2

0

8πG

is the energy density of a spatially flat universe with no cosmological constant.

Definition 2.5. TheHubble parameteris defined as

H ≡ ȧ

a

and describes the rate of expansion of the universe.

Definition 2.6. Theco-moving particle horizonis the maximum co-moving distance
from which particles can have travelled to the co-moving observer in a given timet
since the beginning the the universe:

dph =

∫ t

0

dt′

a(t′)

This definition assumes aflat universe.

2.3 De Sitter space

Section goal 2.3.1.Introduce de Sitter space and give a graphical illustration.

2.3.1 Definition

Assume a universe dominated by a cosmological constantΛ. ThenF1 reads

H2(t) = H2
0ΩΛ

and the scale factor can trivially be found to be

a(t) = eH0(t−t0)

This enables an exponential expansion of the universe, given by the expansion factor
H0. Note that this scale factor doesn’t have a solution fora(t) = 0 unlesst→ −∞.
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Definition 2.7. The n-dimensionalde Sitter space is the vacuum solution to Ein-
stein’s field equations with a cosmological constant. The deSitter space has constant-
curvature, and is the Lorentzian analog of an n-sphere.

The isometry group of de Sitter space is the Lorentz groupO(1, n). The metric
therefore hasn(n+ 1)/2 independent Killing vectors and has constant positive curva-
ture.

2.3.2 Embedding de Sitter space

Topologically, de Sitter space is homeomorphic toR×S
n−1, orR×S

3 in 4 dimensional
space. One can think of the de Sitter space as an-dimensional expanding sphereS

n−1

propagating in a straight time-like dimensionR.

Example 2.8.Assuming a de Sitter universe with only one spatial dimension, the shape
of space can be embedded as a cylinderS

1 × R (See figure (2.3.2)).

=

×

×

S
1 Cylinder=R

Figure 2.2: An illustrative example: The de Sitter space in1 spatial dimension can be
thought of as a cylinder, where the time-like dimension isR

2.3.3 Real-life de Sitter

The accelerated expansion in the current stage of our universe is most likely due to a
cosmological constant, which is believed to couple to the non-vanishing energy expec-
tation value of the vacuum. A positive cosmological constant corresponds to negative
pressure, causing the scale factora to increase exponentially. When calculating the ex-
pectation value of the vacuum energy quantum mechanically,the expressions diverge.
This is fixed by regularizing the equations, yielding a finite(but very large) vacuum
expectation value. However, the observed cosmological constant is very small, giving
a total of120 orders of magnitude difference between theory and observations. This is
still an unsolved problem in physics today [11].

The de Sitter space is also the background space in the theoryof inflation. Pos-
tulating that the primordial universe was filled with a scalar field possessing the same
properties as a cosmological constant enables an accelerated expansion of space. This
is done by assuming that the scalar field must be invariant under any Lorentz transfor-
mation, or that the energy-momentum tensor is proportionalto gµν . For the energy-
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momentum tensor for a perfect fluid

Tµν = (p+ ρ)uµuν + pgµν

to be proportional togµν , the first term must vanish. This gives rise to an equation of
state withw = −1, andp = −ρ. When this equation of state is inserted intoF3, we
find thatä > 0, which describes an accelerating scale factor.

2.4 Conformal time

Section goal 2.4.1.Define the concept of the conformal timeη.

It is sometimes useful to introduce a different concept of time. Later, when we
explicitly solve the equations of motion for a scalar field inthe RW metric, we will see
much use of this notion. We first state a formal definition:

Definition 2.9. A conformal transformationof a metricgµν is a transformation that
is invariant to the geometry of the space-time manifold

gµν(x) → C2(x)gµν(x)

Conformal symmetryis a symmetry under dilatation (scale invariance), and conformal
transformations especially preserve angles.

Definition 2.10. Theconformal timeη is defined to be the co-moving distance of the
particle horizon at a given timet:

η =

∫ t

0

dt′

a(t′)

or a2(η)dη2 = dt2. This gives rise to a line element on the form

ds2 = a2(η)
(
− dη2 + dx2)

which is manifest conformally flat.

Note that the definition assumes aflat universe.

2.4.1 Conformal time during inflation

Space-time is de Sitter during inflation, with scale factora ∝ eH0t. We wish to define
a model in where the universe begins whenη → −∞. At this stage,a(η) = 0.
When inflation ends (η = 0), the scale factor should have grown to a healthy size of
a(η = 0) = 1. We therefore use a slightly modified version of the conformal time

η =

∫ t

te

dt′

a(t′)
=

1

H0a(t)

( a(t)

a(te)
− 1

)

wherea(te) = a(ηe) = a(0) = 1 is when inflation ends. We solve for the scale factor
a(η) and find

a(η) =
1

1 −H0η
(2.3)
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Figure 2.3: The modified scale factora(η) for the de Sitter space

This equation diverges forη = 1/H0, but this happensafter inflation, where space
is no longer de Sitter. In the limit whereη → −∞, we can approximate the scale factor
to

a(η) ≈ − 1

ηH0
(2.4)

Later, we’ll see that space-time is essentially Minkowski in this limit, so it is possible
to define a suitable vacuum solution for the inflaton field.

2.4.2 Conformal Hubble parameter

It is also convenient to express the Hubble parameter in terms of conformal time. Recall
from the definition of conformal time thata = dt/dη, so

H =
da

dt

1

a
=
da

dη

dη

dt

1

a
= a′

1

a2
=

1

a
H

Definition 2.11. Theconformal Hubble parameterH is defined as

H =
1

a
H

We will see more use of the conformal time when investigatingperturbations of the
inflaton.

2.5 The inflation model

Section goal 2.5.1.Motivate the theory of inflation.

There are several good reasons for why the concept of inflation has seen much
success. A few problems with the standard non-inflationary models are stated here,
without detailed treatment:
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2.5.1 The horizon problem

Inflation solves thehorizon problem: the isotropy of the measured CMB temperature
implies that large chunks of the observable universe must once have been in thermal
equilibrium, and hence in casual contact. Inflation solves this problem by postulating
that the observable universe today was once squeezed well within the particle horizon,
enabling causal contact. During inflation, the co-moving particle horizon decreased
rapidly, such that scales that once was in causal contact falls outside the horizon and
freezes.

2.5.2 The flatness problem

Let Ω ≡ ∑

i Ωi. Observations show that the present universe hasρtot ≈ ρc0. F1
then givesΩ(t) − 1 = k

a2H2 . Assuming the universe is dominated by a fluid with
a ∝ tp for p ∈ R, we find aH ∝ tp−1 andΩ(t) − 1 ∝ t2−2p. We see that for
p ≤ 1 the deviation from the critical density increases with time. This is true for
matter-dominated (p = 2/3) or radiation-dominated (p = 1/3) universes. Hence the
density must have been even closer to the critical in earliertimes. As we are already
close to the critical density today, the universe must have started out extremely flat.
This seems unlikely, and would require fine-tuning of initial parameters beyond any
common sense.

2.5.3 The inhomogeneity problem

A universe model that is initially completely homogeneous will remainso throughout
the evolution of the universe. However, the observed universe is not homogeneous
on smaller scales. Can the theory of inflation give predictions on how these inhomo-
geneities came into existence?

2.5.4 Introductory inflation

Assume that the universe right after big bang went through a phase of rapid accelerated
expansion, so rapid and so vast that it expanded more than 60e-foldings. This way,
all eventual geometric structures are smeared flat, solvingthe flatness problem. The
horizon problem is also solved, by allowing observers before inflation to be in casual
contact, but not after. But what are the mechanics of such a model?

To obtain inflation, we postulate a field that exhibits the effect of accelerated ex-
pansion. This means̈a must be greater than zero, and conditionF2 requirew < −1/3.
We must also assume the field remains invariant in every Lorentz transformation, so
we consider ascalar field φ. We saw previously in this chapter that this requirement
results in a equation of statew = −1, such thatρ = −p. We say the field must possess
the property ofnegative pressure. This field is promptly called theinflaton. Before
inflation, the only field that existed in the universe was a homogeneous field of inflatons
in a vacuum state. This field was fluctuating strongly, where some of these fluctuations
created excited inflaton states (particles). Where this happened, the inflaton particles
(or excitations in the inflaton field) began driving the accelerated expansion of space.

A space that is dominated by a scalar field withw = −1 is a de Sitter space. As the
universe expanded, the energy density of the inflaton field decreased, until the inflaton
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field reached its vacuum state. The friction energy releasedwas dumped to baryonic
matter and photon fields. In the end, the accelerated expansion stopped when the infla-
ton field returned to its vacuum state [9].

The universe following inflation was radiation dominated and homogeneous, and a
crucial problem emerges: if the universe started off homogeneous and isotropic, what
formed the eventual density perturbations? A gas that starts off homogeneous willstay
so. In the following chapters we will see how quantum fluctuations in the inflaton
field gave rise to perturbations in the metricafter inflation. These perturbations in turn
seeded the structure formation, resulting in the anisotropy observed in today’s cosmic
microwave background.

2.6 Chapter conclusions

In this Introductory chapter we have stated the basic workings of modern cosmology.
We mention the most important conclusions

Conclusion 2.1. The conformal time will be essential in chapter 4 and 5.

Conclusion 2.2. Inflation takes place in a de Sitter space, and is driven by a scalar
fieldφ possessing negative pressure.

Conclusion 2.3. The particle concept in de Sitter space (see figure 2.4.1) will be es-
tablished in chapter 3.

Readers who aren’t quite familiar with the topics in this chapter are advised to
review [12].



Chapter 3

Curved spaces and Symmetries

3.1 Introduction

We proceed by explaining the major differences between a curved space-time and the
Minkowski space-time. The topics will be mostly conceptual, but will find much practi-
cal use in the following chapters. Chapter 3 does notdirectly affect any of the primary
goals, but is an important reference for the following chapters. The foundations for
understandingPG1 are defined. This chapter makes use of themathematical prelim-
inaries defined in chapter 0. Unless otherwise stated, the contents of this chapter is
based on [13], [14] and [15].

3.2 Conserved currents

Section goal 3.2.1.Explain the connection between symmetries and conserved physi-
cal quantities. Establish Noether’s theorem and its analogue for curved spaces. Define
the energy-momentum tensor and the covariant derivative.

It seems our physical universe is governed by symmetries. This section will give
an introduction to these physical concepts of symmetries, and explain how symmetry
transformations give rise to conserved quantities in both flat and curved spaces. This
will prove important when investigating the properties of the energy-momentum tensor
for the inflaton field. Explicit derivations are omitted, andinterested readers are advised
to consult [13] and [15].

3.2.1 Symmetries

For a classical system to possess asymmetry we mean that it isinvariantunder a group
of transformations on the system. Quantum mechanically, the Hamiltonian should
commute with all the symmetry group transformations. LetG be a (symmetry) group.
We say a systemS is invariant under the symmetry transformation if for allg ∈ G
theng[S] = S.

Example 3.1. LetS = G = S3, the group of permutations of 3 elements{a, b, c}. This
group can be represented as a triangle with three edgesa, b andc. The group elements
g ∈ S3 then act as rotations and mirroring of the triangle.

23
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a

bc

Figure 3.1: Triangle representations ofS3

Example 3.2. LetG = SO(n) andS = S
n, then-sphere. This is our “most symmet-

ric” example, asS is invariant under any rotation and mirroring, but not scaling.

Example 3.3. LetS be the QED-Lagrangian

S = Lqed = ψ̄(x)(i6Dµ −m)ψ − 1

4
F 2 (3.1)

and letG be the Poincaré group. The Poincaré group has two subgroups,theLorentz
group and thetranslation group. Lqed is known to be both Lorentz-invariant and
translation-invariant, and therefore invariant under allthe symmetry transformations
fromG.

All conservation laws in special relativity can be derived from the following theo-
rem:

Theorem 3.4(Noethers theorem). Any differentiable continuous symmetry transfor-
mation that leaves the Lagrangian invariant corresponds toa conserved current.

We state the formal definition of theenergy-momentum density

Definition 3.5 (Energy-momentum).

Tµν =
2√−g

∂(
√−gL)

δgµν
= 2

∂L
∂gµν

− gµνL

Example 3.6. ConsiderLqed and letG be the Poincaré group. Translation in space
results in conserved momentum (∇ ∼ p). Translation in time corresponds to conserved
energy (∂t ∼ E). Rotation corresponds to conserved angular momentum.

Another way of writing Noethers theorem for the translationgroup is∂µTµν =
0. The Poincaré transformations are all examples ofexternal symmetries. The qed-
Lagrangian is also invariant tointernal symmetries:

Example 3.7. LetG = U(1) andS = Lqed as in (3.1). The construction of the co-
variant derivativeDµ = ∂µ − ieAµ with connection−ieAµ ensures the Lagrangian’s
invariance under localU(1)-transformations. Another way of interpreting this is say-
ing that a free electron field under the condition that it is invariant under localU(1)
gauge-transformationsmustconnect to a Maxwell-field. This is a purely geometric
argument.
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3.2.2 Symmetries in curved spaces

The previous section concernedflat space-time only. We now consider more general
curved spaces, and explain how the covariant derivative replaces the partial derivative.

Definition 3.8. Thecovariant derivativeDµ is defined as

DµA
ν =

∂Aν

∂xµ
+ Γν

σµA
σ

whereΓν
σµ is theconnection

The connection can be interpreted geometrically asa measure of change of the
basis coordinates. (Recall from equation 0.1 thatDµeν = Γσ

µνeσ)
As we now consider curved space-time, translations are ill-defined. Instead we

consider invariants due to local coordinate transformations. The conservation of the
energy-momentum tensor (3.5) now yields

DµTµν = 0

We now state without proof (for a long derivation, see [11]):

Theorem 3.9 (Analogue to Noethers theorem for curved spaces). Conservation of
physical quantities incurvedspaces are due to invariance with respect to coordinate
transformations, as conservation of physical quantities in a flat space-time are due to
invariance with respect to translations.

3.3 Gauge transformations

Section goal 3.3.1.Explain how gauge transformations reduce to infinitesimal coor-
dinate transformations.

The theory of gauge transformations will be essential when investigating the per-
turbed RW metric in chapter 5. This section presents a short introduction to this theory.

3.3.1 Introduction

In cosmological perturbation theory two different space-time manifolds are dealt with:
the unperturbed background space-timeM and the perturbed physical space-timeM′.
In order to relate quantities defined on these distinct space-times, we must first define
a diffeomorphismD : M → M′.

Definition 3.10. The chosen diffeomorphism

D : M → M′

corresponds to achoice of gauge

Let x be a set of coordinates defined onM. Then any diffeomorphismD : M →
M′ will induce a set of coordinatesx′ = D(x) onM′. Let φ be a quantity defined in
the perturbedM′, andφ0 be the unperturbed quantity inM. Then the perturbation of
φ is defined as

δφ(x) = φ(D(x)) − φ0(x)
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M′

x

M

ǫ′

D(x) = x′

D̃(x) = x̃′

For a different choice of a diffeomorphism̃D : M → M′, the perturbation is different

δφ̃(x) = φ̃(D̃(x)) − φ0(x)

This induces a coordinate transformation inM′:

x′ → x̃′ = x′ + ǫ′

which can be viewed as a coordinate transformation onM:

x′ → x′ + ǫ′ = D(x+ ǫ) ≈ x′ + ǫD(x)

for a fixed diffeomorphism. This shows thatx′ transforms to a coordinate that can
be expressed asx′ plus a term proportional to the infinitesimal transformations ǫ on
M. Hence the study of gauge transformations are reduced to thestudy of infinitesimal
coordinate changes in the unperturbedM. We will later engage gauge transformations
when studying scalar perturbations (see chapter 5).

Definition 3.11. We say that a quantityQ is gauge invariant if the corresponding
coordinate transformation leavesQ invariant. That is, if

Q(x) → Q(x+ ǫ) = Q′(x) = Q(x) (3.2)

3.3.2 An example from QED

In Quantum Electrodynamics, the electron fieldψ(x) can undergo aU(1) gauge-
transformation that is supposed to leave the Lagrangian invariant. But for aV (x) ∈
U(1), the derivative of the transformed field∂µV (x)ψ(x) is not well-defined:

∂µV (x)ψ(x) = lim
ǫ→0

1

ǫ

(
V (x+ ǫ)ψ(x+ ǫ) − V (x)ψ(x)

)

becauseV (x + ǫ) andV (x) are two different phases. Thecovariant derivative is
defined to include a compensating term, thecomparator U(x, y) such thatDµ is in-
variant under theU(1)-transformation:

DµV (x)ψ(x) = V (x)Dµψ(x)
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The comparator must then transform asU(x, y) → V (x)U(x, y)V †(y), such that the
covariant derivative transforms as follows:

DµV (x)ψ(x) = lim
ǫ→0

1

ǫ

(
V (x+ ǫ)ψ(x+ ǫ) − V (x+ ǫ)U(x+ ǫ, x)V †(x)V (x)ψ(x)

)

= V (x)Dµψ(x)

Hence the covariant derivativeDµ enables the QED-Lagrangian to becomeU(1)-
gauge-invariant.

3.4 The particle concept

Section goal 3.4.1.Establish the problems with the particle concept in curved spaces.

We state a formal definition from a symmetry viewpoint:

Definition 3.12. Anelementary particleis anenergy-eigenstatethat transforms as an
irreducible representationof the symmetry group of the universe.

By irreducible, we mean that the representation is nontrivial with no nontrivial
subrepresentations. See the notation chapter for information about representations.

3.4.1 Flat Minkowski space

The symmetry group of Minkowski space is the Poincaré group.Ignoring translations,
we consider only the Lorentz group to be the symmetry group. The Lorentz group is
isomorphic toSL2(C) ⊕ SL2(C), and has different representations for different spin
n-particles. In flat space there exists a natural set of modes

uk =
1

√

2ω(2π)3
eikx−iωt (3.3)

with a normalized inner product:

(uk, uk′) = i

∫

d3x
√
g(u∗k∂µuk′ − (∂µuk)u∗k′) = (2π)3δ(k − k′) = [âk, â

†
k′ ] (3.4)

These modes are associated with the naturalrectangularcoordinate system, and are
in turn associated with the Poincaré group. Recall that a symmetry transformation
from the Poincaré group leaves the Minkowski line element invariant. Specifically, the
vector∂t is aKilling vector of Minkowski space, orthogonal to the space-like hyper-
surfacest = constant. The special modes mentioned are theeigenfunctionsof this
killing vector, with eigenvalues−iω for positive frequencies.

Example 3.13. For a Dirac field of spin1/2, the irreducible representation (irrep) is
( 1
2 , 0) ⊕ (0, 1

2 ). This is a direct sum of the left handed and right handedWeyl-spinor.
This means an elementary spin1/2-particle can be interpreted of as two independent
particle states, one left-handed and one right-handed thatis mixedthrough the particle
mass.
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However, our primary interest resides in the process of inflation, which is driven by
the inflaton, a scalar field of zero spin. The common irrep for such a field in Minkowski
space is(0, 0) the Lorenz scalar representation, and is simpler to work with.

Note that nature isnot invariant under all transformations of space-time: scaling
(dilatation) is not a symmetry becausemassis not a scale invariant attribute.

3.4.2 Curved spaces

In a curved space, the symmetry group is no longer given by thePoincaré group. It is
therefore hard to decide what the concept of a particle really means. A generalization
of the particle concept to curved spaces can be found in [15].The construction of a
Fock space (A Hilbert space made from several single-particle Hilbert spaces), vac-
uum states etc can proceed as described for the Minkowski space. The problem arises
due to the ambiguity of the formalism, as the Poincaré group is no longer the symmetry
group of the space-time. Then there are no Killing vectors atall with which to define
positive frequency modes.

In someclasses of space-time there may be symmetry under certain restricted trans-
formations (like rotations), or the de Sitter group (see definition 0.17). But in general,
no such privileged coordinates are available andno natural mode decomposition of
φ based on the separation of the wave equation will be possible. This violates the
principle of general covariance, thatcoordinate systems are physically irrelevant.

3.5 The troublesome vacuum

Section goal 3.5.1.Defining the quantum mechanical vacuum in flat and curved spaces.
Building the foundation for finding a suitable set of vacua ina de Sitter space-time.

Definition 3.14. For a fieldφ, the quantum mechanicalvacuum|0〉 is defined to be the
lowest possible energy stateof the field. Thevacuum expectation valueof a fieldφ is

〈0|φ|0〉

For a field in a quadratic potential, the vacuum expectation value should equal zero.
This corresponds to the average, expected value of the field in a state where there are
no particles. Some fields are however described by a different potential,and may give
rise to a non-zero vacuum expectation value. At temperatures below the electroweak
scale, the Higgs-boson is such a particle. Above this scale,the potential regains its
quadratic form.

We already know that the vacuum defined in the Minkowski spaceis invariant under
the Poincaré group. The question arises as to which set of modes gives the ’best’
description of a physical vacuum, i.e. corresponds most closely to the actual experience
of “no particles”. This is a troublesome question, as even ina Minkowski space, a
free-falling detector will not always register the same particle density as a non-inertial
accelerating detector (the Unruh-effect [11]). The vacuumin Minkowski space isnot
unique, but the conventional vacuum states defined in terms of the modes is the agreed
vacuum forall inertial observers. This is because the vacuum defined byak|0〉 = 0 is
invariant under the Poincaré group.
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Definition 3.15. The state|0〉 such thatak|0〉 = 0 for all k is theground state of
vacuum.

Part of the reason for these troubles is due to theglobal nature of the modes. They
are defined on the whole of space-time, so that a particular observer’s specification of
the field mode decomposition will depend on the observer’s entire past.

3.5.1 In and out mode-solutions

In many problems the space-time can be treated as asymptotically Minkowskian in the
remote past and/or future. Here, the usual choice of the “natural” Minkowskian vacuum
has a well-understood meaning: the absence of particles according to all observers in
the asymptotic flat region.

Definition 3.16. The remote past and future are referred to as thein and out modes
respectively.

Example 1: A universe with both in and out-modes

In region

Out region
A+B

C(η)

A-B
η

Figure 3.2: A universe withC(η) = A+B tanh(η) is essentially Minkowskian in the
in/out regions

Assume a universe described with a line element

ds2 = C(η)(−dη2 + dx2) (3.5)

whereC(η) is a conformal scale factor. This form of line element ismanifestly
conformal to Minkowski space, as it is both diagonal and has the same signs as the
Minkowski line element. Assume thatC(η) = A+B tanh(η). We then see that in the
far past and future

C(η) → A±B for η → ±∞
In this limit,A andB being only constants, the space-time essentially becomes Minkowskian.
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Example 2: A de Sitter space

η

a
(η

)

0-2-4-6-8-10

1

0.8

0.6

0.4

0.2

0

Figure 3.3: A de Sitter space expressed in conformal time is Minkowskian in the in
region

Assume a de Sitter space described in equation (2.3). This space is very small when
η → −∞, but is close to flat and essentially Minkowski in the in-region.

3.5.2 The effect of a curved space

Working in the Heisenberg picture (where states are static while operators are time-
dependent), a vacuum state chosen in an in-mode region will remain so during its evo-
lution. However, at later times, outside the region, freelyfalling observers may still
register particles in this “vacuum” state. In particular, if there is also an out region,
then the in-vacuum maynot coincide with the out-vacuum. One might say thatparti-
cles have been created by the time-dependent external gravitational field, or curvature
of space.

We will later encounter a special vacuum for the RW metric:

Definition 3.17. In a RW metric, theadiabatic vacuumis the vacuum that closest re-
sembles the “common” vacuum in flat space-time, i.e where theprobability of particle
creation due to curvature effects is minimized.

3.6 Scalar fields

Section goal 3.6.1.Determining the equation of motion for a scalar field in a general
metric

The assumption that inflation is driven by a scalar field require us to investigate
the properties of such fields. We first consider a general scalar field in a curved space,
before working explicitly with the RW background. We proceed by determining the
general equation of motion for a scalar field.

Definition 3.18. A (real-valued)scalar field is aCk mapφ : X → R, whereX is a
Riemannian manifold. The intrinsic spin of the scalar field is 0.
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3.6.1 Hamilton’s principle and the equations of motion

Even though the reader is expected to be familiar with Hamilton’s principle, an in-
troduction is presented. Recall that the Lagrangian is a function of coordinates and
their derivativesL = L(φ, ∂µφ), and the action is the space-time integral over the La-
grangianS =

∫ √−gd4xL. Here,g denotes the determinant ofgµν and
√−g is the

Jacobian.

Definition 3.19 (Hamilton’s principle). The equations of motion for a fieldφ is deter-
mined by the condition that the actionS is extremal for all infinitesimal variations of
curves which keepφi ≡ φ(τi) andφe ≡ φ(τe) rigid,

δS = δ

∫ τe

τi

√−gL(φ, ∂µφ)d4x = 0 (3.6)

t

φ

φe

φi

Equation (3.6) can also be expressed as

δ

∫ √−gLd4x =

∫

d4x
√−g

(∂L
∂φ

δφ+
∂L

∂(∂µφ)
∂µδφ

)

= 0

where we have used thatδ∂µφ = ∂µδφ. Partial integration of the last term gives

=

∫

d4x
√−g

(∂L
∂φ

− ∂µ
∂L

∂(∂µφ)

)

δφ+
∂L

∂(∂µφ)
δφ

∣
∣
∣

τe

τi

= 0

The last term is zero due to the conditions thatφi andφe remain rigid, so only the terms
in the integral must vanish. The equation of motion for a general fieldφ is then:

∂L
∂φ

− ∂µ
∂L

∂(∂µφ)
= 0

3.6.2 Equations of motion for a scalar field

A scalar fieldφ in a general space has the Lagrangian

L =
1

2
gµν∂µφ∂νφ− V (φ) (3.7)
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with corresponding action

S =

∫

d4x
√−g

[
1

2
gµν∂µφ∂νφ− V (φ)

]

(3.8)

Using the Hilbert-action principleδS = 0 we obtain the equation of motion of the field

δS = δ

∫

d4xL = δ

∫

d4x
√−g

[
1

2
gµν∂µφ∂νφ− V ′φ

]

= 0

which equals

δS =

∫

d4x
√−g

[
1

2

1√−g ∂ν(
√−ggνµφ∂µφ) − V ′

]

δφ = 0

whereg = det(gµν). The action principle states that the terms in brackets mustequal
zero, which is the equations of motion.

Definition 3.20. Thed′Alembertian operator is defined as

2 =
1√−g ∂ν(

√−ggνµφ∂µ)

and can be viewed as the covariant version of the laplacianDµDµφ = 2φ, where
DµA

µ = ∂µA
µ +AσΓν

σµ

The equation of motion for a scalar field in a general space cannow be written as

2φ+ V ′ = 0 (3.9)

3.7 Chapter conclusions

We conclude this Introductory chapter by stating the most important observations:

Conclusion 3.1.The universe is governed by symmetries. Symmetry invariance results
in conserved physical quantities such as energy, momentum or charge.

Conclusion 3.2. In curved spaces, global symmetries are reduced to local symmetries.

Conclusion 3.3. Gauge transformations can be reduced to infinitesimal coordinate
transformations.

Conclusion 3.4. In curved spaces, particles have no well-defined meaning: two sepa-
rated observers measuring the same event in curved space-time will observe different
particle states.

Conclusion 3.5. The de Sitter space has a well-defined particle state in the in-mode
region, the infinite past.

Conclusion 3.6. The equation of motion of a scalar field has been established.
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Evolving the universe
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Chapter 4

Inflation in the
Robertson-Walker universe

Until now, we’ve been concerned with purely theoretical aspects of our universe. We
now proceed by investigating the physical properties of of our local universe in its in-
fancy – emphasizing that it was indeed a local event. This chapter introduces the theory
of inflation, and describes events that occurred between10−35 and10−32 seconds after
t = 0. We will only consider inflationary models withonescalar field.

The basic differences between a curved and a flat space have been established. We
will argue that the space during inflation is the constantly curved de Sitter space, and
this will from now on be the standard background space for thetheory of inflation. This
chapter will pursuePG1, and culminates in the definition of a suitable vacuum in the
de Sitter inflationary space.

Unless otherwise stated, the contents of this chapter is based on [11], [16], [9] and
[8].

4.1 Giving birth to a universe

Assume that a universe is initiated att = 0. The scale factor is close to zero, but the
universe is still infinitely large. As an analogue, considerthe mapf : R → R that
sendsx 7→ ǫx. f is still surjective, even though it scales the infinitely sized spaceR
onto a “more compact” infinite spaceR (see figure 4.1). Similarly, our universe was
infinitely large when it was initialized - it was just infinitely more compact than today.

4.1.1 The epoch of unified forces

Very little is known during this first period of the universe,which is called thePlanck
epoch. If super-symmetry is correct, then all four known forces were unified and so
shared a coupling constant. Roughly10−43 seconds after the birth, gravity is separated
from the other three forces. The stage after gravity is separated out is called thegrand
unified epoch. Eventually, the grand unification is also broken when the strong nuclear
force is separated from the electroweak force.

35
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f(x) = ǫx

R R

Figure 4.1: An analogue to the scale factora(t) at the beginning of the universe. The
scale factor (f(x) = ǫx) maps an infinite space(R) to an infinitely more compact space
(ǫR ≃ R), which is still infinite.

4.1.2 The epoch of Inflation

10−35 seconds after the big bang, the strong nuclear force decoupled from the elec-
troweak force. We now need to introduce a first assumption, namely that the universe
is solely populated by a homogeneous heavy scalar field (theinflaton) in a vacuum
state that fluctuated quantum mechanically (see figure 4.2).

Figure 4.2: A two-dimensional schematic diagram of an inflaton potentialV (x, y).
Notice the “false vacuum” state at the center of the image.
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In areas where the potential is large, the process of inflation may start. Here, the
inflaton field is located high up in an excited particle state,and proceeds by rolling
slowly down (see figure 4.3). While (slow) rolling, the scalarfield drives the inflation

Inflation can start here

Figure 4.3: Areas in the universe where inflation might happen

and expands the the scale factora(t) by e60 until the minimum is reached and inflation
stops. However, when the slow-roll conditions break down, the field rolls faster and
doesn’t initially settle in the minimum (or vacuum state). It will continue to roll back
and forth while dumping friction energy into other particlefields. In the end, the infla-
ton field has settled in the minimum, meaning it has vaporized, leaving only baryons
and photons in the newly created (local) universe (see figure4.4).

Vacuum state of the inflaton

Figure 4.4: The field proceeds by slow-rolling down the potential, until settling in the
safe vacuum state at the minimum. Baryons and photons are created from the friction
energy leftovers.

4.1.3 Inflation consequences

The assumption that the universe before inflation was homogeneous and isotropic
would classically mean that the universeafter the period of inflation would remain so.
We know today that the universe is definitelynot homogeneous and isotropic on small
scales, which means that there must have been a mechanism that produced anisotropies
in the energy density early on. Luckily, the theory of inflation does not only solve a
number of problems - it also predictswhyandhow these anisotropies came into exis-
tence.



38 CHAPTER 4. INFLATION IN THE ROBERTSON-WALKER UNIVERSE

Before inflation, more particles were in casual contact thanafter inflation, as the co-
moving horizon decreased. The different modes, which were well within the horizon
before inflation, ensured causal contact (and thus thermal equilibrium) between great
portions of space at early times, see figure 4.5.

After inflationBefore inflation

Figure 4.5: The decay of the co-moving horizon - before and after inflation.

During inflation, the inflaton fieldφ fluctuated, enabling creation of particles and
anti-particles. But inflation was so rapid that some of theseparticle pairs were sepa-
rated well outside the co-moving horizon, effectively breaking the homogeneity of the
early universe.

We will in the following chapter explain how the quantum fluctuationsδφ in the
inflaton field gave rise to perturbations in the metricafter inflation has ended. This
could be problematic, as by now the inflaton had completely vaporized. Luckily, the
perturbationsδφ initiated perturbations in the metric during the end of inflation, leaving
a fresh radiation dominated universe with small perturbations in the metric. Compare
this with a stone hitting a still pond - the stone “disappears” to the bottom, while the
water “metric” is perturbed. These perturbations would in turn seed the anisotropies in
energy densities as observed today.

We proceed by a more quantitative treatment of the introduction presented here.

4.2 The equation of motion

Section goal 4.2.1.Establish the equation of motion of a scalar field in a Robertson-
Walker background.

Recall from chapter 2 that a scalar field-driven acceleratedexpansion results in a
de Sitter universe. We proceed by deriving the equations of motion in a de Sitter space,
described by the RW line element.

Proposition 4.1. The equation of motion for a scalar field in a RW background is

φ̈+ 3Hφ̇− 1

a2
(∇2φ) + V ′ = 0 (4.1)
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whereV ′ ≡ dV
dφ . Proof: The RW line element in Cartesian coordinates is

ds2 = −dt2 + a2(t)dx2

where the metric is

gµν =







−1 0 0 0
0 a2 0 0
0 0 a2 0
0 0 0 a2







such thatg ≡ det gµν = −a6. Using (3.8), the action for a scalar fieldφ in a RW-
background is

S =

∫

d4xa3

[

+
1

2
φ̇2 − 1

a2
(∇φ)2 + V (φ)

]

(4.2)

Infinitesimal variations in the scalar fieldφ → φ+ δφ applied with Hilbert’s principle
of stationary actionδS = 0 gives the equation of motion forφ:

δS =

∫

d4xa3

[

φ̇δφ̇− 1

a2
(∇φ) δ(∇φ)

︸ ︷︷ ︸

=∇δφ

+V ′δφ

]

Noting thatδφ̇ = d
dtδφ, extractδφ and include the determinanta3 to get

=

∫

d4x

[
d

dt
(a3φ̇) − a∇2φ+ a3V ′

]

δφ

Perform the differentiation:ddt (a
3φ̇) = 3a2ȧφ̇+ a3φ̈ = a3(3Hφ̇+ φ̈) whereH is the

Hubble parameter. Insertion yields

δS
!
= 0 =

∫

d4xa−3

[

3Hφ̇+ φ̈− 1

a2
(∇2φ) + V ′

]

δφ

The action principle demands the expression in the bracketsvanish, and the equation
of motion is obtained:

φ̈+ 3Hφ̇− 1

a2
(∇2φ) + V ′ = 0

�

Alternate derivation

The equation of motion can also be obtained from (3.9):

2φ+ V ′ = 0 =
1√−g ∂ν(

√−ggµν∂µφ) + V ′

The kinetic part is

1√−g ∂ν(
√−ggνµ∂µφ)

RW
=

1

a3
∂ν(a3gνµ∂µφ) =

1

a3
∂t(a

3(−1)∂tφ) +
1

a3
∇(a∇φ)

such that

2φ+ V ′ = − 1

a3

d

dt
(a3φ̇) +

1

a2
∇2φ

This expression equals (4.2) when including the potential,and equation (4.1) has been
retrieved.
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4.3 The slow-roll approximation

Section goal 4.3.1.Explain the basics of the slow-roll approximation. Define the slow-
roll parameters.

This section introduces the standard approximation methodof inflation, theslow-
roll approximation . The reader is expected to be familiar with this topic, so allderiva-
tions are omitted. A proper review of the slow-roll approximation can be found at
[9].

4.3.1 Introduction

In the previous section, the general equation of motion for ascalar field (4.1) was de-
rived. The fieldφ is in this section considered to be spatially homogeneous:φ(x, t) →
φ(t). We impose two constraints on the field and its potential in order to simplify the
model.

1. The potentialV exceeds the kinetic energy term, orV ≫ φ̇2.

2. The friction term3Hφ̇ dominates over the curvaturëφ.

Equation (4.1) can now be expressed as

φ̈+ 3Hφ̇+ V ′ = 0 (4.3)

Constraint 2 means that

3Hφ̇ ≈ −V ′ (4.4)

andF1 gives

H2 ≈ V

3M2
p

4.3.2 The slow-roll parameters

The conditions of successful inflation can be expressed in a dimensionless form. The
two criteria are reformulated as the slow-roll parameters:

ǫsr ≡
M2

p

2

(V ′

V

)2

≪ 1 (4.5)

ηsr ≡M2
p

(V ′′

V

)

≪ 1

The subscript onηsr distinguishes the parameter from theconformal timeη. As infla-
tion demands the fieldφ to roll slowly in the potential, the potential’s derivatives must
be small. We therefore say that inflation is equivalent with havingǫ ≪ 1. Thus infla-
tion endswhen the derivative term exceed the potential itself, or when ǫ = 1. When
the era of inflation is complete, the inflaton field has settledin the vacuum state and the
friction energy has been converted to other particles.
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4.4 Quantizing a scalar field

Section goal 4.4.1.To promote the inflaton fieldφ to a field operator̂φ.

We now leave the world of classical mechanics and enter quantum field theory.
Quantizing a theory isalwaysa correct choice, as a classical theory has a smaller space
of validity than a quantized. When quantizing the inflaton field, it will be decomposed
into a set of Fouriermodesk. Each mode corresponds to a plane wave with wavelength
λ = 2π/k. These Fourier modesk of a density perturbation corresponds to a variation
in the density of a length scaleλ. In linear perturbation theory, the modes will evolve
independentlyfrom each other, reducing a set of coupled partial differential equations
to ordinary differential equations.

This will lead to, among others,the primordial spectrum. But first we give a re-
minder of how to perform a quantization of a scalar field in theMinkowski metric.

4.4.1 Fourier expansion

First, decompose the field into its time and space componentsby expanding into Fourier
modes:

φ(x, t) =
1√
V

∑

k

φk(t)eikx. (4.6)

Then promote the Fourier-coefficients to operators. The field φ and the canonical con-
jugateπ = ∂L

∂φ̇
should now satisfy the commutator relation

[φ(x, t), π(x′, t)] = iδ(3)(x − x′)

The Lagrangian densityL for a scalar field in the Minkowski space is given as

L =
1

2
∂µφ∂

µφ = −1

2
φ̇2 +

1

2
(∇φ)2

The Lagrangian L is found by insertion:

L =

∫

d3xL =
1

2V
d3x

∑ (

φ̇kφ̇k′ei(k+k′)·x + k2φkφk′ei(k+k′)·x
)

Using that
∫
d3x exp (i(k − k′) · x) = V δk,−k′ we find

L =
1

2

∑

k

(

φ̇kφ̇−k − k2φkφ−k

)

The field satisfiesφ∗k = φ−k, so

L =
1

2

∑

k

(

|φ̇k|2 − ω2
k|φk|2

)

whereωk =
√
k2. The HamiltonianH = pq̇ − L is

H =
1

2

∑

k

(

|φ̇k|2 + ω2
k|φk|2

)

The Hamiltonian now describes a one-dimensional harmonic oscillator for each wave-
number k, whileωk is the oscillation frequency. The quantization procedure of such a
Hamiltonian is well-known.



42 CHAPTER 4. INFLATION IN THE ROBERTSON-WALKER UNIVERSE

4.4.2 Quantizing the harmonic oscillator

If one already knows the classical equations of motion for a field, it can be promoted
to the equation for the time-dependent operatorφ(t). This is done in the Heisenberg
picture, where operators become time-dependent while states are not. It is in general
always possible to introduce the raising and lowering operators in the following way:

φk(t) = vk(ω, t)ak + v∗k(ω, t)a†k

whereu, v satisfy the classical equation of motion. We now rewrite thecanonical vari-
ablesφ, π in terms of raising and lowering operators, using the special modes defined
in eq (3.3)v = u∗ = (2ωk)−1/2:

φk(t = 0) =

√
1

2ωk

(
ak + a†−k

)

πk(t = 0) = −i
√
ωk

2

(
ak − a†−k

)

Cumbersome algebra will confirm that the new operators satisfy the commutator rela-
tion

[ak, a
†
k′ ] = δk,k′

Including time dependence,φ is expressed as

φk(t) =

√
1

2ωk

(
ake

−iωkt + a†−ka
iωkt

)
(4.7)

insert into (4.6) and find

φk(x, t) =

∫
d3k

(2π)3

√
1

2ωk

(

ake
−ikx − a†ka

ikx
)

having used the continuous shift
∑

k → V
∫
d3k/(2π)3. A similar expression can be

found for the canonical conjugateπ(x, t).

4.5 Perturbing the inflaton

Section goal 4.5.1.To perturb the inflaton and define a set of solutions for the pertur-
bations in de Sitter space.

4.5.1 Introduction

Assume our universe starts off completely homogeneous and isotropic. Its only com-
ponent is theinflaton fieldφ, the postulated scalar field that drives inflation. The space
is de Sitter, and allperturbations in the metric are neglected. This can be done as long
as a mode stays well inside the horizon. [8]

Thus the only thing we consider are thequantum fluctuations of φ, expressed
as a small perturbation in the field itself. These perturbations will obey the equations
of motion for a scalar field with aspecialmass, a mass proportional to the curvature
of the potential V. A rewriting to a more suitable expressionusing conformal time is
then performed. This will tune the equations to follow the expansion of space and
thus eliminating friction terms. In the end the solutions tothe perturbed field will be
scrutinized, and theBunch-Davies vacuumis established.
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4.5.2 Perturbing the inflaton

Assume the quantum fluctuations of the inflaton gives rise to perturbations of the form

φ(x, t) = φ0(t)
︸ ︷︷ ︸

classical evolution

+ δφ(x, t)
︸ ︷︷ ︸

fluctuations

(4.8)

Proposition 4.2. The curvature of the potentialV gives rise to an effective mass-term:

V ′′ = m2

This is in analogue with the Higgs-mechanism (See [13], page351).

Proof: The potentialV has a minimum forφ = 0. Expanding V,

V (φ) ≈ V (0) +
1

2
V ′′φ2 =

1

2
V ′′φ2

The scalar Lagrangian now yields

L =
1

2
gµν∂µφ∂νφ− 1

2
V ′′φ2

where1
2V

′′φ2 is interpreted as aneffective mass term. HenceV ′′ ≡ m2. 2

Lemma 4.3. The perturbed fieldδφ will satisfy the equation of motion:

δ̈φ+ 3H ˙δφ− 1

a
(∇2)δφ+m2δφ = 0 (4.9)

Proof:
Bothφ andφ0 will obey (4.1):

φ̈+ 3Hφ̇− 1

a2
(∇2φ) + V ′ = 0 (4.10)

Insertion of (4.8) into (4.1) gives

φ̈0 + δ̈φ+ 3H(φ̇0 + ˙δφ) − 1

a
(∇2δφ) + V ′(φ0 + δφ) = 0 (4.11)

Returning to the perturbed potential in (4.11), we expand the potential as follows:

V ′(φ0 + δφ0) ≈ V ′(φ0) + V ′′(φ0)δφ = V ′(φ0) +m2δφ

Insert this potential back into (4.11) and recall that the field φ0 alone satisfies (4.1).
Using proposition (4.2) to eliminateV ′′ for m2, the perturbed fieldδφ then satisfies
(4.9).2

4.5.3 Fourier expansion

Separating the spatial and time dependence, we perform a Fourier expansion of the
perturbed fieldδφ:

δφ(x, t) =
1

V

∑

k

ϕk(t)eik·x
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wherek is the co-moving wave number. Using

∇2δφ(x, t) = − 1

V

∑

k

k2ϕke
ikx

we obtain

ϕ̈+ 3Hϕ̇+ (
k2

a2
+m2)ϕ = 0

The solutions are the classical mode-functions

uk = ϕk(t)eik·x

4.5.4 Rewriting to conformal time

We proceed by expressing the field equation with respect to conformal time.

ϕ̇ =
dϕ

dt
=
∂ϕ

∂η

dη

dt
= ϕ′ 1

a

such that (3.4) can be expressed as

ϕ′′
k + 2Hϕ′

k + (k2 +m2a2)ϕk = 0 (4.12)

Lemma 4.4. To first order, the mass-term∝ m2 can be neglected during inflation.

Proof: The slow-roll parameterηsr in equation (4.3.2) gives

ηsr ≡M2
p

V ′′

V
∝ V ′′ = m2

One of the slow-roll conditions for inflation to occur is that|ηsr| ≪ 1. In this limit, the
mass-term can henceforth be neglected.2

Proposition 4.5. The friction term in (4.12) vanishes with a suitable choice of co-
moving mode functions

ϕk =
uk

a

From a physical viewpoint, the removal of the friction term can be explained by a
co-moving observer that is stationary in a co-moving frame.In this frame,H = 0 and
the term is effectively removed. One can also interpretH as the friction experienced
by the expansion of the universe, assuming a particle following a geodesic curve. A
detailed “proof” follows:

ϕ′
k =

1

a
u′k − 1

a
Huk

ϕ′′
k = −1

a
Hu′k+

1

a
u′′k+

1

a
H2uk−

1

a
H′uk−

1

a
Hu′k = −2

1

a
Hu′k+

1

a
u′′k+

1

a
H2uk−

1

a
H′uk

insert back into (4.12) to obtain

−2

a
Hu′k +

1

a
u′′k +

1

a
H2uk − 1

a
H′uk +

2H
a
u′k − 2H2

a
uk +

k2

a
uk = 0

which is
1

a
u′′k − 1

a
H2uk − 1

a
H′uk +

k2

a
uk = 0
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Using thatH′ = a′′

a −H2:

1

a
u′′k − a′′

a2
uk +

k2

a
uk = 0

which equals

u′′k +
(

k2 − a′′

a

)

uk = 0 (4.13)

From (2.4),a = −1/(Hη):
a′′

a
=

−2Hη

−Hη3
=

2

η2

Inserting into (4.13):

u′′k +
(

k2 − 2

η2

)

uk = 0 (4.14)

and theu′k-term has vanished. Note that at early times,η → −∞ and the1/η-term can
be neglected. The classical equation then reduces to that ofa harmonic oscillator, with
solutions described in (4.7).2

Lettingvk = ηuk andx = kη, equation (4.14) can be rewritten as

d2vk

dx2
+

2

x

dvk

dx
+ (1 − 2

x2
)vk = 0

The solution for this equation is given by the Bessel-functions forℓ = 1, that isj1(kη)
andy1(kη) and satisfy

uk(η) = Ake
−ikη

(

1 − i

kη

)

+Bke
ikη

(

1 +
i

kη

)

(4.15)

whereAk, Bk are the yet unknownBogoliubov-coefficients. We

4.5.5 Bogoliubov-coefficients

We perform a small detour to investigate the properties of the Bogoliubov-coefficients.
The field needs to be decomposed intopositive and negativefrequency components
before defining the creation and annihilation operators. This can only be done in space-
times with atimelike Killing vector field . Luckily, the de Sitter space has this property.
The Bogoliubov transformation relates the two different coordinate systems.

Consider the canonical commutator relation for bosonic creation/annihilation oper-
ators:

[â, â†] = 1

and define a new set of operators

b̂ = A∗â−Bâ†

b̂† = Aâ† −B∗â†

Definition 4.6. TheBogoliubov-coefficientsare the complex coefficientsA andB.
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The canonical transformation of these operators is called aBogoliubov transfor-
mation. The commutator of the new operators must satisfy

[b̂, b̂†] = 1 = [A∗â−Bâ†, Aâ† −B∗â†] = (|A|2 − |B|2)[â, â†]

Hence the Bogoliubov-coefficients fulfill

|A|2 − |B|2 = 1

This identity closely resembles the hyperbolic identity. Thus, the Bogoliubov-coefficients
can be parametrized as

A = eiθ cosh r and B = eiθ sinh r

4.5.6 Horizon crossing

We are especially interested in modes thatcross the particle horizon. The modes that
have left the horizoncannotbe affected by casual processes. The co-moving wave-
length isλ ∼ 1/k, and the quantized fluctuations derived will now satisfy

δφ(x, t) =
1

a

∫
d3k

(2π)3

[

akuk(η)eikx + a†ku
∗
k(η)e−ikx

]

Definition 4.7. A mode isinsidea horizon provided the wavelength is smaller than the
horizon.

Note from (2.4) that the horizon during inflation equals the conformal timeη. A
mode is then inside the horizon provided

λ < |η| → |kη| > 1

Similarly, a mode will cross the horizon when|kη| = 1 and be outside if|kη| < 1.
During inflationη < 0, hence the absolute sign.

4.6 Bunch-Davies vacuum

Section goal 4.6.1.Establish a suitable vacuum state for the perturbed inflatonfield.
Analyze how the modes of the field cross the inflation horizon.

We consider the early stages of inflation, and investigate the properties of the in-
flaton. The general solution for the perturbed co-moving modes ofφ were found to
satisfy (4.15):

uk(η) = Ake
−ikη

(

1 − i

kη

)

+Bke
ikη

(

1 +
i

kη

)

In the previous section we reasoned that|kη| ≫ 1 during early stages of inflation.
Equation (4.15) is then approximated to:

uk(η) ≈ Ake
−ikη +Bke

ikη

One of the solutions is chosen, and the default one is thein-mode(See chapter 3 for
details). In the limit of the infinite past, the modes are infinitely small, and the ef-
fects of the inflationary horizoncan be ignored. This means space-time is essentially
Minkowski, and there exists a unique vacuum for the inflaton field. This vacuum is the
Bunch-Davies vacuum:
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Definition 4.8. We define theBunch-Davies vacuumto be the in-mode solution of
(4.15) assuming early stages of inflation (|kη| ≫ 1)

uk =

√

1

2k
e−ikη

where the Bogoliubov-coefficientAk = (2k)−1/2 is decided from the harmonical
oscillator:

φk =

√
1

2ωk

(
ak + a†−k

)

The perturbed inflaton field is then

δφk = ϕke
ikx =

1

a
uk(η)eikx

We conclude this section by the following observation:

Lemma 4.9. The perturbeduk modes are (conformal) time-dependent within the hori-
zon. The modes will freeze and stay constant when crossing outside the horizon. In
other words, when a Fourier mode has left the horizon, the physics on the scalek is not
causally connected, and thus the mode does not evolve.

Proof: Inside the horizon,|kη| ≫ 1, so

|δφk| = |uk

a
| =

√

1

2k
(Hη)

which is dependent of the conformal timeη. Outside,|kη| ≪ 1 and we find|uk| ∼
|
√

1
2k

1
kη |. The perturbed field is

|δφk| = |uk

a
| =

√

1

2k3
H

which is (conformal) time-independent.2

4.7 Chapter conclusions

We conclude this Introductory chapter by stating the most important observations:

Conclusion 4.1. The metric perturbations during inflation are negligible, only the
quantum fluctuations of the inflaton field are important.

Conclusion 4.2. The de Sitter space has a well-defined particle vacuum state in the
infinite past (Bunch-Davies)

Conclusion 4.3. The perturbed modes are time dependent within the horizon, but
freeze when leaving. This is natural, as modes outside a horizon have no causal con-
nection.
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Chapter 5

Cosmological perturbation
theory

This chapter continues the investigation of inflationary perturbations. We will see that
the quantum fluctuations in the inflaton field give rise to scalar perturbations in the
metric, seeding the anisotropies in the early universe. In the end,PG1will be fulfilled.

Unless otherwise stated, the contents of this chapter is based on [11], [16], [17] and
[8].

5.1 Introduction

We have seen that during early inflation, the quantum fluctuations in the inflaton field
gave rise to conformal time-dependent modes inside the horizon, while the modes froze
when leaving the horizon. This is natural, as causal effectsonly operates on scales
smaller than a particle horizon. In order to simplify the equations, we also neglected
the perturbations in the metric. This is a valid assumption during the early stages
of inflation, but the metric perturbations become importantwhen inflation ends. As
the inflaton perturbationsδφ slowly regain its vacuum state, the energy leftovers are
dumped into these metric perturbations. We will in this chapter see that these metric
perturbations can be divided in tothreeclasses:scalar, vectorand tensorperturba-
tions, each which will evolve independently. When inflation ended, the universe was
purely radiation-dominated, but with small tensor, scalarand vector perturbations in
the metric. Eventually, as the co-moving particle horizon started growing, the scalar
perturbations would seed the structure formation of the universe as observed in the
cosmic microwave background today.

5.2 The primordial spectrum

Section goal 5.2.1.Define the power spectrum. Determine the power spectrum for the
perturbed inflaton field.

The primordial spectrum describes the properties of the primordial fluctuations, or
the density variations in the early universe. These fluctuations seeded the structure

49
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formation, and the variations originated as quantum fluctuations expanded during the
inflation period. We now turn our attention to thepower spectrum.

Definition 5.1. A two-point correlation functionρx,y is the correlation between ran-
dom variablesx, y at two different points in space-time, and is defined as

ρxy ≡ 〈xy〉 − 〈x〉〈y〉
√

Var(x)
√

Var(y)

For a regular scalar fieldφ in a vacuum state,〈φ(x)〉 = 〈0|φ(x)|0〉 = 0. The
two-point correlation function is then

ρφ(x)φ(y) =
〈φ(x)φ(y)〉 − 〈φ(x)〉〈φ(y)〉
√

Var(φ(x))
√

Var(φ(y))
=

〈φ(x)φ(y)〉
√

〈φ(x)2〉〈φ(y)2〉
∝ 〈0|φ(x)φ(y)|0〉

Example 5.2. For a scalar field, the two-point correlation function givesrise to the
Dirac propagator: The probability amplitude for a particle to propagate fromx to y:

D(x− y) = 〈0|φ(x)φ(y)|0〉 =

∫
d3p

(2π)3
1

2Ep
e−ip(x−y)

Thevacuum fluctuationsare similarly defined, and describes the probability of a
virtual state to be created/annihilated within the uncertainty time: 〈0|φ(x)φ(x)|0〉.

5.2.1 Gaussianity

We assume the fluctuations to follow aGaussian distribution. This is a reasonable
assumption, as it is possible to expand a perturbed potential:

V (φ0 + δφ) = V (φ0) +
1

2
V ′′(φ0)(δφ)2

︸ ︷︷ ︸

Gaussian

+
1

6
V (φ0)(δφ)3 + . . .

︸ ︷︷ ︸

Non-Gaussian

In quantum field theory, the second order term gives rise to the two-point correlation
function while the higher-order terms≥ 3 gives rise to interactions, orvertices. These
higher-order terms spoil Gaussianity, and are neglected.

5.2.2 The power spectrum

The power spectrum is a useful quantity when one is interested in classifying the prop-
erties of perturbations. Assumeφ is a free field in Minkowski space. The field can be
expanded in Fourier space as

φ(x) =
1√
V

∑

k

(

akϕk(t)eikx + a†kϕ
∗
k(t)e−ikx

)

whereϕk = (2k)−1/2eikt andωk =
√
k2 +m2 = k (if the field is assumed massless).

The field fluctuates in a vacuum described by a Minkowski-metric, and is a two-point
correlation function given by

〈φ2〉 = 〈0|φ2|0〉 =
1

V
〈0|

∑

k,′k

(

akϕk(t)eikx+a†kϕ
∗
k(t)e−ikx

)(

ak′ϕk′(t)eik′x+a†k′ϕ
∗
k′(t)e−ik′x

)

|0〉
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The lowering operator (and the adjoint rising operator) destroys the vacuumak|0〉 = 0,
so the vacuum expectation value is reduced to

〈φ2〉 =
1

V
〈0|

∑

k,k′

aka
†
k′ |0〉ϕk(t)ϕ∗

k′(t)ei(k−k′)x

The double sum is removed by the commutativity of[ak, a
†
k′ ] = δk,k′ for k 6= k′, as the

operators are free to “commute” their way out and annihilatethe vacuum. The double
sum is only non-vanishing when diagonal (ork = k′), and the expression is

〈φ2〉 =
1

V

∑

k

|ϕ2
k| →

∫
d3k

(2π)3
|ϕk|2 =

∫
dk

k

k3

2π2
|ϕk|2 =

∫
dk

k
∆2

φ(k)

The final step was done rewriting the expression using spherical coordinates. Assuming
isotropy,

∫
d3k =

∫
dΩ3k

2dk =
∫

4πk2dk, wherek2 is the Jacobi-determinant.

Definition 5.3. Thepower spectrum∆2
φ(k) is defined as

∆2
φ(k) =

k3

2π2
|ϕ2

k| (5.1)

and describes theamplitudeof the fluctuations as a function of thescalek.

Definition 5.4. We say that a power spectrum isscale invariantif it is independent of
k.

Recall that the vacuum expectation value〈φ〉 = 〈0|φ|0〉 for the inflaton is zero.
Thevariance of a variable is defined as〈φ2〉 − 〈φ〉2 and is here reduced to〈φ2〉. The
power spectrum of a fieldφ therefore describes thevarianceof fluctuations.

Example 5.5. In Minkowski space,ϕk = (2k)−1/2 so the power spectrum of the
inflaton fluctuations is

∆2
φ(k) =

k2

4π2

5.2.3 Harrison-Zel’dovich scaling

We are interested in describing the power-spectrum in a de Sitter space. Recall from
(4.5) that a set of new modes in terms of the co-moving coordinates was expressed as

ϕk =
1

a
uk

We concluded that fluctuationsoutsidethe (co-moving) horizon will be constant and
the scale of the mode will be

|δφk| = |uk

a
| =

√

1

2k3
H (5.2)

Proposition 5.6. The power spectrum during inflation for scalar fluctuations outside
the horizon is given by

∆2
φ(k) =

(H

2π

)2

(5.3)
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Proof: By direct insertion of (5.2) into the expression for the power spectrum (5.1).
2

This shows the power spectrum outside the horizon isscale invariantwhenH
is constant. This is called theHarrison-Zel’dovich (HZ) scaling, and is correct in
the limit of infinitely slow rolling of φ. Modes with different wave-numbersk will
leave the (co-moving) horizon at different times, which makes the HZ scaling inexact
without the slow-roll approximation. This means the scalarpotentialV ∼

√
H will

have different values when the modes cross the horizon. It isat the horizon crossing
that the power spectrum is to be evaluated.

5.3 Cosmological perturbation theory

Section goal 5.3.1.Define cosmological perturbation theory. Pursue scalar field per-
turbations, and explain why tensor and vector perturbations are neglected.

We present a short introduction to the theory of cosmological perturbations before
venturing deeper into the theory of scalar perturbations. For a comprehensive introduc-
tion to cosmological perturbation theory, see [14].

5.3.1 The decomposition theorem

The Lagrangian describing the inflaton is naturally dependent on the inflaton field itself.
The energy-momentum tensor’s dependence of the LagrangianL(φ, ∂µφ) is clear from
equation (3.5). Then the Einstein field equations (2.2) establish a connection between
the energy-momentum tensor and the curvature of space, and the curvature is described
by the metric tensorgµν . Hence scalar perturbations of the form

φ→ φ+ δφ

will give rise to perturbations in the metric tensorgµν

gµν → gµν + δgµν

Theorem 5.7(Decomposition theorem). Any arbitrary perturbation in the metric can
be expressed as the sum ofscalar, vectorandtensorfluctuations.

δgµν = δgtensor
µν + δgvector

µν + δgscalar
µν

These three components can be expanded in terms of sphericalcoordinates, and will
be orthogonal to each other. They are solved separately, andevolve independently
in linear perturbation theory. This means that initial tensor perturbations will never
affect scalar or vector perturbations at later times, and vice versa.

The scalar perturbations will give rise to density fluctuations, while thetensor
perturbations initiate gravity wave production. The gravity waves have a negligible
effect on physics except for the B-modes of the cosmic microwave background polar-
ization. The tensor perturbations are anyways gauge invariant, and evolve identically
with any choice of gauge. Thevector perturbations decays rapidly as the universe
expands exponentially, and are ignored [11].
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5.3.2 Perturbing the RW metric

A general first-order perturbation of the RW metric is given by

gµν = g(0)
µν + δgµν = a2(ηµν + hµν)

whereηµν is the Minkowski metric, and

hµν =

(
2A Bi

Bi −Cij

)

wherehµν has 10 degrees of freedom. We rewrite the line element in terms of the
perturbations:

ds2 = a2
[

− (1 + 2A)dη2 − 2Bidx
idη + (δij + Cij)dx

idxj
]

We state a well-known theorem without proof:

Theorem 5.8(Fundamental theorem of vector calculus). A smooth vector field can be
decomposed into irrotational (curl-free) and solenoidal (divergence-free) component
vector fields. This implies that any vector fieldBi can be considered to be generated
by a pair of potentials: a scalar potentialB and a vector potentialVi such that

Bi = −∂iB + Vi

TheCij-term can similarly be decomposed as

Cij = −2Dδij + 2∂i∂jE + ∂iEj + ∂jEi + hij

whereE andD are scalar potentials andEi a divergence free vector potential. Both
sides of the equation has 6 degrees of freedom. Note that the term∂jEi + ∂iEj nor-
mally has three degrees of freedom, but the divergence relation ∂iEi = 0 reduces the
expression to two degrees of freedom. We characterize the three constituents of the
metric perturbations:

- Contributions to thetensor perturbations are given by

ds2 = a2
[

− dη2 + (δij + Hij)dx
idxj

]

- Contributions to thevector perturbations are given by the termsVi and∂iEj +
∂jEi, but will decay rapidly as the universe expands during inflation. These
perturbations will give little or no effects.

- Contributions to thescalar perturbations are given by

ds2 = a2
[

−(1+2A)dη2−2∂iBdx
idη+

(
(1−2D)δij+2∂i∂jE

)
dxidxj

]

(5.4)

The scalar perturbations will be studied in more detail in the following sections. They
will eventually give rise to the density perturbations and seed the structure formation
in the early universe.
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5.4 Tensor perturbations

Section goal 5.4.1.Describe the tensor perturbations. Reason for why they are ne-
glected.

Tensor perturbations do not directly affectPG1, but will be treated anyway. This
is because they are both interesting and will give aid to the investigation of scalar
perturbations. In the previous section, the perturbed metric was defined as

gij = a2(δij + Hij)

where we have chosen to investigate a gravitational wave propagating along thez-axis:

Hij =





h+ h× 0
h× −h+ 0
0 0 0





Hij has the property that it isdivergenceless, traceless and symmetric, askiHij = 0
andtr(H) = 0. What needs to be done is to derive the Christoffel symbols (connection
coefficients), then the Ricci tensor followed by the Ricci scalar. A thorough derivation
of these quantities can be found in [8] or [11]. We state a recipe for finding an equation
of motion for the perturbations.

5.4.1 Golden recipe

1. Calculate the connection coefficientsΓµ
αβ

. They are defined from the metric

Γµ
αβ =

1

2
gµν

(
gαν,β + gβν,α − gαβ,ν

)

2. Find the Ricci tensor using the connection coefficients. The Ricci tensor is de-
fined as

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓβ

µν − Γα
βνΓβ

µα

3. Calculations show that tensor perturbationsdo not affect the Ricci scalar(to first
order).

4. Determine the (spatial) perturbed Einstein tensor from the Ricci-tensor to first
order:

δEij = δ(Rij −
1

2
gijR) = δRij

5. Use the Einstein equationδEµν = κδTµν = 0 for tensor perturbations to first
order.

After performing these steps (see [8]) it follows from the Einstein equation thath× and
h+ obey the equation of motion:

ḧ+ 2Hḣ+ k2h = 0 (5.5)
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5.4.2 Solutions to the wave equation

Recall from chapter 4 that the equation of motion for the perturbed scalar field (4.12)
satisfies

ϕ′′
k + 2Hϕ′

k + (k2 +m2a2)ϕk = 0 (5.6)

Equation (5.5) equals (4.12) for a massless field, and was solved rigorously in chapter
4. Still, we mention a basic recipe of obtaining the equationof motion.

First, introduce a new co-moving variable such that the friction terms disappear
(see proposition 4.5). The equation of motion should now be that of an harmonical
oscillator. Quantize the new solution, that is, promoteh to an operator and expand in
Fourier space. Let

h(k, η) = v(k, η)ak + v∗(k, η)a†k

wherev are solutions to the classical equation of motion (5.5) anda anda† are cre-
ation/annihilation operators. In the end, the general solution to the equation is given
by the Bessel-functions forℓ = 1, see equation (4.15). Choose the default in-mode
solution such thatBk = 0 and the vacuum solution is given by

v(k, η) =
eikη

√
2k

(

1 − i

kη

)

5.4.3 Conclusion

The tensor perturbations behave in much the same way as the fluctuations in the in-
flaton field. With the same solutions, their power spectra areproportional. But the
tensor perturbations evolve independently of scalar and vector perturbations, and are
untouched by the same physical effects that modify the scalar perturbations. Detect-
ing these gravity waves would prove very interesting, as they would give a screen shot
of the early universe with more information than the cosmic microwave background.
There have been several proposed experiments that might measure the existence of
gravitational waves, such as LISA [18].

5.5 The freedom of gauge

Section goal 5.5.1.Define different choices of gauge. Reason why the conformal New-
tonian gauge is selected.

We now turn our attention to scalar perturbations. The tensor perturbations are all
gauge-invariant, so there was no need for choosing any specific gauge. This is not the
case for scalar perturbations. The scalar metric (5.4) has four perturbing functions:
A,B,D andE. We need to determine whether these functions aregauge invariant.
In chapter 3, we saw that the general gauge transformation isgiven by the infinitesimal
coordinate transformation

xµ → xµ + ǫµ

By theorem (5.8), this equation can be separated into scalarpart (gradient) and a (trans-
verse) vector part:

ǫµ = ∂µǫ+ ǫµtr
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such that the metric now transforms as

δgµν → δgµν −Dµǫν −Dνǫµ

where the covariant derivative is defined in (3.8). For the perturbing functionsA,B,D,E
to remain gauge invariant, they need to transform as (3.2). If the scalar part of the vari-
ation of the metric perturbations is extracted, they will transform as [11]

A→ A− ǫ′0 −Hǫ0 (5.7)

B → B + ǫ0 + ǫ′ (5.8)

D → D + Hǫ0 (5.9)

E → E + ǫ (5.10)

(5.11)

The physical quantity in question may therefore obtain different values depending on
the chosen gauge. This problem needs to be eliminated, and isdone by creating a
gauge-invariant set of potentials from the metric perturbations.

5.5.1 The Bardeen potentials

From the transformations in (5.7) we can create a set of potentials that transform as
gauge-invariant functions.

Definition 5.9. TheBardeen potentialsare defined as

Φ = A+ H(B − E′) + (B − E)′ (5.12)

Ψ = D −H(B − E′)

Proposition 5.10. The Bardeen potentials are gauge-invariant with respect tothe
transformations of the metric perturbations defined in (5.7)

Proof: By direct insertion. ForΦ,

Φ → A− ǫ′0 −Hǫ0 + H(B + ǫ0 + ǫ′ − E′ − ǫ′) + (B′ + ǫ′0 + ǫ′ − E′ − ǫ′)

Summarizing terms,

= A+ H(B − E′) + (B′ − E′) − ǫ′0 −Hǫ0 + H(ǫ0 + ǫ′ − ǫ′) + ǫ′0 + ǫ′ − ǫ′

= A+ H(B − E′) + (B′ − E′) = Φ

A similar calculation shows thatΨ → Ψ′ = Ψ. �

5.5.2 The Newtonian gauge

We now employ the freedom of the choice of gauge to eliminate two of the scalar
potentials. This is done by choosingǫ andǫ0 such thatE andB vanish during trans-
formations. Note thatE transforms as

E → E + ǫ

So if ǫ = −E, this potential will vanish. Similarly,

B → B + ǫ0 + ǫ′
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will vanish if ǫ0 = −B for ǫ = −E. Note that the potentials are notremoved, but a
gauge is chosen such that they will always vanish during coordinate transformations.
The Bardeen potentials (5.12) now reduce to

Ψ = A

Φ = D

such that the perturbed (scalar) line element (5.4) in turn is

ds2 = a2
[

− (1 + 2Ψ)dη2 + (1 − 2Φ)δijdx
idxj

]

(5.13)

Definition 5.11. The choice of gauge resulting in this line element (5.13) is named the
conformal Newtonian gauge

The name “Newtonian” reflects the similarity of the weak-field limit of the line
element in the Schwarzschild metric. It is clear from the definition of the line element
that it is conformal.

5.5.3 Synchronous gauge

This choice of gauge is preferred for numerical calculations because it leads to better-
behaved equations. In the synchronous gauge,ǫ andǫ0 is chosen such thatA andB
vanish. The line element is then

ds2 = a2
[

− dη2 +

(

(1 − 2D)δij + E,ij

)

dxidxj
]

5.6 The co-moving curvature

Section goal 5.6.1.Establish the co-moving curvatureR. Determine the power spec-
trum ofR, and define the spectral index. Couple theory to possible observations.

We are interested in defining a gauge-invariant co-moving quantity that is a linear
combination of the fluctuating inflatonδφ and the perturbation potentialΨ. This quan-
tity will continue to exist even though the inflaton field has vanished - and give rise to
the initial conditions of the metric perturbations after inflation.

5.6.1 Introduction

Consider the scalar curvature of a hyper-surface defined by aconstant conformal time
dη = 0. From its definition, the Ricci scalar (0.2) depends on the connection coef-
ficients, which in turn are based on the metric. Working with scalar perturbations,
choose the conformal Newtonian gauge (5.13) such that the scalar curvature of the
3-space hyper-surfaces is expressed as

R(3) =
4

a2
∇2D

WhereD is the perturbed potential from the metric. We denoteD as thecurvature
perturbation of the curvature scalar. Recall from the transformation law(5.7)

D → D + Hǫ0

thatD is not a gauge-invariant variable. We proceed by the constructionof a gauge-
invariant curvature scalar.
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Lemma 5.12. Scalar field fluctuationsδφ transform as

δφ→ δφ̃ = δφ− ǫµ∂µφ0 (5.14)

whereφ0 is the non-perturbed background field.

Proof: Recall that a general perturbation of a fieldφ is defined as

δφ(x) ≡ φ(x) − φ0(x) (5.15)

whereφ0 is the unperturbed background field. The fluctuations transform as

δφ̃(x̃) = φ̃(x̃) − φ0(x̃)

The scalar field is as always invariant (φ̃(x̃) = φ(x)), whilex→ x+ ǫ. Hence

δφ̃(x̃) = φ(x) − φ0(x+ ǫ) = φ(x) − φ0(x)
︸ ︷︷ ︸

δφ(x)

−ǫµ∂µφ0

Were we used thatǫ is infinitesimal and expandedφ0. �

Definition 5.13. Theco-moving curvature scalaris defined as

R ≡ D + H δφ

∂µφ0
(5.16)

Theorem 5.14. The co-moving curvature scalar is gauge-invariant

Proof:

R → R̃ = D̃ + H δφ̃

∂µφ0

using (5.15) and (5.7) we find

R̃ = D + Hǫ0 +
H
∂µφ0

(δφ− ǫ0∂µφ0) = R

�

5.6.2 The power spectrum ofR
We proceed by deriving the expression for the spectrum of theprimordial curvature
perturbationsPR(k). With the definition of the spectral index, it is possible to perform
comparisons between theory and observations.

The co-moving curvature scalar can be expressed in terms of the slow-roll parame-
ter ǫsr:

R = (1 + ǫsr)
H

φ̇
δφk

whereφ̇ andH are now “normal” time dependent quantities. See [11] for a detailed
derivation of this expression. In the SRA,ǫ is considered to be very small, so we
approximate

R ≈ H

φ̇
δφk



5.7. THE SPECTRAL INDEX 59

The definition of the power spectrum (5.1) yields

∆2
R(k) =

k3

2π2
|Rk|2 =

k3

2π2

(H

φ̇

)2

|δφk|2

This expression is to be evaluated at an initial time usuallychosen a few Hubble times
after horizon crossing. See [9] for further details. The power spectrum of the perturbed
scalar field was derived in (5.3):

∆2
φ(k) =

(H

2π

)2

The power spectrum is then

∆2
R(k) =

[(H

φ̇

)2(H

2π

)2]

k=aH
(5.17)

where∆2
R is now evaluated at the horizon crossingk = aH. Using the conditions that

H2 ∼ V and φ̇2 ≃ ǫ, the power spectrum is expressed in terms of the potential and
slow-roll parameters:

∆2
R(k) ∼ V 2

ǫsr
(5.18)

5.6.3 FromR to Ψ

We did not explicitly show that the perturbing potentialsΨ andΦ are negligible during
inflation, but mentioned that the co-moving curvature scalar can be expressed as

R ≈ H

φ̇
δφk

In other words: During the time a mode with wave numberk crosses the horizon,R is
determined entirely by the inflatonφ. But what happens toR when inflation ends, and
φ vanishes?

It can be shown [8] that after horizon crossing,

R = −3

2
Ψ

R is aconserved quantity(∂tR = 0, see [8]) when the perturbations leaves the horizon.
This means that it is possible to relateΨ coming out of inflation toδφ at horizon
crossing. Thus, fluctuations in the inflaton field during inflation gives rise to metric
perturbations after inflation, see figure (5.6.3).

5.7 The Spectral Index

Section goal 5.7.1.Define the spectral index and estimate its value.
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R

H

φ̇
δφk

Inflation endsHorizon Crossing

Ψ

Figure 5.1: The co-moving curvature scalarR is a conserved linear combination ofΨ
andδφ

5.7.1 Introduction

We are now naturally interested in trying totest the theory of inflation, and this is
performed by comparing theory with experimental data. Inflation gives two general
predictions:

• The fluctuations in the inflaton field gives rise to scalar perturbations in the met-
ric after inflation, which seed the large scale structures and the observed CMB
temperature anisotropies.

• The tensor perturbations give rise to (yet undetected) gravitational waves.

So, did inflation occur or not? The only way to decide is by measuring the properties of
the perturbations that inflation generates, that is, we needto decide the power spectrum
∆2

R(k) experimentally.

5.7.2 The spectral index

In the regime of the slow-roll approximation, the fieldφ̇ and the Hubble parameter
H ∼ V vary little. This implies that the power spectrum of the curvature perturbation
is almostscale invariantof k, and all the scales of cosmological interest will cross
the horizon rapidly during inflation. This gives the physical conditions little time to
modify the perturbations, so it is viable to assume a spectrum that follows a power-law
behaviour

∆2
R(k) ∝ kns−1 (5.19)

wherens is thespectral index. General inflation models predict thatns < 1, while
complete scale-invariance would implyns = 1. A spectrum isflat if ns = 1. Taking
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the logarithm on both sides results in:

d ln ∆2
R

d ln k
∝ ns − 1

motivated by this, we introduce:

Definition 5.15. Theeffective spectral indexns(k) is defined as

ns(k) − 1 ≡ d ln ∆2
R

d ln k

For an intervalk with n(k) constant, this definition equals our assumption (5.19).
ns(k) can be described by the slow-roll conditions alone.

ns = 1 − 6ǫsr + 2ηsr (5.20)

A nice and exact derivation of this expression can be found at[16]. The spectral index is
an important quantity to measure; an observedns < 1 but close to 1 would strengthen
the theory of inflation. We quote a statement from [9]:

Inflation predicts that the variation of the spectrum is small in an interval∆ln k ∼ 1

5.8 Conclusion and predictions

We conclude the theoretical part of the thesis with a set of predictions. These will be
pursued in the following chapters.

Conclusion 5.1.The fluctuations of the inflaton fieldφ are nearly Gaussian and isotropic.

Conclusion 5.2. The power spectrum is near scale-invariant:ns ∼ 1, and the fluctu-
ations are equally strong on all scales.

Conclusion 5.3. The conserved co-moving curvature scalarR enables the quantum
fluctuations in the inflaton field to give rise to scalar metricperturbations after infla-
tion.

Conclusion 5.4. In effect, inflation predicts thatns will be close to but less than one
(ns = 1 − 6ǫsr + 2ηsr).

Conclusion 5.5. Only one variable is needed to describe the initial conditions from
inflation: The spectral indexns.

In the end, we have come to understand the primordial spectrum of the energy
density fluctuations during inflation, andprimary goal 1 has been completed.
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Chapter 6

Evolving the universe

In the previous chapters we’ve been preoccupied with the theoretical aspects of infla-
tionary physics.PG1 was completed during chapter 5, and observational predictions
from inflation such as thespectral indexns was established. The intermediate steps
between inflation and the universe today are important to comprehend, as different
physical effects will shape the main observable in cosmology, thecosmic microwave
background. This chapter is more phenomenological than the previous and follow-
ing chapter, and is intended to give a brief introduction to the most important post-
inflationary cosmological events. Interested readers are advised to look up chapter 4-8
in [8].

Unless otherwise stated, the contents of this chapter is based on [8].

6.1 Introduction

Section goal 6.1.1.Establish the Boltzmann equation and initial conditions for the
perturbed metric.

In the previous chapter, the epoch of inflation was treated. Now, after inflation,
the inflaton fieldφ has regained its vacuum state, and left a perturbed metric (Φ,Ψ)
in a radiation-dominated universe. The evolution of the perturbed metric decoupled
into three independent components, thevector component that rapidly decayed, the
tensorcomponent that resulted in gravity wave production and thescalar component
that eventually seeds the perturbations in matter density.It is therefore the scalar per-
turbations that are of our primary interest.

6.1.1 The Boltzmann equation

In order to understand the anisotropies in the cosmic distribution of photons and the
inhomogeneities in matter distribution, we need to decide on the equations that govern
the evolutions of these energy components. The correct way to deduce these equations
is through the unintegratedBoltzmann equation

df(t, x, p, p̂)

dt
= C[f ] (6.1)

63
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The Boltzmann equations describes the evolution of the probability distributionf , of
a specific particle type around positionx at timet with momentump. Equation (6.1)
then says that the number of particles in this phase space doesn’t change unless there
are collisionsC[f ]. In chapter 5, the scalar perturbations in the metric were defined as
Ψ andΦ, whereΦ was the spatial andΨ the time-like perturbation. The Boltzmann
equation needs to be solved in this perturbed RW metric for all particle types:photons,
neutrinos, baryons (including leptons)and dark matter. A proper derivation of the
Boltzmann equations can be found in [8].

The Boltzmann equation for photons

An important step when deriving the Boltzmann equation for photons is the assumption
that the photon distribution is perturbed. This small perturbation is namedΘ, such that
the perturbed photon distribution can be expressed as

f(x, t, p, p̂) = exp
{ p

T (t)
(
1 + Θ(x, p, t)

)
}

This perturbation can be expanded in a series of spherical harmonicsΘ ∼
∑

ℓm ΘiYℓm

namedmultipoles. These multipoles (and the photon perturbation) will in turn be
identified with the anisotropies in the cosmic microwave background, that is,Θ ∼
∆T , where∆T is the deviation of the observed average temperature mapT . Photons
collide via Compton scattering, which when energy densities are high “smooths” the
anisotropies, resulting in negligible multipoles higher than2 as long as photons are
coupled to matter. The complete equations can be found in [8].

The Boltzmann equation for matter

The Boltzmann equations for matter are derived in the same manner as the Boltzmann
equations for photons. When deciding the partial differentials, this time higher-order
terms of velocities likep2/c2 are neglected. This means that free streaming is sup-
pressed in massive fluids, and higher multipoles can be neglected. Cold dark matter is
collision-less, which results in collision-less Boltzmann equations. Ordinary baryons
do however collide via Thompson scattering, which will giverise to extra terms in the
equations. The complete equations can be found in [8].

6.1.2 Evolving the primordial power spectrum

Recall that the primordial power spectrum of the metric perturbationΦ is assumed
near-scale invariant (see chapter 5). These perturbationswill eventually give rise to
energy density anisotropies, and in the end define the anisotropies in the observed
power spectrum of the cosmic microwave background. The late-time power spectrum
of Φ can then be expressed as

PΦ(k, a) = P prim
Φ (k)

9

10
T (k)

D1(a)

a

whereT (k) is theTransfer function andD1(a) is theGrowth function . The9/10-
term arises from when the universe goes from radiation to matter domination, as de-
rived in [8]. The transfer function describes the effects induced by evolving from a
radiation to a matter dominated universe, while the growth function describes how the
matter perturbations grow during late times.
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Gravitational and radiation pressure

Radiation pressure pr

Gravitational pressure G

Figure 6.1: Radiation versus gravitational pressure

Two physical effects that impact the power spectrum aregravitational attraction
andradiation pressure (see figure 6.1). For a near-homogeneous fluid of photons, an
over-dense area will experience photons streaming away from the overdensities while
and under-dense area will experience photons streaming into the area (see figure 6.2).
The equations that govern this effect is that of a harmonicaloscillator. This will induce
sinusoidal oscillations in the power spectrum, first on small scales (first to cross the

UnderdensityOverdensity

Overdensity

OverdensityUnderdensity

Underdensity

Figure 6.2: When a mode enters the horizon, causal effects begin operating on the
corresponding scale. Energy will flow from overdensities tounder-dense areas, until
the under-dense area has become over-dense. The cycle continues.

horizon) and later on larger scales. However, including gravity, the effect is altered
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significantly. Gravitation is attractive, making the streaming from overdensities less
effective (see figure 6.1). In addition, photons has a tendency to escape (free-stream)
on smaller scales. This will in turn damp the power spectrum on small scales. The
harmonical oscillator thus becomes driven and damped. The effect on the angular
power spectrum of the CMB will be investigated in the following chapter (see figure
7.5).

6.2 Post-inflationary events

Section goal 6.2.1.Introduce the different epochs of the universe. State the most im-
portant effects.

6.2.1 The radiation-dominated epoch

When inflation ended, the universe was radiation dominated. Solving the Friedmann
equations for a radiation dominated universe, the scale factor becomes proportional to√
t. As the universe expanded, the radiation dominated epoch lasted until the energy

density of matter equaled the energy density of radiationaeq. This epoch had notable
effects on the observed power spectrum. Most notably, the shrunk co-moving horizon
began to grow, and small-scale Fourier modes of perturbations fell within the horizon,
enabling causal contact. This in turn gave rise to acoustic oscillations as mentioned in
the previous section.

The Meszaros effect

The Meszaros effect describes the decaying gravitational perturbationΦ during the
radiation dominated epoch, and states that the growth of matter overdensities were
logarithmic(D1(a) ∼ ln a) . This was due to the high radiation pressure, which ef-
fectively prevented clumping of matter. In the following chapter, we will explicitly
show how these effects modify the angular power spectrum of the cosmic microwave
background.

6.2.2 The matter-dominated period

As the universe expanded, the energy density of radiation (ρr ∝ a−4) eventually was
surpassed by the energy density of matter (ρm ∝ a−3). The epoch this occurred is
calledequality. Now, the universe became matter-dominated, and the growthof the
scale factor became proportional tot2/3. This happened about70 000 years aftert = 0,
where the radiation pressure now dropped significantly enough to prevent further decay
in Φ. Thus, matter density perturbations began growing steadily proportional to the
scale factor (D1(a) ∼ a), enabling clumping of matter.

The Sachs-Wolfe effect

A notable event during this epoch was when the energy densityof photons became
less than the binding energies of electrons and protons, enabling the creation of neutral
atoms. At this stage, photons stopped interacting with the electron-proton plasma, en-
abling free-streaming. This is known asdecoupling, and happened aroundt = 380 000
years. The free-streaming photons defines the cosmic microwave background we ob-



6.2. POST-INFLATIONARY EVENTS 67

Figure 6.3: Warm and cold spots in the CMB map corresponds to under-densities and
over-densities, respectively. This is due to theSachs-Wolfeeffect; that photons trav-
elling from an over-dense area needs to escape the gravitational potential well, losing
energy.

serve today. When these photons left an over-density, they had to climb a potential
well Ψ and therefore lost energy. If these photons were in an under-density, they cor-
respondingly gained energy. This effect is called theSachs-Wolfeeffect (see figure
6.4). The observed CMB today is therefore a combination ofΘ + Ψ, where cold areas
correspond to overdensities and warm spots to under-densities (see figure 6.3).

6.2.3 The cosmological constant-dominated period

The universe today is believed to be dominated by a cosmological constantΛ. The en-
ergy density ofΛ is constant, and is coupled to the divergent energy density of vacuum
(see chapter 2). As the universe expands, there is increasingly more vacuum and hence
more vacuum energy. We’ve seen that vacuum energy exerts negative pressure, which
makes the universe expand exponentially. The scale factor today is therefore nearing
a ∼ eH0t.

A notable effect in the cosmological constant dominated universe is the integrated
Sachs-Wolfe effect. When photons free-stream through a universe, they enter and
leave gravitational wells. The overall shift in energy fromentering and leaving these
wells are cancelled as long as the wells are constant, which is the case with a matter-
dominated universe. This is however not the case for a cosmological constant-dominated
universe, where the gravitational potential will decay as the universe expands exponen-
tially. This means that photons might enter the gravitational potential well (and gain
energy), but then the potential decays as the universe becomes dominated by a cos-
mological constant. The photon thus gains extra energy, which defines the integrated
Sachs-Wolfe effect (ISW) (see figure 6.4). The (late-time) ISW-effect is an important
observable when determining whether a universe is in a cosmological constant domi-
nated epoch.
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Last Scattering Surface

Observer

Wolfe
Sachs-

Sachs-
Wolfe

γ

Ψ

vb

Integrated
Doppler effect

Figure 6.4: Three observable effects: The Sachs-Wolfe effect, the Integrated Sachs-
Wolfe effect and Doppler shift.

6.3 The geometry of space

Section goal 6.3.1.Explain how different geometries affect observables

We know from general relativity that freely falling particles follow geodesic curves:
paths that locally minimize lengths. The equations of motion can be obtained from the
geodesic equation

(uµ
,ν + Γµ

αβu
α)uν = 0

whereu is the geodesic curve. Usingddτ = dxµ

dτ
d

dxµ one obtains the equation of motion
for a particle

ẍµ + Γµ
αν ẋ

αẋν = 0

Flat, spherical and hyperbolic space

If the space-time metric is flat, then the connection coefficients vanish and a particle
will follow a straight line: ẍµ = 0. In a curved space, a free particle will follow
the curves of the space. When observing two free propagating particles in flat space,
their world lines will stay parallel. If the space is spherical, their paths will eventually
converge before oscillating back and forth. In a hyperbolicspace, the particles diverge.
From equations (2.1), this corresponds to a RW line element with k = 0, k = 1 and
k = −1, respectively.
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Figure 6.5: Two particles propagating in flat space and spherical space

Figure 6.6: Two particles propagating in hyperbolic space will diverge

Measuring the geometry of space

Assume the size of the particle horizon at recombination andthe distance to the last
scattering surface is known. It is then possible to determine the geometry of space
from the angular size of the horizon. The observed power spectrum will be scaled to
larger or smaller scales, regarding whether space is open orclosed. This will affect the
angular power spectrum, shifting the graph left or right.
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Flat space Hyperbolic space Spherical space

Figure 6.7: Areas observed in a hyperbolic space will appearsmaller than reality, and
areas observed in a spherical spaced will appear larger.

Current observations indicate that the universe is near flat, but this is only valid if
the Hubble parameter is accurately determined to beh = 0.72 ± 0.08, whereH0 =
100h2(km/s)/Mpcs [10].

6.4 Chapter conclusions

Conclusion 6.1. Inflation sets up the initial conditions for the perturbations in the
metric (Φ,Ψ).

Conclusion 6.2. The universe after inflation has gone through three major epochs:
Radiation dominated, matter dominated and cosmological constant dominated. Each
epoch affects the growth of matter perturbations in different ways.

Conclusion 6.3.The cosmic microwave background was created when the photons de-
coupled from baryons atadec. The CMB anisotropies observed today is a combination
of Θ + Ψ, whereΘ is the perturbation in the Boltzmann equation for photons.
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Chapter 7

The angular power spectrum

7.1 Introduction

While the previous part was concerned with theoretical aspects of the evolution of the
universe, we now shift focus to more observational matters.The cosmic microwave
background (CMB) anisotropies was established in chapter 6to be a screen shot of the
anisotropies in the photon distributionΘ ataeq. In addition, the Sachs-Wolf effect ex-
plained how the photon’s wavelength was shifted as they travelled out of dense/under-
dense areas. In this chapter, we define the tools needed for working with the CMB,
and present the standard method of projecting the anisotropies from the sphere onto a
1-dimensional representation, theangular power spectrum.

We begin by defining the cosmic microwave background (CMB), being the most
important experimental data for testing cosmological models. We then relate the CMB
power spectrum to different observables described in the previous chapter, and end
with a short introduction to the numerical software needed for data analysis.

Unless otherwise stated, the contents of this chapter is based on [8] and [17].

7.1.1 The cosmic microwave background

Section goal 7.1.1.Define the cosmic microwave background (CMB).

We have explained how the quantum fluctuations in the inflatonfield gave rise to
the initial conditions of the metric perturbations after inflation. This was a radiation-
dominated period, and the (scalar) metric perturbations gave rise to the density inho-
mogeneities observed today.

Definition 7.1. The cosmic microwave background(CMB) is an observable near-
isotropic gas of photons resulting from the time when photons and baryons decoupled
(T ≈ Θ + Ψ ∼ 3000K). This period is called therecombinationera.

The current average temperature in the CMB today is2.73K, and is steadily de-
creasing due to the expansion of the universe (λ ∼ 1/a). The anisotropies are due
to the density inhomogeneities initialized by the scalar perturbations, as seen in the
previous part.

73
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7.1.2 The Mollweide projection

The CMB map is defined on the surface of a 2-sphereS
2. In order to be able to visualize

a spherical map in flat two dimensions, we need to decide on a suitable projection from
S

2 ontoR
2 that minimizes loss of data. One such projection is defined inthe following

way:

Definition 7.2. TheMollweide projectionM(λ, φ) : S
2 → R

2 is defined as

M(λ, φ) =
(

sin−1(
2θ + sin(2θ)

π
),

πx

2
√

2 cos θ

)

whereθ = sin−1(y/
√

2), (λ, φ) are the spherical coordinates on the sphereS
2 and

(x, y) are the Cartesian coordinates in the planeR
2. The Mollweide projection sacri-

fices fidelity to angle and shape in favor of accurate depiction of area.

Figure 7.1: An example of a Mollweide projection, created inC++ by the author. The
topmost image isnota map on the sphere, and shows the effect of how a mapR

2 → R
2

would transform.

7.2 CMB analysis

Section goal 7.2.1.Define the standard methods for CMB analysis.

7.2.1 Spherical harmonics

As in the case with the perturbed inflaton fieldδφ and the Boltzmann equations, it is
useful to decompose the CMB map into Fourier waves with wave-modes. The mathe-
matically inclined reader will recognize the following theorem’s importance



7.2. CMB ANALYSIS 75

Theorem 7.3(Stone-Weierstrass). An algebraA of continuous real-valued functions
on a compact metric spaceX that separates points and does not vanish on any points
is densein C(X). By dense, we mean that any arbitrary open interval inC(X) can be
described by the algebraA.

Applications of the Stone-Weierstrass-theorem includes the Fourier transforma-
tions: Any real-valued functionf : R → R can be expanded as a set of wave functions,
the wave functions aredensein C(R). We are interested in decomposing a function
defined on the 2-spheref : S

2 → R. The wave-equations on the sphere are defined
from Laplace’s equation

∇2ψ = 0

and its solutionsYℓm are the well-knownspherical harmonics functions. They are
the analogue to the complex exponentialeikx defined onR, and are described by two
quantum numbers: the modesℓ ∈ Z

+ andm ∈ {−ℓ,−ℓ+ 1, . . . , 0, . . . , ℓ− 1, ℓ}.

Definition 7.4. Thespherical harmonicsare defined as

Y m
ℓ (θ, φ) =

√

(2ℓ+ 1)

4π

(l −m)!

(l +m)!
Pm

ℓ (cos θ)eimφ

wherePm
ℓ are theassociated Legendre polynomials.

We state a corollary from Stone-Weierstrass:

Corollary 7.5. Let n = (θ, φ) ∈ S
2. Then any bandwidth limited mapT : S

2 → R

can be expanded in spherical harmonics

T (n) =

ℓmax∑

ℓ=0

ℓ∑

m=−ℓ

aℓmYℓm(n) (7.1)

where the expansion coefficients are given by

aℓm =

∫

S2

T (n)Y ∗
ℓm(n)dΩ (7.2)

Definition 7.6. The “mode numbers”ℓ andm are the analogue of the wave modek.
We denote differentℓ ∈ Z

+ asmultipoles. ℓ = 0 is called themonopolemoment,ℓ = 1
thedipole, ℓ = 2 thequadrupoleetc.

A useful formula for deciding the relation between the observedangleof the skyθ
and the multipoleℓ in degrees is

ℓ ∼ 180◦

θ
(7.3)

7.2.2 The angular power spectrum

In chapter 5, thepower spectrumwas defined (see equation (5.1)). It describes the
amplitudeof the fluctuations as a function of thescale. There exist several kinds of
power spectra:

• Pδφ(k): The power spectrum of the fluctuations in the inflaton field.
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Figure 7.2: The spherical harmonics forℓ = 4 andm = {0, 1, 2, 3, 4}, from top-
down left-right respectively. The images are created with aC++ program written by
the author.

• PΦ(k): The power spectrum of the fluctuation in the metric, inducedby the
fluctuations in the inflaton field.PΦ(k) is assumed to be initially scale-free (near-
constant), see chapter 5.

• Pδ: The power spectrum of the fluctuations in the matter density, which also
evolves with the universe.

The angular power spectrum is similarly defined:

Definition 7.7. The angular power spectrummeasures amplitude as a function of
wavelength, and is defined as an average overm for eachℓ:

Cℓ =
1

2ℓ+ 1

ℓ∑

m=−ℓ

|aℓm|2 (7.4)

Note that the averaging is only well-motivated if the map fulfills isotropy. This
means the spherical harmonics coefficientsaℓm must be independent.

7.2.3 Gaussianity

Assuming that the spherical harmonics coefficients followsa Gaussian distribution,
thenall statistical informationwill be encoded in the coefficients. This requires the as-
sumption that the isotropies in the CMB are due to quantum fluctuations in the inflaton
field during inflation (see page 43).

Definition 7.8. The Gaussian distribution foraℓm is given by

P (aℓm) =
1√

2πCℓ

e
−

|aℓm|2

2Cℓ

In this case, the angular power spectrum is thevarianceof the expansion coeffi-
cientsaℓm. See section 7.5 for an introduction to Gaussian distributions and likelihood
analysis.
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7.2.4 Theoretical and observed spectrum

When measuring the cosmic microwave background, we are performing an experiment
at one specific point in space-time. Theoretically, an ensemble of data measured from
several points in space-time should be gathered before averaging. Practically, the mea-
surements would have to be performed either in other galaxies and/or over an interval
of a few hundred hundred years. Needless to say, this isn’t possible right now. We are
therefore stuck with onlyoneobserved CMB map, the one measured from Earth.

Definition 7.9. Given a specific CMB map, the angular power spectrum

Ĉℓ =
1

2ℓ+ 1

ℓ∑

m=−ℓ

|aℓm|2

is theobservedpower spectrum of a specificrealization.

Definition 7.10. Given an ensemble of CMB maps, we define theensemble-averageto
be

Cℓ =
〈 1

2ℓ+ 1

ℓ∑

m=−ℓ

|aℓm|2
〉

From a given set of parameters, the cosmological software package CAMB generates
an ensemble-average angular power spectrumCℓ as output.

Figure 7.3: A logarithmic plot of the angular power spectrumof a simulatedΛCDM
model (creating an ensemble of maps) compared with observedWMAP data (error
bars for both noise andCℓ)

Notice how the error bars in figure 7.3 grow in size when nearing ℓ = 0. This effect
is due to thecosmic variance.
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7.2.5 Cosmic variance

The CMB observations measure the different values ofCℓ for a given multipoleℓ.
When small,ℓ describes large angles across the observed CMB sphere (See 7.3). Cor-
relations between such large angles are hard to determine, as there is only one sky to
measure - therefore theuncertainty(or variance) in the measurements for smallℓ is
large.

Example 7.11.When interested in measuring the quadrupole momentℓ = 2, equation
(7.3) shows that90◦ of the sky is required for determining one realization. Thus, there
are 360◦/90◦ = 4 different areas in which to extract data from, resulting in ahigh
cosmic variance.

The dipole moment is usually omitted, because our galaxy is moving through the
local universe. This will red-and blue-shift half of the CMBmap, resulting in a signal
that is identical with the dipole. The dipole moment was firstmeasured by George
Smoot [19] in 1977. For largerℓ, there are more correlations from smaller angles on
the map to average over, and the variance is reduced. Notice how the error bars in
figure (7.3) are reduced asℓ increases. When the observed angle is smaller than the
measuring devices can handle, the error increases again.

Figure 7.4: The “evil eye” dipole moment(ℓ = 1,m = 1) is hard to measure

Proposition 7.12. Thecosmic varianceis given as

√

Var(Cℓ) =

√

2

2ℓ+ 1
Cℓ

Proof: We have not yet developed the tools for performing this proof. Se section
7.4.2 for completion.

7.3 Interpreting the angular power spectrum

Section goal 7.3.1.Explain how different physical effects modify the angular power
spectrum

In chapter 6, we described how physical effects during the radiation and matter-
dominated phases of the universe would modify a power spectrum. We now give ex-
plicit graphical examples.
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7.3.1 Acoustic oscillations

In the previous chapter, we discussed how density perturbations gave rise to acoustic
oscillations (see figure 6.2). These oscillations were given by a damped, driven har-
monical oscillator. The driving was a result from gravity preventing de-clumping of
matter, while the damping was caused by diffusion of photonson small scales. Dur-
ing the radiation dominated epoch, the small scales were thefirst to cross the growing
co-moving horizon, so the acoustic oscillations started out on small scales. As the
horizon grew, increasingly larger scales fell within the horizon, and started oscillating.
The acoustic oscillations should be themost notableeffects in the angular CMB power
spectrum.

Figure 7.5 is a descriptive schematic graph of a simulated damped, driven harmon-
ical oscillator. This is what we should expect the angular power spectrum to look like.
Compare with the theoretical power spectrum from theΛCDM-model in figure 7.3.
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Figure 7.5: A driven, damped, harmonical oscillator in three stages. Notice the simi-
larity with the observed CMB angular power spectrum. Created in C++ by the author.

7.3.2 The geometry of space

In section 6.3, it was explained how the geometry of space affects the measurements
(see figure 6.7). In a closed universe, an observed area is smaller than the actual area
- shifting the angular power spectrum to larger scales (left). In an open universe, an
observed area is larger than the actual area - shifting the angular power spectrum to
smaller scales (right). See figure 7.6.

7.3.3 The spectral index

As seen in chapter 5, inflation sets up a near scale-free primordial power spectrum with
ns = 1 − 6ǫsr + 2ηsr, such thatPΦ(k) ∝ kns−1 ∼ constant. But ifns deviates
significantly from1, then the tilt of the power spectrum will change. This can be
observed in figure 7.6.
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Figure 7.6: Three universe models: theΛCDM (red line), a low-ns universe (green
line), an open universe (blue line)

7.3.4 The baryon density

The baryon density has a significant effect on the angular power spectrum. The baryons
are responsible for setting up the pressure forces, drivingthe oscillations. Increasing
the baryon density will decrease the frequency of the acoustic oscillations, because
massive particles are slower than relativistic particles.The massive baryons decrease
the acoustic sound waves. In addition, an increase in baryondensity will increase the
effect of gravity, boosting the “drive” in the harmonical oscillator. This will make the
odd acoustic tops taller, and decrease the even tops. See figure 7.7.
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Figure 7.7: Three universe models: theΛCDM (red line), a low-Hubble parameter
universe (blue line), a high baryon universe (green line)

7.3.5 The ISW-effect

The integrated Sachs-Wolfe effect is notable in a cosmological constant-dominated
universe. As seen in the previous chapter, a photon emitted from the last scattering
surface will travel through a landscape of gravitational potential wells. If these wells
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are constant, the overall shift in energy will cancel. This is not the case in a universe
dominated by a cosmological constant where space expands exponentially, decaying
the potentials. This happened during thelate stages of a universe, therefore onlarge
scales. The plateau before the first acoustic top in the angular power spectrum is most
affected by the ISW effect, see figure 7.3. In a matter-dominated universe, this top is
much lower than in a late-stageΛCDM-universe.

7.4 Simulating data

Section goal 7.4.1.Describe a method for simulating data. Present results fromsimu-
lations.

7.4.1 Introduction

It is sometimes interesting tosimulatea data set based on a theoretical model. This
data set can then be used in a parameter estimating process todetermine whether pa-
rameters are detectable with more accurate data. We now wishto describe a method
for generating data based on an assumed cosmological model.First, the parameters
that describe the cosmological model must be decided. This is followed by feeding the
parameters into CAMB, creating a theoretical power spectrum.

The next step is deciding which probability distribution the data follows. The sim-
ulated data will be calculated by drawing stochastic variables from this probability
distribution. In section 7.2.3, the expectation value of the temperature fluctuations was
mentioned to be zero, and that the fluctuations (or expansioncoefficientsaℓm) follow
a Gaussian distribution. This enabled the definition of theangular power spectrumCℓ

of the temperature fluctuations (eq 7.4).

7.4.2 Theχ2 distribution

In order to decide howCℓ is distributed, we need to determine how
∑ℓ

m=−ℓ |aℓm|2 is
distributed. As theaℓm follows a Gaussian distribution,Cℓ will follow the distribution
of thesumof thesquareof Gaussian distributed variables.

Proposition 7.13. If ai aren independent, Gaussian distributed random variables with
mean 0 and variance1, then the random variable

C =
n∑

i=1

a2
i

is distributed according to theχ2 distribution with n degrees of freedom.

Definition 7.14. Theχ2 distribution for a continuous, stochastic variablex ∈ R
+ is

defined as

f(x;n) =
1

2n/2Γ(n/2)
xn/2−1e−x/2

wheren is thedegrees of freedom. Theχ2 distribution has expectation value〈x〉 = n
and varianceVar(x) = 2n.
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Summing from−ℓ, . . . , ℓ, the angular power spectrum has2ℓ + 1 degrees of free-
dom. Butaℓm is a complex number containing a real and an imaginary part, both
following a Gaussian distribution. This results in2(2ℓ + 1) degrees of freedom. But
the temperature mapT is a real map, imposing constraints on the coefficientsaℓm such
that the net results is2ℓ+ 1 degrees of freedom. Summarized,

• The expectation value of the angular power spectrum is the theoretical power
spectrum:〈Ĉℓ〉 = Cℓ

• The expectation value〈x〉 of theχ2 distribution with(2ℓ+1) degrees of freedom
is 〈x〉 = (2ℓ+ 1)

• The varianceVar(x) of theχ2 distribution with(2ℓ + 1) degrees of freedom is
Var(x) = 2(2ℓ+ 1)

Proof of the cosmic variance

In section 7.2.5, the proof of the cosmic variance was omitted. We proceed by pre-
senting a small proof. For stochastic variablesx andy wherey = bx, it is true that
Var(y) = Var(bx) = b2Var(x). We find

Var(Cℓ) = Var
( 1

2ℓ+ 1

ℓ∑

m=−ℓ

|aℓm|2
)

=
( 1

2ℓ+ 1

)2

Var
( ℓ∑

m=−ℓ

|aℓm|2
)

Assuming thataℓm are Gaussian distributed

Var(
∑

|aℓm|2) =
1

4
C2

ℓ 4(2ℓ+ 1)

where the Gaussian distribution has been normalized. Inserting, we obtain

Var(Cℓ) = 2
( 1

2ℓ+ 1

)2 1

4
C2

ℓ 4(2ℓ+ 1) =
2

2ℓ+ 1
C2

ℓ

and proposition 7.12 has been proved.�

7.4.3 Method

Using the knowledge presented in the previous section, we present a method for simu-
lating a theoretical model.

• Calculate a theoretical power spectrumCtheory
ℓ using CAMB

• For eachℓ in the power spectrum:

- Draw aχ2 random variablex with (2l + 1) degrees of freedom

- We observed that〈x〉 = (2l + 1), such that〈x〉/(2l + 1) = 1. Let the
simulated data point be calculated as

Csim
ℓ = x · Ctheory

ℓ

1

2l + 1

- Calculate the error inCsim
ℓ via the cosmic variance:

√

V ar(Csim
ℓ ) =

√

2/(2l + 1)Cℓ

- OutputV ar(Csim
ℓ ), ℓ andCsim

ℓ to file
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Implementation

We present a selection of a program“GenerateData” developed by the author that
implements this method.ps contains the theoretical powers spectrum,xi contains
the simulated data,sigma calculates the cosmic variance andgenchi generates aχ2

distributed random number with2(2l + 1) degrees of freedom.

for (int l=1;l<2000; l++) {
double s = abs(sigma(l))*(ps[l]); // Cosmic variance
double chi = genchi(2.0*l +1);
xi[l]= chi*(ps[l])/(2*l+1.0);
fs << l << " " << xi[l] << " " << s << endl;

}

7.4.4 Results

An example of a simulated data set with41 data points is shown in figure 7.8.
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Figure 7.8: A simulated data set (red) compared with the theoretical power spectrum
(blue)

7.4.5 Simulating a map from a power spectrum

Having calculated the power spectrum from a simulated ensemble of maps, it is quite
a straight-forward technique to convert the spectrum to a visual spherical map. A
program which does this is HEALPix. If the coefficientsaℓm is known, one can easily
find a simulated CMB realization by

T (n) =

ℓmax∑

ℓ=0

ℓ∑

m=−ℓ

aℓmYℓm(n)
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Figure 7.9: An example of a simulated map, created from a theoreticalΛCDM power
spectrum generated by CAMB

7.5 Likelihood analysis

Section goal 7.5.1.Give an introduction to likelihood analysis.

It is important to test theoretical models given a sample configuration, as in the
case with cosmology. For instance, CosmoMC walks a Monte Carlo walk through
the parameter space that is used for creating a power spectrum. This theoretical power
spectrum (generated from the CAMB modules included in CosmoMC) is tested against
various data - WMAP, Supernovae data, etc. This “testing” a model against a sample
configuration of data is calledlikelihood analysis, in which the likelihood describes
theprobability that a certain set of data is created from a given model. The likelihood
function is spawned fromBayes’ theorem:

Theorem 7.15(Bayes’ theorem). LetA andB be stochastic events. Then

P (A|B)
︸ ︷︷ ︸

posterior

P (B)
︸ ︷︷ ︸

evidence

= P (B|A)
︸ ︷︷ ︸

likelihood

P (A)
︸ ︷︷ ︸

prior

Definition 7.16. The likelihood function is the probability for the occurrence of a sam-
ple configurationd = {x1, ..., xn} given a probability densityf(xi; pi) with theoretical
model parameterspi, or

P (d|pi) = L(pi)

Corollary 7.17. Given a constant orflat prior, then the likelihood function is propor-
tional to the posterior:

P (pi|xi) ∝ L(pi)

When estimating parameters, we are interesting in maximizing the posterior proba-
bility. Corollary 7.17 says that in order to maximize the posterior, we need tomaximize
the likelihood.

7.5.1 Gaussian likelihood analysis

We begin by defining the normal (Gaussian) distribution:
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Definition 7.18. The probability distribution

f(x, µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2

is called thenormal distributionN(µ, σ) with meanµ and standard deviationσ.

An important theorem in statistics follows:

Theorem 7.19(Central limit theorem). Given a set of stochastic variables{Xi} fol-
lowing a probability density with meanµ and varianceσ2, the sum of the stochastic
variables

X =
n∑

i=1

Xi

isN(µ, σ
√
n)-distributed.

Assuming thatf is Gaussian,

f(xi; pi) =
1

√

2πσ2
pi

e
−

(xi−pi)
2

2σ2
pi

such that the likelihood function can be expressed as

L(xi; pi) =
∏

i

f(xi; pi) =
∏

i

1
√

2πσ2
pi

e
−

(xi−pi)
2

2σ2
pi

A way to interpret the likelihood function is as follows: Assume the model parameter
pi equals the sample configurationxi. Then the likelihood probability gets a value of
e0 = 1, which means that the data fitsperfectlywith the model. The worse a model fits
the sample configuration, the closer to0 the likelihood probability gets.

7.5.2 Maximizing a Gaussian likelihood

It is often simpler to work with the natural logarithm of the likelihood, or thelog-
likelihood. We find

−2 logL(xi; pi) =
∑

i

[ (xi − pi)
2

σ2
pi

+ lnσ2
pi

]

For what model datap0 is the probability maximized? We differentiate to find

−2
d

dp0
logL = 0 =

∑

i

2
(xi − p0)

σ2

which means

−2
d

dp0
logL = 0 =

∑

i

2
(xi − p0)

σ2

0 =
∑

i

(xi − p0) =
∑

i

xi −N · p0

p0 =
1

N

∑

i

xi

In other words, the most probable model value for a Gaussian distribution is the average
over the data.
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7.5.3 Cosmological model testing

We are interested in comparing CAMB-generated theoreticalmodels against our “per-
fect” simulated data. As seen, a perfect data set (like the generated HW universe model)
follows aχ2 distribution. Thus, the assumption from the previous section shows that
given a theoretical model with power spectrumCtheory

ℓ and a “perfect” simulated sam-
ple configurationCsim

ℓ , the likelihood function is given as (see [20])

L ∝
∏

ℓm

e−|aℓm|2/(2Ctheory

ℓ
)

√

Ctheory
ℓ

When summing over them, the log-likelihood can be rewritten as [20]

−2 logL(xi; pi) =
∑

ℓ

(2ℓ+ 1)
[

ln
(Ctheory

ℓ

Csim
ℓ

)
+

Csim
ℓ

Ctheory
ℓ

− 1
]

(7.5)

which is the log-likelihood we will use when modifying CosmoMC to include a set of
“perfect” data.

7.6 Software packages

Section goal 7.6.1.Give an introduction to the most common cosmological software
packages

7.6.1 CAMB

CAMB is an original acronym for “Code for Anisotropies in theMicrowave Back-
ground”. It is a software bundle created byAntony LewisandAnthony Challinor[21]
and can be downloaded freelyfrom http://camb.info/. It is written in FORTRAN, and
calculates a theoretical power spectrum from an ensemble ofCMB maps generated
by a few cosmological parameters. The main numerical methods used in CAMB are
based on the original paper by Uros Seljak and Matias Zaldarriaga, who developed an
improved method for calculating CMB power spectra [22]. CAMB is originally based
on CMBFAST developed by Uros Seljak and Matias Zaldarriaga.

7.6.2 CosmoMC

CosmoMC (Cosmological Monte Carlo) is a software bundle written in FORTRAN
by Antony Lewisand Sarah Bridlethat explores the cosmological parameter space
using a Markov chain Monte Carlo method. The software employs CAMB modules
to calculate the theoretical angular power spectra, and uses the likelihood function to
compare data with theoretical models. The time spent estimating d parameters by brute
force grid integration scales exponentially withd, while the MCMC method scales
linearly ind. Markov chains have the property that they always converge to a stationary
distribution. Markov chains are forgetful, they do not remember their past, and the
next position is only dependent on the current position. Random walkers are a typical
example of Markov chains.
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The Metropolis-Hastings algorithm

The core of CosmoMC is based on the Metropolis-Hastings algorithm. When releas-
ing n random walkers from a common initial point in ad-dimensional flat space, the
histogram of the walkers will forn→ ∞ converge to ad-dimensional Gaussian distri-
bution with increasing variance. In other words; unrestricted “drunk” random walkers
will generate a Gaussian distribution. Adding the Metropolis-Hastings algorithm en-
sures that the random walkers willfollow a specified distribution, they no longer are
“drunk”. In CosmoMC, the “random walkers” ambulate througha cosmological pa-
rameter space, guided by thelikelihood function. Hence the walkers areforcedto con-
verge to a distribution specified by the likelihood function. The Metropolis-Hastings
algorithm can be summarized as follows:

• Initialize walkers at random positions ind-dimensional parameter space. A sin-
gle walker is denotedp = {p0, p1, . . . , pd}.

• For a given walker’s parameterpi, decide whether it should consider going left or
right in parameter space:pi = pi+sweres is ∆Pi or−∆pi by 50% probability.

• Calculate the likelihood functionLold atpi andLnew atpi + s.

• If Lold < Lnew then acceptpi immediately.

• Else calculate a probability for accepting the new step by usingLold/Lnew.

• Repeat for all parameters for all walkers until walkers converge to a distribution.

Mechanics of CosmoMC

Let Pn denote the parameter space aftern steps. The algorithm CosmoMC employs is
summarised as follows:

1. InitializeP0 at random positions in the parameter space.

2. Call CAMB modules for determining a theoretical power spectrumCl with P0.

3. Calculate the likelihood functionL(P0) betweenCl and different data sets.

4. Decide a new set of random parametersP1 using the assumed input parameter
distribution andP0.

5. Call CAMB modules for generating a new power spectrumC ′
l usingP1, and

calculate a new likelihoodL(P1) by comparingC ′
l with data.

6. Use the Metropolis-Hastings algorithm to decide whetherto accept this new
pointP1 in the chain or not usingL(P0) andL(P1).

7. If step is accepted, update parameter distributions. Also update failure status if
not accepted.

8. Go to step 2 until the distributions converge.

The first samples are affected by random initial parameters,and are usually omitted.
This is namedburn-in time, and CosmoMC usually needs to omit 1000 of its first
samples. The chains eventually converges to their stationary distribution.
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Likelihood contours

If two parameters are successfully estimated and correlated, their confidence contours
should resemble those of figure 7.10.
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Figure 7.10: Parameter estimation forθ, Ωb with 68% and 95% confidence contours.

7.7 Chapter conclusions

Conclusion 7.1. The CMB anisotropies are decomposed into spherical harmonics.
Assuming that the fluctuations are Gaussian, one sums overm and obtains the angular
power spectrum.

Conclusion 7.2. Following aχ2 distribution, the angular power spectrum encodes all
statistical information about the distribution of anisotropies if the coefficientsaℓm are
Gaussian.

Conclusion 7.3. The shape of the angular power spectrum is determined by different
physical effects: Whether the universe is open/closed, thebaryon density, the cold dark
matter density, the cosmological constant, energy component dominance, etc.

Conclusion 7.4. Theχ2 distribution is used to create simulated data from a given
theoretical model.

Conclusion 7.5.Likelihood analysis is used to to test a theoretical model against data.
We have established a log-likelihood in equation 7.5 for using “perfect” data.



Chapter 8

Paper review

This chapter is devoted to investigating papers concerningtrans-Planckian effects in
the primordial power spectrum. Withtrans-Planckian, we mean effects that occur
when gravity becomes non-negligible and Minkowskian quantum field theory breaks
down. Even though the underlying physics at the Planck scaleis yet unknown, it is
still possible to determine a genericalteration on some observables from the trans-
Planckian effects. In our case, the intense curvature of space at the Planck-scale renders
the inflaton vacuum non-trivial. This results in a postulated modifiedprimordial power
spectrum, no longer scale-free but dependent on two new parameters: the slow roll
parameterǫsr and a Planck-cutoffξ. This modulation represents agenericform for
how trans-Planckian effects modify the primordial power spectrum, and will be used
in the following chapters.

8.1 Introduction

During the inflationary phase in the very early universe, quantum gravitational effects
are expected to modify the primordial power spectrum. As seen in the previous chap-
ters, the primordial fluctuations are the seeds for the anisotropies in the CMB and the
large scale structures we observed in the universe today. Itis therefore possible for
cosmological observations to shed light on Planck-scale physics [7]. The difficult part
is separating the primordial density fluctuations from the present-day observable power
spectrum, which will be shown in the following chapter.

The idea from [23] and [24] is that the primordial power spectrum becomes mod-
ulated at Planckian scales. We do not know exactlywhatkind of new physics appear,
whether it be stringy ones or unknown, but it will follow a generic pattern: the inflaton
vacuum becomes nontrivial. The standard calculation of theperturbations produced
during inflation is based onflat-spacequantum field theory, and initial conditions on
φ are imposed in the infinite past (see chapter 4 and 5). In chapter 3, we saw how the
vacuum of a scalar field become nontrivial in a curved space, when gravity no longer
can be neglected, as is the case during early inflation. This will alter the primordial
power spectrum with a factor dependent on three parameters,k, ξ andǫsr such that

P0 → P0 · f(k, ξ, ǫsr)

89
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8.2 Note on inflation and trans-Planckian physics

Section goal 8.2.1.To establish a modified power spectrum of the inflaton fluctuations
that includes trans-Planckian oscillations.

This paper [23] byUlf H. Danielssonconsiders the influence trans-Planckian physics
has on the primordial power spectrum. A practical “toy”-model is considered, such that
analytical solutions are possible. In the end, the ambiguities in the choice of the vac-
uum will give rise to effects with a magnitude of the orderH/Λ, whereΛ is the cutoff
scale for new physics.

8.2.1 Introduction

This section is devoted to the study of the adiabatic vacuum.We start off with a scalar
field φ in an inflating RW metric. From (4.1) we found that the field evolves as

φ̈+ 3Hφ̇− 1

a2
(∇2φ) = 0 (8.1)

for a zero potential. In terms of co-moving modes and conformal time in Fourier space,
we found this to equal (4.13)

µ′′
k +

(

k2 − a′′

a

)

µk = 0

with the conjugate momentum

πk ≡ ∂L
∂φ̇

= u′ −Hµk

The author argues that the Heisenberg picture is the most convenient to use when quan-
tizing the system. The field is then quantized:

µk(η) =

√

1

2k

(

ak(η) + a†−k(η)
)

with the conjugate

πk(η) = −i
√

k

2

(

ak(η) − a†−k(η)
)

8.2.2 Bogoliubov transformation

The author then proceeds by performing a Bogoliubov-transformation of the raising
and lowering operators

(
see definition (4.6)

)
. The purpose of this transformation is

to fix the oscillators atak(η0) ≡ ak0 while the Bogoliubov-coefficients remain time-
dependent. As stated earlier, we need to decompose the field intopositive and negative
frequency components before defining the creation and annihilation operators. Hence

ak(η) = uk(η)ak0 + v(η)a†−k0

and
a†−k(η) = u∗k(η)a†−k0 + v∗(η)ak0
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The modesµk and its conjugateπk are now expressed in terms of the B. coefficients.
Define

fk(η) ≡
√

1

2k

(

uk(η) + v∗k(η)
)

(8.2)

and

gk(η) ≡
√

k

2

(

uk(η) − v∗k(η)
)

such that
µk(η) = fk(η)ak0 + f∗k (η)a†−k0

and
πk(η) = −i

(
gk(η)ak0 − g∗k(η)a†−k0

)

We check by insertion that this is true forµk:

µk(η) = fk(η)ak0+f
∗
k (η)a†−k0 =

√

1

2k

(

uk(η)+v∗k(η)
)

ak0+

√

1

2k

(

u∗k(η)+vk(η)
)

a†−k0

which equals

µk(η) =

√

1

2k

(

uk(η)ak0+vk(η)a†−k0

)

+

√

1

2k

(

u∗k(η)a†−k0+v
∗
k(η)ak0

)

=

√

1

2k

(

ak(η)+a†−k(η)
)

8.2.3 The adiabatic vacuum

The author continues by discussing the choice of vacuum. Thevacuum in the Minkowski-
metric is quite different from a vacuum in a curved space-time. As we saw in chapter
2, symmetry transformations in the flat Minkowski-metric corresponds to conserved
currents. A transformation of a vacuum in curved space doesn’t necessarily result in a
vacuum. In curved space-time, particles might be created/annihilated by the effect of
curvature.

It is stated that a reasonable vacuum candidate is theadiabatic vacuum:

a(k, η0)|0, η0〉 = |0, η0〉 = 0

where this corresponds to a class of vacua depending onη0. For this particular choice,

a(k, η0)|0, η0〉 =
(

uk(η0)a(k, η0) + v(η0)a
†(k, η0)

)

|0, η0〉 = 0

The first term is zero by definition, but the second term does not automatically vanish;
hence

vk(η0) = 0

With this condition, we see that

gk(η0) = kfk(η0)

The conjugate momentum is then simplified as

πk(η0) = ikµk(η0)
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8.2.4 Interpretation of the adiabatic vacuum

In the ideal situation, there would only exist a unique definition of the vacuum in the
infinite past and the infinite future. The time evolution of the initial vacuum will not
necessary generate the final vacuum, and will give rise to creation of particles (see
chapter 3). The author argues for the adiabatic vacuum, eventhough it is not a solution
of the exact field equation, it does correspond tosomechoice of vacuum. The adiabatic
vacuum isnot unique but depends onη. However, in de Sitter space, it happens that
the finite order adiabatic vacuum obtained in the infinite past corresponds to an exact
solution of the field equations, and is therefore distinguished [15]. When the modes are
small enough, they are not affected by the (slow) expansion of the universe.

There are however also other vacuum choices, like the minimum uncertainty dis-
cussed in the paper. The author then argues that these vacua only agrees to zeroth order,
and it is only in zeroth order that the expansion of the universe can be ignored, and the
ambiguities are removed.

Note thatthe distinction of various vacua only becomes important since we insist
on imposing the choice of vacuum at a finite time corresponding to a energy on the
Planck scale. Any claim about the structure of the vacuum above the Planck-scale re-
quires knowledge of physics on this scale. Since this knowledge is not yet available,
one can only list various alternatives.

The author continues by deriving a general expression for a zeroth order adiabatic
approximation, and the solution of a mode equation coincides with the choice in the
previous section. Hence the vacuum used will be the zeroth order adiabatic vacuum.

8.2.5 The modified primordial power spectrum

The author proceeds by deriving a modified primordial power spectrum

Pφ =
(H

2π

)2(

1 − H

Λ
sin

(2Λ

H

))

(8.3)

For a proper derivation of this expression, see appendix B. Note the following facts:

• Λ signifies the energy scale of where new physics occur (the Planck scale, stringy
scale etc)

• WhenΛ increases, the oscillations fluctuate with higher frequencies as the am-
plitude decreases.

• The original primordial power spectrum (5.3) is regained whenΛ → ∞

8.3 Can MAP and Planck map Planck physics?

Section goal 8.3.1.To enable the modified power spectrum to possess more familiar
parameters

This article [24] byLars BergströmandUlf H. Danielssonis a follow-up article of
[23]. It explains how to modify the postulated power spectrum given in equation (8.3)
to possess more familiar parameters. The paper starts off giving a review of the setup
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of the modified power spectrum and the physics behind. The introduction discusses a
class a vacua depending onη0, and whenη0 → −∞, the Bunch-Davies vacuum (see
page 46) is restored. This means it is done at a fixed scale, nota fixed time, and the
physics willbe independent of time.

8.3.1 What to look for

In this paper,DanielssonandBergströmdevelop a series of relations between the Hub-
ble parameterH, the cutoff scaleΛ and the slow roll parameterǫsr, using two auxiliary
parametersξ andγ. For a thorough derivation of these relations, see appendixC. We
now definethe Planck-scale cutoffΛ:

Definition 8.1. The Planck-scale cut-offΛ is defined to be proportional to the reduced
Planck-mass:

Λ ≡ γMp

whereγ ≈ 0.01 andMp = 1/
√

8πG is thereduced Planck mass.

Definition 8.2. Let ξ be

ξ ≡ H

Λ
=

H

γMp
∼ 4.0 · 10−4

√
ǫsr

γ
(8.4)

Example: the Horava-Witten model

The authors refer to [25] for an introduction to theHorava-Witten (HW) model. Here,
unification occurs roughly at the same time a fifth dimension becomes visible. As a
rough estimate, the author setsΛ ∼ 2 · 1016GeV , and corresponds toγ = 0.01. The
Hubble constant during inflation is restricted toH ∼ 7 · 1013 GeV, corresponding to
ǫsr ∼ 0.01. Using (8.4), we find

ξ ∼ 0.0004

∆k

k
∼ ξ

1

ǫsr
∼ 1 = ∆ ln k (8.5)

which means one oscillation prlogarithmicinterval ink. The authors claim this should
be visible in high-precision CMB observation experiments.

8.3.2 Predictions for CMB measurements

The authors continue to parametrize the primordial power spectrum usingǫsr andξ =
Hn/Λ, whereHn is evaluated at some particular scale wherekn leaves the horizon.
This results in a modifiedξ:

H

Λ
= ξ

( k

kn

)−ǫsr

and enable the authors toparametrizethe power spectrum (8.3):

P (ǫsr, ξ, k) = P0(k)
(

1 − ξ
( k

kn

)−ǫsr

sin
[2

ξ

( k

kn

)ǫsr
])

(8.6)

whereP0(k) is a scale-invariant spectrum. The authors argue that usingξ instead
of γ is advantageous because it is a small parameter that can be extrapolated to zero



94 CHAPTER 8. PAPER REVIEW

(ξ ∼ 0.0004 in the HW case). The trans-Planckian effects will have an unobservable
small amplitude in this limit.

The possible variation ofǫsr is limited by the normalization of the observed tem-
perature fluctuations, so effectively one can choose to regard the effects as being a
one-parameter family of modulating functions, with amplitudes determined byξ.

8.4 Chapter conclusions

We have seen that trans-Planckian effects in the power spectrum can be expressed as in
equation (8.6), where

Conclusion 8.1. The oscillations in the primordial power spectrum are caused by a
nontrivial vacuum for the inflaton field [23, 26]. The oscillations modify the primordial
power spectrum as given in equation 8.6.

Conclusion 8.2. ξ is the ratio of the Hubble parameter to the scale where trans-
Planckian effects start, and is chosen to beξ =∼ 4 · 10−4

√
ǫsr/γ. γ is the scale

of the Planck-mass where trans-Planckian effects occur, and is chosen to beγ = 0.01.
ǫsr is the slow-roll parameter, restricted to0.01 in our model.



Chapter 9

Trans-Planckian effects

9.1 Introduction

In the previous chapter, we saw how trans-Planckian effectsare supposed to give rise
to agenericmodulated primordial power spectrum. In this chapter, we begin by sum-
marizing the most important work done on this field, before performing independent
investigations. We will argue that some of the claims from the community might be
overly optimistic.

9.1.1 Generic effects

In [23], Ulf H. Danielssonconcludes with the following statement: “. . . effects of
trans-Planckian physics are possibly within the reach of cosmological observations
even though much more detailed calculations are require to make a definite statement”.
Equation 8.6 describes a agenericexpression for how trans-Planckian effects would
modify the primordial power spectrum. As seen in the previous chapter, these oscilla-
tions are supposed to be caused by a nontrivial vacuum for theinflaton field [23, 26]. As
the oscillations are expected to contribute to the energy density, this could change the
way the universe expands. In a worst-case scenario, the inflationary phase could be de-
stroyed. In [26],Danielssoninvestigates this possibility, and concludes that the “back
reaction is under control and fully consistent with inflation, with a slow roll found to be
completely dominated by the vacuum energy given the parameters suggested in [2]”.

9.1.2 WMAP data and trans-Planckian effects

Earlier data analysis [27] concludes that no significant signals from trans-Planckian
effects were found in the CMB. Another analysis [2] claims that there are some weak
hints in the current data, and these indications have becomeslightly stronger with the
WMAP3 data compared to earlier claims by the same authors [1, 2, 28, 29]. The pa-
rameters implied by the data suggests oscillations in amplitude that are periodic in the
logarithm of the scale of the CMB fluctuations, just as predicted from trans-Planckian
physics.

Another paper [7] is less optimistic, and concludes that “. . . it is unlikely that a
trans-Planckian signature of this type can be detected in CMB and large-scale structure
data”. We will follow this line, and show that the current WMAP3 data doesnot give

95
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valuable constraints on the slow-roll parameter and Planck-cutoff scale using MCMC
methods.

9.1.3 Simulated data and trans-Planckian effects

In [1], Jerome MartinandChristophe Ringevaldiscuss the so-calledcosmic variance
outliers, i.e. points which lie outside the1σ cosmic variance error. These outliers are
considered interesting as the probability of their presence is very small [30]. The au-
thors mention that it has been envisaged that the outliers could be a signature of new
physics, even though the cosmic variance could be responsible for their presence. The
conclusion of [1] is that there exist statistical justification for a presence of oscillations
in the power spectrum.

Opposing this claim, the conclusion of [7] is that trans-Planckian effects in CMB
and LSS data are in principle sensitive to modulations in theprimordial power spec-
trum, but that is practically impossible to make a positive detectioneven in future high-
precision data. This has to do with thenatureof the oscillations, “. . . the value of the
likelihood function is extremely sensitive toǫ andξ”. But what is meant by “extremely
sensitive” is not mentioned in [7]. We will later show explicit examples ofwhyandhow
this sensitive likelihood function means trouble, and why this renders the underlying
MCMC method in CosmoMC useless.

9.2 The nature of the oscillations

Section goal 9.2.1.Investigate the properties of the oscillations. Verify thevalidity of
the modified code.

From now on, we letǫ denoteǫsr.

9.2.1 Introduction

We continue by investigating the properties of the oscillations in the primordial power
spectrum. CAMB was modified to include two new parameters, the slow-rollǫ and the
Planck-cutoffξ. See appendix A for details on these modifications. We present a first
run of CAMB with the modulated power spectrum as given in the previous section.
Recall from section 8.3.1 that the modulating parameters inthe Horava-Witten model
areξ = 0.0004, γ = 0.01 andǫ = 0.01. This results in a slightly modified power
spectrum, see figure 9.1. A table with the remaining parameters used for this model is
given in table 9.1. These values will be used throughout the thesis.

Definition 9.1. Let∆Cℓ denote the difference between a modulated and a non-modulated
power spectrum.

Notice how little the modulated power spectrum deviates from the original. Figure
9.3 is more clear on this.



Parameter Value Description
Ωbh

2 0.022 Baryon density
Ωcdmh

2 0.12 Cold Dark Matter density
τ 0.04 The optical depth
ns 0.99 The spectral index

log[1010As] 2.3 The amplitude of the primordial power spectrum
ΩΛ 0.71020 Cosmological constant energy density

Age/GYr 13.592 Age of the universe in this model
H0 70 The Hubble constant today in this model
w -1 The equation of statep = wρ

Table 9.1: Parameter values used for the simulated model.
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Figure 9.1: Logarithmic plot,ξ = 0.0004, γ = 0.01 andǫ = 0.01
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Figure 9.2: Logarithmic plot,ξ = 0.0004, γ = 0.01 andǫ = 0.01
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9.2.2 Verifying the code

The next thing we do is verifying that the modifications are correct, and this is done
by reproducing data from [7]. Compare with figure 9.5 from [7], and note that the
modified code generates results in correspondence with [7].

ǫ = 0.01, γ = 0.003
ǫ = 0.01, γ = 0.01
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Figure 9.4: Ratio of modulated to unmodulated power spectrum for ξ = 0.0004, γ =
{0.01, 0.003} andǫ = 0.01. Compare with figure 9.5 from [7].

Figure 9.5: Modulated power spectra forǫ = 0.01, γ = {0.01, 0.003} from [7].
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9.2.3 Verifying logarithmic oscillations

In chapter 8, it was predicted that the modulated power spectrum would exhibit small
oscillations, about one for each logarithmick. When plotting figure 9.3 logarithmic,
it is clear this is the case (see figure 9.6). In [1],Jerome Martinargues that these
oscillations could statistically be accounted for by the cosmic variance outliers.
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Figure 9.6: Ratio of modulated to unmodulated logarithmic power spectrum forξ =
0.0004, γ = 0.01 andǫ = 0.01. Notice that there is approximately1 oscillation pr
logarithmick, as predicted in chapter 8.

9.3 Behaviour of∆Cl for ǫ and ξ

Section goal 9.3.1.Determine how variousξ andǫ modulate the angular power spec-
trum. Explain how the modulations are ill-tempered, and will give rise to problems
when estimating parameters.

We have seen how the nontrivial vacuum gives rise to small oscillations in the
power spectrum, but we have not yet analyzed the behaviour ofthese oscillations. The
solution to understanding the problem with the oscillations lie in their behaviour. By
varyingǫ andξ, two movies were created in order to visualize the erratic oscillations.

ǫ : http://irio.co.uk/projects/thesis/epsilon.aviwhereǫ ∈ [0.001, 0.03].

ξ : http://irio.co.uk/projects/thesis/xi.aviwhereξ ∈ [0.0001, 0.0006].

At the first impression, the oscillations are frantic and “cross” the stationary power
spectrum several times at chaotic intervals. This is the first sign that the parameter
estimation will not be a simple process, as there seems to be several values forξ andǫ
that fit well with the original input values. As mentioned in [7], this will have severe
impacts on the likelihood function. The exact likelihood function will be investigated
and presented later.
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9.3.1 The behaviour of∆Cl for varying ξ

Figure 9.7: Modulated power spectra forǫ = 0.01, ξ =
{0.0001, 0.000406, 0.000985, 0.0019} (blue line) versus the HW-model (red line).

The cutoff parameterξ has two impacts on the modulations in the angular power
spectrum, as seen from the movie (see figure 9.7). First, asξ increases, the frequency
of the oscillations in the waves decrease. This means the graph “slows down” when
ξ increases, making it simpler to determine an upper cutoff. Secondly, theamplitude
of the modulations increase withξ, all up to ξ = 1 Hence for a small value ofξ,
the amplitude in the modulations are small, but asξ grows, the amplitude grows as
the frequency decrease. The convergence for largeξ is discussed in the following
subsection.

Convergence of∆Cl for large ξ

From figure 9.8, we see that a very lowξ will result in almost no modulations. The
amplitude of the oscillations continue to grow, until a maximum amplitude difference
of 1. As ξ continue to increases, the amplitude of the modulations is again lowered to
a steady zero. This can also be seen from equation A.1, as

lim
B→∞

B sin(2/B) = 1

Hence for constantǫ, the primordial power spectrum becomes scale-free for largeB as
ξ ∝ B. Physically, this means that the Harrison-Zel’dovich primordial power spectrum
is restored when the cutoffξ goes to infinity.
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Figure 9.8: Difference betweenΛCDM and the modulated HW model:ǫ is fixed at
0.01 while ξ ∈ {0.00001, 0.001, 0.1, 10}.

9.3.2 The behaviour of∆Cl for varying ǫ

∆Cℓ varies withǫ in much the same way as withξ, but in a more chaotic manner. The
likelihood should hence be even more non-systematic, as will be shown in the end of
this chapter.

Convergence fromǫ

Theǫ parameter’s impact on the power spectrum behaviour is not quite as nice as that
of ξ. While ξ for large values makes the power spectrum modulations converge to zero,
we see from figure 9.10 that this is not the case forǫ. It seems that for large values ofǫ,
a single peak is prominent. We will later see how this affectsthe parameter estimation
success forǫ.



Figure 9.9: Modulated power spectra forξ = 0.0004, ǫ = {0.001, 0.007, 0.016, 0.03}
(blue line) versus the HW-model (red line).
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Figure 9.10: Difference betweenΛCDM and the modulated model:ξ is fixed at
0.0004 while ǫ ∈ {0.0001, 0.1, 5.0}. Notice the erratic behaviour of the graphs for
varyingǫ.
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9.4 Parameter estimation using WMAP data

Section goal 9.4.1.To show that WMAP data does not give constraints toξ andǫ.

TheWilkinson MAP (WMAP) experiment provides a satellite-based measurement
of the cosmic microwave background. The WMAP and 3-year revised WMAP3 data
are still the most important observational results for determining cosmological param-
eters, thus enabling us to determine which of today’s theoretical model fits best with
results. TheΛCDM model is still standing strong, as can be seen from standard pa-
rameter estimation [30, 31]. CosmoMC is equipped with the latest WMAP data and
likelihood code, ready for use. We now modify CosmoMC to include the two auxiliary
parametersξ andǫ, and see if WMAP data alone can give constraints on these.

9.4.1 What to expect

When plotting∆Cl (figure 9.3) versus the error bars in the WMAP data, it is clear that
the constraints onξ andǫ will be poor (see figure 9.11). The error bars in the WMAP
data are approximately 1-2 orders of magnitude larger than the predicted modulations
in the angular power spectrum. The error bars are smallest aroundlog ℓ = 6 (or ℓ =
400), but are still about 50 times larger than the predicted modulated spectrum. This
should effectively rule out WMAP for detecting trans-Planckian effects especially for
low ℓ in the CMB anisotropies, as supported by [7] but opposed to [1].
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Figure 9.11: Ratio of modulated to unmodulated logarithmicpower spectrum forξ =
0.0004, γ = 0.01 andǫ = 0.01. The red bars are the error bars in the WMAP data,
while the green graph is the cosmic variance. Notice that themodulations in the power
spectrum are much smaller than either.
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9.4.2 Results

We let all parameters exceptw = −1 to be allowed to vary. WMAP data was con-
strained with

• HST: Hubble Space Telescope constraint, ensuring thatH0 = 72±8(km/s)/Mpcs.

• Mpk : Matter power spectrum constraint, using the Sloan DigitalSky Survey
galaxy catalogue.

• Age Tophat Prior: Only models with10Gyr < Age < 20Gyr were allowed.

The convergence criterion (See the CosmoMC documentation [32]) was set toR−1 <
0.02, but was never achieved: asall values ofξ andǫ were allowed, no convergence
occurred.

Both ǫ and ξ free

Figure 9.13 The run time was approximate5 days, and as seen from the plot :all ǫ and
ξ are allowed. This was already predicted in the previous section, as the variations in
the modulated power spectrum were much less than the errors in the WMAP data. It is
also the conclusion of [7].
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Figure 9.12: Likelihoods forǫ, ξ. The right-hand side corresponds to68% (inner) and
95% (outer) confidence contours. Compare with figure 7.10. Note from the right-hand
figure of marginalized probabilities that all other parameters converge nicely, whileξ
and ǫ remain near uniform (undetermined). Onlyξ seems to have a low limit. The
left-hand figure contains 68% and 95% confidence contours.

ξ free

Letting ǫ = 0.01 and ξ ∈ [0.0002, 0.0006], we see from figure 9.13 that it is not
possible to determineξ for any peak around the original input parameterξ = 0.0004.
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Figure 9.13:ξ ∈ [0.0002, 0.0005] with initial valueξ0 = 0.0004.

ǫ free

Letting ξ = 0.0004 andǫ ∈ [0.001, 0.3], we see that it is not possible to determineǫ
for any value around the original peak0.01.

Figure 9.14:ǫ ∈ [0.001, 0.3] with initial valueǫ0 = 0.01.

9.5 Increasing accuracy

Section goal 9.5.1.Enabling CAMB to perform more accurate calculations.

In their papers [28, 29]Martin andRingevalclaim that it is necessary to increase
the accuracy of the power spectrum used for deciding trans-Planckian effects. Also,
the results in [7] are partly due to the inaccuracy of CMBFAST, the predecessor of
CAMB. We boost the accuracy of the calculated power spectrum, increasing run time
and accuracy by a tenfold. This is done by modifying the parameters in CAMB. This
was not an option in the old version of CMBFAST, and was never performed in [7].
The three parameters are:
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1. accuracy_boost: Increasing this parameter will decrease the time steps, using
morek-values. Set to2, default1.

2. l_accuracy_boost: Internal variable, increasing will ensure that more termsare
kept in the hierarchy evolution. Set to2, default1.

3. l_sample_boost: Increasing the variable will increase theCℓ values for interpo-
lation. Set to2, default1.

9.5.1 Results

The parameters used to produce figure 9.18 are given in table 9.1.

accuracy_boost

Setting accuracy_boost to2, we decrease the time steps and increasek values used.
The effect on the oscillations are seen in figure 9.15. This parameter seems to modify
the amplitude and general form of the modulation.
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Figure 9.15: Boosting accuracy: increasing accuracy_boost.

l_accuracy_boost

Setting l_accuracy_boost to2, we keep more terms in the hierarchy evolution. The
effect on the oscillations are seen in figure 9.16. This parameter seems to have little
impact on the form of the modulations, except small modifications in amplitude.

l_sample_boost

Setting l_sample_boost to2, we increaseCℓ-values for interpolation. The effect on the
oscillations are seen in figure 9.17. This parameter seems tohave a great impact on the
form of the power spectrum, as the larger oscillations are composed of several smaller
ones.
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Figure 9.16: Boosting accuracy: increasing l_accuracy_boost.
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Figure 9.17: Boosting accuracy: increasing l_sample_boost.

Maximum accuracy

When let all three parameters be boosted : accuracy_boost = l_accuracy_boost =
l_sample_boost = 2. The results can be seen in figure 9.18.
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Figure 9.18: The ratio of modulated power spectrum with low and high accuracy, all 3
parameters boosted.
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9.6 Parameter estimating with simulated data

Section goal 9.6.1.Determine whether trans-Planckian effects are detectablewith fu-
ture data. Describe the difficulties with doing so.

In our cosmological model, we have a set of parametersp = {Ωb,Ωr, w, . . . , ξ, ǫ}
whereξ andǫ are the trans-Planckian parameters. What we now wish to do is modify
CosmoMC to enable model testing against simulated data instead of theWMAPdata.
This is done by replacing the original WMAP likelihood code with modified perfect
data likelihood code. The trace of this progress can be foundat appendix A.

9.6.1 Adding “perfect” data to CosmoMC

In chapter 6, the algorithm for simulating a data set given a model was described. The
author created a small utility“GenerateData”, that generates simulated data given a
model power spectrum. We now wish to generate a “perfect” data set with only cosmic
variance as uncertainty.

In theory, this means one must generateN → ∞ simulated sample data sets before
averaging, but this will only result in a sample data set thatequalsthe theoretical model
power spectrum. This is indeed what is done, and the resulting sample data set for
the HW model is stored in “hwmodel.dat”. This file is then copied into CosmoMC’s
WMAP directory. The parameters used for the (flat) model are given in table 9.1.

9.6.2 Verifying the likelihood code

We proceed byremovingthe WMAP likelihood code in CosmoMC. Instead, a “perfect”
data set is added and likelihood code based on 7.5 is included. We run the modified
CosmoMC job with fixedǫ andξ parameters in order to verify that the new likelihood
code works. Observe from figure 9.19 that the likelihood coderesults in relatively good
fits, with most parameters within a2σ error. The marginalized mean values are given
in table 9.2.

Notice from table 9.2 howτ is off mark, and how the amplitudeA is neatly esti-
mated. When replacing the likelihood code, we removed all data and code concerning
polarization. Therefore,τ cannot be properly estimated asA andτ are degenerate (they
both modify the amplitude).

Parameter Input value Mean value 68% interval Status
Ωbh

2 0.022 0.229053E-01 [0.226171E-01, 0.232458E-01] ≤ 1σ
Ωcdmh

2 0.12 0.115912E+00 [0.113144E+00, 0.118420E+00] ≤ 2σ
τ 0.04 0.228972E-01 [0.100000E-01, 0.253712E-01] ≤ 2σ
ns 0.99 0.100671E+01 [0.998136E+00, 0.101679E+01] ≤ 1σ

log[1010As] 3.13 0.299447E+01 [0.297254E+01, 0.301722E+01] ≤ 3σ
ΩΛ 0.71020 0.739006E+00 [0.725345E+00, 0.754143E+00] ≤ 3σ

Age/GYr 13.592 0.134236E+02 [0.133608E+02, 0.134796E+02] ≤ 2σ
H0 70 0.729904E+02 [0.716617E+02 0.744625E+02] ≤ 2σ

Table 9.2: Results from the modified CosmoMC with fixedǫ = 0.01 andξ = 0.0004.
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Figure 9.19: Results from the modified CosmoMC with fixedǫ = 0.01 andξ = 0.0004

9.7 Estimating parameters for the HW universe

Section goal 9.7.1.Use CosmoMC to reproduce the HW parameters with “perfect”
HW data

9.7.1 Introduction

We now wish to see if the modulations in the HW power spectrum can be detected
with CosmoMC. We use a “perfect data set” created with the HW parameters and try
to see if CosmoMC is able to reproduce the original parameters ξ andǫ. This might
be problematic, as the modulations are described by a ratherchaotic oscillation. The
convergence criteria was set toR − 1 < 0.02, but neitherǫ or ξ properly converged
to a stationary value. We will shortly see that this is due to the nontrivial likelihood
function ofξ andǫ.

9.7.2 Setup

The following initial conditions have been set up:

- A “perfect” data set with only cosmic variance has been created in “hwmodel.dat”,
representing the simulated data from a HW universe model usingξ = 0.0004, ǫ =
0.01. The standard model parameters used for creating the data set are listed in
table 9.1.

- CosmoMC has been modified as in the previous section to use the simulated
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“perfect” data for likelihood testing instead of WMAP data. All other constraints
like SN data, Age Tophat etc are removed. Only the modified likelihood is used.

9.7.3 Results:ξ free

We present four different CosmoMC runs, in order to emphasize the observed effects.
The initial conditions0 and step length∆ξ on ǫ andξ are given as follows:

- Run1: Conditions forξ are:ξ0 = 0.0004, ξ ∈ [0, 0.04], ∆ξ = 0.00001.

- Run2: Conditions forξ are:ξ0 = 0.0004, ξ ∈ [0.0002, 0.0006], ∆ξ = 0.000005.

- Run3: Conditions forξ are:ξ0 = 0.0004, ξ ∈ [0.0001, 0.0015], ∆ξ = 0.00005.

- Run4: Conditions forξ are:ξ0 = 0.0001, ξ ∈ [0, 0.01], ∆ξ = 0.0005.

- ǫ remains constant with value0.01.

First of all, notice from figure 9.20 that there is some disagreement with the correct
estimation ofξ. Run2 peaks around0.515 · 10−3 with a2σ within the input parameter,
while Run2 peaks at0.978 ·10−3 and gets3σ within the input parameter. Run3 doesn’t
seem to converge, while Run4 has several different peaks. The parameter estimation of
ξ is severely dependent on selected initial conditions and step length. This is a major
indication thatξ doesn’t modulate the power spectrum in any nice way, as already
seen in section 9.3. If so, then the standard MCMC method fails to converge to any
stationary distribution, and becomes highly dependent on initial parameters and step
length in order to converge to a local minimum. This is most likely what is observed
in Run4, a step length was chosen such that the chains startedconverging to another
minimum in the likelihood landscape.
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Figure 9.20: Top left: Results for Run1 with mean peak at0.978 · 10−3. Top right:
Results for Run2 with mean peak at0.515 · 10−3. Bottom left: Results for Run3 with
no peak, almost uniform distribution. Bottom right: Results for Run4 with several
peaks. Notice how the peaks don’t match, where the red line represents the original
input parameterξ = 0.0004 for the simulated data.
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Figure 9.21: The remaining free parameters are estimated correctly. This plot shows
the marginalized likelihoods for Run1

9.7.4 Results:ǫ free

We present three different CosmoMC runs, in order to emphasize the observed effects.
The initial conditionsǫ0 and step length∆ǫ on ǫ andξ are given as follows:
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- Run1: Conditions forǫ are:ǫ0 = 0.01, ǫ ∈ [0, 0.3], ∆ǫ = 0.008.

- Run2: Conditions forǫ are:ǫ0 = 0.01, ǫ ∈ [0, 0.05], ∆ǫ = 0.0002.

- Run3: Conditions forǫ are:ǫ0 = 0.01, ǫ ∈ [0, 0.5], ∆ǫ = 0.02.

- ξ remains constant with value0.0004.

Again we note that there is a total disagreement with the original input parameter and
the estimated parameters. Only Run2 came within a3σ correct estimation, all other
failed by a factor of ten. The MCMC method produces differentresults for different
chosen step lengths and parameter intervals, which again implies that the likelihood
function for varyingǫ andξ are ill-behaved.
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Figure 9.22: Top left: Results for Run1 with mean peak at0.12. Top right: Results
for Run2 with mean peak at0.037. Bottom left: Results for Run3 with mean peak at
0.101. Notice how the peaks don’t agree for different step lengths, where the red line
represents the original input parameterǫ = 0.01 for the simulated data.
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Figure 9.23:ξ is fixed at0.0004 while ǫ varies between0 and0.3.

9.7.5 Results: Bothξ and ǫ free

In the simulations where bothξ andǫ were free, no convergence occurred whatsoever.
All the distributions turned out grotesque, with no apparent Gaussian likelihoods. The
run time on 24 processors was aborted after 4 days, with a non-convergingR − 1 ∼
100. See figure 9.24 for the results. This again reflects the irregular behaviour of the
likelihood function for varyingξ andǫ.
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Figure 9.24:ξ ∈ [0, 0.1] with ∆ξ = 0.00007 andǫ ∈ [0, 0.5] with ∆ǫ = 0.02. Notice
how the distributions never converged.
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9.8 Explaining the results

Section goal 9.8.1.Determining the exact likelihood function for continuous varying
ξ andǫ. Convince the reader why the MCMC method fails.

We have seen that parameter estimatingξ andǫ didn’t turn out quite as expected.
In the first parameter estimation ofξ, we found a peak located at within a3σ of the
original input parameter. When changing step lengths, we found a new peak within2σ.
But when increasing the step length even further, we found both near-uniform likeli-
hoods and likelihoods with different peaks. The same goes for ǫ: different step lengths
results in different estimated parameters. Clearly there is something wrong with using
the MCMC method here.

Earlier in this chapter, it was shown that the oscillations are highly erratic, as seen
in figure 9.10 and 9.8. Recall that the MCMC algorithm is basedon random walkers
transversing a parameter space. Together, the walkers makeup a distribution, which
then is marginalized (projected) onto one dimension: the parameter distribution of
interest. As a walker ambulates, it’s probability to successfully move is dependent on
the likelihood function. If a varying a parameter smoothly changes the corresponding
graph in a well-behaved manner, the likelihood function forthat parameter would most
likely turn out Gaussian around the original input value. But if the parameter varies the
likelihood function in a disordered manner, the likelihoodfunction will be a landscape
of local and semi-global peaks. This means that there exist several values ofξ andǫ
that will result in similar graphs as generated by the input parameters. We will show
that this is indeed the case forξ andǫ.

9.8.1 Detailed likelihood analysis

In order to convince the reader that the MCMC method for this kind of modulations is
highly incorrect, we present a “proof”. What does the exact likelihood look like for the
two parameters without sampling from the remaining configuration space? We created
a brute force script program that did exactly this - variedǫ andξ with medium step
lengths, used CAMB to determine the theoretical power spectrum and calculated the
likelihood between theory and data.
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The exact likelihood function for varying ξ and ǫ
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Figure 9.25: Likelihood forξ ∈ [0.0002, 0.0005] with correct maximum atξ = 0.0004
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Figure 9.26: Likelihood forξ ∈ [0.0002, 0.0025] with correct maximum atξ = 0.0004

Figures 9.10 and 9.8 show a highly irregular oscillation forvarying parameters -
and the exact likelihood should reflect this property. The results in figures 9.25, 9.26
and 9.27 are convincing. It is clear that the exact likelihood functions, especially forǫ,
are very hard to match exactly. In order for random walkers togive a nice distribution
around the correct peak, one needs a close initial condition, a good parameter interval
and a suitable step size. Without this, the walkers would be “trapped” in any of the
other minima, semi-global or local.



118 CHAPTER 9. TRANS-PLANCKIAN EFFECTS

-25

-20

-15

-10

-5

 0

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

lo
g-

lik
el

ih
oo

d

epsilon

epsilon

Figure 9.27: Likelihood forǫ ∈ [0.01, 0.5] with correct maximum atǫ = 0.01

9.8.2 2D exact likelihood landscapes

A different version of the batch script was created to generate a two-dimensional ver-
sion of theǫ-ξ likelihood landscape. Figure 10.1.1 consists of150 × 150 points, and
took about 24 hours to compute on a single-processor. Figure9.29 is a40×40 zoom of
10.1.1, and emphasizes the ruggedness of the landscape. Thecorrect maximum likeli-
hood value is marked with a red circle. Both plots show− lnL, such that theminimum
of the graph corresponds to a best-fit value forξ andǫ.
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Figure 9.28: Theǫ− ξ likelihood function−L on a150× 150 lattice. The exact value
is marked with a red circle.
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Figure 9.29: A zoom of theǫ − ξ likelihood function−L on a40 × 40 lattice. The
exact value is marked with a red circle.



Chapter 10

Conclusions and outlook

10.1 Summary

We have investigated whether general trans-Planckian effects in the cosmic microwave
background are detectable with today’s and tomorrows’ data. This has been done in the
following manner: In chapters 1, 2 and 3 we presented a brief introduction to standard
cosmology and curved spaces. The mechanics of inflation was investigated in chap-
ters 4 and 5, before discussing post-inflationary events in chapter 6. Then in chapter
7 the angular power spectrum was introduced, the major observable that enables cou-
pling between theory and observations. We presented tools for CMB analysis, methods
for simulating data and a short guide to interpretation of the angular power spectrum.
Two papers that discuss implications of trans-Planckian effects in the primordial power
spectrum were reviewed in chapter 8. The papers introduced two auxiliary parame-
tersǫ (slow-roll) andξ (Planck cutoff scale) that modulated the Harrizon-Zel’dovich
scaling effect. We then proceeded by investigating the behaviour of these modulations
in chapter 9, and reproduced the results from [7]. A simulated “perfect” data set was
included into CosmoMC, and parameters were incorrectly determined. In the end, a
small script utility was created in order to calculate the exact likelihood for continuous
varyingǫ andξ, without MCMC methods.

10.1.1 A comment on [1, 2]

We have seen that previous work, especially byJerome Martin et al.[1, 2, 28, 29] are
overly optimistic about the detection of trans-Planckian effects. Their main argument in
[1, 2] is that the cosmic variance outliers in the angular power spectrum could in theory
be explained by the superimposed oscillations. Following the results presented in the
previous chapter, we argue that there are three reasons why this is highly improbable:

1. The oscillation frequency fluctuate too much for varyingξ andǫ to actually fit
any cosmic variance outliers. An eventual fine-tuning ofξ andǫ would be nec-
essary.

2. The amplitude of the superimposed oscillations is too weak (see figure 9.11).

3. The exact likelihood function makes the detection of the trans-Planckian pa-
rametersξ andǫ very hard, and renders the Monte Carlo Markov chain method
useless.
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10.2 Conclusions

In a perfect world, the author would have created the plots ofthe exact likelihood func-
tionsbeforefutilely trying to parameter estimateξ andǫ. This would have saved many
hours of despair in which the expression “why, oh why doesn’t the distribution peak
at the correct value?“ played a major part. Unfortunately, the world doesn’t operate
in such manners, and the results have been presented in a time-ordered chronological
order. We have reached the following conclusions:

Conclusion 10.1.WMAP data alone does not give enough constraints onξ andǫ; the
likelihoods are uniform and all parameters are allowed. Seesection 9.4 for details.

Conclusion 10.2. Simulated “perfect” data gives upper and lower constraintson ξ
and ǫ, but the likelihood varies for different initial values andstep lengths. When
defining “suitable” initial conditions, the parameters areestimated within a2σ error.

Conclusion 10.3. The exact likelihood function between the perfect data and models
for varyingξ andǫ is a landscape riddled with local and semi-global minima (see figure
9.27). This renders the MCMC algorithm used in CosmoMC ineffective; for different
initial values and step lengths the likelihood converges todifferent local/semi-global
minima.

Conclusion 10.4. Future experiments will never provide data nearly as good asthe
simulated data set presented in this thesis. As the exact likelihood landscape is chaotic
(see figure 10.1.1), the initial conditions need to be tuned around the correct minimum
with a suitable step length in order to converge properly.We therefore conclude that
detecting trans-Planckian effects will be difficult even with improved future data.

10.3 Outlook

10.3.1 Additional data sets

How would additional data sets affect the detection of generic trans-Planckian effects
in the CMB?

SDSS

TheSloan Digital Sky Survey(SDSS) [33] is a comprehensive galaxy catalogue based
on continuous imaging and spectroscopic redshift surveys since the year 2000. For the
detection of generic trans-Planckian effects, the galaxy catalogue would most likely
not help, due to the low-accuracy of data. In addition, the CMB power spectrum is
not directly observed, only the matter power spectrum is available. The matter power
spectrum is smoothed by the window function, so any irregularities would be removed.

QUIET

It is uncertain whether QUIET polarization data could help on the detection of trans-
Planckian effects.

SN1A

With improved super nova type 1a data,Ωm could be determined much better. But this
doesn’t affect the other parameters, especially notǫ nor ξ.
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10.3.2 Additional methods

We present some additional methods thatcould be used to estimate the parametersǫ
andξ. We also briefly explain why these methods wold fail.

Gradient method

The gradient method employs a simple solution: test the likelihood function and climb
towards the nearest maximum. For a smooth, nice-behaved likelihood function, this
would be an effective solution. Needless to say, when looking at the exact two-dimensional
likelihood landscapes 10.1.1 and 9.29, the gradient methodfails terribly unless the ini-
tial conditions are finely tuned around the correct value.

Brute force

The two-dimensional likelihood landscapes 10.1.1 and 9.29are examples of data sets
created by brute force grid integration. The parameter space was defined with rough
intervals on a lattice size of 150 for each parameter. Calculating a single-dimensional
lattice of size150 took aboutt ∼ 10 minutes. With two free parameters (at low reso-
lution!), t ∼ 150 ∗ 10 ∼ 24 hours, the time it took creating graphs 10.1.1 and 9.29 .
With 11 free parameters,t ∼ 2.74 ·1015 years. For few enough parameters, brute force
works, but for a full parameter estimation it is virtually impossible as time scales with
latticed

10.3.3 Modifying the likelihood algorithm

The exact likelihood function in figure 9.27 should convincemost skeptics that any
general exact parameter estimation is difficult. But a few options are available. One
of the problems with the exact likelihood functions ofǫ andξ is the local minima. An
algorithm that would calculate the surrounding likelihoods and eliminate (or smooth)
the local minima could possibly give a better estimation. The problem is then reduced
to that of the semi-global minima, which could possible be eliminated by the following
algorithm:

1. Generate random initial values forξ or ǫ.

2. Eliminate the local minima by smoothing.

3. Find a semi-global minima, and save the lowest likelihoodfunction value.

4. Go to 1 until a lowest likelihood function value is obtained. The distribution in
which the lowest likelihood is detected will be the correct one.

However, implementing such an algorithm in CosmoMC would require time beyond
the scope of this thesis.
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Appendix A

Self-references

In order to separate general results from work done by the author, we present a review
of independent software, code modifications and other achievements.

A.1 General notice

Even though chapters 2 to 6 contain general results from [6, 8, 17, 16, 11, 9, 15, 13, 5,
3, 14], therepresentationof the results have been independent. Chapter 3 is especially
an example of this, being a mixture of several topics from thediscipline of mathematics
and physics. Another “special” chapter is chapter 7, which serves as a bridge between
the theoretical and the experimental parts of the thesis.

A.2 Graphs and figures

All graphs and figures except figure 9.5 have been created by the author. Schematic
figures were created in Xfig, and graphs were made with either Gnuplot or Matlab.
Some “special” figures and graphs are mentioned:

- Figure 2.1 was created with a C++ program “TimeLine” created by the author.

- Figure 4.2 was created in Matlab using harmonical functions. The “false vac-
uum” was created using two two-dimensional Gaussian functions, one almost
cancelling the other.

- Figure 6.5 and 6.3 were created in Matlab to illustrate the effect of diverging
geodesic curves.

- Figure 7.1 is a screen shot from a C++ program that projects spherical maps onto
R

2 using the Mollweide projection. The software is written by the author.

- Figure 7.2 is a screen shot from a C++ program that calculates the spherical
harmonics for a sphere, and presents the map using the Mollweide projection.
The software is written by the author.

- The driven and damped harmonical oscillators in Figure 7.5were created in a
C++ program written by the author.
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- All figures in chapter 9 except 9.5 are based on independent data.

- The movies mentioned in chapter 9 were made using the same script for gener-
ating the exact likelihood, “like”. The movies were assembled in “Avidemux”
for Ubuntu.

A.3 Code modification

A.3.1 Modifying CAMB

CAMB contains several files that perform various tasks. Somecontain a set of sub-
routines, other define data structures. The primordial power spectrum is calculated in
powertilt.f90. The original line stated:

lnrat = log(k/P%k_0_scalar)
ScalarPower=P%ScalarPowerAmp(in)*

exp((P%an(in)-1)*lnrat + P%n_run(in)/2*lnrat**2)

or

P = Ae
(ns−1) ln

(

k
k0

)

+ 1
2 nrun·

(

ln
(

k
k0

))2

Ignoring thenrun, we see that

P = Ae
(ns−1)log

(

k
k0

)

= A
( k

k0

)ns−1

is the power law behaviour. In chapter 8, the modified power spectrum (8.3) including
trans-Planckian effects was defined as:

Pφ =
(H

2π

)2(

1 − H

Λ
sin

(2Λ

H

))

We introduced a parametrized version of the power spectrum (8.6) based on two pa-
rametersξ andǫ, where the slow roll parameter was heavy restricted toǫ ∼ 0.01 by
observations in the CMB anisotropies [24]. This modified equation is basically depen-
dent onξ alone, and reads

P (ǫ, ξ, k) = P0(k)
(

1 − ξ
( k

kn

)−ǫ

sin
[2

ξ

( k

kn

)ǫ])

Introducing

B = ξ
( k

kn

)−ǫ

we can express (8.6) as

P (ǫ, ξ, k) = P0(k)
(

1 −B sin
( 2

B

))

(A.1)
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A.3.2 Modifying code

CAMB was modified to include three new parametersǫ, ξ andγ on command line,
enabling batch-script running. The original data structure in modules.f90was also
altered to include the new parameters. This makes it possible to export CAMB code
directly to CosmoMC. The modified power spectrum code is

function ScalarPower(k,in)
real(dl) ScalarPower,k, lnrat
integer in
real(dl) B,epsilon, xi, gamma

gamma = P%gamma
epsilon =P%epsilon
xi = P%xi*sqrt(epsilon)/gamma
B = xi*(k/P%k_0_scalar)**(-epsilon)
lnrat = log(k/P%k_0_scalar)
ScalarPower=P%ScalarPowerAmp(in)*

exp((P%an(in)-1))*abs(1-(B*sin(2.0/B)))
end function ScalarPower

whereP is the CAMB data structureCAMBparams.

A.3.3 Modifying CosmoMC

The likelihood modifications were mostly done inWMAP_3yr_likelihood.f90. In this
file, a subroutine namedPASS_COMPUTE_LIKELIHOODreturns the computed WMAP
likelihood between the current model in the MCMC chain and simulated data. Recall
we found the log-likelihood for a perfect data set in equation 7.5:

−2 logL(xi; pi) =
∑

ℓ

(2ℓ+ 1)
[

ln
(Ctheory

ℓ

Csim
ℓ

)
+

Csim
ℓ

Ctheory
ℓ

− 1
]

A.3.4 Likelihood code modifications

The original code has been replaced with following algorithm:

SUBROUTINE PASS2_COMPUTE_LIKELIHOOD(cltt,clte,clee,clbb,like)

(Initialize variables)
(Load the simulated HW model data file)

! Compute likelihood

Likelihood = 0
do i=ttmin,ttmax
work = log(cltt(i)/cl_data(i)) + cl_data(i)/cltt(i) - 1
Likelihood = Likelihood + (2*i+1) *work

enddo

like(2:8) = 0
like(1) = 0.5*Likelihood ! return to CosmoMC
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end SUBROUTINE PASS2_COMPUTE_LIKELIHOOD

where thecltt parameter is the model power spectrumCl generated from CAMB that
is to be tested.

A.3.5 Additional changes

Additional changes were done in the modules that callSUBROUTINE_PASS2_COMPUTE_LIKELIHOOD
in order to prevent (log) zero likelihoods. Also, other parts of CosmoMC was modified
to include the two new parametersǫ andξ.

A.4 Independent software

Five independentprograms and scripts created by the author have seen use in this
thesis.

• SH is a program that calculates the spherical harmonics for differentℓ andm,
and displays them by the Mollweide projection.

• DHO is a small program that calculates the amplitude of a driven,damped har-
monical oscillator. The software takes batch input parameters.

• Generateis a program that takes a CAMB CMB power spectrum as input, and
outputs a simulatedχ2 data set to file. The program accepts batch input param-
eters.

• TimeLine is a small program that calculates a schematic scale factor for different
universe models.

• The most important program written by the author is thebatch-scriptLike that
generated the exact1D and2D likelihood landscapes, as presented at the end of
chapter 9.



Appendix B

A note on trans-planckian
physics

Here, we present a thorough derivation of the modified power spectrum (equation 8.3,
page 92) discussed in [23].

B.1 Initial conditions

Section goal B.1.1.Derive an expression for|Ak|

The author first considers the standard treatment of the fluctuations in inflation. In
chapter 4 , we found that the general solution to (8.2.1) is given by

fk(η) =
Ak√
2k
e−ikη

(

1 − i

kη

)

+
Bk√
2k
eikη

(

1 +
i

kη

)

and

gk(η) = Ak

√

2

k
e−ikη −Bk

√

2

k
eikη

Where nowAk andBk are different Bogoliubov coefficients. Working backwards,we
find from (8.2) that

v∗k(η) = uk(η) −
√

2

k
gk(η)

and

uk(η) =
√

2kfk(η) − v∗k(η) =
√

2kfk(η) − uk(η) +

√

2

k
gk(η)

such that

uk(η) =
1

2

(√
2kfk(η) +

√

2

k
gk(η)

)

When inserting the assumedgk andfk, we find

uk(η) =
1

2

(

Ake
−ikη

(

1 − i

kη

)

+Bke
ikη

(

1 +
i

kη

)

+Ak

√
e
−ikη −Bk

√
e
ikη

)
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which in turns give

uk(η) =
1

2

(

Ake
−ikη

(

2 − i

kη

)

+Bke
ikη i

kη

))

Similarly, we find

v∗k =
1

2

(

Bke
ikη

(

2 +
i

kη

)

−Ake
−ikη i

kη

)

(B.1)

From the hyperbolic identity that|uk|2 − |vk|2 = 1, we find that|Ak|2 − |Bk|2 = 1
Recall from the choice of vacuum (8.2.3) thatvk(η0) = 0 at some initial momentη0.
This means from (B.1) that

Bke
ikη

(

2 +
i

kη

)

= Ake
−ikη i

kη

and hence

Bk = Ak
e−2ikη0

2kη0 + i
(B.2)

Squaring this expression and using the hyperbolic identity, we find

|Bk|2 = |Ak|2|αk|2 = |Ak|2 − 1

whereαK = i/(2kη0 + i). Solving for|Ak|2 we find

|Ak|2(1 − |αk|2) = 1

such that

|Ak|2 =
1

(1 − |αk|2)
(B.3)

B.2 The fluctuation spectrum

Section goal B.2.1.Derive the expression of the modified power spectrum (8.3)

The power spectrum in co-moving coordinates is given by

Pφ =
1

a2
Pµ =

k3

2π2a2
|fk|2

We find|fk|2:

|fk(η)|2 =
|Ak|2
2k

∣
∣

(

1− i

kη

)∣
∣
2
+
|Bk|2
2k

∣
∣

(

1+
i

kη

)∣
∣
2
+

∣
∣

1

2k

(

1+
1

k2η2

)∣
∣
(
A∗

kBk+AkB
∗
k

)

assuming later timesη → 0, so only the second order terms ofη contributes:

|fk(η)|2 ≈ 1

2k3η2

(

|Ak|2 + |Bk|2 −A∗
kBk −AkB

∗
k

)

The power spectrum is then

Pφ =
1

4π2a2η2

(

|Ak|2 + |Bk|2 −A∗
kBk −AkB

∗
k

)
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Using that|Bk|2 = |Ak|2 − 1 and thatη = −1/aH, we get

Pφ =
(H

2π

)2(

2|Ak|2−1−A∗
kBk−AkB

∗
k

)

=
(H

2π

)2(

2− 1

|Ak|2
+

1

|Ak|2
(
A∗

kBk+AkB
∗
k

))

|Ak|2

Using equation (B.3), we get

Pφ =
(H

2π

)2(

1 + |αk|2 −
1

|Ak|2
(
A∗

kBk +AkB
∗
k

)) 1

1 − |αk|2

Finally, from (B.2) note that

A∗
kBk = |Ak|2(ie−2ikη0)α

and similarly
AkB

∗
k = |Ak|2(ie2ikη0)α∗

such that

Pφ =
(H

2π

)2(

1 + |αk|2 − αe−2ikη0 − α∗e2ikη0)
) 1

1 − |αk|2

The author then does something “different”: for a givenk, chooseη0 such that the
physical momentum corresponding tok is given by some fixed scaleΛ. Λ signifies the
energy scale of the new physics, e.g the Planck scale. So forp = Λ we have

k = ap = aΛ = − Λ

η0H

meaning

η0 = − Λ

kH

The author then makes the assumption thatΛ/H ≫ 1. This means|η0k| ≫ 1, which
implies early in the inflation period. Then from equation (B.3) we find that|α|2 ≈ 0,
andα ≈ 1

2
H
Λ . We then find

Pφ =
(H

2π

)2(

1 − H

Λ
sin

(2Λ

H

))

(B.4)

which is the desired result.
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Appendix C

Can MAP and Planck map
Planck physics?

In chapter 8 we used both familiar and new parameters to rewrite the modified power
spectrum (8.3). In this section, we present the derivation of the relations between the
parametersξ, ǫsr,H, γ andΛ

C.1 Parameter relations

Section goal C.1.1.Derive the relations betweenξ, ǫsr, γ,H andΛ

When a mode crosses the horizon (k = aH),H is to beevaluated. We differentiate
and find

dk = Hda+ adH ≈ Hda

where we have used thatH varies very little. Using thatda = ȧdt = k dt, we have

dk = kHdt

from slow roll condition 2 (4.4), we finddt:

φ̇ =
dφ

dt
= − V ′

3H

dt = −3H

V ′
dφ

and we find

dk = −Hk 3H

V ′
dφ = 3k

H2

V ′
dφ

Using thatV ≈ H2/3M2
p , we find

dk = − k

M2
p

V

V ′
dφ

reorganizing, we find
d

dk
= −

M2
p

k

V ′

V

d

dφ
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So, how much doesH vary with respect tok?

dH

dk
= −

M2
p

k

V ′

V

dH

dφ

using the SRA,H ∼
√
V such that

dH

dk
= −

M2
p

k

V ′

V

1

2
√
V
V ′ ≈ −

M2
p

k

(V ′

V

)2√
V

Recognizing the slow roll-parameter andH, we finally end up with a relation between
H, k andǫ:

dH

dk
= −ǫsrH

k

Integrating this separable first order differential equation, we find

H ∼ k−ǫsr

This k-dependence will translate into a modulation of the power spectrumP (k), with
a period given by

∆k

k
∼ πH

ǫΛ

Recall that the power spectrum of the co-moving curvature scalar was given by (5.17)

∆2
R(k) =

[(H

φ̇

)2(H

2π

)2]

k=aH
(C.1)

Using the slow roll conditions, this may be written as

∆2
R(k) =

1

24π2M4
p

V

ǫsr
(C.2)

Measurements restrict this value to be

V 1/4

ǫ
1/4
sr

∼ 0.027Mp ≡ βMp

Using the Friedmann equations

H2 =
V

3M2
p

∼ 1

3
β4ǫ

this means
H

Mp
∼ β2

√
ǫ√

3
∼ 4 · 10−4

√
ǫ
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