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Preface 

This dissertation is the result of my own work and includes nothing, which is the outcome of 

work done in collaboration except where specifically indicated in the text.  

 

This dissertation does not exceed the 300 page limit for the Degree Committee of the Faculty 

of Biology. 
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Abstract 

Most protein function prediction methods identify small ligand molecules for protein structures 

by applying the principles of molecular complementarity. They assume that the ligand has 

complementary geometrical and physicochemical properties to the binding site and that 

similar binding sites bind similar ligands. Here, I present a systematic analysis and 

comparison on the degree of complementarity between protein binding sites and their ligands. 

For this purpose, a new data set was compiled comprising various sets of non-homologous 

binding sites that each binds the same ligand. Using the data set it was discovered that 

binding sites have a greater variation in their shapes than can be accounted for by the 

conformational variability of their ligand. Separating shape from size information revealed that 

a significant proportion of the recognition power of a binding site for its ligand resides in its 

shape. It could be shown that the large variation in size and shape was caused by a “buffer 

zone“, which is a region of free space between the protein and the ligand. The buffer zone 

causes binding sites to be two to three times larger in volume than the ligand that they bind. A 

similar analysis on the physicochemical properties demonstrated an even larger variation for 

the physicochemical properties within binding sites that bind the same ligand. The variation 

was often to such an extent that only a qualitative similarity remained. Nevertheless, the 

comparison between the hydrophobicity and the electrostatic potential in binding sites showed 

that the former varies less and that the latter is highly influenced by neighbouring chemical 

compounds and the dielectric constant. An attempt to correlate the computed properties with 

experimental observations gave only modest results. Overall, the results in this thesis are 

suggesting that geometrical complementarity is in general not sufficient to drive molecular 

recognition. The protein rather engages in a subtle balancing act between electrostatic and 

hydrophobic interactions in order to not bind the ligand too strong and disrupt its own 

biochemical function. In some protein-ligand complexes hydrophobic interactions were 
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observed to override repulsive electrostatic interactions, while in others repulsive interactions 

were disclosed as prerequisites for the biochemical function of the protein. Finally, as a proof 

of principle, I present a method to automatically predict ligands for protein structures not 

based on binding site characteristics but rather on the electron density data produced in X-ray 

crystallography experiments. The method although performing similar to the well-established 

ligand-fitting module in the protein modelling software ARP/warp, is superior in terms of speed 

and accuracy allowing it to be effortlessly integrated in various electron density screening 

scenarios. In summary, this thesis highlights the complexities of molecular recognition and 

underlines the challenges in computational structural biology to develop methods for the 

identification of intermolecular interactions for drugs design and in silico simulation of living 

cells.  
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Chapter 1  

Introduction 

Proteins are of upmost importance to living cells. More than half of the dry weight of human 

cells is made up of proteins. They participate in almost all cellular processes, to enumerate a 

few: as enzymes proteins drive catalytic reactions, whilst as cell membrane bound receptors 

they are involved in signal transduction. Transmembrane proteins transport actively or 

passively molecules through the membrane barrier and immunoglobins recognize infectious 

organisms and induce an immune response. Proteins also make up the DNA transcription 

machines that are directly involved in gene expression (Alberts, et al., 1994b). Without any 

doubt, life without proteins would not be possible or at least not in its current form.  

 

Proteins do not exist on their own. Due to the crowded nature of the interior of a cell (Ellis, 

2001), they are constantly in contact with other molecules. However, to perform any of the 

functions listed above, they must specifically recognize their interaction partners, in general 

called ligands, and form a molecular complex. The recognition process is mediated by a 

distinct region on the surface of the protein, which is referred to as the binding site, and which 

forms the trigger to set the protein into action (Bergner and Günther, 2004). Hence, there is 

an intimate link between the structure of a protein and its function. 

 

In 1960, the Austrian molecular biologist Max Ferdinand Perutz published the first high 

resolution structure of a protein, namely horse haemoglobin (Perutz, et al., 1960) using X-ray 

crystallography here at the University of Cambridge. This publication launched a new era for 

the investigation of protein structures, molecular complexes and their functions (Fersht, 

1984). For the first time it was possible to observe the interaction between proteins and 

ligands in atomic detail, analyse the identity and the location of ligands in a protein structure 
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and assess the intermolecular forces and features that drive molecular recognition. However, 

the high-resolution structure determination technique of X-ray crystallography has limitations 

for the analysis of protein function. For example, time-varying molecular processes such as 

enzymatic reactions or the entire process of recognising, binding and releasing ligand 

molecules cannot be traced in detail. X-ray crystallography can only provide a single snapshot 

of the protein"s life and of the molecular processes that take place in proteins. The catalytic 

machinery of enzymes, for example, must be blocked with substrate/cofactor analogues or 

inhibitors, if substrate or other functionally important ligands are to be found in the protein 

structure. This results in many structures, which do not have the biologically or functionally 

relevant ligands bound. Nevertheless X-ray crystallography has helped scientists to 

understand how proteins recognize other molecules, how they perform specific catalytic 

reactions or whether proteins act alone or in concert with other proteins or other molecules 

(Laskowski, 2003). 

 

With the launch of the worldwide structural genomic initiative at the start of this century 

(Blundell and Mizuguchi, 2000), new problems arose from the functional assessment of 

proteins. Traditional protein experiments seek to solve the structure of a protein in order to 

understand the molecular mechanism of the protein"s function. In contrast, structural genomic 

projects (Baker and Sali, 2001; Brenner, 2001; Chandonia and Brenner, 2006) aim to obtain a 

structural model to all genomic protein sequences of an organism, while reducing the average 

cost and time of the structure determination process through the development and 

improvement of automation and high-throughput technology (Chandonia and Brenner, 2006; 

Laskowski, 2006). The functional assessment of proteins is thereby of secondary interest and 

is usually determined after the release of the protein structure or in conjunction with other 

labs. Moreover, in the race to be first to publish a structural model of a protein, unexpected 

interactions between protein and ligand can remain unidentified or unnoticed. Consequently, 

as of today (25/01/2009) 2290 protein structures deposited in the Protein Data Bank from 

structural genomics projects are classified as hypothetical proteins for which neither all 

functionally relevant ligands nor the function is known.  
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Computational tools for the prediction of protein ligand interactions can help X-ray 

crystallography and structural genomic projects to overcome their limitations and provide 

experimentalists with clues for the identification or verification of the protein"s potential 

function. Crucial to the success of ligand prediction software is a complete understanding of 

key features in molecular recognition. However, the inadequate performance of most ligand 

predictions programs makes it clear that molecular recognition is far more complex than 

generally appreciated. Currently, computational methods still remain incapable of calculating 

accurate absolute binding affinities or distinguishing true-positive from true-negative ligand 

predictions (Gilson and Zhou, 2007). These persisting problems highlight misconceptions in 

the current state of our knowledge and necessitate further analysis and investigations into the 

nature of molecular recognition. As the actions of drugs are determined by the same forces 

that drive natural protein-ligand interactions, a complete knowledge of molecular recognition 

will also greatly benefit the development of cheaper, more effective drugs with fewer 

undesirable side effects. 

1.1 Overview of thesis 

The work presented in this thesis describes an investigation into the nature of molecular 

recognition. During the course of this thesis, I will address questions about the degree of 

shape complementarity between binding sites and their associated ligands as well as the 

extent to which their physicochemical properties vary. The results of these investigations 

should guide the future development of function prediction methods that rely on only the 

three-dimensional coordinates of the protein structure. Furthermore, analyses will be 

presented on the use of a new shape recognition methodology in the detection of ligand 

electron densities in X-ray diffraction experiments, which could help to locate and identify 

automatically small molecules in diffraction data for structural genomic projects. In this context 

the thesis is structured as following: 
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Chapter 2 introduces a number of topics relevant throughout this thesis, providing background 

information on protein structures, X-ray crystallography, enzymes binding sites and their 

characteristics. Furthermore, intermolecular forces with an emphasis on electrostatics and 

hydrophobic interactions are introduced together with a section on molecular surfaces and 

shapes, their visualisation, description and comparison. Some sections in this chapter have 

already been published in (Kahraman and Thornton, 2008). 

 

The next three chapters detail the results of three different projects undertaken during the 

course of my graduate education. Each chapter is written in a journal publication manner 

starting with a brief introduction and literature review followed by sections on methods, 

results, discussion and conclusion. 

 

Chapter 3 presents published results (Kahraman, et al., 2007a) on the prediction of ligands 

for protein structures lacking ligand coordinates from X-ray diffraction data. This is achieved 

by analysing the extent to which shape complementarity between binding site and ligand can 

guide function prediction efforts. For the comparison, a new shape description is introduced 

that is based on the Fourier analysis of molecular shapes with spherical harmonic functions. 

 

Chapter 4 demonstrates the difficulty of predicting ligands for protein structures from a 

physicochemical perspective. The physicochemical complementarity in terms of electrostatic 

potential and hydrophobicity is tested between protein binding sites and ligands. The results 

have been partially published in (Kahraman, et al., 2007b) and submitted to a peer-reviewed 

journal (Kahraman, et al., 2009). 

 

Chapter 5 addresses the recognition of ligands bound to protein structures from an 

experimental perspective through detection of ligands in X-ray diffraction data of the protein 

crystal.  
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Chapter 6 will conclude the presented work in this thesis, list details about potential future 

developments to incorporate this work into existing function prediction methods and give an 

outlook to main challenges of ligand recognition and function prediction that researchers will 

face in the coming years. 
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Chapter 2  

Background 

2.1 Protein structures 

The atomic structure of a protein provides a great wealth of information. It reveals details on 

the final three-dimensional conformation of the protein sequence, its secondary structure 

elements ($-helices, %-sheets, loop regions), how it functions at molecular level (catalysis, 

binding specificity, substrate promiscuity) or which forces act between protein and ligand in 

molecular recognition processes (electrostatics, hydrogen bonds, hydrophobic interaction). 

Key to the analysis of all these aspects in protein science is the determination and availability 

of protein structures.  

2.1.1 The Protein Data Bank 

The three-dimensional coordinates of protein structures are usually deposited in the Protein 

Data Bank (PDB) (Berman, et al., 2000), the internationally recognized primary depository for 

all published three-dimensional biological macromolecules. The PDB was founded in 1971 at 

the Brookhaven National Laboratories containing an initial set of seven protein structures. In 

1998 the PDB was put under the responsibility of the Research Collaboratory for Structural 

Bioinformatics (RCSB) at the Rutgers University, New Jersey (Berman, et al., 2000).  

 

Since the beginning of the 1990"s, the number of deposited structures in the PDB has been 

increasing exponentially. As of today (25/01/2009) the PDB holds 55,419 models of 
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macromolecule structures of which more than 92% are proteins, 4% are protein-nucleic acid 

complexes, 2% are DNA, 1% are RNA and few are carbohydrates and antibiotics. 99% of the 

protein structures were determined by X-ray crystallography (86%) and Nuclear Magnetic 

Resonance Spectroscopy (14%). 212 structures were solved with electron microscopy. 

Initially users were allowed to deposit their theoretical models from ab initio or homology 

modelling calculations, but this practice was stopped in 2006 (Berman, et al., 2000). For the 

latest statistics on the PDB"s content and growth, see the PDB statistics on the homepage of 

the RCSB (http://www.rcsb.org/pdb/). 

2.1.1.1 The worldwide Protein Data Bank 

In 2003, the worldwide Protein Data Bank (wwPDB) (Berman, et al., 2003) was announced by 

its three founding members, namely RSCB, European Macromolecular Structure Database 

(MSD-EBI) and the Japanese PDB depository (PDBj) with the aim to sustain the PDB as the 

single non-profit and worldwide accessible depository for structural models of biological 

macromolecules. In the years since the PDB was founded, new experimental techniques 

have been developed to determine the structure of macromolecules. Automated scripts and 

applications have replaced most of the manual curation of deposited data and the Internet 

has evolved changing the way users submit, access and receive data from the PDB. All these 

innovations have required at certain times in the past adjustments to the data content and 

data format that, along with disagreements between curators and depositors, introduced 

inconsistencies in the PDB archive. It was recognised that a global effort on international level 

would be necessary to unify the PDB"s data content and data format, which led to the 

founding of the wwPDB. The remediation project (completed at the end of 2007) within the 

wwPDB addressed the inconsistencies mentioned above. The project standardized chemical 

nomenclatures and labelling of amino acids, nucleic acids and small molecules, removed 

differences between sequences in the different depositories of the founding organizations, 
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updated citations to primary references, databases and taxonomies and improved the 

representation of large assemblies and viruses (Berman, et al., 2007; Henrick, et al., 2008). 

2.1.2 Biological relevant protein conformation 

Protein structures deposited in the PDB do not necessarily reflect the quaternary structure of 

the protein, i.e. the biologically relevant conformation, but generally show the asymmetric unit 

(ASU) of the protein"s crystal. The ASU corresponds to the smallest fraction of the crystal that 

can construct the entire protein crystal with crystal symmetry operations on ASU duplicates. 

Structures deposited in the PDB as single chains are often actually dimers or tetramers or 

sometimes vice versa. This can lead to problems when analysing protein binding sites. 

Particularly, allosteric binding sites are often found at the interfaces of subunits and protein 

chains (Traut, 1994) (see Figure 2.1). In those cases, protein models as deposited in the PDB 

provide only a partial picture of the binding site and in the worst-case result in misleading 

conclusions drawn from incomplete data. It is therefore of upmost importance to use the 

biologically relevant conformation for any structural analyses on proteins especially those 

involving binding sites.  

 

The Protein Quaternary Structure (PQS) (Henrick and Thornton, 1998) file server is a 

depository of the most likely quaternary conformations of all PDB structures. The quaternary 

structures in PQS were computationally calculated by applying crystal symmetry operations 

on ASU duplicates and selecting from the resultant assemblies those that have a certain loss 

in solvent accessible area, a particular difference in solvation energy and a minimum number 

of salt and interchain disulphide bridges. Recently an advanced version of the method was 

introduced called Protein Interfaces, Surfaces and Assemblies (PISA) (Krissinel and Henrick, 

2007) that selects the most likely conformation on the basis of thermodynamic stability 

calculations. 
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2.1.3 Cognate ligands 

Ligands bound to enzymes in crystal structures may not always be the native substrate or 

cofactor etc. Many such molecules found in the active site are enzyme inhibitors or ligand 

analogues, similar in structure to the native ligand molecule but prohibit the enzyme from 

completing its chemical reaction. Only when the enzyme is locked at a certain reaction step, 

is it possible to determine the structure of the protein-ligand complex. In addition, some 

ligands can be artefacts of the crystallization buffer, which contains different solvents 

promoting the crystallization process of a protein. In general, all ligands not required for the 

enzyme function can be classified as non-cognates, whereas endogenous ligands that are 

functionally related to an enzyme can be designated as cognate. For the protein-ligand 

interactions studied in this thesis, an attempt was made to use only binding sites with cognate 

ligands bound. This was important, as only cognate ligand binding sites allow conclusions to 

 

Figure 2.1: ASU vs. biologically relevant conformation. 

The asymmetric unit (ASU) in the PDB structure of the decarboxylase 1mvl shows only a monomer with 

the FMN being exposed to the solvent. However, the biological relevant conformation is a trimer as 

calculated by PQS, with a FMN binding site at the interface of two subunits. 
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be drawn on the convergent evolution of protein binding sites. Information about cognate 

ligands in enzymes can nowadays be retrieved from the PROCOGNATE (Bashton, et al., 

2006) database that provides structural similarity scores between cognate and non-cognate 

ligands.   

2.2 Protein structure determination 

Different experimental techniques have been developed to determine the three dimensional 

structure of molecules. The current method of choice for determining atomic-resolution 

structures of proteins and small molecules is X-ray crystallography (Laskowski, 1992; 

Rhodes, 2000) followed by Nuclear Magnetic Resonance (NMR) spectroscopy (Wuthrich, 

1990) (see statistics in section 2.1.1). Both techniques are fundamentally different in their 

approach, but produce comparable models of protein structures (Fan and Mark, 2003). In 

contrast to X-ray crystallography, protein structures analysed by NMR spectroscopy are 

studied in solution and thus are not affected by crystal packing (Jacobson, et al., 2002), but 

the size of the protein is generally limited to no more than 150 amino acids (<15 to 20 kDa) 

(Yee, et al., 2006). Furthermore, NMR spectroscopy provides an ensemble of conformations 

that give a better insight into the dynamics of the protein structure and reports the positions of 

hydrogen atoms, which are missing in most protein crystal structures.  

 

The third most common technique to obtain a model of a protein structure is that of electron 

microscopy (EM) or its derivative cryo-EM, which are in particular powerful to solve the 

structure of large protein complexes like virus particles, ribosomes or spliceosomes (Auer, 

2000; Frank, 2002). Protein structures determined by cryo-EM are to date far below high-

atomic resolution (in general of 10-20 Å). However among the various techniques cryo-EM is 

the only one that allows single molecule imaging (Frank, 2002). Combining images from low-

resolution cryo-EM protein complexes with high-resolution X-ray protein structures is 
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becoming a powerful tool to investigate the molecular mechanism of !massive" complexes in 

atomic detail (Mitra and Frank, 2006).  

 

A knowledge-based theoretical model can be constructed for proteins using a homologous 

protein with an experimentally determine structure; a process that is generally referred to as 

homology modelling (Blundell, et al., 1987). At the heart of homology modelling is a sequence 

alignment that determines potential insertions, deletions and replacements in the known 

protein structure, and an energy minimization procedure that removes all steric clashes 

between protein atoms in the modelled structure eliminating energetically unfavourable 

protein and amino acid conformations.  

 

Here, I will solely focus on X-ray crystallography, as all protein structures and experimental 

data analysed in this thesis have been obtained using that technique.  

2.2.1 Macromolecular X-ray crystallography 

The atomic structure of molecules cannot be observed with conventional light-microscopes. 

The wavelength of visual light, which lies around 400–700 nm, is too large for such 

observations. To observe atomic details in molecules, wavelengths at atomic scale are 

required, i.e. in the range of 0.1–0.2 nm (1–2 Å). The light spectra that correspond to such 

ultra-short wavelengths are X-rays. Irradiating a molecule with X-rays produces a diffraction 

image that holds the information of the spatial distribution of the molecule"s electron clouds. 

The diffraction from a single molecule however is too weak to be detected, although current 

developments in X-ray lasers are expected to allow single particle diffraction (Bogan, et al., 

2008; Neutze, et al., 2000). Most radiation passes through the molecule without diffraction. 

However, in a crystal, myriads of the same proteins arrange into unit cells, which are the 

smallest building block of a crystal that can generate the entire crystal with just translation 

operations. Upon exposing the crystal to an X-ray beam, all unit cells scatter in the same 
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manner and together their single diffractions add up to produce crystal diffraction and 

detectable reflections on the detector. 

 

An X-ray crystallography experiment could be divided into three stages of which the first is to 

crystallise a sample of a protein, followed by the second stage at which the protein crystal is 

irradiated with an X-ray beam and the X-ray diffraction images are collected on a detector. 

The final stage is concerned with producing a protein model from the measured diffraction 

images. It incorporates the estimation of initial phases for each reflection and the calculation 

of an initial electron density map. This is followed by an iterative process of model building 

and phase refinement that repeatedly improves the electron density map as well as the model 

of the protein structure. The refinement process continues until the protein model best agrees 

with the experimentally observed reflection data.  

 

Throughout the various stages in the experiment, some obstacles have to be overcome. One 

of these is to bring a protein in solution to crystallise, i.e. form a three-dimensional lattice of 

well-ordered protein molecules that the experiment relies on. For an overview on the 

crystallisation of proteins, see (McPherson, June 2000). Protein crystals are held together by 

weak non-covalent interactions of electrostatic and hydrophobic character that can break 

under little stress. Membrane proteins present a particular challenge as their highly 

hydrophobic transmembrane helices cause membrane proteins to aggregate irregularly rather 

than form well-ordered crystals (Lacapere, et al., 2007). Even for soluble proteins, it might 

take some time to find with trial and error experiments appropriate physical and chemical 

conditions to induce crystallisation. Once a crystal has been obtained however, the next 

challenge is the data collection where the crystal is exposed to certain amount of X-rays. This 

exposure causes the crystal to heat up from the energy absorbed by the proteins. Cryo-

techniques have been introduced to reduce this inevitable radiation damage and expand the 

life span of crystals in X-ray beams by rapidly cooling the crystal to 100K (Hope, 1990; Ravelli 

and Garman, 2006). However, new generation of synchrotrons produce X-ray beams of such 

high-intensity that radiation damage may remain problematic even at 100K (Garman, 1999). 
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The final major obstacle in determining the structure of a protein by X-ray crystallography is 

the phase problem, which will be illustrated later in section 2.2.1.1.4. 

2.2.1.1 Interpretation of diffraction data  

Mathematically crystal diffraction corresponds to the convolution of two functions, namely a 

continuous function that describes the electron density in a single unit cell and a discrete 

function that describes the lattice of unit cells in the crystal. The result of the convolution is a 

diffraction pattern that consists of discrete spots at which the continuous function of a single 

unit cell is sampled discretely by the discrete function of the crystal lattice. 

2.2.1.1.1 Bragg!s law 

A protein crystal and the unit cell within it can be sliced into various sets of regular spaced 

parallel planes. Each set of parallel planes is labelled by Miller indices hkl where the numbers 

denote the number of times the planes intercepts the unit cell edges a, b, c. When the crystal 

is irradiated each member in the (hkl) planes function as a mirror, reflecting the incident X-ray 

waves, whereby the angle of incidents !I equals the angle of reflection !R. Reflected waves 

from successive planes interfere with each other, but the interference is constructive only if 

the waves are in phase, in which case the wave amplitudes add up to give a stronger 

reflection on the detector. If the waves are out of phase, they cancel out each other to give no 

reflection. According to Bragg!s law constructive interference of monochromatic X-ray waves 

can only occur at those set of parallel planes (hkl) for which 

 

! 

2d
hkl
sin" = n#

! 

   , ( 2.1 ) 

where dhkl is the interplanar distance of the (hkl) diffracting planes, ! is the scattering angle, " 

is the wavelength of the X-ray beam and n is the order of reflection, an arbitrary positive 

integer.  
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2.2.1.1.2 Resolution 

All (hkl) planes that satisfy Bragg"s law produce a single distinct reflection on the detector 

with a likewise associated Miller index hkl. The distance between the reflections on the 

detector are inversely related to the distances in the unit cell, as according to Bragg"s law 

smaller interplanar distances d diffract only at larger scattering angles !. The inverse 

relationship between the crystal lattice, the real lattice, and the reflections, the reciprocal 

lattice, has the consequence that all reflections that are close to the origin of the diffraction 

pattern encode low-resolution information, whereas reflections farther away hold higher 

resolution information. Using the outermost reflections in a diffraction pattern and their 

scattering angles !max, one can calculate the minimum interplanar distance dmin, i.e. the 

resolution of the experiment: 

 

! 

d
min

=
"

2sin#
max

! 

   . ( 2.2 ) 

 

Resolution in X-ray crystallography and optics is not equivalent. The concept of resolution in 

optics gives information about the minimum distance that can be resolved in a specimen 

(Garini, et al., 2005). In X-ray crystallography, however, structural constraints known a priori 

(e.g. atom identity, bond length and bond angle) can improve the precision of atom positions 

in the protein model, such that protein structures with dmin = 2.0 Å resolution can show 

structural details that are below dmin. 

2.2.1.1.3 Structure factors 

Each X-ray that impinges on the detector and manifests itself as a reflection hkl, is the sum of 

superimposed X-ray waves diffracted from all (hkl) planes sampling the molecular electron 

density within all unit cells. Thus, every single protein atom with its electrons contributes to 
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each reflection on the detector. If each atom is considered as a point scatterer, than the 

impinging X-rays can be written as a sum of N scatterers: 

 

! 

F(hkl) = f j  e
2"i(hx j +hy j +hz j )

j=1

N

#

! 

   , ( 2.3 ) 

 

where fj is the scattering factor of atom j (see section 2.2.1.2.2), hkl are the Miller indices and 

the coordinates x,y,z are the fractional coordinates (e.g. x/a) in the unit cell. The quantity 

F(hkl) is designated as structure factor with an amplitude |F(hkl)|, the phase angle #hkl and 

the wavelength, which is the wavelength of the X-ray source: 

 

! 

F(hkl) = F(hkl)e
i"

hkl

! 

   , ( 2.4 ) 

 

A different expression for structure factors and the above equation in diffraction experiments 

is related to the fact that structure factors are the Fourier Transforms F  of the electron 

density 

! 

"  within the average unit cell in the crystal: 

 

  

! 

F(hkl) = F (hkl) = " (x,y,z)e2#i(hx+ky+ lz )

V

$ dV

! 

   , ( 2.5 ) 

 

where the integral is over the entire average unit cell volume V and the coordinates are again 

to be taken as fractionals.  

 

Given the diffraction data on the other hand, the associated electron density can be 

calculated with the inverse Fourier transform of the structure factors F(hkl). Due to the 

discrete set of reflections on the detector the integral in equation ( 2.5 ) becomes a triple sum 

over the Miller indices:  

 

! 

" (x,y,z) =
1

V
F(hkl)e
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l

%
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%
h

%

! 

   . ( 2.6 ) 
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Note the different sign of the argument in the exponential function as compared to the Fourier 

transform in equation ( 2.5 ).  

2.2.1.1.4 Phase problem 

According to equation ( 2.4 ) the complete description of the structure factor F(hkl) as a 

complex function requires not only the knowledge of its amplitude |F(hkl)|, but also its phase 

angle #hkl. The amplitude corresponds to the square root of the measured reflection intensity 

on the detector: 

 

! 

F(hkl) = I
hkl

! 

   . ( 2.7 ) 

 

The phase angle however cannot be measured directly on the detector and must be inferred 

by other means, hence the term phase problem.  

2.2.1.1.5 Obtaining initial phases 

Various experimental techniques have been developed over the last decades to obtain phase 

information from diffraction experiments. See Volume F in the International Tables for 

Crystallography for a comprehensive list of these techniques. The three techniques most 

commonly used are Multiple Isomorphous Replacement (MIR) (Mathews, 1966), 

Multiwavelength Anomalous diffraction (MAD) (Walsh, et al., 1999) and Molecular 

Replacement (MR) (Rossmann, 1990). Among those is MIR the oldest technique and was 

introduced by Max F. Perutz into protein crystallography in his attempt to solve the X-ray 

structure of haemoglobin (see Chapter 1). MIR works on the idea of comparing the diffraction 

pattern of a native crystal with the diffraction pattern of a crystal that was soaked or co-

crystallized in a solution of heavy metal ions like e.g. mercury (Hg), platinum (Pt) or gold (Au). 

Some of these metal ions bind at specific binding sites on the protein such that they are found 

in the same positions in each unit cell. In the case that these metal ions do not significantly 
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distort the protein conformation or the unit cell dimensions, the protein crystal remains 

isomorphous and produces the same diffraction pattern. However, the heavy metal ions, 

being strong diffractors due to their large number of electrons, alter the intensities of all 

reflections relative to the intensities observed for the native structure and thus serve as 

reference scatterers. The difference in the amplitudes of the measured reflections is exploited 

to obtain the initial set of phases with the Patterson map. Information on the preparation and 

the characterisation of heavy atom derivatives can be found in the Heavy-Atom Databank 

(http://www.sbg.bio.ic.ac.uk/had/) (Carvin, et al., 2006). 

 

Similar changes in the reflection intensities can be produced with the MAD. MAD exploits the 

electronic transition phenomenon of electrons at certain characteristic energy levels called the 

absorption edges. Atoms that are exposed to X-rays with a wavelength close to one of their 

absorption edge produce anomalous diffraction i.e. the diffracted X-ray has a disturbed 

amplitude and phase as compared to the diffraction far away from the absorption edge of the 

atom. The difference in the reflection intensities can be exploited similarly to MIR to estimate 

the set of initial phase angles for the structure factor calculation. Most of the success of MAD 

can be ascribed to its application with modified amino acids like selenomethonine (Se-Met) 

replacing methionine in protein structures. Selenium being a strong anomalous scatterer 

allows the computation of initial phases on a single protein crystal (Carvin, et al., 2006).  

 

In those cases where the protein structure of a close homolog has been solved, which is likely 

to have a similar fold (Barton, 1992; Chothia and Lesk, 1986), MR promotes the usage of 

initial phase angles derived from the known atomic positions of the homologous structure. 

Despite an arguable similarity in their fold, both proteins might have different arrangements in 

the unit cell, which demands exhaustive translation and rotation operations on the 

homologous structure to find the location and orientation of the target protein in the unit cell.  
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2.2.1.2 Refinement of protein model and phases 

Once initial phase estimates for the structure factors are obtained, a first electron density map 

for the protein can be calculated. An electron density map is a three dimensional scalar field 

of electron density !(x,y,z) values reflecting the content of electron charges per cubic 

Ångström of the average unit cell in a crystal and is usually visualised as a contour plot of 

isosurfaces at a constant !(x,y,z) value. Experimental inaccuracies e.g. in reflection 

measurements, or approximation errors in estimating the phase angles, or systematic errors 

in working with non-isomorphic derivatives in isomorphous replacement, prevent the initial 

electron density map to show atomic details of the protein structure. A generally iterative 

process helps crystallographers to reduce these errors and refine the protein model at the 

same time. This refinement process involves a back and forth transition between the electron 

density and the protein model in real space and the calculated and measured structure factor 

amplitudes in reciprocal space with constant adjustments of parameters (see below). 

Depending on whether parameters are adjusted in real space or reciprocal space, the 

refinement process is referred to as real-space or reciprocal-space refinement. The latter has 

at least two advantages over the former. Firstly, reciprocal-space refinement can be 

performed either only on the structure factor amplitudes or on the whole structure factors. 

Secondly, in reciprocal-space refinement each of the structure factors can be weighted 

according to their reliability, whereas the electron density in the real-space refinement is 

treated everywhere as equally reliable (Blundell and Johnson, 1976).  

 

The refinement process will be crucial in Chapter 5, where insufficient refinement leads to an 

inability to automatically recognise bound ligand molecules in electron density maps. Without 

appropriate refinement, the shape of the electron density of a ligand molecule often deviates 

from the shape of the ligand molecule to such an extent that the similarity between both 

shapes is lost. 
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2.2.1.2.1 Atomic disorder in refinement 

Protein atom coordinates are far from static and often vibrate around an equilibrium position 

within the protein structure. These vibrations are induced by thermal motion and are subject 

to environmental constraints such as covalent bonds or hydrogen bonds (dynamic disorder). 

As a consequence, side chain atoms or solvent exposed amino acids vibrate more than main 

chain or amino acids in the protein interior. The crystallographic experiment presents a time-

averaged snapshot of a structure presenting all different states of atomic motion at the same 

time. During refinement, it is possible to determine the distribution of positions for each 

individual atom. This information is absorbed into and described by the temperature factor or 

B-factor. For isotropic distributions, i.e. vibrations with equal magnitude in different directions, 

the temperature factor Bj of an atom j is given by  

 

! 

B j = 8"2µ j
2 = 79µ j

2

! 

   , ( 2.8 ) 

 

where 

! 

µ j
2 is the squared average dislocation of atom j around its mean position in the crystal. 

High temperature factors in parts of the protein will induce dynamic/static disorder in the 

protein crystal affecting the diffraction of incident X-ray beams and reducing the resolution of 

the crystal. Thus, it is essential to include the temperature factor into the refinement process.  

 

Furthermore, parts of the protein or even single amino acid side chains can have alternative 

locations and occupy different conformations in different unit cells (static disorder), in which 

case the occupancy value informs about the relative frequency of each conformation as a 

percentage. Again, alternative locations within the protein crystal will affect the X-ray 

diffraction and as a result must be included in the refinement process in order to obtain a 

best-fit model to the experimental observed data. 
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2.2.1.2.2 Calculating structure factors 

The necessity of including the temperature factor Bj and occupancy value nj for a better fit to 

the observed experimental data, requires adjustments to the structure factors equation ( 2.5 ): 

 

! 

F(hkl) =G " f jS jn je
2#i(hx j +ky j + lz j )

j=1

Natoms

$

! 

   . ( 2.9 ) 

 

G scales the computed structure factor amplitudes such that they are comparable to the 

experimentally observed amplitudes. The intensity of the reflections is related to the atomic 

scattering factors fj, which correlates with the number of electrons in an element and falls off 

with increasing scattering angle sin!. Tabulated values of fj for each element can be found in 

Volume C of the International Tables of Crystallography. The amount of diffracted X-rays at 

larger scattering angle sin! decreases further with increasing temperature factor Bj, which is 

described by the temperature factor correction term Sj: 
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S j = e
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2

! 

   . ( 2.10 ) 

 

2.2.1.2.3 Judging the protein model 

When judging how good a model fits the underlying data, it is convenient to have a single 

statistical quantity whose value is indicative of the quality of the fit. In protein crystallography 

the Reliability-factor or R-factor is the most common used statistical measure to assess the fit 

of the protein model to the experimental data (Laskowski, 2003). The R-factor is defined as  
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where |FO(hkl)| is the experimental observed structure factor amplitude of reflection hkl and 

|FC(hkl)| is its associated computed amplitude from equation ( 2.9 ). R-factors display a 

dependence on the resolution of the X-ray data but tend to be around 0.20 for correct protein 

and nucleic acid structures. Random structures typically have a R-factor in the range of 0.40 

to 0.60 (Laskowski, 2003). At the beginning of the refinement process, the agreement 

between experimental and computed structure factor amplitudes must be better than random 

and should improve during the refinement process to a value below 0.2. 

 

A general problem of refinement in X-ray crystallography is the risk of overfitting the relatively 

small amount of experimental data (number of reflections) that is available in order to infer the 

large number of parameters (including x,y,z coordinates, temperature factor, occupancy value 

for each atom) in a protein structure. Overfitting can produce a model of a protein structure 

that is incorrect despite a low R-factor. To avoid overfitting, the free R-factor or Rfree was 

introduced (Brunger, 1992), which is generally considered more reliable than the ordinary R-

factor. The Rfree calculation is based on a cross-validation of the refinement process with a 

small test set of reflections randomly chosen from all observed reflections on the detector and 

put aside at the beginning of the refinement process. When the refinement process initiates, 

the refinement is performed only on the remaining reflections, the working set, and not on the 

reflections in the test set. The test set is used only to judge how well the model fits the data 

that have not been used for its refinement. 

2.2.1.2.4 Refinement procedures 

A number of methods have been developed that all aim to deliver an improved agreement 

between the experimentally observed and calculated structure factors. The most common 

techniques are the least-squares difference refinement, energy minimisation refinement, 

maximum-likelihood refinement and molecular dynamics/simulated annealing refinement.  
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The oldest of the refinement techniques, the reciprocal-space least-squares difference 

refinement, aims to minimize the sum D of squared differences between the observed 

FO(hkl) and calculated FC(hkl) structure factor amplitudes: 
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D = w
hkl
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hkl
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   , 
( 2.12 ) 

 

with whkl being a factor to weight the reliability of the observed structure factor amplitude. 

However, the least-squares technique coupled with a plain gradient search will only find the 

nearest local minimum to a starting point. This can be problematic at the beginning stages of 

the refinement process. Energy minimization refinement (Levitt and Lifson, 1969) adds to the 

least-square equation ( 2.12 ) further terms that minimize the energies of the bond distances, 

bond angles, torsion angles and van der Waals potentials.  

 

Rather than optimising the mean squared difference between structure factor amplitudes, 

maximum-likelihood refinement (Murshudov, et al., 1997; Ten Eyck and Watenpaugh, 2006) 

explores the probability that the calculated structure factor amplitudes correspond to the 

observed data and is thus independent of the size of deviations between both set of structure 

factor amplitudes. Under the assumption that all observed reflections are independent from 

each other, the probability of estimating calculated structure factor amplitudes from given 

observed structure factors is given by the likelihood function L: 
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where P is the conditional probability distribution of FO when FC is known. Similarly, the 

likelihood function can be expressed as a sum simplifying its calculation: 
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In the course of the refinement process, the logarithmic likelihood function logL becomes 

minimized.  
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The most recent refinement technique uses molecular dynamics in combination with 

simulated annealing (Brunger, et al., 1987). The idea behind this technique is to virtually heat 

up the protein structure to high temperatures (2,000-4,000K) inducing large atomic motions in 

the protein model, followed by a stepwise cooling process to room temperature (300K) at 

which the protein atoms come to rest at an energy minimum (Laskowski, 1992). The motions 

of the atoms follow Newton"s laws, while the energy of the protein model is evaluated with the 

same energy terms that were indicated above. Whenever a protein atom in the model 

changes its location by some distance (usually 0.4 Å), the energy of the protein model is re-

evaluated and the model is accepted only if its energy has decreased or its Boltzmann 

probability exp(-!E/kT) is lower than a random number. The simulated annealing technique 

allows the exploration of large conformational space and in contrast to conventional 

refinement techniques overcomes local minima of erroneous models without manual 

intervention. 

2.2.1.3 Automated protein modelling 

Just 10 years ago, the entire process of protein structure determination as described above 

required several months and often years of work. However, structural genomic approaches 

have helped to reduce the time span needed to only a couple of weeks if not days. This 

achievement has been realized mainly by the introduction of automation protocols that have 

significantly reduced the demand for human intervention at various levels of the structure 

determination process.  

 

One process that has greatly benefited from automation is that of protein modelling where a 

molecular model of a protein is produced after an initial electron density map is calculated. 

Traditionally this process was carried out manually on a graphics terminal using specialized 

software such as O (Jones, et al., 1991) and XtalView (McRee, 1992) and required an expert 

in both fields of structural biology and chemistry. However with the implementation of various 
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algorithms to support the manual process of protein modelling it became clear that the whole 

process of protein modelling could be fully automated leading to software like ARP 

(Automated Refinement Protocol) (Lamzin and Wilson, 1993), QUANTA (Oldfield and 

Hubbard, 1994), RESOLVE (Terwilliger, 2003) or Buccaneer (Cowtan, 2006).  

 

All these software have in common that they gradually build the protein structure into the 

electron density. The main chain is often the start point to the building process, as it tends to 

have continuous and relatively strong density. This is followed by side chains that are less 

rigid with weaker and more smeared electron density. In the final stages of the building 

process solvent molecules that have usually the weakest density are fitted into the map 

(Palmer and Niwa, 2003). QUANTA, for example, runs a skeletonisation process to reduce 

the electron density to a set of lines that captures the connectivity of the protein structure. 

RESOLVE on the other hand compares each point in the electron density to a set of common 

density templates, whereas Buccaneer uses a density likelihood function to approximate the 

C$ atom positions in an electron density map.  

 

In ARP and its successor ARP/wARP (Cohen, et al., 2008) most steps of model building are 

combined with structure refinement in an iterative manner (Morris, et al., 2007). The 

conception behind ARP/wARP is to scatter free dummy atoms at certain distances from each 

other at locations close to high-density peaks. These atoms are treated as potential C$ atoms 

and connected to peptides if they show resemblance to a library of known peptide structures. 

A hybrid model is built with fragments of protein structure and free atoms, followed by an 

iterative cycle where free atoms are step-wise connected to fragments and are assigned their 

chemical identity. Once the main chain is determined, a rotamer library is employed to fit the 

side chain into the density. Non-rigid loop regions are gradually modelled by predicting the 

residues in the loop from the conformation of the preceding residues. Repeating these 

predictions produces a set of possible loop conformations from which the one with the best fit 

to the density is selected. The overall iteration process terminates as soon as the best 

possible phases and a complete protein model is obtained. Continuous development efforts 
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have been invested into ARP/wARP over the last decade. Given data with sufficient 

resolution, in general 2.7 Å or better, and a source of reasonable phase estimates, 

ARP/wARP reliably models the protein structure automatically from an electron density map 

and a given protein sequence (Cohen, et al., 2008; Langer, et al., 2008). 

2.3 Enzymes 

Enzymes belong to one of the most important protein classes. As highly specific 

macromolecular catalysts, they induce chemical reactions at physiologically mild conditions. 

Most enzymes are proteins, although some RNA molecules have also been found to catalyse 

chemical reactions. Like all catalysts, enzyme speed up their chemical reaction on its target 

molecule by lowering the reaction"s activation energy. Often the reaction is thereby speeded 

up by a factor of several magnitudes. For example, carbonic anhydrase hydrolyses the 

conversion of carbon dioxide to carbonic acid 106 times faster than a similar non-catalysed 

reaction (Sly and Hu, 1995). Like all other catalysts, an enzyme is not consumed, i.e. not 

changed, after participating in a reaction and therefore can immediately take part in further 

reactions (Alberts, et al., 1994c). Table 2.1 lists some statistics on enzymes from publicly 

accessible databases. 

 

Enzymes are classified according to the chemical reaction they catalyse and the substrate 

they act upon. The Enzyme Commission (EC) assigns each enzyme an EC-number that 

consists of four digits. The first number (class) indicates the reaction type; the second number 

(subclass) together with the third number (sub-subclass) represents the occurring chemistry 

and the last number gives the substrate specificity (Barrett, 1997). 
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Table 2.1: The extent of enzyme data in some structural databases. 

Number of Quantity 

Known enzyme reactions (unique EC numbers) 4,115 

Enzymes in UniProtKB/Swiss-Prot (Apweiler, et al., 2004) 175,974 

PDB files of enzymes 22,935 

EC reactions in PDB 1,681 

Enzymes with catalytic residues in CSA  968 

Enzymes with catalytic mechanisms in MACiE (Holliday, et al., 2005)  223 

 

Enzymes as specified by EC number in PDB with the largest number of structures 
 

1. DNA-directed DNA polymerase, EC 2.7.7.7 1,229 

2. Lysozyme, EC 3.2.1.17 1,173 

3. Ribonuclease H, EC 3.1.26.4 855 

 

Most enzymes in PDB originate from 
 

1. Human 5,521 

2. Escherichia coli 2,481 

3. Cow 958 

4. Baker"s yeast 725 

5. House mouse  453 

No of organisms that have one or more enzyme structures in PDB 834 

The data was collected on the 25/01/2009.  

2.3.1 Enzyme binding sites 

All result chapters in this thesis analyse principles of molecular recognition between proteins 

and small molecules. Therefore, the focus of the following two sections will be on binding 

sites of small molecules within enzyme structures. All facts and concepts introduced in both 

sections can be regarded universal to all protein binding sites that bind small molecules.  

 

Enzyme binding sites are regions on the surface of an enzyme specially evolved to interact 

with other molecules (see Figure 2.2). These binding sites can differ in their functions and the 
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molecules they bind. In this thesis, a binding site is defined as the cluster of protein atoms on 

the protein surface, which interacts with the binding partner via hydrogen-bonding and other 

non-covalent bonds. In contrast, a binding pocket is the negative picture of the binding site i.e. 

the voluminous imprint of the binding site in space, which bears the ligand. 

2.3.1.1 Active site 

Amongst the most important binding sites for the function of an enzyme is the active site, 

which consists of at least two parts (see Figure 2.3a). The first part is the catalytic site, which 

contains the catalytic machinery of the enzyme in the form of usually two to six amino acids 

that perform the catalytic reaction. The second part is the substrate binding site, which 

specifically recognizes the molecule upon which the enzyme acts. Beside the specificity, the 

 

Figure 2.2: Binding Site of Escherichia coli asparagine synthetase. 

The structure of the Escherichia-coli asparagine synthetase. (PDB-Id: 12as) is shown with a zoom-in 

into the binding site of the substrate asparagine. Binding site residues as determined by HBPLUS are 

coloured in green, catalytic active residues were extracted from Catalytic Site Atlas are coloured in red 

and the substrate is varicoloured. Hydrogen bonds between binding site residues and substrate are 

indicated by yellow dashed lines. The binding site shape is shown as a grey mesh as approximated with 

spherical harmonic functions (see section 2.5.2.3). 
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substrate binding site also provides binding energy to keep the substrate bound on the active 

site while the catalytic reaction progresses. Enzymes can act on a huge variety of substrates, 

from small molecules like hormones and sugar, moderately sized molecules like polypeptides 

and oligosaccharide, to macromolecules like DNA and even other proteins. Figure 2.2 shows 

an example of a substrate binding-site for an asparagine amino acid in the structure of the 

Escherichia coli asparagine synthetase. 

2.3.1.2 Cofactor/coenzyme binding site 

As enzymes are proteins, they usually consist of a set of 20 amino acids. Each amino acid is 

distinct in its chemical characteristics with either a hydrophobic, polar or charged side chain. 

For some catalytic reactions, the chemical properties of these amino acids may be sufficient, 

but for the majority of reactions such as redox reactions or chemical group transfers, enzymes 

require the assistance of additional molecules that bind to the third part of the active site. 

These molecules are defined as either cofactors, which are tightly bound to the enzyme 

throughout the catalytic reaction, or coenzymes, which are released during the reaction. 

Cofactors distinguish themselves from coenzymes by being not consumed in the catalytic 

reaction. Though they are altered while the catalysis takes place, they are recovered again in 

the same catalytic process. In contrast, coenzymes support the enzyme reaction by providing 

chemical groups to the substrate and subsequently detach from the enzyme to start a 

recovery process outside the enzyme. Typical cofactors are the inorganic metals and 

sulphate ions or the organic flavin and heme groups. Examples of coenzymes are vitamins or 

the cellular energy carrier ATP. 

2.3.1.3 Allosteric sites  

Some enzymes, especially those composed of several domains or several chains, can have 

allosteric sites in addition to the substrate and cofactor/coenzyme binding sites (see Figure 
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2.3b). These allosteric sites play an important role in the regulation of an enzyme"s activity as 

they induce conformational changes on the whole enzyme structure upon binding of a 

regulator molecule, which can affect the conformation of the active site. Depending on 

whether the regulator molecule is an effector or an inhibitor, the changes on the active site 

can either enhance or reduce the enzymatic catalysis.  

2.3.2 Characteristics of enzyme binding sites 

From investigation on the three-dimensional structures of enzymes, it became evident that 

substrates and secondary molecules like cofactors and coenzymes do not bind randomly on 

the enzyme surface. The same molecule always binds at the same site within the same 

enzyme structure. This has led to the assumption that binding sites must have unique 

features that distinguish them from other areas on the enzyme surface (Ringe, 1995) and in 

addition allow the binding site to distinguish its associated molecule from the thousands that 

exist in a living cell.  

 

Two models were suggested to explain the particular specificity of active sites. Firstly, the 

Lock and Key model by Emil Fischer (Fischer, 1894) and secondly the Induced Fit model by 

Daniel Koshland (Koshland, 1958). The Lock and Key model assumes that a ligand is 

geometrically complementary to its active site and that both shapes fit exactly into one 

another. The more recent model of Induced Fit is a modification to the Lock and Key model 

and incorporates the flexibility of enzymes and substrates. The model suggests an !open" 

state for an enzyme when the substrate binds, followed by a !closed" state where the enzyme 

encloses the bound substrate and performs its catalysis (Gutteridge and Thornton, 2005). In 

the process of converting from the open state to the closed state the active site adjusts its 

shape to the transition state that is the conformation of the ligand at the highest reaction 

energy. It is therefore generally assumed that the transition state is more complementarity to 

the enzyme binding site than the substrate molecule. (Branden and Tooze, 1999). 
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The next subsections introduce the difference characteristics of protein binding sites that are 

depicted in Figure 2.3. Each subsection will provide some background information to each 

feature and describe one exemplary methodology to calculate it. 

 

 

Figure 2.3: Characteristics of enzyme binding sites.  

(a) The active site is a specific binding site in an enzyme that contains catalytic residues to perform the 

enzymatic reaction on a substrate. (b) The activity of an enzyme can be regulated for example by 

allosteric regulator molecules that bind to a remote binding site. (c) In most enzymes the active site is 

found in the largest or deepest cleft of the enzyme, (d) and encloses at least partially the ligand with 

amino acids, resulting in similar geometrical shapes for binding site and ligand. (e) Binding sites can 

undergo major conformational changes upon substrate binding, especially when some parts of the site 

are located in flexible loops. (f) As binding sites are essential for the function of a protein, their residues 

are often amongst the most highly conserved residues. (g) The binding affinity of a ligand is influenced 

by the physicochemical properties on the binding site surface like complementary electrostatic 

potentials or perturbed pKa values (h) which can be exploited to calculate estimated binding energies 

between ligand and binding sites. 
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2.3.2.1 Volume 

Enzyme active sites tend to be within sizeable depressions on the protein"s surface, which are 

known as clefts or pockets (see Figure 2.3c). In 70-85% of enzymes the largest of these clefts 

is where the substrate and relevant cofactors or coenzymes bind (Laskowski, et al., 1996). 

The average volume of a binding site depends on the ligand it binds and ranges mostly 

between 400 to 2000 Å3 (see Table 3.3). 

 

SURFNET (Laskowski, 1995) is a simple approach to identify and visualize clefts in proteins. 

It detects gap regions within the protein by fitting spheres of a certain range of sizes between 

protein atoms. The spheres are not allowed to clash with any neighbouring protein atoms. 

Overlapping SURFNET spheres are clustered and regarded as protein clefts (see Figure 2.4). 

Placing a grid on the cleft and determining the number of grid cells enclosed by any sphere, 

enables the calculation of the volume for each cleft.  

 

 

Figure 2.4: SURFNET spheres filling a cleft on the protein surface. 

a) Spherical section of the protein structure of ribosyltransferase (PDB-Id: 1og3) coloured in dark grey, 

with bound coenzyme NAD in the active site. b) Largest cleft as determined by SURFNET contains the 

active site. SURFNET spheres are represented by light green spheres. 
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2.3.2.2 Depth 

Enzyme maximise the number of interactions with their ligands by surrounding the ligand 

using large and deep clefts (see Figure 2.3c) (Kraut, et al., 2006). In particular, active sites 

are often found in the deepest cleft of an enzyme. The average depth of a cleft that contains a 

binding site depends on the protein size and can be as deep as 30 Å (Coleman and Sharp, 

2006). 

 

The algorithm of travel depth (Coleman and Sharp, 2006) is an elegant way to visualize and 

measure the depth of clefts relative to the convex hull (Barber, et al., 1996) of the enzyme"s 

molecular surface (see Figure 2.5). The convex hull is defined for a simplified two-

dimensional molecule as the region that is enclosed by an imaginary rubber band that is 

stretched around the whole molecule. The travel depth algorithm finds for a probe sphere on 

the protein surface the minimum distance to reach the convex hull. It works by placing the 

protein into a grid and assigning to all grid cells outside the convex hull a depth of zero. For 

grid cells inside the convex hull the algorithm scans recursively through the grid and adds to 

the size of each grid cell the minimum depth of its neighbouring cells. 

 

Figure 2.5: Depth of a protein surface calculated by Travel Depth. 

Travel Depth algorithm applied to PDB structure 1p4m. Molecular surface is coloured according to 

depth, starting from red for 0 Å depth, to green for 7.5 Å depth to blue for 15 Å depth. The deepest 

surface patch corresponds to the cleft that contains both binding sites. Ligands ADP and FMN are 

partially visual as atomic spheres in the deepest cleft. 
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2.3.2.3 Shape 

It is a common assumption that shapes of protein binding pockets are complementary to the 

shapes of the ligands they bind (see Figure 2.3d). This assumption is manifested by the Lock 

and Key model and Induced Fit model for molecular binding (see section 2.3.2).  

 

For the analysis and visualization of binding site and ligand shapes, an elegant approach will 

be introduced in Chapter 3. The method is based on the Fourier analysis of a radial function 

that describes the surface of a molecule. 

2.3.2.4 Flexibility 

The Induced Fit model for molecular binding states that enzymes undergo conformational 

changes upon substrate binding. For a small fraction of enzymes, these changes are large, 

particularly if they include a flexible loop region that closes/opens the entrance to the active 

site, thus preventing/allowing the binding of a ligand (see Figure 2.3e). However, for the 

majority of enzymes the changes are small. The average RMSD (see below) upon ligand 

binding between C$ atoms of binding sites and catalytic residues is less than 1 Å (Gutteridge 

and Thornton, 2005). Similar values are observed for the side chain atoms. It is interesting to 

note that residues in active sites are on average more flexible than other residues in the 

protein structure due to geometrical adjustments of the active site residues to the transition 

state of the ligand. Binding sites that undergo large conformational changes upon binding a 

ligand were often found to have a large number of hydrophobic residues, including the large 

aromatic amino acid tryptophan and form interactions that do not require a directional 

constellation of residues such as hydrophobic-hydrophobic, aromatic-aromatic and 

hydrophobic-polar residue pair interactions. The lack of directionality allows non-polar 

residues to maintain the interaction network during altering conformations of the binding site 

(Gunasekaran and Nussinov, 2007). But there are also enzymes, like prothymosin-$, that are 

intrinsically disordered in their native state (Uversky, et al., 2000). Neither the Lock and Key 
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nor the Induced Fit model can describe their functionality. A third model, the !New View" 

model has recently been suggested and states that a protein exists in an ensemble of pre-

existing conformations with discrete and similar free energies. Amongst them is the structure 

of the bound conformation. The actual binding of the ligand induces a shift in the equilibrium 

of existing conformations towards the bound conformation and causes the protein to appear 

well structured in a X-ray crystal (James and Tawfik, 2003).  

 

The standard method for measuring the flexibility of enzyme binding sites is to calculate the 

Root Mean Square Deviation (RMSD) between different conformations of the binding site. 

The RMSD is calculated between the Cartesian coordinates of all atom pairs between both 

proteins a and b using the following formula: 
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where x, y, z are the Cartesian coordinates of the protein atoms and N is the number of 

compared atoms. Depending on the scientific question or the available data one can calculate 

the RMSD of all atoms, of all residue side chain atoms, or of only the C$ atoms between two 

structures. STRuster (Domingues, et al., 2004) is a web service for qualitative measurement 

of protein flexibility. Its algorithm analyzes an ensemble of different conformations of a protein 

by calculating the Euclidean distances between all residues in each conformation. The 

Euclidean distances are summed up for each conformation and plotted in an !all-conformation 

vs. all-conformation" distance matrix. The distance matrix is used to cluster each conformation 

according to its level of flexibility and group similar conformations. 
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2.3.2.5 Conservation 

Another characteristic of enzyme binding sites is that the residues forming the sites tend to be 

strongly conserved within protein families (see Figure 2.3f). Residues forming binding sites 

and especially catalytic residues in active sites are amongst the most important residues in an 

enzyme (Chelliah, et al., 2004; Lichtarge, et al., 1996). Any mutations to these residues could 

prohibit the enzyme from recognizing its ligand or catalysing its chemical reaction and thus 

lead to a loss of the protein"s function. Most often binding site residues are either polar or 

charged (up to 70% of residues are Arg, Asp, Cys, Glu, His and Lys) (Bartlett, et al., 2002). 

 

ConSurf (Glaser, et al., 2003) calculates the conservation of each amino acid in a protein 

sequence using the evolutionary trace method (Lichtarge, et al., 1996). This method first 

retrieves homologous sequences for the sequence of the protein structure from a protein 

sequence database and runs a multiple sequence alignment on this set of homologous 

 

 

Figure 2.6: Conservation scores mapped on a protein structure by ConSurf. 

The protein is that of PDB entry 1p4m. Note the higher conservation in and around the binding sites. 
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sequences. In the second step, the method uses the alignment to compute a phylogenetic 

tree, which represents the evolutionary relationship of the homologous sequences. Next, the 

homologous sequences are divided into groups and subgroups based on the branches of the 

tree followed by an analysis on the frequency of residue changes in each subgroup. In the 

analysis, each residue is assigned a rank that reflects the position in the tree at which the 

residue becomes invariant in the succeeding subgroups. In the final step the residues of the 

protein structure are divided into 9 classes according to their rank with !1" being the least 

conserved and !9" being the most conserved residue and colour coded on the structure (see 

Figure 2.6). A visual inspection of the colour coded protein structure can help to identify 

clusters of highly conserved residues on the protein surface that might indicate the location of 

binding sites.  

2.3.2.6 Interaction energy 

The process of molecular binding requires in the first instance shape complementarity to allow 

ligand atoms to approach binding site atoms. The proximity between both binding partners is 

important as their binding energy depends very much on the distances between their atoms. 

One theory about electrostatic complementarity between binding sites and ligands suggests 

that electrostatic potentials at binding sites are strong enough to attract the ligand from the 

solvent into the active site. This assumption has been derived from enzymes that have 

catalysis rates approaching the diffusion limit, like the copper-zinc-superoxide-dismutase 

protein family. This protein family exerts a positive electric field over the active site, which 

attracts negatively charged oxygen radicals towards the active site copper ion (Livesay, et al., 

2003). The visualization of the electrostatic potentials mapped on the structure surface is 

particular useful for identifying DNA binding sites (see Figure 2.3g). Many DNA binding 

proteins possess a large patch of positively charged amino acids on their surface to 

electrostatically attract their negatively charged binding partner (Tsuchiya, et al., 2004). In a 

study where organic solvent molecules were computationally mapped on the protein surface 
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to predict potential binding sites of ligands, it was found that hydrophobic patches are also 

important within binding sites, inducing organic solvents to cluster therein (Silberstein, et al., 

2003). The results are in agreement with earlier experiments which showed that binding 

affinities of ligands can be increased by promoting hydrophobic interactions between binding 

sites and ligands (Davis and Teague, 1999). Since ligand molecules do not bind at random 

sites on a protein structure, their binding sites should feature particular high binding energies 

towards their cognate ligand. 

  

Q-SiteFinder (Laurie and Jackson, 2005) calculates the potential binding energies on a 

protein surface and detects energetically favourable surface patches that may present ligand 

binding sites. The favourable patches are found by placing the protein in a grid and rolling a 

probe sphere along the grid points over the molecular surface. At each grid point an energy 

function (see Figure 2.3h), which incorporates van der Waals potential, electrostatic potential 

and hydrogen bond potential, is applied to the probe sphere. Grid points that exceed a 

predefined energy threshold are clustered if they are below a certain separation. For each 

cluster, the single interaction energies of the grid points are summed up and ranked 

according to their total interaction energy. The cluster with the most favourable interaction 

energy is then identified and considered as a potential binding site. 

2.4 Intermolecular forces 

Intermolecular forces (Israelachvili, 1991a) are attractive or repulsive forces acting upon 

distinct molecules. They are the result of valence electrons that redistribute as molecules 

approach each other. Compared to covalent bonds, intermolecular forces are of long range 

with energies between 0.5-20 kcal/mol. 
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According to the Hellman-Feynman theorem, all intermolecular forces are essentially 

electrostatic in origin (Israelachvili, 1991b). However it is common to approximate the 

intermolecular forces using three seemingly different categories of interaction types (Pliska, 

2001) that vary in their range of distance (Israelachvili, 1991d). Purely electrostatic forces are 

long-range forces that act between charged or permanently polarized atoms/molecules and 

follow Coulombs law. The interaction energies of electrostatic forces fall off with r-2, where r is 

the distance between two atoms/molecules. Of medium range (r-4) are induction or 

polarization forces that arise between charged or permanently polarized atoms and nearby 

non-polar atoms/molecules, the former inducing with its electric field a dipole moment on the 

latter. The third class of forces, also called London dispersion forces, are found uniformly 

between all atoms and molecules. Although their interaction energies can only be calculated 

accurately with quantum mechanics, they are often approximated with a power function of r-6. 

Due to their low interaction energies, London dispersion forces prevail only in interactions 

between non-polar atoms/molecules. The physical origin of London dispersion forces lies in 

the appearances of instantaneous dipoles formed by the constant motion of electrons around 

their atom nuclei. The instantaneous dipoles induce in turn a dipole on the neighbouring 

atom/molecule and produce an attractive induction force (Leach, 2001a). Induction and 

dispersion force combined with the repulsion force that hinders the overlap of electron orbits 

of different atoms is also known as van der Waals force. Hydrogen bonds and hydrophobic 

interactions do not conform to the above classification and will be treated separately in 

section 2.4.3. 

2.4.1 Electrostatics in vacuo 

Electrostatics is a specific branch in physics that deals with electric phenomena of systems 

with resting/static charges (Feynman, et al., 1989b). 
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2.4.1.1 Electrostatic potential 

All physical quantities in electrostatics can be calculated once the electrostatic potential at 

every point in space is known. The electrostatic potential !(r) is a function of the distance r 

and given as a scalar field. It is defined as the electrostatic potential energy U(r) per unit test 

charge qe: 
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where $0 is the dielectric constant of empty space, measuring the polarisability of real vacuum 

in an electric field. U(r) is the work or the energy to carry a test charge qe against the 

electrostatic field E of the point charge Q along a path s to a location r distance away from Q. 

As a reference, the starting point of the path is set to infinity. The electrostatic field, a vector 

field, can be calculated from the partial derivatives of the electrostatic potential ! in x,y,z 

direction: 
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where the nabla symbol ! symbolises the vector differential operator del:  
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that measures how fast the potential varies as the coordinates in three dimensions change. 
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2.4.1.2 Poisson equation 

The scalar product of ! with the electrostatic field E in equation ( 2.17 ) results in a scalar 

field (Wong, 1991) that describes the charge density ! at position x,y,z (Feynman, et al., 

1989a): 
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where !2 is the differential operator Laplacian and the charge density ! is given by  
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Equation ( 2.19 ) is a partial differential equation of second order and generally known as the 

Poisson equation. The entire subject of electrostatics can be reduced to find solutions to 

Poisson"s equation ( 2.19 ). The electrostatic field E for example, can be obtained by 

differentiating the solution to Poisson"s equation according to equation ( 2.17 ).  

2.4.2 Electrostatics in a dielectric medium 

The interaction between molecules in aqueous solution differs from those in free space, 

where the total interaction energy is governed only by the mutual interaction between the 

molecules. In aqueous solution however, each molecule also interacts with the surrounding 

water molecules (Israelachvili, 1991c). Water molecules are distinct from organic molecules in 

their electric properties; they have a high dipole moment and are relatively unconstrained in 

their motion allowing the molecules to align instantaneously to an electric field and 

shield/weaken charge-charge interaction (Gilson, 2000). As a result, the dielectric constant of 

water is relatively high and generally assessed at $ = 78 (Bruccoleri, et al., 1997). Proteins on 
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the other hand usually have a low dielectric constant between 1 and 4. Although a 

polypeptide chain also consist of a sequence of polar amide groups, their dipolar re-

orientation is restricted by their immobilisation within the protein structure. On the exposure to 

an electric field, the polypeptide chain only responds with an electronic polarization (Gilson, et 

al., 1985) that was measured for condensed media to be around $ = 2 (Gilson, 2000).  

2.4.2.1 Protein electrostatics in aqueous media 

The calculation of the electrostatic potential in and around a protein requires a simplistic view 

of the protein-solvent system. An explicit model of the system, where the protein and each 

surrounding water molecule are simulated as single molecular entities, is still computationally 

expensive. As an alternative, implicit models have been implemented that treat water as a 

continuum, offering computational speed for the price of reduced computational accuracy. 

The continuum electrostatic model describes a protein as an arbitrarily shaped complex that 

consists of a set of spherical atoms with partial charges defined by a force field. The interior of 

the protein is treated as a homogenous low dielectric medium, which is surrounded by a 

continuum of a high dielectric aqueous solvent.  

 

The electrostatic potential in a continuum electrostatic model can be calculated by solving 

Poisson"s equation ( 2.19 ) for the model. The charge distribution !(r) is given by the atomic 

coordinates of the protein. However, in contrast to Poisson"s equation in vacuo, the dielectric 

constant of free space $0 has to be scaled with the dielectric constant function $(r), that 

depending on r, adopts the dielectric constant either of water or of the protein: 
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2.4.2.2 Protein electrostatics in ionized aqueous media  

Molecules under physiological conditions interact not just with water and other molecules. The 

cytoplasm surrounding the proteins in the cell is enriched with dissolved electrolytes such as 

sodium ions (Na+), chloride ions (Cl-), magnesium ions (Mg2+) etc. (Alberts, et al., 1994a). 

Depending on the charge of the electrolyte and the charge on the protein surface, electrolytes 

will either be attracted to or repelled from the protein. In the former case, the concentration of 

electrolytes surrounding the charge on the protein will be higher, whilst in the latter case the 

concentration will be lower as compared to the electrolytes" bulk concentration far away from 

the protein. The charge distribution of electrolytes !e(r) in space follows the Boltzmann 

distribution and depends on the charge magnitude of the electrolyte qi, its bulk concentration 

!bulk and the electrostatic potential !(r) of the protein at the point r: 
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where k = 1.38 x 10-23 J/K is the Boltzmann factor and T is the temperature of the medium 

given in Kelvin (K).  

2.4.2.2.1 Poisson-Boltzmann equation 

Electrolytes that are positively or negatively charged create their own electrostatic field. The 

same field influences the electrostatic field of the protein, when electrolytes are accumulating 

around the protein. For an accurate model of the electrostatics in and around a protein, the 

charge distribution of the electrolytes must be included at the right hand side of Poisson"s 

equation ( 2.22 ). The resulting equation is the Poisson-Boltzmann equation (Gilson, 2000; 

Honig and Nicholls, 1995; Leach, 2001c): 
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where the sum in the second term on the RHS is over the various types of electrolytes that 

surround the protein structure. The equation can be rewritten using the relation between 

hyperbolic and exponential functions (Kreyszig, 1999c) 
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which for binary electrolytes such as NaCl with a single positive and negative charge at 1:1 

concentration becomes the Nonlinear-Poisson-Boltzmann equation 
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For small x values, the hyperbolic sine function can be approximated with sinh % x allowing 

for relatively small electrostatic potentials !(r) to express equation ( 2.26 ) as the linear-

Poisson-Boltzmann equation: 
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This linear approximation leads to significant errors for systems with high electrostatic 

potentials such as polynucleotic DNA and RNA or polylysine molecules, and requires the 

application of the computationally more expensive nonlinear-Poisson-Boltzmann equation ( 

2.26 ).  

2.4.3 Water and the hydrophobic effect 

Water as a liquid has several unique features that have been essential for the evolution of life 

on earth. Probably, the two most important properties of water are first its high melting and 

boiling temperature despite its tiny size and second the location of its highest density at 4ºC 



Chapter 2: Background 

 

44 

causing ice layers on lakes to float on the water surface and preserve life underneath. The 

next sections will introduce the reasons for these properties and the importance of the effect 

they have on the interaction between molecules in aqueous solution (Israelachvili, 1991e). 

2.4.3.1 Hydrogen bond 

A single water molecule consists of two hydrogen atoms attached to a divalent oxygen atom. 

The high electronegativity of the oxygen atom pulls electrons from each hydrogen atom 

towards the oxygen nucleus inducing a high dipole moment with partial negative charge &- on 

the oxygen and a partial positive charge &+ on each hydrogen atom. In bulk solution, two 

water molecules form a hydrogen bond, i.e. two partial negative charge oxygen atoms from 

two water molecules interact with each other via a positive charged hydrogen atom. The 

intermolecular distance between hydrogen and oxygen atom is around 1.8 Å, which is shorter 

than the sum over the oxygen and hydrogen van der Waals radius (1.5 Å + 1.0 Å = 2.5 Å). 

This in addition to the high directional dependence causes hydrogen bonds to have weak 

covalent bond characteristics. However, by nature a hydrogen bond is considered as an 

electrostatic interaction with binding energies of around 0.25 to 1 kcal/mol. A single water 

molecule can form up to four hydrogen bonds in a tetrahedral arrangement, where the two 

lone pairs of its oxygen each accepts a single hydrogen atom from two neighbouring 

molecules and where its two hydrogen atoms are donated to two other neighbouring water 

oxygen. The result is a dense mesh or network of water molecules that are heavily 

interconnected. The high melting and boiling temperature of water, which was mentioned 

above, is due to the total hydrogen bond energy that is stored in the tight hydrogen bond 

network of bulk water. The highest density of water at 4ºC on the other hand is caused by the 

increase of the number of hydrogen bonds per water molecule from four in the solid state to 

an average of five in the liquid state (Israelachvili, 1991e). 
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2.4.3.2 Hydrophobic effect 

A hydrophobic, i.e. non-polar, molecule lacks polar or charged groups to form hydrogen 

bonds with the water molecules when it is solvated. Without the potential to form hydrogen 

bonds, the surrounding water molecules form a clathrate cage-like structure around the 

molecule. In the cage-like conformation, the water molecules preserve most of their hydrogen 

bonds in the water network. However, the cage formation demands water molecules to 

reorientate and take on a well-ordered structure, both of which are entropically unfavourable 

actions that result in the insolubility of hydrophobic molecules in water (Israelachvili, 1991e).  

2.4.3.3 Partition coefficient logP 

The hydrophobicity of an uncharged molecule can be experimentally assessed by calculating 

the natural logarithm of the degree of its partition in a mixed water and organic solvent 

solution. The measure for the degree of the partition is logP. n-octanol is most often used as 

a reference for the organic phase, beside cyclohexane. The logP value will increase with the 

number of non-polar groups in the molecules as an effect of the group"s preference to reside 

densely packed within the organic phase (Fersht, 1999). It has been observed that the logP 

of a molecule made up of various substituents is the sum over each substituent"s logP value. 

The additive characteristics is exploited by computational tools to calculate the logP for any 

molecule from a library of fragments with empirical determined logP values (Ghose, et al., 

1998). More recently, new approaches with atom-additive methods have been developed 

that, similar to force fields, assign each molecule atom an atom type with an associated 

atomic logP value and apply correction factors to account for intramolecular interactions 

(Wang, et al., 2000a). The hydrophobicity of charged molecules can be more appropriately 

assessed with the distribution coefficient logD that takes into account all neutral and charged 

forms of the molecule and varies with pH of the aqueous phase.  
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logP and logD are important physicochemical descriptors for drug discovery programs, 

where both are used excessively in Comparative Molecular Field Analyses (CoMFA) (Testa, 

et al., 1996). Furthermore, they occur in Lipinski"s rule of five to assess the !druglikeness" of 

lead compounds as oral-active drugs (Lipinski, et al., 2001) and guide the judgement of a 

drug candidate"s Absorption, Distribution, Metabolism, Excretion and Toxicity properties 

(ADME-Tox) (Tetko, et al., 2006). 

2.4.3.4 Hydrophobic interaction 

The hydrophobic effect on two non-polar molecules solvated in water causes both molecules 

to approach and bind each other. The union of both molecules is entropically favourable as it 

reduces the total surface area accessible to the water molecules (by the size of the interface 

area that the bound molecules share with each other) and the number of water molecules 

needed to form the cage-like structure around both molecules (Israelachvili, 1991e). The 

accumulation of non-polar molecules is further favoured by dispersion forces (see introduction 

to section 2.4) between the molecules (Fersht, 1999) and a pressure imbalance that occurs 

when water molecules are displaced from the interface of approaching hydrophobic surfaces 

(Ball, 2008). 

2.5 Surface and shape of molecules 

Shape is fundamental to many processes in biology and chemistry. Comparative zoologists 

have demonstrated in the early 20th century that the shape and size of organisms is formed 

not only by evolutionary processes but also by mechanical constraints (McMahon, 1973; 

Thompson and Bonner, 1992). The shape description of macroscopic objects, such as animal 

bones or protein crystals, is straightforward as they usually have discrete size and shape. 
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However, for atoms and molecules the concept of a discrete shape breaks down (Mezey, 

1993). At the nanoscopic scale, the shape of atoms and molecules is defined by the electrons 

that spin around their nuclei. The location of electrons however can only be defined with 

continuous cloud-like fuzzy electron distributions that prevent the determination of a discrete 

shape for an atom or molecule. A further complication arises for flexible molecules that adopt 

myriad conformations under physiological conditions (see Chapter 3). An approximation to 

both problems that often suffice for molecular mechanics purposes is to treat the atoms in 

molecules as spherical balls that are fixed at a low energy conformation with sphere radii 

equal to the element"s van der Waals radius. The van der Waals radius, also called hard 

sphere radius, of an atom can be defined as the distance at which the force applied to a 

second atom to approach the first atom becomes repulsive.  

2.5.1 Molecular surface description 

Given the approximation of spherical balls for atoms, the surface of a molecule is often 

represented as the van der Waals surface, molecular surface or the solvent accessible 

surface (Richards, 1977). The van der Waals surface is the union of covalently bound 

spherical atoms in a molecule, where each atom type has a specific van der Waals radius. 

Molecular and solvent accessible surfaces are calculated by rolling a probe sphere over the 

van der Waals surface of a molecule. The inward-facing surface of the probe sphere 

produces the molecular surface, which is a smooth version of the van der Waals surface and 

often used to visualise the complementarity between molecules. The solvent accessible 

surface on the other hand is computed by tracing the centre of the probe sphere, thereby 

highlighting areas that are accessible to the whole probe sphere (Lee and Richards, 1971). 

The radius of the probe sphere influences the appearance of both surfaces: a smaller probe 

sphere will emphasise more details, whereas a larger probe sphere will show gross surface 

characteristics. Usually the average radius of a water molecule with 1.4 Å is used as the 

probe sphere radius.  
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 Different representations exist for the visualisation of the above surface models. Voronoi 

tessellation visualizes molecule surfaces (Richards, 1974) by dividing the space occupied by 

all atoms on the protein surface into a set of polyhedra that are referred to as Voronoi cells. 

Each atom corresponds to the cell"s centroid. The space between neighbouring centroids is 

divided such that any region within the cell is closer to the cell centroid than to any other 

centroid. A related tessellation is the Delaunay triangulation that divides the protein surface 

into a set of triangles. Delaunay triangulation can be obtained from Voronoi tessellation by 

connecting all centroids with a common Voronoi cell edge (Poupon, 2004). Connolly"s dot 

surface spreads dots, which are tangent to a single atom or a set of atoms, over the molecule 

thereby allowing a transparent view of the molecule (Connolly, 1983b). Another method to 

visualise molecular surfaces splits up the solvent accessible surface into concave spherical 

triangles, saddle shape rectangles and convex spherical regions (Connolly, 1983b). Each of 

the three surface pieces is analytically described and used to calculate the surface area and 

the volume of the molecule (Connolly, 1983a). Furthermore, the van der Waals surface of 

proteins and other molecules can be visualized by contouring a density grid according to a 

convolution between the atom coordinates and an atom centric Gaussian function (Grant, et 

al., 1996; Grant and Pickup, 1995). The Gaussian function is given by: 

 

! 

" = "
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   , ( 2.28 ) 

 

with the density value ! at a grid point r distance away from the atom centre, the density !0 at 

the atom centre and a constant k (Laskowski, 1995; Stockwell, 2005).  

 

Surface representations are in particular important for the visualisation of various 

physicochemical properties of molecules. For example, the electrostatic potential and the 

hydrophobicity of a molecule can be calculated on the molecule"s surface and represented 

using a colour scheme (Kinoshita, et al., 2002). Such surface representations can be 

informative in function prediction methods e.g. where large patches of highly positive 

electrostatic potentials on protein surfaces can sometimes indicate DNA binding sites. In 
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Chapter 4, the electrostatic potential and the hydrophobicity of a protein will be mapped on 

the van der Waals surface of its ligand to assess their complementarity.  

2.5.2 Molecular surface comparison 

Although the visualization of molecular surfaces is well established, their comparison is just 

the opposite. Molecular surface comparisons have some advantage over atom coordinate 

comparisons. Firstly, they are independent of the atomic constellation that lies beneath the 

surface, and secondly they can compare the surfaces of binding sites and ligands, and thus 

are appropriate for small molecule docking studies. Although many methods have been 

published in the literature (for a comprehensive overview see (Hofbauer, et al., 2004; 

Pickering, et al., 2001; Via, et al., 2000) and references therein), most of them are similar in 

approach. In broad terms surface comparison methods discriminate surfaces either by local 

or global features. Most methods for local feature comparison implement various forms of 

graph matching (Kinoshita, et al., 2002; Pickering, et al., 2001), geometric hashing (Rosen, et 

al., 1998) or compare local and global curvatures on the surface of molecules (Cosgrove, et 

al., 2000; Exner, et al., 2002). Although the comparison of global features fails to discriminate 

local dissimilarities, they are usually faster by several orders of magnitude and are therefore 

ideal for fast surface comparisons in large databases (Iyer, et al., 2005). Among the global 

feature comparison methods are those that compare a set of sorted distances capturing the 

shape and the physicochemical properties on molecular surfaces (Ballester and Richards, 

2007; Binkowski and Joachimiak, 2008; Weisel, et al., 2007). Others calculate distances 

between expansion coefficients of Fourier descriptors (Cai, et al., 2002a; Perez-Nueno, et al., 

2008; Ritchie and Kemp, 2000) or compare three-dimensional moments (Mansfield, et al., 

2002) and moment invariants (Sommer, et al., 2007).  
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2.5.2.1 Graph matching 

Any set of points can be represented by a graph, with each point being a graph node and the 

distance vectors between the nodes being the edges. In the case of surface comparison, the 

points correspond to vertices or dot points on the molecular surface. In order to compare two 

surfaces with each other, their graphs are compared and all nodes that have a similar spatial 

location and/or physicochemical property are extracted to form a new association graph. 

Given such an association graph, the best match between both surfaces corresponds to the 

maximum clique in the association graph, i.e. the largest subset of nodes that are all 

connected with each other in a pair wise manner (Bron and Kerbosch, 1973). This problem 

can be computationally demanding since every additional node increases the computation 

time by N2. For protein surfaces in particular the computation is unfeasible as a surface can 

have more than 10.000 vertices/nodes (Kinoshita, et al., 2002). To reduce the complexity the 

eF-site database (Kinoshita, et al., 2002) divides the protein surface into sub-surfaces that 

are a maximum of 12 Å large and limit the size of the association graph to a maximum of 

2000 nodes. Pickering and coworkers reduce the complexity by comparing only binding site 

surfaces with each other (Pickering, et al., 2001). In any case, once the maximum clique is 

found a similarity score can be calculated that relates the size of the maximum clique to the 

number of nodes in the smaller molecular surface. 

2.5.2.2 Geometric hashing 

The geometric hashing algorithm (Brakoulias and Jackson, 2004; Rosen, et al., 1998) for 

molecule surfaces consists of two operational stages: A preliminary pre-processing stage and 

a recognition stage. The preliminary stage itself consists of four steps that create a database 

of hash tables, where each hash table represents a single molecule surface:  
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1. Set an orthogonal 3D reference coordinate system on the surface such that a 

selected triplet of three vertices, being non-collinear to each other, lie in the xy-plane 

of the coordinate system.  

2. Determine the spatial position of each remaining vertex on the surface according to 

the reference-coordinate system. 

3. Store information about the identity of the triplet, the location of each remaining vertex 

(quadruplet) and if required physicochemical properties calculated at the fourth vertex 

in a hash table.  

4. Repeat step 1-3 for all other triplet combination on the surface. 

 

Once the database of hash tables is built, the recognition stage can begin by applying the 

same approach as above to a query molecule surface. However, instead of storing the 

quadruplets in a hash table, they are checked for their existence in the database. If a hash 

table exceeds a user-defined minimum hit value, the molecules are aligned to each other and 

a heuristic iterative matching algorithm is employed to expand the number of matching 

vertices in the neighbourhood of the hit. 

 

Similar to graph matching, geometric hashing is computationally too demanding to be 

executed on each vertex of a molecular surface and requires a reduction in the number of 

vertices. In the implementation of Nussinov and coworkers (Rosen, et al., 1998), the reduction 

is achieved by replacing all vertices on convex, concave or saddle-shaped surface faces by a 

single sparse critical point. Further reduction of complexity is realized by considering only 

reference coordinate systems that are set by vertices satisfying a minimum and maximum 

distance constraint. 

2.5.2.3 Spherical harmonics 

Fourier descriptors with spherical harmonic basis functions are well suited for the description, 
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visualisation and comparison of molecular shapes (Leicester, et al., 1994). It is important to 

mention that Fourier descriptors are not comparing surfaces but rather the shape of 

molecules. In the framework of this thesis the shape of a molecule is defined as follows: 

 

The shape of a molecule is the geometric property of the volume, which the 

molecule occupies in space and is independent of the molecule!s location, 

orientation and scale. Two molecules are said to have the same shape if and 

only if after appropriate translation, rotation, and scaling operations both 

molecules overlap with their entire volumes. The similarity of the shapes 

decreases with decreasing overlap of the volumes. 

 

For reviews about state-of-art shape comparison techniques, see (Iyer, et al., 2005; 

Veltkamp, 2001; Zhang and Lu, 2004). 

 

Spherical harmonic functions Ylm are probably best known as the orbital shape determining 

functions and solutions to the angular part of Schrödinger"s equation for a one-electron atom. 

In general, spherical harmonics functions Ylm satisfy any Laplace equation on the surface of a 

sphere, i.e. in a spherical coordinate system: 
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with  
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making them essential in physical problems involving partial differential equations within 

electromagnetism, gravity, mechanics or hydrodynamics. Their attractive properties when 

dealing with rotations, spherical averaging procedures or smooth surface representations on 

the sphere have led to their extensive use in protein crystallography. For example, in 

molecular replacement, spherical harmonic functions have been used as rotation functions 
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(Navaza, 2006) to align unknown with known protein structures (see section 2.2.1.1.5) or as 

means to calculate the generalized scattering factor (see section 2.2.1.2.2) of bound atoms 

with perturbed electron densities (Maslen, et al., 2006). Furthermore, they have been applied 

as shape descriptor in docking studies for protein-protein interaction (Ritchie and Kemp, 

1999; Ritchie and Kemp, 2000), virtual screening of protein-ligand interactions (Cai, et al., 

2002a; Yamagishi, et al., 2006) and in induced-fit flexible docking studies (Yamazaki, et al., 

2009). As a visualisation technique, the same functions have been utilised to describe and 

compare various geometrical and physicochemical properties of molecular surfaces on 

proteins and small molecules (Dlugosz and Trylska, 2008; Duncan and Olson, 1993; Lin and 

Clark, 2005; Max and Getzoff, 1988).  

 

Spherical harmonics Ylm(",!) are smooth i.e. infinitely differentiable, complex functions of two 

angle variables ", ! and two indices l and m. In quantum mechanics terminology l is the 

angular quantum number that runs from 0 to & and determines for an electron its angular 

momentum and the number of local minima in Ylm. m on the other hand is the magnetic 

quantum number that runs from – l to l and determines how the electron moves in a magnetic 

field. The spherical harmonic functions Ylm(",!) can be factorized into a "-dependent term, 

which are the associated Legendre polynomials Plm and into a !-dependent term, which is a 

complex-exponential function: 
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with Nlm being the normalization factor: 
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Illustrations and a list of functional values for low order spherical harmonics can be found at 

(Weisstein, 2009b).  
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2.5.2.3.1 Associated Legendre polynomials 

Associated Legendre polynomials satisfy the !-dependent term in Laplace!s equation and are 

generally defined as  
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where Pl(") are the ordinary Legendre Polynomials that are solutions to the ordinary 

Legendre"s differential equation. Rodrigues! formula given by: 
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can be used to derive Pl(") of any degree l, where the degree is the value of the polynomials 

highest power. 

 

It can be shown (Kreyszig, 1999a) that the ordinary and associated Legendre polynomials are 

both a complete set of orthogonal functions in the interval -1 ' x ' 1, i.e.: 
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( 2.35 ) 

 

where the term complete refers to a sufficiently amount of Legendre polynomials to represent 

all continuous functions in the interval -1 ' x ' 1. Both properties of the Legendre 

polynomials, orthogonality and completeness, are important for the purpose of this thesis as 

both allow the expansion of any function in the interval -1 ' x ' 1 in term of Legendre 

polynomials.  
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2.5.2.3.2 Spherical harmonics expansion 

Although spherical harmonic functions Ylm are by definition complex functions, only the real 

part of the functions will be used in the course of this thesis and shall be referred as surface 

spherical harmonics functions Slm. Slm can be obtained by a linear combination of Ylm with its 

complex conjugate Yl-m. Three different cases arise depending on the sign of the magnetic 

quantum number m (Cai, et al., 2002a): 
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Note, that for m = 0 the associated Legendre polynomial Plm(cos") reduces to the ordinate 

Legendre polynomial Pl(cos"). The normalisation factors Nlm guarantees that all Slm are 

orthonormal. 

 

Their orthonormal property makes surface spherical harmonics Slm(",!) well suited for the 

Fourier analysis of continuous single-valued radial function f(",!) on a unit sphere. Under the 

assumption that the shape of a molecule is star-like, i.e. a ray from the centre of mass to the 

molecule"s surface penetrates the surface only once, the shape can be described by a radial 

function and thus be expanded with surface spherical harmonics. For the expansion, Slm(",!) 

form a set of basis functions in the generalized Fourier series (Kreyszig, 1999b): 
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where clm are coefficients for each surface spherical harmonics, determining the weight of 

each harmonic on the expansion of the function. The expansion will be exact, if the first sum 

over the angular quantum number l is infinite. Terminating the expansion at a certain order 

lmax yields an approximation to the function f(",!), where the approximation improves with 

increasing lmax (see later results chapters). The number of coefficients and thus the number of 

functions for an approximation up to the order lmax is given by 

! 

(l
max

+1)
2 . The expansion 

returns a unique set of coefficients clm for different radial functions f(",!) allowing them to be 

employed as shape descriptors. The first few coefficients have a direct meaning with respect 

to the geometry of the surface that is described by f(",!). The first order coefficient c00 

corresponds to the weighted radius r = N00c00 where N00 = 1/4(, the three coefficients for 

l = 1 encode the centroid of the surface and the nine coefficients up to the order lmax = 2 

define an average ellipsoid (Ritchie and Kemp, 1999). The expansion coefficients can be 

calculated from equation ( 2.39 ) as the inner product of the radial function f(",!) and the 

surface spherical harmonics Slm(",!) (Cai, et al., 2002a; Morris, 2006):  
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To compare shapes with each other, it is sufficient to compare the expansion coefficients of 

the shapes with a distance function, e.g. a standard Euclidean metric given by: 
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where ca and cb are both coefficient vectors with n = (lmax+1)2 number of expansion 

coefficients. 
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2.5.2.3.3 Spherical t-design 

Spherical t-design (Weisstein, 2009a) is a set of N points 
  

! 

P = p
1
,…, pN{ } on the surface of a 

unit sphere, which is defined in d-1 dimensions as 
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P are distributed such that an integral of any polynomial f of degree ' t on the sphere, is 

equal to the average of the polynomial over the N points: 
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where Vol(Sd-1) denotes the !volume" of the sphere in d-1 dimensions, e.g. the surface area 

of a three-dimensional unit sphere (Meakin, 1998). Thus, spherical t-designs replace a full 

integration over the entire unit sphere with a sampling over a few points on the sphere 

surface. The sampling is not only computationally fast but also preserves the accuracy of the 

full integration over the unit sphere, as both sides of the equation ( 2.42 ) are equal. So far the 

existents of spherical t-designs were only proven for orders up to t = 12, but numerical 

evidence suggest that integration layouts for orders up to t = 21 also exist (Morris, 2006).  

 

Within the scope of this thesis, spherical t-designs have been employed as an integration 

layout on the molecular surfaces of small molecules and binding pockets for the spherical 

harmonic expansion (Morris, 2006; Morris, et al., 2005). Their application simplified the 

computation of the coefficients by replacing the integral in equation ( 2.40 ) with a sum over 

the points 
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P = p
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Spherical t-designs for various values of N and t are available on the world-wide-web from 

http://www.research.att.com/~njas/sphdesigns (Hardin and Sloane, 1996; Stockwell, 2005). 
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Chapter 3  

Shape Variation in Protein Binding 

Pockets and their Ligands  

3.1 Introduction 

Molecular recognition is a central theme in molecular biology and arguably the primary driving 

force behind most processes in and between cells. The recognition procedure is based mainly 

on geometric and electrostatic complementarity (Pliska, 2002; Tsai, et al., 2002). Enzymes 

are thought to have optimised their astonishing catalytic power and specificity by evolving 

their surfaces to complement substrate transition states. One would expect the co-evolution of 

substrates and enzymes to result in a fairly exclusive partnership that must somehow be 

reflected in both the ligand and the binding site. Therefore, it is reasonable to assume that 

proteins binding similar ligands have binding sites of similar geometrical and physicochemical 

properties. 

 

A common assumption about the shape of protein binding pockets is that they are related to 

the shape of the small ligand molecules that can bind there, allowing both binding partners to 

approach each other and form short-range non-covalent bonds (Fersht, 1974; Grant, et al., 

1996; Jones, et al., 1997; Sotriffer and Klebe, 2002). Many computational methods have been 

developed that make use of this assumption and predict small molecules for given binding 

sites based on their geometric complementarity to the binding site (Bock, et al., 2007; 

Katchalski-Katzir, et al., 1992; Tsai, et al., 2001; Via, et al., 2000; Yamagishi, et al., 2006). 

The entire field of virtual screening and small molecule docking to target proteins is based on 
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molecular complementarity. Scoring functions that are applied in all methods to evaluate the 

binding energy of the compound to the binding site, score the geometrical and 

physicochemical complementarity between both binding partners (Kitchen, et al., 2004). In a 

study on drug molecule binding sites, it was found that geometrical properties alone are 

among the most important binding factor for drug molecules. Physicochemical properties did 

not seem to play any decisive role (Nayal and Honig, 2006). Similar results have been 

reported for complexes of protein and pharmacological interesting small molecules (Norel, et 

al., 1999b). However, several studies have reported that the geometrical complementarity is 

often far from perfect (An, et al., 2005; Liang, et al., 1998). These studies have revealed that 

ligands are sometimes only partially enclosed by their binding sites with the rest of the ligand 

exposed to the solvent. Furthermore, even within the enclosed region, contacts between 

protein and ligand often occur at relatively few points, involving strong hydrogen bond or van 

der Waals interactions (Babine and Bender, 1997; Cosgrove, et al., 2000; Smith, et al., 2006). 

It has also been suggested that the displacement of water molecules at binding sites and the 

retention of the ligand"s flexibility in the bound state are both factors that contribute to 

favourable entropic changes in the binding process (Boehm and Klebe, 1996) and indicate a 

certain level of non-complementarity between protein and ligand molecules.  

 

Similar opposing conclusions were drawn for the geometric complementarity of protein-

protein interfaces. For a review on protein-protein interactions, see (Nooren and Thornton, 

2003). Some studies (Gabb, et al., 1997; Shoichet and Kuntz, 1991; Tsuchiya, et al., 2006) 

have reported the inefficiency of using geometric descriptors for the docking of unbound 

protein structures and have highlighted the importance of additional physicochemical 

descriptors for reliable predictions of the protein complexes. In contrast, Norel et al. argued 

that shape complementarity would suffice for docking protein-protein complexes (Norel, et al., 

1999a). Jones and Thornton reported that the interface of homodimers and enzyme-inhibitor 

complexes is generally more complementary than the interface between antibody-antigen 

complexes. However the average complementarities for both protein complexes were rather 

low with gap indices of around 2.2 to 3.2 Å (gap index = volume of the gap between both 
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proteins divided by the interface solvent accessible surface area) (Jones and Thornton, 

1996). Recently it has been argued that protein-protein complexes are formed not due to the 

complementarity at the interface between both binding partners but as a result of 

thermodynamic processes that are affected by the size of the entire complex and the entropy 

change due to complex formation (Krissinel and Henrick, 2007).  

 

In this chapter, a global shape descriptor was used from (Morris, et al., 2005) to follow up the 

analyses on the geometric complementarity between proteins and bound small molecules on 

a large data set. In the course of this chapter following questions will be addressed: 

 

1. To what extent are binding pockets from non-homologous protein domains that bind 

the same small molecule similar in shape? 

2. To what extent are binding pockets similar in shape to the ligands they bind? 

3. Is shape or size more important when comparing binding pockets with ligands? 

4. How useful is a global shape descriptor for binding sites in molecular recognition 

analysis and especially as a ligand predictor? 

 

The importance of binding sites in proteins was recognised early in structural biology and led 

to many studies to identify and compare binding sites. For a comprehensive list of methods 

for the determination and comparison of binding sites, see (Bergner and Günther, 2004; 

Campbell, et al., 2003; Gold and Jackson, 2006a; Sotriffer and Klebe, 2002; Vajda and 

Guarnieri, 2006; Via, et al., 2000). Current approaches analysing binding sites can be roughly 

divided into three classes. Firstly, methods that detect cavities and geometrically match them 

to each other; secondly, methods that identify and compare specific geometrical patterns of 

amino acids in binding sites; and thirdly methods that use evolutionary information to predict 

the location of binding sites.  

 

Among the methods in the first category is CavBase (Schmitt, et al., 2002), which uses 

pseudospheres to represent the locations and physiochemical properties of the atoms 
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involved in molecular recognition. The spatial distribution of the pseudospheres is 

represented by a graph, and a clique detection algorithm is used to identify similar binding 

sites in other protein structures (see section 2.5.2.1). The algorithm IsoCleft (Najmanovich, et 

al., 2007) is based on the same clique detection technique but uses exclusively C-alpha 

atoms instead of pseudospheres for an initial binding site match, and only in a second stage 

runs a more demanding all atom comparison between binding sites. The eF-site data base 

(electrostatic surface of Functional-site) database (Kinoshita and Nakamura, 2003) compares 

graphs that represent the electrostatic potential, the hydrophobicity and the curvature of local 

binding site surface patches. The SitesBase server (Gold and Jackson, 2006b) exploits 

geometric hashing (see section 2.5.2.2) to identify equivalent atoms in binding sites that are 

of the same element type and occur in similar relative spatial orientations. In addition, it stores 

precalculated all-against-all similarities for the large majority of PDB binding sites.  

 

Methods from the second category are based on the fact that functionally important residues 

tend to maintain the same relative spatial disposition even in distantly related proteins. This is 

particularly true for the catalytic residues in enzymes. The best-known example is the Ser-

His-Asp catalytic triad of serine proteases. In this specific case the relative positioning of 

these three residues are strongly conserved even in totally different structural folds (Wallace, 

et al., 1996). The CSA (Catalytic Site Atlas) database (Porter, et al., 2004) contains a 

catalogue of structural templates of 2 to 6 residues each derived from the catalytic residues of 

enzymes. 3D search programs like SPASM, RIGOR (Kleywegt, 1999) and Jess (Barker and 

Thornton, 2003) or algorithm proposed by (Besl and McKay, 1992) and (Nussinov and 

Wolfson, 1991) allow one to scan such templates against any query protein structure. 

 

Finally, an example of a method from the third class which uses evolutionary information to 

predict the location of a protein"s binding site is pvSOAR (pocket and void surfaces of amino 

acid residues) (Binkowski, et al., 2003a). pvSOAR uses the CASTp database (Binkowski, et 

al., 2003b) of protein clefts and voids and searches for similar sequence and spatial 

arrangement of the cavity residues for a query structure . 
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All the methods above involve comparison of atomic coordinates in one form or another. In 

the present work, a shape comparison technique is used. This avoids the problems of 

superposing binding sites, particularly where they are composed of different numbers of 

atoms and atom types. Furthermore, the consideration of shape alone allows a direct 

comparison of the degree of complementarity between binding pockets and ligands they bind. 

Many sophisticated shape description and matching methods exist, all with their strengths 

and weaknesses (Iyer, et al., 2005; Veltkamp, 2001; Zhang and Lu, 2004). As the focus in 

this chapter is on 3D shapes, a method originally pioneered by Ritchie & Kemp in a series of 

papers (Ritchie, 1998; Ritchie, 2003; Ritchie, 2005; Ritchie and Kemp, 1999; Ritchie and 

Kemp, 2000) is employed where the idea of using surface spherical harmonics for protein-

protein interactions and docking was developed. The idea was taken further by Cai and 

colleagues and applied directly to binding pockets (Cai, et al., 2002a) and was later improved 

by (Morris, et al., 2005). 

3.2 Methods 

A Java program named CleftXplorer was implemented with the aim to provide a suite of tools 

to explore various properties of protein binding sites and small molecules. This chapter will 

introduce CleftXplorer"s geometric shape descriptor that is based on surface spherical 

harmonic functions. Chapter 4 will describe the implementation of the physicochemical 

properties.  
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Figure 3.1: CleftXplorer algorithm for binding pocket shape description. 

Five step algorithm illustrated on flavo-hemo protein 1cqx (protein structure is grey, ligand is 

varicoloured, SURFNET spheres are green). 

a. Cleft localisation: Clefts in protein structure are filled with spheres by SURFNET. 

b. Cleft volume reduction: SURFNET clefts are reduced using one of three procedures (atoms used 

for reduction are in red colour, reduced clefts are in green colour):  

1. Conserved Cleft Model: keep SURFNET spheres next to conserved cleft region (top insert: 

conservation mapped on protein structure). 

2. Interact Cleft Model: keep SURFNET spheres next to protein atoms that interact with 

ligand (top insert: LigPlot/HBPLUS diagram).  

3. Ligand Cleft Model: keep SURFNET spheres that are in contact with ligand molecule (top 

insert: FAD molecule). 

c. Transformation (Cartesian coordinate axes are black coloured, eigenvectors of moment of inertia 

are red coloured):  

1. Transform reduced cleft to the coordinate origin and rotate according to moment of inertia.  

2. Save cleft in 4 axis-flip combinations. 

d. Spherical harmonics expansion (sample points are transparent blue coloured, approximated shape 

are shown as a salmon coloured mesh): Approximate surface function of each axis-flipped cleft by 

expanding spherical harmonics using spherical 21-design as sample points. 

e. Coefficient comparison: Scan coefficients from expansion against databases or set of pre-computed 

expansion coefficients of protein binding pockets or ligands via standard Euclidean distance metric. 

Investigate matches with smallest coefficient distance. 
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CleftXplorer"s procedure for identifying, describing and comparing binding pocket shapes can 

be generally divided into five steps: 

 

1. Identification of a binding site cleft 

2. Reduction of cleft volume to where binding occurs 

3. Transformation to a standard frame of reference 

4. Spherical harmonic expansion of shape 

5. Coefficient comparison between two shapes to quantify similarity 

 

Ligand shapes are modelled using only steps 3-5 above. The clefts in a protein"s surface are 

computed using SURFNET (see section 2.3.2.1), which detects protein cavities by inserting 

spheres of a certain range of sizes between protein atoms (see Figure 3.1a). The clefts are 

identified as distinct clusters of overlapping spheres and reduced in size (see next subsection 

and Figure 3.1b). For comparison of cleft and ligand shapes, it is necessary for the modelled 

shapes to be in the same orientation and coordinate frame of reference. Previous approaches 

used the rotational properties of the spherical harmonic functions to rotate the shapes in all 

orientations until the optimal superimposition was found (Ritchie and Kemp, 1999; Ritchie and 

Kemp, 2000). The rotation is achieved by using a Wigner rotation matrix on the coefficients 

and calculating the smallest distance between the respective coefficient vectors e.g. using a 

genetic algorithm (Cai, et al., 2002b). However, this is computer-intensive and unsuitable for 

database scanning. CleftXplorer speeds up the scan by pre-orientating the cleft model with 

three transformation operations as described in (Morris, et al., 2005). The first translates the 

cleft model so that its centre of gravity is placed at the origin of the coordinate system (see 

Figure 3.1c bottom-left). The next step involves a rotation of the cleft in terms of its moments 

of inertia as a !gross" shape characteristic. Therefore, the cleft model is rotated so that its 

moment of inertia tensor becomes diagonal with maximal values in x, followed by y followed 

by z (see Figure 3.1c bottom-right). However, the symmetry of the tensor cannot distinguish 

between objects at 0º and 180º rotation on the x-,y-,z-axes. To tackle this !axis-flip-problem", 
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shape coefficients were calculated for four non-redundant combination of flips, resulting in 

four coefficient vectors for each cleft model (see Figure 3.1c top).  

 

Next, CleftXplorer applies a spherical harmonics expansion on the shape of the transformed 

cleft. Therefore, the surface of the cleft, which is built up by the outer SURFNET spheres, is 

considered as a single valued (star-like) surface. In cases of a non-star-like shape, only the 

outermost surface points are taken into account. Furthermore, a sphere of radius 1.6 Å is 

rolled over the surface closing up any gaps between molecule atoms. The resulting star-like 

shape is considered as a spherical function on a unit sphere, with angle pairs (",!) reflecting 

the domain values of the function extracted from spherical t-designs (see section 2.5.2.3.3). 

Using the 240 sample points of the spherical 21-design, the surface function is approximated 

by an expansion with real spherical harmonic functions (see section 2.5.2.3.2 and Figure 

3.1d):  

 

! 
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   , ( 3.1 ) 

 

where f(",!) is the surface function, lmax is 14, Slm(",!) are the surface spherical harmonic 

functions of indices l and m, and clm are the associated coefficients.  

 

The coefficients are computed from the functional scalar product between the function and 

the spherical harmonics for each combination of l and m (see section 2.5.2.3.2). 

 

The orthonormal property of the spherical harmonic polynomials guarantees a unique 

breakdown of the surface function into spherical harmonic functions in the expansion process 

and provides unique coefficients for any shape and size. The uniqueness enables the usage 

of the coefficients directly for comparison against other binding pocket or ligand coefficients. 

The standard Euclidean distance metric is used for the comparison (see section 2.5.2.3.2). 
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The rapid similarity calculation is the main strength of CleftXplorer and enables fast retrieval 

of related binding pockets or ligands from a coefficients database. 

 

Figure 3.2: Reconstructed shape of cleft models from different binding sites. 

The reconstruction corresponds to the order lmax = 14 for cleft models from ATP, NAD, heme and FAD. 

Associated ligands are shown as well and PQS-Ids are provided in brackets. The reconstructed shapes 

are visualised as a mesh and coloured according to the cleft models: CM = Conserved cleft region 

Model, IM = protein-ligand Interacting region cleft Model, LM = Ligand region cleft Model. 
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3.2.1 Cleft reduction 

The following sub-sections are devoted to the three cleft models that are employed in 

CleftXplorer. Cleft models from SURFNET are often large and reach out beyond the region of 

the ligand location. Such clefts are neither convenient for binding pocket comparison nor for 

ligand docking. Therefore, all SURFNET clefts need to be reduced in size.  

 

Three procedures were developed to reduce these initial clefts to more accurately 

approximate the actual shape of the ligand. All three cleft-reduction procedures provide a 

valid series of approximations to the real binding pocket depending on the available 

information. See (Glaser, et al., 2006) for a recent discussion on this topic of binding pocket 

localisation methods using SURFNET. An overview of the reconstructed cleft shapes for all 

three cleft models with their ligands is given in Figure 3.2.  

 

All distances in the next subsections are calculated between the surfaces of Van der Waals 

atoms and SURFNET sphere.  

3.2.1.1 Conserved cleft model 

This approximation can be applied without any prior information about a protein-ligand 

interaction. The method uses the approach described in (Glaser, et al., 2006) to map 

phylogenetic residue conservation scores from the ConSurf-HSSP database (Glaser, et al., 

2003) onto the protein structure (see Figure 3.1b top-left). The basic idea of the method is 

that evolutionarily conserved residues are often functionally important and highlight potential 

ligand-binding residues when they are found within clefts (see section 2.3.2.5). By picking out 

only SURFNET spheres within 0.3 Å to a highly conserved residue atom with a ConSurf 

scores ' 8, a cleft model can be extracted that comprises the ligand binding residues (see 

Figure 3.1 bottom-left). This approach is most suitable for structures solved by structural 
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genomics groups, where the function of the protein is unknown and no biologically relevant 

ligand is bound to the protein in the solved structure. 

3.2.1.2 Interact cleft model 

Another approximation of the binding pocket is obtained by keeping all SURFNET spheres 

within 0.3 Å of protein atoms interacting with the bound ligand (see Figure 3.1b centre). The 

residues are identified using HBPLUS (McDonald and Thornton, 1994). HBPLUS calculates 

hydrogen bonds between a protein and a ligand by looking at the distances and angles 

between potential hydrogen bond donors and acceptors. It also lists pairs of atoms that are in 

non-bonded contact. The Interact Cleft Model is of practical importance since methods 

already exist for predicting ligand-interacting residues (Bate and Warwicker, 2004; Laurie and 

Jackson, 2005; Ondrechen, et al., 2001) and pharmaceutical companies as well as academia 

usually have high quality binding site information. Thus this approach can be used when there 

is no ligand bound in the available structure but the user has information about the ligand-

binding protein residues. 

3.2.1.3 Ligand cleft model 

This somewhat artificial case represents the scenario of well-characterised binding pockets. 

Only SURFNET spheres that make contact to any ligand atom are retained (see Figure 3.1b 

right). This results in a very accurate, although not perfect, approximation of the ligand shape 

and produces a binding pocket that is obviously well suited for matching to its bound ligand. 

Any predictive approach will perform worse than this in getting the right shape, so this 

procedure corresponds to the !best case" scenario and provides an estimate of the upper 

bounds on what performance can be expected for binding pockets with CleftXplorer. 
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3.2.2 Classification and data analysis 

The following approaches were used to visualise and analyse the results in this chapter: 

 

• Distance matrices: A distance matrix contains all-against-all pairwise coefficient 

distances that were calculated according to equation ( 2.41 ). These matrices give a good 

visual overview of the achieved classification power. A perfect classification in these plots 

is indicated by green squares for each ligand set in the diagonal from bottom left to top 

right. In the remaining rows and columns the coefficient distances should range from low 

to high as indicated by orange to yellow to white colouring, depending on the similarity 

level to the ligand set of interest. By rule of thumb coefficient distances smaller than 3 are 

considered as identical shapes and coloured in dark green. Coefficient distances between 

3 and 5 are treated as similar, distances between 5 and 8 are regarded as dissimilar and 

distances between 8 and 10 are considered as highly dissimilar shapes. Coefficient 

distances above ten are not coloured at all and left in white. A grid on the matrices 

separates different ligand sets.  

 

• Area under Receiver Operating Characteristics Curves: ROC (Receiver Operating 

Characteristic) curves (Hanley, 1982) and especially the AUC (Area Under ROC Curves) 

(Hanley, 1983) are well suited for the numerical comparison of classification approaches. 

ROC curves are used to measure the ranking quality of classifiers, by plotting the True 

Positive Rate (TPR) against the False Positive Rate (FPR) when the ordered list of 

classifications (in this work coefficient distances) is walked down from best to worst. Here, 

TPR = TP/(TP+FN) with TP = number of true positives and FN = number of false 

negatives and FPR = FP/(FP+TN) with FP = number of false positives and TN = 

number of true negatives. A diagonal ROC curve leading from the bottom left to the top 

right indicates a random classification where for each true hit a false hit is recovered (i.e. 

equal to flipping a coin). Such a curve encloses an area that corresponds to an AUC of 

0.5. Conversely, the best case is a horizontal line at the top of the plot, where all true hits 
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are recovered before a false hit is obtained. Such a curve encloses the maximum area in 

the plot corresponding to an AUC of 1.0. Hence, AUC values closer to 1.0 indicate 

classifiers that are more able to distinguish true from false positives.  

3.3 Data set 

In order to answer the questions from the introduction to this chapter, a data set was required, 

which holds multiple examples of binding sites and ligands from unrelated proteins for which 

structural data was available. In fact, rather few binding-site/ligands complexes of this type 

were available in the PDB. Applying the criteria below, Data set I was compiled with 100 

protein binding sites that bind one of nine ligand types (see Appendix A, Table A.1). The 

ligands were all of different size and flexibility, including phosphate as the smallest and most 

rigid molecule to ATP as flexible and middle-sized molecule up to FAD as the biggest and 

most flexible molecule in the data set. Following criteria were applied to derive Data set I: 

 

1. Structural domains should be taken only from X-ray protein quaternary structures 

(PQS) that are thought to represent protein structures in their true biological unit (see 

section 2.1.2). 

2. The binding sites in a ligand set should not be evolutionarily related but descend from 

different CATH H-levels (homologous superfamily) (Pearl, et al., 2003). In cases of 

homology, only the binding pocket with the highest X-ray resolution should be 

retained.  

3. Partial, modified or incorrectly labelled ligands should be discarded, by comparing 

each ligand against the reference compound for that ligand"s three-letter residue 

identifier in the MSD-ligand-chemistry database (MSDchem) (Golovin, et al., 2004).  

4. Binding sites of only cognate ligands should be considered (see section 2.1.3). For 

enzymes a biologically relevant ligand was defined as one involved in the protein"s 
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enzymatic reaction as given by the protein"s EC number (Bairoch, 2000). For non-

enzymes the protein"s UniProt entry (Apweiler, et al., 2004) was checked for any 

information about its cognate ligand(s).   

5. Each ligand set should have at least 5 members. (The number 5 was chosen 

arbitrarily but was deemed sufficient for assessing the success rate of assigning 

binding pockets to their ligand sets) 

 

The intersection between two data sets in the literature, first (Stockwell and Thornton, 2006) 

and second (Nobeli, et al., 2003) assisted the derivation of Data set I. The first data set 

ensured the achievement of the first three rules, whereas the second data set verified the 

fourth rule. Additional to both data sets manual searches were carried out to overcome two 

deficiencies of both data sets; namely that the first data set was missing all binding sites 

having no CATH domain assignments, whereas the second data set was missing all non-

enzyme structures.  

 

Binding sites without a CATH assignment were tackled by querying the Cathedral server 

(Pearl, et al., 2003) with the protein structure holding the binding site of interest and assigning 

to it the CATH code of the closest fold. The second deficiency was approached by scanning 

the appropriate three-letter residue identifier (e.g. FMN) and the ligand name (e.g. flavin) in 

the protein"s UniProt entries. All hits were manually checked to avoid false positives.  

 

The final data set, Data set I, comprises 100 protein binding pockets that bind either AMP, 

ATP, FAD, FMN, glucose, heme, NAD, phosphate or steroids (estradiol and 

dehydroepiandrosterone) (see Table A.1). It should be noted here that the data set covers 

only a tiny fraction of the chemical space that proteins are able to recognise and bind. 40% of 

PDB entries are enzymes and thus it is not surprising that most of the ligand molecules in 

Data set I are cofactors. The limited data in the PDB on non-homologous protein binding sites 

of other small molecules such as lipids, peptides, vitamins or glycans made it impossible at 

the time of this work to compile a more comprehensive list of ligand sets. Nevertheless, 
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despite its small size I believe that Data set I contains sufficient examples for an initial test on 

the complementarity of the geometrical and physicochemical properties between protein 

binding sites and their ligand counterparts. 

3.4 Results and discussion 

Before applying the spherical harmonic functions for the approximation of molecular shapes, 

the shape reconstruction must be compared to the molecules that were used to define it. 

Thus, first a number of quality checks of the shape description and comparison method are 

presented followed by a more detailed discussion on the biological implications of the results. 

3.4.1 Shape reproduction quality and comparison 

metric 

3.4.1.1 Reconstruction error 

Any function on the unit sphere can be reconstructed to any arbitrary error threshold by a 

linear combination of spherical harmonic functions to different orders. In Figure 3.3 such 

reconstructions are shown for two ligand molecules. Depending on the application, the 

spherical harmonics expansion can be terminated at an appropriate order, e.g. to roughly 

capture the overall shape of a small molecule an expansion up to lmax = 6 is sufficient; for 

highly non-central distributions an expansion order of several hundred may be necessary. 

The effects of series termination on the error of the binding pocket shape reconstruction are 

visualised in the two examples of Figure 3.3. Additionally, reconstruction errors are provided 
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in the figure reflecting the RMSD (see equation ( 2.15 )) between 240 sample points from the 

spherical 21-design and their reconstructed values.  

 

Figure 3.3: Shape reconstruction with spherical harmonics. 

Various approximations of the shapes (black coloured mesh) for NAD and FMN with different 

degrees of termination in the spherical harmonics series expansion. Reconstruction errors are 

provided corresponding to RMSD values between the ligand shape and the reconstructed shape. 

(NAD was extracted from PQS structure 1t2d; FMN was extracted from PQS structure 1f5v). 
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In Figure 3.4, the reconstruction error is shown as a function of the expansion order. 

Mathematically one would expect the error to decrease smoothly with increasing expansion 

order, which is indeed the case for integration methods that are accurate into higher orders. 

Spherical designs as proposed by (Morris, 2006), however, have a limited region of 

applicability for integration in expansion space and are not yet algebraically proven to exist 

(see section 2.5.2.3.3) for those high orders that have been used in this work. The limitation 

leads to increasing numerical errors for spherical harmonic orders higher than lmax = 14 for the 

employed spherical 21-design. As the most accurate reconstruction of the shapes is 

demanded, whilst keeping a fast integration, all the cleft models and ligand shapes in 

Data set I were expanded to order 14, which according to the plot has an average error of 

0.188 Å.  

 

 

Figure 3.4: Error while shape reconstruction with spherical harmonics. 

Reconstruction error for different degrees of termination in the spherical harmonics series expansion. 

The error was measures as RMSD between original sample point and reconstructed value. The rising 

error after lmax = 14 is due to spherical t-designs that are suitable only for the expansion to certain order 

and start to accumulate numerical errors when used for higher orders. 
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3.4.1.2 Comparison to surface RMSD 

The difference between two shapes is calculated using the standard Euclidean metric in 

coefficient space. To assess whether the resulting coefficient distances indicate similarity or 

dissimilarity, they were plotted against surface RMSD (see Figure 3.5). The surface RMSD 

follows the common standard RMSD calculation in equation ( 2.15 ) but instead of using 

atomic coordinates, the 240 spherical 21-design sample points were used. The plot in Figure 

3.5 shows a high correlation of R2 = 0.99 between the coefficient distance and the surface 

RMSD and thus allows the translation of any required RMSD into a coefficient distance with 

the ratio of 1 : 3.54. Experience shows that a coefficient distance of under 3 gives visually 

almost identical shapes and a distance below 5 corresponds to similar shapes.  

 

 

Figure 3.5: Coefficient distance correlation to surface RMSD. 

Diagram shows the high correlation between spherical harmonics expansion coefficients of the order 

lmax = 14 and surface RMSD with a ratio of 3.54 : 1. The surface RMSD was calculated similar to the 

structural RMSD, except that sample points on the shape surface were used instead of atom 

coordinates. The correlation coefficient is R2 = 0.99. 
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Furthermore, the strong correlation between the coefficient distances and the surface RMSD 

values confirms that a weighting of the expansion coefficients is not required. The standard 

coefficients are already able to sufficiently distinguish dissimilar from similar shapes and 

sizes. 

3.4.2 Shape Variation 

After having assessed the accuracy of the spherical harmonics implementation in 

CleftXpIorer, shape coefficients to the order lmax = 14 were calculated for all 100 ligands and 

cleft models in Data set I and compared to each other using the standard Euclidean metric. 

3.4.2.1 Ligand conformations 

It should be kept in mind that any recognition process of binding pockets or ligand shapes has 

to deal with conformational variance of both the protein (and therefore also the binding 

pocket) and the ligand. In a non-homologous data set containing unrelated proteins that may 

have evolved different strategies for binding the same ligand, one can expect different 

conformations and therefore different shapes for every flexible ligand. A robust shape-based 

classification of such a data set is therefore likely to be difficult. However, a working shape 

descriptor should be able to pick up conformational similarities for the same ligands and 

differences between different ligands.  

 

The average shape similarity of all identical ligands in Data set I is 3.6 coefficient distance, 

which corresponds to a surface RMSD of approximately 1 Å, see Table 3.1. As such, the 

shape variation for individual ligands is low but mainly related to the flexibility of the ligand 

molecules. Four of the nine ligand sets (glucose, phosphate, steroid, AMP) can be considered 

as rigid molecules with an average distance of less then 3 (surface RMSD < 0.9 Å). Three of 



Chapter 3: Shape Variation in Binding Pockets and Ligands 

 

77 

nine (heme, FMN, ATP) are slightly flexible with an average coefficient distance of less than 5 

(surface RMSD < 1.4 Å).  

 

Only NAD and FAD with their multiple single bonds are highly flexible molecules and occupy 

significantly different conformations, which confirms the results of (Stockwell and Thornton, 

2006) that flexible ligands adopt a wide range of conformations when bound by non-

homologous proteins. The bound conformation often differs significantly from the global 

energy minimum conformation in the unbound state (Nicklaus, et al., 1995). 

 

Table 3.1: Statistics on coefficient distances. 

Ligand Set 

(set size) 
Avg 

coeff dist 
Std dev 

coeff dist 
Min 

coeff dist 
Max 

coeff dist 

a) Statistics for ligand molecules 

GLC (5) 1.2 0.2 0.6 1.5 

PO4 (20) 1.2 0.2 0.4 1.9 

Steroids (5) 1.5 1.0 0.2 2.4 

AMP (9) 2.4 0.5 1.1 3.9 

Heme (16) 3.3 0.6 1.6 5.6 

FMN (6) 3.8 0.6 2.3 4.6 

ATP (14) 4.3 0.7 1.4 6.2 

NAD (15) 6.8 0.9 4.5 9.8 

FAD (10) 7.1 1.0 3.8 9.4 

Total (100) 3.6 1.9 0.2 9.8 

 

b) Statistics for protein–ligand interacting reduced cleft models 

PO4 (20) 4.6 0.9 2.2 8.2 

Steroid (5) 5.4 0.8 4.1 6.3 

GLC (5) 5.6 1.4 3.6 7.6 

AMP (9) 6.1 0.8 4.5 8.3 

Heme (16) 6.5 1.0 3.8 8.9 

FMN (6) 7.1 0.6 5.5 8.2 

ATP (14) 7.4 0.7 5.2 10.1 

FAD (10) 8.8 0.3 6.6 11.9 

NAD (15) 9.0 1.8 6.2 13.7 

Total (100) 6.6 1.7 2.2 13.7 

The coefficient distances are ordered by their average for (a) ligand molecules and (b) protein-ligand 

interacting reduced cleft models. Surface RMSD values can be obtained by dividing the coefficient 

distances by 3.54 (see correlation in Figure 3.5). 
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Figure 3.6: All-against-all coefficient distance matrices for Data set I. 

Matrices of all-against-all coefficient distances visualising the shape (dis)similarity between (a) ligand 

molecules and (b) protein-ligand interacting region cleft model shapes. The coefficient distances are 

coloured from green to orange to yellow reflecting low, intermediate and high coefficient distances. 

Coefficient distances higher than 10 are left out (white). The ligand sets are separated by a grid and 

labelled on the left of the figure and on bottom of each matrix. 
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The shape similarity between the ligand sets can be assessed in the distance matrix of Figure 

3.6a. The matrices in Figure 3.6 show the all-against-all shape comparisons for (a) all the 

ligand molecules in Data set I and (b) all the binding pockets defined by the Interact Cleft 

Model (see section 3.2.1.2). The coefficient distances are colour coded according to the 

similarity level they reflect, ranging from dark green for highly similar shapes (low coefficient 

distances) to yellow and white for very different shapes (high coefficient distances). From 

Figure 3.6a it becomes evident that almost all ligand sets can be distinguished from each 

other just based on their shapes. Apart from FAD, NAD and partially ATP, all ligand sets are 

more similar to themselves than to other ligand shapes. The squares in the diagonal in the 

matrix from bottom left to top right contain lower coefficient distances than the rest of the 

matrix. The most distinct example is the ligand set of phosphate molecules. These are least 

similar to the large FAD, NAD and heme molecules (white rectangle in the matrix), highly 

dissimilar to AMP, ATP and FMN (yellow rectangles), dissimilar to steroid molecules (orange 

rectangles) but reasonably similar to glucose molecules (bright green rectangles).  

 

Table 3.2: AUCs for various classification approaches on Data set I. 

Cleft model Cleft 

vs. 

Cleft 

Cleft 

vs. 

Ligand mol 

Ligand mol 

vs. 

Cleft 

Ligand mol 

vs. 

Ligand mol 

a.) Comparison with standard shape coefficients incorporating size and shape 

Conserved 0.53 0.54 0.52 

Interact 0.77 0.63 0.56 
Ligand  0.85 0.69 0.59 

0.92 

 

b.) Comparison with normalised shape coefficients corresponding to shape only 

Conserved 0.52 0.52 0.55 0.87 

Interact 0.64 0.64 0.73  

Ligand  0.74 0.68 0.83  

 

c.) Comparison with the size of the shapes, which corresponds to the zeroth order in the spherical 
harmonics expansion 

Conserved 0.53 0.51 0.51 0.94 

Interact 0.73 0.51 0.51  

Ligand  0.76 0.52 0.51  

Average area under receiver operator curves (AUC) for different comparisons with different cleft 

models. Different cleft models in the rows are related to comparison combinations between cleft 

model and ligand molecules in the columns 
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To assess how well shape information alone can identify a ligand, each ligand set in 

Data set I was !predicted" by the ligand to which its shape matched most closely. From the 

set of obtained true and false positives and their match scores, a ROC (Receiver Operating 

Characteristics) curve was plotted and the area under the curve (AUC) calculated (see for 

details section 3.2.2). Values of AUC close to 1.0 correspond to perfect performing predictors 

whereas values close to 0.5 suggest that the predictor performs no better than random. Table 

3.2a shows the AUC values obtained for various cleft and ligand molecule comparisons for 

the different cleft models. The ligand vs. ligand molecule comparison gives an AUC of 0.92, 

which shows that shape alone is a good but not a perfect predictor. Closer investigation of the 

AUC values of each ligand set reveal that rigid ligands are perfectly classified whereas 

flexible ligands like FAD, NAD and partially ATP adopt a wide variety of conformations and 

complicate the prediction of their ligand type from shape alone. Nevertheless, FAD and NAD 

molecules achieve an AUC value of about 0.75 and ATP scores an AUC value of 0.87. Thus, 

despite highly flexible, they retain a signature that allows them to be distinguished from other 

ligands. 

3.4.2.2 Binding pocket shape diversity in ligand sets 

Of more practical interest, is how variable and identifiable are the binding pockets. The same 

analyses were performed on the three cleft models (Table 3.1b, Table 3.2a, Figure 3.6b). 

Briefly, the investigations showed that binding pockets do vary their shapes in non-

homologous proteins just like the ligand molecules. 
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Figure 3.7: Shape variation of protein binding pockets and ligands. 

Diversity of binding pocket shapes shown for 5 examples of AMP, ATP, and NAD. The binding pockets 

at the top are manually chosen. The other binding pockets are the most different ones to the manually 

chosen top binding pockets. Binding pockets correspond to protein-ligand interacting region cleft model 

and are oriented according to the adenine ring of their bound ligand and represented by a spherical 

harmonic reconstruction of the order lmax = 14. PQS-Ids of associated protein structures are provided 

below each binding pocket. 



Chapter 3: Shape Variation in Binding Pockets and Ligands 

 

82 

Figure 3.7 shows a few examples of how the shapes of different protein binding pockets 

binding the same ligand vary. The binding pockets are modelled as Interact Cleft Models and 

oriented by superposing the adenine rings of the molecules. The cleft models at the top were 

manually chosen and the four models with the highest coefficient distance are displayed 

below. The high shape variation of Interact Cleft Models is numerically expressed by an 

average coefficient distance of 6.6 (surface RMSD ~2 Å), see Table 3.1b. Nevertheless, 

despite this low shape similarity of the binding pockets, the average AUC value of 0.77 for the 

Interact Cleft Model in Table 3.2a suggests that there must be partial common shape 

information in each ligand set. 

3.4.2.3 Binding pocket shape vs. ligand shape 

The average coefficient distances for the binding pockets are correlated to a certain extent 

with the flexibility of the bound ligand. Binding pockets binding rigid ligands like glucose and 

steroid molecules tend to have lower coefficient distances than binding pockets binding 

flexible ligands like FAD and NAD, see Table 3.1b. More interestingly, for binding pockets 

higher shape distances are observed than for ligand shapes, as shown in the coefficient 

distance distributions of Figure 3.8. This suggests that binding pockets are more variable in 

their shapes than their ligand counterparts. The binding pocket distances are so high that for 

more than half of all ligand sets the most similar binding pockets are less similar than the 

most different ligand shapes. The coefficient distances for the ligand molecules range 

between 1 and 4, whereas Interact Cleft Models show distances around 5 to 8. However, for 

FAD, NAD and partially ATP and heme the distributions overlap.  

 

Additionally, for every ligand in Data set I, one can order all the other ligands by their 

coefficient distance from it. The rank of the first ligand, belonging to the same ligand set in 

each case, is plotted in the histogram in Figure 3.9. The green bars show that in 89% of the 

cases the closest ligand belongs to the same ligand set. Repeating the same procedure for 
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the Interact Cleft Model (red bars) reveals that the percentage at the first rank drops to 44%. 

When each Interact Cleft Model is compared to all ligand molecules (orange bars) the 

percentage at the first rank drops even to 27% and with more than half of the first true hits 

being beyond the rank order of 10. 

 

Detailed examination of the crystallographic structures of the proteins shows that a perfect fit 

of the ligand into its binding site is never achieved. Not every ligand atom makes contact with 

the protein. Consequently, there is always space between parts of the ligand and the protein 

like a !buffer zone". Figure 3.10 illustrates that the buffer zone is partially occupied by 

crystallographic observable water. Thus on average, the Ligand and Interact Cleft Models are 

about 3 times larger in volume than their bound ligands (Table 3.3). Visual examples are 

given in Figure 3.2 and Figure 3.7. The difference in size means that the binding pocket of a 

small phosphate is able to accommodate an AMP, ATP, steroid or glucose molecule and this 

makes it impossible to match the ligands to their binding pockets on the basis of shape 

 

Figure 3.8: Histograms comparing binding site and ligand coefficient distances. 

Distribution of the coefficient distances for each ligand set. Green and red bars show the relative 

occurrence of the coefficient distances for ligand molecules and protein-ligand interacting region cleft 

models, respectively. 
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similarity alone. This is reflected in the maximum AUC value of just 0.69 for the cleft vs. ligand 

comparison in Table 3.2a.  

 

The higher shape variation of binding pockets compared to their ligand counterparts might 

give evidence that geometrical complementarity alone is in general not sufficient to drive 

ligand recognition in binding sites. According to the hypothesis of enzyme-transition-state 

complementarity (Benkovic and Hammes-Schiffer, 2003) protein binding sites are most 

complementary to the transition state of their ligand and not to their substrate or the product 

molecules (see section 2.3.2). A transition state cannot be observed in X-ray crystal 

structures (see Chapter 1). Therefore, a perfect complementarity between a protein and its 

ligand molecule can necessarily not be detected.  

 

 

Figure 3.9: Histogram of first true hits in coefficient distance calculations. 

Histogram of the relative occurrences of the positions that hold the most similar ligand set member. The 

positions are determined by ordering each coefficient distance list and recording the position of the first 

hit that belongs to the same ligand set when the list is walked down from best to worst. Green coloured 

bars illustrate the histogram for ligand molecules; red coloured bars show the histogram for protein-

ligand interacting region cleft models and orange coloured bars display the histogram for the Interact 

Cleft Model vs. ligand molecule comparison. 
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Table 3.3: Statistics on the volume of Interact cleft models. 

Ligand Set 

(set size) 

Avg Lig Vol 

[Å3] 

Avg Vol 

[Å3] 

Std Dev Vol 

[Å3] 

Min Vol 

[Å3] 

Max Vol 

[Å3] 

PO4 (20) 73 445 118 168 797 

GLC (5) 156 590 203 416 912 

Steroids (5) 280 903 171 607 1144 

AMP (9) 290 1097 156 774 1579 

ATP (14) 400 1416 186 822 1723 

FMN (6) 402 1443 265 1196 1879 

Heme (16) 610 1507 209 1031 2030 

NAD (15) 562 1809 305 486 2340 

FAD (10) 688 2099 224 1580 2507 

Total (100) 395 1279 515 168 2507 

The ligand sets are ordered according to the average volume of their ligands in the second column. 

3.4.2.4 Shape vs. size 

Although spherical harmonics expansion 

is an approach for shape description, size 

is intrinsically incorporated into the 

expansion coefficients and therefore the 

previous results contain both shape and 

size. To highlight the importance of shape 

alone, a normalisation on all coefficient 

vectors was performed. As the zeroth 

order of the spherical harmonic 

coefficients reflects the general size of a 

shape (see section 2.5.2.3.2), the division 

of all coefficients by the zeroth order 

coefficient, places the shapes on the 

same scale and thereby removes the 

influence of different sized objects. Table 

 

Figure 3.10: Buffer-zone and water 

molecules in binding sites. 

Not every ligand atom contacts a protein atom 

and thus leaves space between parts of the 

ligand and the protein. The space is partially 

occupied by crystallographic observable water 

molecules. An example is shown on the AMP 

binding pocket of PQS entry 1qb8, with the 

reconstructed pocket shape shown as a black 

coloured mesh, the ligand shown in varicolour 

and the oxygens of the water molecules shown 

as green coloured spheres. 
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3.2b and Table 3.2c show the AUC values for the classification using normalised coefficients 

(only shape incorporated) and zeroth order coefficients (only size incorporated) respectively. 

From the AUC values it can be observed that shape plays the main role in the cleft vs. ligand 

comparison and vice versa. For the clefts vs. clefts and ligands vs. ligands comparison size 

seems to outweigh the performance of shape alone. This is not remarkable, as the ligands in 

Data set I are almost all distinguishable by size. However, except for the cleft vs. cleft 

comparison of the Interact Cleft Models, it is remarkable how little the performance differs 

when using only shape for the classification. 

 

In fact, the size difference between binding pockets and ligands accounts for the failure of the 

shape comparison method to match binding pockets to their ligands as described in the 

previous subsection. With the normalisation, the size is excluded and a successful matching 

solely on shape becomes possible. As a result, the AUC value for the ligand vs. cleft 

comparison rises to a maximum of 0.83 (see Table 3.2b). Interestingly, the cleft vs. ligand 

comparison still gives relatively low AUC values, which is caused mainly by the FAD and NAD 

ligand sets. The average coefficient distances using normalised coefficients for FAD and NAD 

binding pockets are smaller than for their ligands, due to imperfect complementarity. 

3.4.2.5 Performance of cleft models 

The poor performance of the Conserved Cleft Model is mainly caused by enzymes in 

Data set I that have at least two binding pockets next to each other (one for the cofactor and 

one for the substrate). As both binding pockets are important for the function, both will be 

highly conserved. Thus reducing the SURFNET spheres via conservation still results in a 

larger merged cleft model, consisting of the cofactor and substrate binding pocket. This is a 

common problem and at least 27 ligands in Data set I are known to be cofactors for which a 

!combined" binding pocket was obtained. The selection of conserved residues is further 

complicated by the fact that not only binding site residues are highly conserved but also 
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residues that are essential for the structural integrity of a protein, e.g. both cysteines in a 

disulphate bond. Chelliah and co-workers were able to differentiate between both types of 

conserved residues by adding further restraints to the conservation calculation (Chelliah, et 

al., 2004). Their powerful discriminator was based on environment specific substitution tables 

that for each amino acid listed substitution likelihoods in dependency to the local environment 

of the amino acid in a folded protein. Although the application of such substitution tables is 

likely to improve the performance of the Conserved Cleft Model, it would not solve the 

problem of obtaining distinct cleft models for binding sites that are located next to each other. 

 

Another issue is the divergence of substrates in some large protein families like the SDR 

protein family (Oppermann, et al., 2003), where the binding site is not more conserved than 

the rest of the protein. In these and similar cases the Conserved Cleft Model contains only a 

portion of the binding pocket (see Conserved Cleft Model of NAD binding pocket in Figure 

3.2).  

 

It is also important to note the number of homologous proteins used to calculate the sequence 

conservation and their sequence similarity. Few sequence homologs will result in an 

unreliable conservation score and therefore in an unreliable binding pocket prediction. 

Furthermore, PSI-BLAST, which is used by ConSurf does not distinguish between 

orthologous and paralogous sequences in its search for homologous proteins. The distinction 

is however important. While both sequences originate from the same ancestor, only the 

former has a high probability to observe the same function and thus support the discovery of 

functionally important residues in a protein. Paralogous proteins are the result of gene 

duplication events that can withdraw the evolutionary pressure from the gene duplicates to 

maintain their function enabling them to evolve new protein functions. As a consequence, 

paralogous proteins are inappropriate for identifying functionally important residues but are 

rather beneficial for determining sequence and structure based factors that can lead to 

alternations of protein functions (Dunbrack, 2002). 
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3.4.3 Limitations and problems 

3.4.3.1 Binding pocket prediction 

The main obstacle of the approach presented here, is the accuracy of the cleft model and in 

particular the binding pocket prediction step for cases where no information about the location 

of a binding site is known. A number of approaches exist (see section 2.3.2), but generally, an 

accurate solution remains unavailable.  

 

Other problems involve some general characteristics of protein structures. For example, loop 

regions are often missing in crystallographic structures due to their flexibility, making it difficult 

to predict the binding pocket for those built up partially by loops. Nine protein structures in 

Data set I feature missing loops close to binding sites. Furthermore, many protein structures 

are solved as part of functional assessment experiments, where functionally relevant amino 

acids are mutated to study their effects on the protein structure and function. Mutations are 

often performed on ligand interacting residues resulting in a slightly different binding pocket 

shape. Such mutations are found in 26 protein structures in Data set I. Other more technical 

problems involve the accuracy of X-ray structure coordinates. The median value of the 

estimated standard deviation for atoms in crystallographic structures ranges from 0.1 to 0.5 Å 

(DePristo, et al., 2004; Laskowski, 2003). Neither SURFNET nor HBPLUS account for these 

uncertainties in their algorithms, which leads to missing SURFNET spheres in some of the 

cleft models. Furthermore the crystalline arrangement of the proteins in crystals often 

constrains protein molecules to adopt a non-biological conformation at the crystal contacts 

(Jacobson, et al., 2002). Such constraints can affect the structure of binding sites as shown 

for the active site of a homodimeric cytoplasmic malate dehydrogenase (Birktoft, et al., 1989). 
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3.4.3.2 Partially bound ligands 

Some ligands are bound only partially inside a binding pocket with their other end protruding 

into the solvent, such as the NAD and the heme group in Figure 3.11. As the spherical 

harmonic functions work globally on the whole shape they are not well suited for local shape 

matching. Finding the correct ligand in such cases will not succeed. However, if the partial 

 

Figure 3.11: Partially occupied binding pockets. 

Two examples for a partially bound ligand to its protein. The protein is represented as a transparent 

surface coloured in grey, the reconstructed binding pocket shape (protein-ligand interacting region 

cleft models) is shown as a red coloured mesh and the ligands are varicoloured. The top example 

shows an NAD (PQS-Id: 1hex) from which only the front part is surrounded by amino acids. The 

bottom example displays a heme group (PQS-Id: 1sox), which protrudes to the solvent with its two 

carboxyl-groups. 
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bound state is a common picture for the entire protein family, a cleft vs. cleft comparison 

could help to find a homologous family member. 

3.4.3.3 Star-like shapes and rotational variance 

There are some minor problems related to properties of the spherical harmonic. These 

functions are suitable for describing the global surface of star-like shapes. However, binding 

pockets and ligands are not always star-like in shape. In cases where the ray from the centre 

of gravity to the surface penetrates the surface more than once, the outermost surface point 

was used to approximate the global shape. This can bring some loss of shape information but 

should not change the matching results significantly.  

 

Furthermore, the coefficient vectors are not rotationally invariant. Although obtaining 

coefficient vectors for all four axis-flip-combinations solved the flipping-problem, it is still 

possible that a rotationally invariant shape descriptor will improve the results. 

3.4.3.4 Single property descriptor 

The molecular recognition of a ligand is induced by physicochemical properties in addition to 

the shape, such as electrostatic potential and hydrophobicity. Including such features in the 

cleft models and the ligands might improve the observed results (see section 4.3.5). 

3.5 Conclusions 

In this chapter, a fast and efficient spherical harmonics shape descriptor was employed to 

compare binding pocket and ligand shapes (Figure 3.2 to Figure 3.5). It was shown that the 
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shape descriptor is able to reflect the conformational state of the ligands allowing correct 

classification of rigid ligands, but poor classification of highly flexible ligands (Figure 3.6, 

Table 3.2). 

 

In addition, it was shown that the assumption about proteins binding similar ligands having 

similar geometrical properties is only partially true (Figure 3.7). As expected, the similarity is 

closely related to the flexibility of the ligand molecules. The binding pockets are observed to 

be more variable in their shapes than their bound ligand molecules with a difference in their 

average coefficient distances of 3.0, which corresponds to 0.9 Å surface RMSD (Figure 3.8, 

Table 3.1). This difference in shape variation between the cleft models and ligand molecules 

shows that shape complementarity in general is not sufficient to drive molecular recognition 

alone and requires additional physicochemical properties (see Chapter 4).  

 

Furthermore a !buffer zone" can be found between the ligand and ligand interacting protein 

atoms which is partially occupied by water molecules so that on average binding pockets tend 

to be 3 times larger than their bound ligand molecule (Figure 3.10, Table 3.3).  

 

The normalisation procedure of the standard spherical harmonic coefficients enabled the 

investigation of the contribution of shape and size to the classification performance (Table 

3.2). Shape alone outperforms the contribution of size alone in the classification, but size 

does surprisingly well when comparing clefts to clefts and ligands to ligands. However, the 

molecular sizes of the ligand sets in this study were almost all distinguishable, which would 

not be the case if all metabolites were considered.  

 

The relationship between classification performance and accuracy of the cleft models points 

towards the need for a good binding pocket model (Table 3.2). The random classification of 

the conserved cleft regions proved that residue conservation does not provide sufficiently 

accurate binding pocket models and cannot be used for function prediction. However, the 
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global shape descriptor combined with the Interact Cleft Model is an elegant descriptive 

method for comparing binding pocket shapes in protein families.  
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Chapter 4  

On the Diversity of Physicochemical 

Environments Experienced by Identical 

Ligands in Binding Pockets of 

Unrelated Proteins  

4.1 Introduction 

It is generally assumed that the molecular recognition between protein receptors and ligand 

molecules requires in addition to geometrical complementarity, the physicochemical 

complementarity between both binding partners (Tsai, et al., 2002). In particular, the 

complementarity derived from long-range electrostatic interactions is believed to be the 

driving force for molecular interactions. For example, proteins binding an adenine or guanine 

were found to discriminate both molecular moieties on the basis of electrostatics (Basu, et al., 

2004). Members of the copper zinc superoxide dismutase protein family attract positively 

charged metal ions into their binding sites through a highly negative electrostatic field 

(Livesay, et al., 2003) and DNA-binding proteins attract negatively charged DNA molecules 

through positively charged patches on their protein surface (Tsuchiya, et al., 2004). Different 

studies have been performed to quantify the electrostatic complementarity between binding 

partners. In particular, early works by Nakamura and coworkers (Nakamura, et al., 1985a; 

Nakamura, et al., 1985b; Tsuchiya, et al., 2006), Chau & Dean (Chau and Dean, 1994a; Chau 

and Dean, 1994b; Chau and Dean, 1994c) and Naray-Szabo (Gerczei, et al., 1999; Naray-

Szabo, 1989; Naray-Szabo and Nagy, 1989) analysed the electrostatic lock-and-key model of 
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single ligand and protein binding sites by mapping the Molecular Electrostatic Potential (MEP) 

of both binding partners on a set of reference points on their surfaces. The MEPs on the 

reference points were eventually compared following the host-on-guest and guest-on-guest 

model. These studies came to the conclusion that long-range effects of partial charges are 

essential for creating complementary electrostatic environments between binding site and 

ligand, but that partial charges on protein and ligand lack face-to-face complementarity. 

Similar conclusions were drawn for protein-protein interfaces (McCoy, et al., 1997).  

 

It has been suggested that physicochemical interactions in natural complexes lack exact 

complementarity (Kangas and Tidor, 2001) most likely to avoid irreversible ligand binding. In 

evolutionary terms, one could state that proteins have evolved to bind their ligand 

counterparts just as much as necessary to perform their biological function. Once a protein 

has established its function, a further increase in binding affinity becomes unnecessary and 

with respect to the irreversible binding even disadvantageous. In this context, Ledvina and 

coworkers showed that some phosphate receptors, sulphate binding proteins, flavodoxin 

structures and DNase proteins exert an intense negative electrostatic potential at their binding 

sites despite binding a highly negative ligand (Ledvina, et al., 1996). The proteins stabilize the 

anion charges by van der Waals interactions and an extensive local hydrogen-bonding 

network comprising main chain NH groups and hydroxyl side chains. The question remains 

open whether in their evolutionary past these enzymes were binding ligands with 

complementary electrostatic potentials. Similarly, Herschlag and colleagues" study of the 

electrostatic and geometric complementarity in the oxyanion hole of ketosteroid isomerase 

concluded that electrostatic complementarity makes only a modest contribution to the 

enzyme"s catalytic mechanism which is primarily driven by geometrical complementarity 

(Kraut, et al., 2006). Nakamura listed four reasons for the absent of electrostatic 

complementary in some protein ligand complexes: (1) the ligand interacts mainly with the 

solvent, (2) hydrophobic interactions are strong, (3) dissociation of the ionisable protein 

residues was incorrectly assigned and (4) additional ionic ligands were affecting the 

experienced electrostatic potential of the ligand (Nakamura, et al., 1985a). 
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To gain a wider perspective on physicochemical complementarity, the physicochemical 

characteristics of the 100 protein binding sites in Data set I were analysed. Countless 

applications have been developed in the past for analysing active and binding sites, mainly in 

the field of rational drug design. Most of the programs like LigBuilder (Wang, et al., 2000b),  

MCSS (Miranker and Karplus, 1991), PocketFinder (An, et al., 2005), Q-SiteFinder (Laurie 

and Jackson, 2005) are derivatives of the program GRID (Goodford, 1985). GRID, developed 

by Goodford and coworkers, analyses the physicochemical properties of protein binding sites 

by computing the interaction energy between various spherical probes and the atoms of the 

protein using a standard potential energy function. Other programs provide different 

information about a given binding site. For example, GRASP (Nicholls, et al., 1991), although 

primarily a powerful protein structure visualization software, has a built-in Poisson-Boltzmann 

Solver which allows the calculation and visualisation of the electrostatic potential in and 

around the protein binding site. The program HINT (Kellogg, et al., 1991) calculates the 

hydrophobicity of a molecule using experimental octanol/water partition coefficients and 

constructs a hydropathy field or complementarity map for a protein binding site. The CASTp 

(Binkowski, et al., 2003b) database is a repository on protein clefts and voids and provides 

area and volume measurements for each cavity. I have developed CleftXplorer (see Chapter 

3), which uses spherical harmonic expansion coefficients to analytically describe the shape 

and size of binding sites and ligands molecules (see Chapter 3). To obtain a more complete 

picture also of the physicochemical properties within binding pockets, the shape descriptor in 

CleftXplorer was extended by various physicochemical descriptors that characterise 

electrostatic charged-charged interactions, hydrophobic interactions, hydrogen bonds and van 

der Waals interactions (see 4.2 Methods). 

 

Despite differences in their algorithms, all methodologies that aim to identify a ligand that 

binds to a given protein binding site or, indeed, identify what the cognate ligand might be, 

assume that ligands and binding sites exhibit geometric as well as physicochemical 

complementarity. If this assumption is correct, binding sites that bind the same cognate ligand 
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should share very similar properties. Here, such an analysis is reported revealing a surprising 

diversity of properties among binding pockets binding the same ligand. 

4.2 Methods 

4.2.1 Calculating protein physicochemical 

properties on ligand molecules 

The computer program CleftXplorer (see Chapter 3) was modified so that in addition to 

describing a 3D shape of a binding pocket or a ligand molecule using spherical harmonics, it 

could describe physicochemical properties mapped onto the surface of that shape. The 

physicochemical properties included electrostatic potentials, hydrophobicity scores, hydrogen 

bond donor, acceptor and van der Waals potential energies. These were computed using 

standard software packages, supplemented by own code as described below. For the 

purpose of this chapter, the physicochemical properties were not mapped on the surface of 

the shapes, but rather onto the atom centre coordinates of each ligand in the data set, 

thereby following a similar approach to GRID (Goodford, 1985). CleftXplorer"s algorithm is 

simple and consists of three steps: 

 

1.) Remove all crystallographically observed water molecules from the protein structure 

file. The computed electrostatic potential and hydrophobicity score implicitly account 

for surrounding water molecules. 

2.) For each ligand, identify and remove those polypeptide chains and Neighbouring 

Chemical Compounds (NCCs) that lie within 9 Å of any ligand atom. NCCs 

correspond to HET groups such as metals, cofactors and coenzymes. The cut-off 
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distance of 9 Å is in accordance with the typical interaction ranges of non-bonded 

interactions (Mackerell, 2004). This speeds up the calculations while having 

negligible effects (Basu, et al., 2004; Nielsen and McCammon, 2003) on the 

calculated properties.  

3.) At the centre of each ligand atom, calculate the value of each physicochemical 

property, using the atoms of the retained protein chains and NCCs. 

4.2.2 Electrostatic potential 

The electrostatic potentials were calculated by solving the nonlinear Poisson-Boltzmann 

equation (see section 2.4.2.2.1) using APBS (Baker, et al., 2001) (version 1.0). A grid size of 

1 Å was chosen and the finite difference discretisation technique (Klapper, et al., 1986) was 

applied. Calculations were run at room temperature with a counter-ion concentration of 0.1 M. 

The continuum solvent model was allocated a dielectric constant of $S = 78. Protein and 

ligand atoms as well as NCCs were assigned a dielectric constant of $M = 4. Hydrogen atoms 

were added to the protein structure using the program REDUCE (Word, et al., 1999) (version 

3.13) which optimizes the protein"s hydrogen bond network, whilst flipping ASN or GLN side 

chain amides where appropriate. Protonation states of histidine residues were approximated 

using PROPKA (Li, et al., 2005) at a pH given for the mother liquor in the PDB or in the 

primary literature of the crystal structure. Partial charges and atom radii from the PARSE 

parameter set (Sitkoff, et al., 1994) were assigned to all protein atoms using the automated 

procedure of PDB2PQR (Dolinsky, et al., 2004) (version 1.3.0). The reported potentials from 

APBS were converted from kT/e to kcal/mol•e by applying the conversion factor of 0.592. 

 

The ligands in Data set I as well as all NCCs were assigned Pauling"s van der Waals radii 

(which are also used in the PARSE parameter set). All ligands in the data set were left 

uncharged in the binding sites, to account for the reduction of the screening effect by the 
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ligand molecule. Partial charges for the NCCs were obtained from the Merck Molecular Force 

Field (MMFF94) (Halgren, 1996) as implemented in an in-house modified version of the 

Chemistry Development Kit (CDK, version 2.0.2) (Steinbeck, et al., 2003) for Java. The 

correctness of the MMFF94 partial charges was checked against the MMFF94 validation suite 

(http://www.ccl.net/cca/data/MMFF94/). For simplicity, metal ions were assigned partial 

charges equal to their formal charge following the approach of MMFF94. Iron ions in heme 

molecules were treated as an integral part of the molecule and assigned a partial charge of 

+2e irrespective of their oxidation state. Hydrogen atoms were added automatically to the 

ligands and NCCs at pH 7 using OpenBabel (Guha, et al., 2006) (version 2.1.1) and in the 

few cases where the automatic assignment failed were added manually using PyMOL 

(version 1.0) (DeLano, 2002). The spatial position of the hydrogen atoms were optimized 

within the binding site using REDUCE. 

4.2.3 Scoring the hydrophobic environment 

The calculation of CleftXplorer"s hydrophobicity scores follows the approach of HINT (Kellogg, 

et al., 1991) and the hydrophobicity potential of (Fauchère, et al., 1988) in relating the 

hydrophobicity score to octanol-water partition coefficients (logP) values. CleftXplorer differs 

in that it uses atomic based rather than fragment based logP values. This makes CleftXplorer 

applicable to a wider spectrum of molecules especially those for which HINT has no fragment 

parameters. The atomic logP values were calculated using a modified version of the XlogP 

(Wang, et al., 2000a) algorithm in the CDK. Modifications were required to add logP values 

for charged molecules as by default, logP values are defined only for neutral molecules (see 

section 2.4.3.3). Some of the ligands in Data set I, as well as some of the NCCs contain 

charged moieties (e.g. PO4 groups), which increase the solubility of the molecule in water. If 

the molecule is treated as neutral, its hydrophobicity will be overestimated. To reduce the 

logP value for charged atoms, a correction factor of -1.083 was introduced that corresponds 
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to half of the zwitterion correction factor used in the XlogP algorithm for the hydrophobicity 

calculation of amino acids. Metal ions were assigned an arbitrary logP = –3, assuming that 

metal ions in solution minimally interfere with the water network. For protein atoms logP 

values were calculated considering each amino acid within the tripeptide Gly-X-Gly, where X 

is the amino acid of interest. The values were calculated relative to glycine, following the 

method of calculating the Hansch "-constant (Fauchère and Pliska, 1983), by subtracting the 

mean atomic logP value for glycine atoms from each of the atomic logP values giving an 

atomic logPrel value. Based on logPrel, the energy of transfer from water to organic solvent, 

"GlogP, was inferred following the approach of (Eisenberg and McLachlan, 1986) by applying 

the Boltzmann equation from statistical thermodynamics: 

 

! 

"G
logP

= logPrel
# 2.30RT = logPrel

#1.36 kcal/mol

! 

   , ( 4.1 ) 

 

 

Figure 4.1: Scatter plot of "G
logP

 versus "G
obs

 

Scatter plot comparing for protein amino acid their XlogP based solvation energies #G
logP (as computed 

in this work) with published experimental solvation energies #G
obs (Eisenberg and McLachlan, 1986). 
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where R is the Boltzmann factor and T is room temperature in Kelvin. The XlogP based 

!hydrophobicity energy" correlates with the experimental free energy of transfer (Eisenberg 

and McLachlan, 1986) with R2 = 0.92. A similar approach to the molecular lipophilic potential 

(MLP) (Heiden, et al., 1993; Mancera, 2007) was used to map the !hydrophobicity energy" to 

any point in space with the following sigmoid potential function that was suggested by Levitt 

(Brylinski, et al., 2006; Levitt, 1976): 

 

! 

f dist rel( ) =1- 0.5 7dist rel
2

- 9dist rel
4

+5dist rel
6

- dist rel
8

( )

! 

   , ( 4.2 ) 

 

where the value of 

! 

dist rel  ranges from 0 to 1 and corresponds to the distance between a 

ligand and protein or NCC atom divided by the cut-off distance of 9 Å.  

 

To calculate the total Hydrophobic Environment Score (HES) at a ligand's atom centre, it was 

further necessary to sum up the product between the distance function 

! 

f(dist
rel
) and the 

energy of transfer "GlogP over all n neighbouring atoms. Following equation expresses this 

simple sum and gives the final equation for HES: 

 

! 

HES = f(dist
rel
)i " #Gi

logP

i=1

n

$

! 

   . ( 4.3 ) 

4.2.4 Other physicochemical properties 

CleftXplorer calculates van der Waals potential energies using the !buffered 14-7" potential 

equation from MMFF94 (Halgren, 1992). Hydrogen bond donor and acceptor potential 

energies are calculated according to the knowledge-based potential energies from 

(Kortemme, et al., 2003). These orientation dependent hydrogen-bonding potentials were 

derived from geometric features found in a large set of high-resolution protein structures. For 

more details, see the cited publications. 
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4.2.5 Average properties and their variation 

Once all physicochemical properties for all ligands in a ligand set have been calculated, the 

physicochemical property scores on the same atoms in the same ligand in different binding 

sites were averaged and their standard deviation computed. For this purpose, an atom-

mapping table was created mapping corresponding atoms between ligand A and ligand B, 

where both were from the same ligand set. In cases where the molecular moiety had 

rotational symmetry, atoms at similar spatial positions were associated to each other, after 

the molecules were manually aligned on the neighbouring moieties. Atoms in the phosphate 

ligand set were mapped randomly as a unique mapping due to symmetry was not possible. 

However, the small size of phosphate molecules should generally result in similar 

physicochemical property scores over the whole molecule.  

 

In addition to the standard deviation, the relative number of sign-changes in the property 

scores for each atom was calculated as a further mean to assess the variation of the 

physicochemical properties in binding sites. The Sign Change Ratio (SCR) for an atom i in a 

ligand is given by 

 

! 

SCR
i
=1"

max(N
i

+
,N

i

"
)

N
i

total

! 

   . ( 4.4 ) 

 

! 

N
i

+ is the number of positive score values, 

! 

N
i

"  the number of negative score values and 

! 

N
i

total  is the size of the ligand set. The functional range of SCR is between 0 and 0.5, with 0 

denoting no variation (all corresponding atoms have equal sign), and 0.5 indicating highest 

variation (one half of corresponding atoms are positive, the other half negative). 



Chapter 4: Physicochemical Variation in Binding Pockets 

 

102 

4.2.6 Data set 

The analysis in this chapter was performed as in Chapter 3 on the Data set I (see Appendix 

A, Table A.1). As mentioned in the previous chapter, nine protein structures in Data set I have 

loop regions in the proximity of their binding sites for which, due to insufficient experimental 

data, no atom coordinates are available in the PDB file. These loops regions probably exhibit 

high flexibility and contribute insignificantly to the binding process. Therefore, no attempt was 

made to include them in the physicochemical property calculations.  

4.3 Results 

All calculations shown in this section were performed with all five physicochemical properties, 

i.e. electrostatic potentials, hydrophobicity scores, hydrogen bond donor, acceptor and van 

der Waals potential energies. However, the discussion of the results focuses on the 

ElectroStatic Potential (ESP) and the Hydrophobic Environment Score (HES) due to their 

importance and discriminative power in molecular recognition events.  

4.3.1 Factors affecting the electrostatic potential 

The protein electrostatic potentials on ligand molecules were tested with and without 

neighbouring chemical components (NCC). NCCs were defined as all HET groups (e.g. 

metals, cofactors or coenzymes) within 9 Å distance to a ligand in the PQS protein structure 

(see section 2.1.2). Most common NCCs were found to be charged groups.  
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In almost all the binding pockets the electrostatic potential was significantly changed by the 

addition of NCCs. Figure 4.2 shows some extreme examples of the electrostatic potential 

calculated with and without NCCs for those ligands that experience a potential sign change 

for at least 80% of their atoms. For example, in the human and bovine serine/threonine 

phosphatases 1a6q and 1tco respectively, there are highly repulsive forces between the 

negatively charged phosphate groups and the protein until the effect of the NCC inverts the 

electrostatic potential. Of the 100 ligands in the data set, 67 had a total of 144 NCCs, of which 

63 were metals mostly close to AMP, ATP or phosphate molecules. For the remaining 33 

ligands (mostly HEM, NAD and steroid) no NCC was found in the PQS entry but their 

 

Figure 4.2: Influence of NCCs on protein!s electrostatic potentials 

Electrostatic potentials energies from the protein mapped on ligands with and without Neighbouring 

Chemical Compounds (NCC). NCCs are all small molecules in the proximity of 9 Å to the ligands above. 

Depicted are those ligands from Data set I that experience for at least 80% of their atoms a potential 

sign change upon including NCCs in the potential calculation. The ordering from top left to bottom right 

is according to the percentage of atoms exhibiting a sign change. The electrostatic potentials are 

coloured from red to white to blue for potential energies below -5 kcal/mol to 0 kcal/mol to 5 kcal/mol. 

PQS identifier of the protein structures and the PDB three letter code of the cognate ligand together with 

the PDB three letter code of the NCCs are given between each pair. 
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presence in vivo can, of course, not be excluded. From these results, it appears that a protein 

on its own often lacks the required physicochemical properties for the binding of its cognate 

ligand and requires the assistance of inorganic NCCs (Thompson and Simonson, 2006). For 

this reason NCCs were included for all the rest of the calculations in this chapter. 

 

Further significant changes in the electrostatic potentials were observed when the dielectric 

constant of a ligand was changed from the solvent dielectric constant of $S = 78 to the protein 

dielectric constant of $M = 4. This change reduced the screening of electrostatic charges 

around the ligand by the solvent and allowed charges farther away from the ligand to affect 

the electrostatic potential at the ligand site. The exclusion of the solvent screening sometimes 

changes the sign of the potential but more often only strengthens the interaction energy while 

preserving the sign. Only eleven ligands in Data set I experienced a sign change for more 

than 25% of their atoms (see Figure 4.3). The best strategy for computing charges and the 

choice of dielectric is still a matter under debate (Mackerell, 2004; Ponder and Case, 2003), 

but since the low dielectric constant seems more physically realistic, it was adopted 

throughout this chapter. For statistics on the influence of partial charges and radius of solvent 

on Poisson-Boltzmann electrostatics, see (Shen and Wendoloski, 1996). 
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Figure 4.3: Influence of dielectric constant on protein!s electrostatic potentials. 

Electrostatic potentials from the protein mapped on ligands without neighbouring chemical 

compounds but different dielectric constant assigned to the ligands. The potentials on the right were 

calculated with the ligand atoms having a dielectric constant of $M = 4, which excludes the 

electrostatic screening effect of the solvent at the ligand positions. The potentials on the left mimic an 

empty and fully solvated binding pocket and were calculated setting the ligand"s dielectric constant to 

the solvent dielectric constant of $S = 78. Depicted are those ligand molecules in Data set I that 

experience a electrostatic potential sign change upon dielectric constant change for at least 25% of 

their atoms. The ordering from top left to bottom right is according to the percentage of atoms 

exhibiting a sign change.  

 



Chapter 4: Physicochemical Variation in Binding Pockets 

 

106 

4.3.2 Physicochemical properties of proteins in 

ligand binding sites 

4.3.2.1 Electrostatic potential on ligands 

Figure 4.4, Figure 4.7 and Figure 4.9 show examples of the ESP experienced by all ATP, 

NAD and heme ligands, respectively, in Data set I. For the ESP of the remaining ligand sets, 

see Figure 4.10. 

 

Table 4.1: Average and standard deviation of physicochemical properties. 

Property All AMP ATP FAD FMN GLC HEM NAD PO4 Steroid 

Electrostatic 

Potential 

(kcal/mol•e) 

1.96 

±6.75 

1.53 

±5.87 

11.33 

±9.13 

5.27 

±5.93 

4.81 

±7.44 

-7.17 

±4.65 

-3.11 

±8.30 

0.03 

±6.41 

17.14 

±14.64 

-1.94 

±3.93 

Hydrophobicity 

Environmental 

Score (HES) 

0.70 

±1.53 

-0.65 

±2.53 

-1.02 

±2.00 

0.94 

±1.21 

0.00 

±1.39 

-0.45 

±1.83 

2.30 

±1.46 

0.39 

±1.22 

-3.65 

±4.24 

2.87  

±1.19 

Average and standard deviation of the experienced electrostatic potential and hydrophobicity 

environmental scores for different ligand sets. The lowest and highest average score values for each 

property is coloured purple and green respectively. 

4.3.2.2 Adenosine-5'-triphosphate (ATP) 

An ATP molecule consists of an aromatic adenine ring, a ribose sugar and a negatively 

charged triphosphate group. For recognition and binding, the protein is expected to provide a 

positive electrostatic potential for complementarity to the aromatic ring and in particular the 

triphosphate tail. Figure 4.4 confirms this expectation showing positive electrostatic potentials 

for all ATP binding sites.  
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Figure 4.4: Electrostatic potentials experienced by ATP molecules. 

Electrostatic potentials that ATP molecules !experience" within their binding sites. The ligands are 

horizontally ordered from top left to bottom right with increasing positive potential. The potential are 

coloured from red to white to blue for values below -5 kcal/mol•e to 0 to values above 5 kcal/mol•e. 

The PQS-Id of the protein structure in which the ligand was found is given below each ligand. Note 

that to make the visual comparison easier, the electrostatic potentials of each molecule were mapped 

on the representative conformation of 1e2q, which has a yellow label. 
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An inspection of the ATP binding sites revealed that the high positive potentials on the ATP 

molecules (on average 11.33 kcal/mol•e, see Table 4.1) were caused primarily by metal ions 

that are coordinated to one or two phosphates at ATP"s triphosphate tail. Metal ions were 

found coordinated in all ATP binding sites except in the DNA ligase (1a0i) and the biotin 

carboxylase (1dv2). The function of those metals varies but often they act as catalytic 

stabilizer for transition states of the enzyme-substrate complex (Gonzalez, et al., 2003; 

Larsen, et al., 1998) or as charge neutralizers between charged protein and phosphate 

groups (Schmitt, et al., 1998; Zheng, et al., 1993). In particular, the latter function is important 

with respect to the molecular recognition of ATP as metal ions can shield negative charges 

between the protein and ATP and lock the otherwise loose triphosphate tail of ATP to the 

protein (Bilwes, et al., 2001; Masuda, et al., 2004). The charge neutralizing effect can 

increase ATP"s binding affinity by several orders of magnitude, as in the case of the bovine 

cAMP-dependent protein kinase (Armstrong, et al., 1979). The mouse homologue of the 

same protein, 1rdq, in Data set I shows, after the exclusion of the divalent magnesium ion 

from the ESP calculation, negative repulsive potentials towards the ATP molecule. Only when 

the metal ion is included in the calculation, are repulsive forces neutralized and become 

attractive (see Figure 4.5). Similar neutralizing effects of metal ions were observed in the PQS 

structures 1a49, 1b8a, 1e8x, 1o9t and 1tid.  

 

 

Figure 4.5: Influence of metal ions on ATP!s experienced electrostatic potential. 

Electrostatic potential of the mouse cAMP-dependent protein kinase (PQS-Id 1rdq) as experienced 

by the cognate ligand ATP (a) without and with (b) two coordinated magnesium ions (green 

coloured spheres). The potential are coloured from red to white to blue for values below -5 

kcal/mol•e to 0 to values above 5 kcal/mol•e 
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Not all ATP molecules require a metal ion to bind to their receptor protein. As mentioned 

above, ATPs in the binding sites of the DNA ligase (1a0i) and the biotin carboxylase (1dv2) 

were found without a metal ion or any other NCCs. Although they are important for the 

catalytic reaction of these enzymes magnesium ions are not essential for ATP binding. A 

detailed inspection of their binding sites revealed that the proteins created attractive positive 

electrostatic potentials (see Figure 4.4) towards the ATP phosphate tails through phosphate 

binding motifs. These motifs are characterized by positive electrostatic fields originating from 

positively polarized N-termini of $-helices and/or positively charged lysine and arginine side 

chain and/or ionic hydrogen bonds (O-–HN) between backbone NH groups and phosphate 

oxygen ions (Hirsch, et al., 2007). 

4.3.2.3 Nicotinamide adenine dinucleotide (NAD) 

NAD molecules consist of three functional groups, namely the mainly aromatic adenosine 

moiety, the negatively charged pyrophosphate group and the aromatic nicotinamide ring that 

can carry a formal positive charge when oxidised to NAD+ (Smith and Tanner, 2000). NAD 

molecules can have various functions in enzyme reactions. In Data set I, the two most 

prominent functions are the redox function in oxidoreductases (1hex, 1ib0, 1jq5, 1mew, 

1mi3_1, 1o04_1, 1qax, 1t2d, 2npx) and the group transfer function in transferases (1ej2, 

1og3, 1s7g, 1tox_1, 2a5f). As a redox partner in NAD-dependent dehydrogenases, a NAD+ 

molecule supports the oxidation of a substrate by accepting a hydride group (H-). As a 

substrate in ADP-ribosyltransferase reactions, NAD+ molecules are cleaved into an ADP-

ribosyl and a nicotinamide group, where the former is transferred to an arginine group within 

the active site as part of a posttranslational modification and the latter is released into the 

solvent. Both enzyme reactions are distinct from each other and should result in distinct ESP 

on the NAD molecules, in particular on the nicotinamide moieties. For dehydrogenases, the 

nicotinamide moiety should experience negative ESP due to the H- group transfer, while in 

ribosyl-transfer reactions the positively charged nicotinamide moiety should experience 
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repulsive positive ESP. Figure 4.7 shows the ESP of all NAD molecules in Data set I ordered 

by the total ESP experienced by the molecules from top left to bottom right. NAD molecules 

that are functioning as oxidation partners are labelled green while molecules acting as 

substrates in transferase reactions are labelled orange.  

 

All NAD molecules bound to oxidoreductases confirm the expectation and show a negative 

ESP at the majority of their nicotinamide moiety with the exception of 1ib0, a cytochrome b5 

reductase, which experiences positive ESP. The repulsive ESP was found to be a functional 

necessity, as 1ib0 in contrast to the other oxidoreductases is a reductase and not a 

dehydrogenase. In reductases NAD molecules become oxidized i.e. provide rather then 

accepts a H- group. To ease the transfer of the H- group from NADH to the neighbouring 

cofactor FAD in 1ib0, a positive ESP was found to expand from a positively polarized N-

terminus of an adjoining $-helix to the positively partial charged succinimidyl group in the 

flavin moiety of the FAD molecule (see Figure 4.6).  

 

Figure 4.6: Functional necessary repulsive forces in cytochrome b5 reductase 1ib0. 

The Cytochrome b5 reductase structure 1ib0 is the only oxidoreductase in Data set I that exposes 

the nicotinamide moiety of its substrate NADH (vary-coloured molecule) with a positive electrostatic 

potential. The positive potential is created by the positive polarized N-terminus of an adjoining $-

helix, and is functionally required to ease the transfer of a H- group from the NADH molecule to a 

neighbouring FAD molecule. The nicotinamide moiety is stacked between a flavin group of a 

neighbouring FAD molecule (red coloured) and a proline residue (blue coloured). 
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The transferase structure of the ADP-ribosyltransferase 1og3 and partially the structure of the 

NAD-dependent deacetylase 1s7g exert as expected electropositive potentials towards the 

oxidized nicotinamide moiety of NAD+. The structure of the nicotinamide mononucleotide 

adenylyltransferase 1ej2 however exerts negative ESP. Although this might seem in contrary 

to 1og3 and 1s7g, it conforms to the function of 1ej2 to synthesise NAD+ molecules. While 

transferases discard the nicotinamide moiety for which repulsive forces are advantageous, 

1ej2 tightly binds the nicotinamide moiety in order to fuse it to an ATP substrate molecule. For 

the negative ESP of the diphtheria toxin structure 1tox and in the cholera toxin structure 2a5f, 

however, no functional basis could be found. Both proteins cleave the nicotinamide moiety 

and thus should exert an electropositive potential and not as observed a complementary 

attractive electronegative potential. It remains to be tested whether the large conformational 

changes that both proteins undergo upon NAD binding (Bell and Eisenberg, 1996; O'neal, et 

al., 2005) lead to changes in the protein environment that allow the protein to form repulsive 

ESP against the positively charged nicotinamide moiety.  
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Figure 4.7: Electrostatic potentials experienced by NAD molecules. 

Electrostatic potentials that NAD molecules !experience" within their binding sites. The ligands are 

horizontally ordered from top left to bottom right with increasing positive potential. The potential are 

coloured from red to white to blue for values below -5 kcal/mol•e to 0 to values above 5 kcal/mol•e. The 

PQS-Id of the protein structure in which the ligand was found is given below each ligand. Note that to 

make the visual comparison easier, the electrostatic potentials of each molecule were mapped on the 

representative conformation of 1mi3_1, which has been encircles with a yellow box. NAD molecules 

bound to oxidoreductases are labelled green; those bound to transferases are labelled orange. 
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For the bacterial NADH peroxidase (2npx) repulsive potentials were found for the adenine 

moiety of NADH (2npx is the only protein in Data set I having bound NADH. All other NAD 

proteins have bound the oxidized NAD+). The negative electrostatic field is created by six 

negatively charged glutamate and aspartate amino acids in close proximity. A close 

inspection of the residues around the nicotinamide reveals that the repulsive potentials are 

overridden by aromatic interactions to a hydrophobic valine and an isoleucine side chain (see 

Figure 4.8a). Similar aromatic interactions were found for the nicotinamide group of 1og3 (see 

Figure 4.8b), where (-( stacking interaction to a phenylalanine from one side and an 

aromatic-backbone-amide interaction from the other side provide the necessary binding free 

energy for the nicotinamide moiety of the NAD molecule. The importance of aromatic 

interactions in Data set I will be described later in the text. Similar observations were done on 

adenine groups that were found to bind protein binding sites primarily with intermolecular 

hydrogen bonds together with (-( stacking and cation-( interactions (Denessiouk, et al., 

2001; Mao, et al., 2004). 

 

 

 

Figure 4.8: Aromatic interactions compensate repulsive electrostatic interactions. 

(a) The repulsive electrostatic potentials of NADH peroxidase towards the adenine moiety of NADH are 

compensated via (-CH interactions between the adenine moiety (varicoloured) and Ile 180 (green 

coloured) and Val 242 (green coloured). (b) ADP-ribosyltransferase stabilises the binding of NAD+ via a 

(-( interaction with Phe160 (green coloured), (-NH interaction with the backbone amide of Ser148 

(green coloured) and an internal hydrogen bond (black dashed line) between the amide group and the 

phosphate group. 
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4.3.2.4 Heme type B 

The heme molecule consists of an aromatic porphyrin ring system with a central coordinated 

iron ion and two negatively charged propionate groups sitting !on top" of the porphyrin ring 

system. Arginine residues form ionic bonds to the propionate groups and anchor the heme 

molecule to the protein structure, whilst histidine and less frequently methionine residues 

coordinate the heme"s iron ion and affect the electrochemical character of the iron metal ion.  

 

Based on these characteristics one would expect positive electrostatic potential around the 

propionate groups and negative potential in the porphyrin ring system around the iron ion. 

Visually this prediction seemed true for the PQS structures 1dk0, 1iqc_1, 1naz and 1np4. 

However the remaining heme binding sites, in particular 1d0c, 1ew0, 1po5 and 2cpo, show 

repulsive positive electrostatic fields around the heme"s porphyrin group, causing the heme 

molecules to have a diverse range of ESP values with an average of -3.11 kcal/mol•e and a 

standard deviation of 8.30 kcal/mol•e (see Table 4.1). Heme molecules are bound by more 

than 20 different protein folds (Schneider, et al., 2007) leading to a large diversity of 

environments around the molecules. In depth inspection of the protein environments around 

the heme molecules show that, like NAD"s nicotinamide moiety, repulsive electrostatic 

potentials are overridden by aromatic interactions. Aromatic interactions are well known to 

contribute strongly to the binding energy of a heme molecule (Reedy and Gibney, 2004; 

Roberts and Montfort, 2007; Schneider, et al., 2007). An important electrochemical 

characteristic of heme molecules is their reduction potential which can vary between -550mV 

(in hemophore HasA) and +362mV (in cytochrome f) versus the standard hydrogen electrode 

(Reedy and Gibney, 2004). Relating the electrostatic potential to the reduction potential is not 

straightforward as the reduction potential is influenced by many different factors such as the 

type of the heme"s axial ligands, heme burial, local charges etc. (Gunner and Honig, 1991; 

Mao, et al., 2003; Reedy and Gibney, 2004). Nevertheless, my calculations show that there is 

a modest negative correlation (R2 = 0.5) between ESP and the experimental reduction 

potential. 
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Figure 4.9: Electrostatic potentials experienced by heme molecules. 

Electrostatic potentials that heme molecules !experience" within their binding sites. The ligands are 

horizontally ordered from top left to bottom right with increasing positive potential. The potential are 

coloured from red to white to blue for values below -5 kcal/mol•e to 0 to values above 5 kcal/mol•e. The 

PQS-Id of the protein structure in which the ligand was found is given below each ligand. Note that to 

make the visual comparison easier, the electrostatic potentials of each molecule were mapped on the 

representative conformation of 1po5, which has a yellow label. 
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4.3.2.5 Remaining ligand sets 

AMP binding sites often generate positive electrostatic potentials towards their ligand"s 

phosphate group (see Figure 4.10). Five of the proteins, namely 1amu, 1ct9_1, 1jp4, 1qb8 

and 1tb7 had at least one metal ion bound within 9 Å proximity inducing a positive potential on 

the phosphate tail. The AMP molecule in asparagine synthetase (12as) compensated the 

repulsive global negative electrostatic potentials through a local network of eight hydrogen 

bonds. The flavin moiety in FAD as well as in FMN experienced both negative and positive 

potentials in Data set I. The phosphate group in both ligands was however always attracted 

by positive potentials. In the riboflavin kinase (1p4m), the pyrophosphate of the product ADP 

located next to FMN caused the repulsive negative potential at the phosphate group. The 

negative potential on the aromatic ring of the same ligand was compensated by aromatic 

interactions.  

 

Glucose binding sites were electrostatically most negative in Data set I with an average 

electrostatic potential of -7.17 kcal/mol•e (see Table 4.1). In contrast, phosphate binding sites 

were most positive with an average potential of 17.14 kcal/mol•e (see Table 4.1). Metal ions 

were found within 9 Å proximity in nine cases (1a6q, 1e9g, 1ew2, 1h6l, 1ho5_1, 1l7m_1, 1lby, 

1qf5, 1tco) generating positive potentials around the PO4 molecules. An interesting exception 

was the binding site of the bacterial dethiobiotin synthetase (1dak). This particular binding site 

apparently completely lacked the expected physicochemical properties to bind a phosphate 

molecule. Not only did it exert repulsive negative potentials, but it also lacked any 

compensating polar interactions and/or hydrogen bonds towards its ligand. Also molecular 

recognition based purely on van der Waals interaction could be ruled out as the phosphate 

molecule was solvent accessible on up to 70% of its molecular surface. It may be possible to 

explain these discrepancies by examining the experimental data for this protein structure. 

Unfortunately, the structure factors for 1dak were not available at neither the PDB nor the 

Electron Density Server (Kleywegt, et al., 2004), preventing further investigations of this case. 

And finally, as for heme molecules, the molecular recognition of steroid molecules is driven by 
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hydrophobic and aromatic interactions (Wallimann, et al., 1997) that override the observed 

repulsive ESP in steroid binding sites in the data set.  

 

 

Figure 4.10: Electrostatic potentials experienced by remaining ligand sets. 

Electrostatic potentials that (a) AMP, (b) FAD, (c) FMN, (d) GLC, (e) PO4 and (f) steroid molecules 

!experience" within their binding sites. The ligands are horizontally ordered from top left to bottom right 

with increasing positive potentials. The potentials are coloured from red to white to blue for values below 

-5 kcal/mol to 0 to values above 5 kcal/mol. The PQS-Id of the protein structure in which the ligand was 

found is given below each ligand. Note that, to make the comparison easier, each type of molecule is 

represented by a single conformer and may not be the conformer in the given PQS file. The 

representative conformers are those labelled in yellow. 
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4.3.3 Non-electrostatic interactions between protein 

and ligand 

The results above show that binding events are not solely directed by classical electrostatic 

interactions between partially charged atoms, as there are many examples of non-

complementary electrostatic potentials between protein and bound ligand. Thus other, non-

electrostatic forces, acting between ligand and protein can result in negative binding free 

energies and lead to the binding of the ligand to its binding site. With the exception of glucose 

and phosphate, all the ligands possess at least one aromatic ring complex and most of the 

variation in terms of electrostatic potential is observed at these ring systems. Ligand moieties 

that are highly charged, like the phosphate groups, experience rather constant 

complementary electrostatic fields. Close inspections of the binding site ligand complexes in 

Data set I showed that almost all aromatic ring groups undergo various forms of aromatic 

interactions. Most of these interactions were of a hydrophobic nature towards aliphatic 

hydrocarbons like valine, leucine or isoleucine side chains, forming (-CH interactions 

(Tsuzuki and Fujii, 2008; Tsuzuki, et al., 2000b). The second most often observed aromatic 

interactions were (-( interactions between aromatic ring groups mostly from phenylalanine 

and tyrosine residues (Hunter, et al., 2001). Other aromatic interaction types were (-cation 

interactions between aromatic rings and positively charged side chains of arginine and lysine 

(Cauet, et al., 2005) and (-HN interactions with backbone amide groups that act as a 

hydrogen bond donor towards an aromatic ring (Levitt and Perutz, 1988). Also observed were 

(-proline interactions (Toth, et al., 2001). Aromatic interactions, in particular (-CH and (-(, 

are in general dominated by London dispersion and hydrophobic interactions (Luo, et al., 

2001; Marsili, et al., 2008). Electrostatic interactions play only a secondary role and only 

contribute where aromatic interactions involve protein hydroxyl or amine groups that have a 

high electrostatic dipole moment (Tsuzuki, et al., 2000a). Accurate dispersion energy 

calculations require sophisticated and computationally demanding quantum chemistry 
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calculations (Luo, et al., 2001) that are beyond the scope of this work. Instead, the 

hydrophobicity of the ligand environment within protein binding sites was analysed.  

 

Figure 4.11 depicts the Hydrophobic Environment Score (HES) (see section 4.2.3) for the 

binding sites in Figure 4.4, Figure 4.7 and Figure 4.9, coloured from magenta to white to 

green for -1 to 0 to 1 environment score for polar, neutral and hydrophobic environments, 

respectively. From Figure 4.11a, it is clear that aromatic ring systems are generally located in 

a hydrophobic environment. In particular, the variation observed for ESP for heme binding 

sites does not occur for HES. All heme molecules are located entirely in hydrophobic binding 

pockets whether facing attractive or repulsive ESP. Similar dominant HES were observed for 

steroid molecules and flavin moieties (see Figure 4.12). The adenine moieties of ATP and 

NAD were usually found in a hydrophobic environment whereas their charged phosphate 

groups tend to face a polar environment. The NAD molecules (PQS Ids 1ibo, 1hex, 1mew, 

1og3, 1qax, 2npx) that were found to experience repulsive electrostatic forces at their adenine 

and nicotinamide moieties simultaneously form attractive aromatic-hydrophobic interactions. 
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Figure 4.11: Hydrophobicity experienced by ATP, NAD, heme molecules. 

Hydrophobicity experienced by (a) ATP, (b) NAD and (c) heme molecules within their binding pockets. The level of experienced hydrophobicity is given by the 

Hydrophobicity Environmental Scores (HES) (see section 4.2.3) and is coloured from magenta to white to green for polar environments with less than -1 HES to 0 to 

hydrophobic environments with values above 1 HES. The ligands are ordered as in Figure 4.11. The PQS-Id of the protein structure in which the ligand was found is given 

below each ligand. The representative conformer for each set has a yellow label. 
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4.3.4 Average and variation of physicochemical 

properties 

Despite differences in the conformations of a ligand, one can calculate the average ESP and 

HES and its standard deviation for each ligand atom in the protein binding pocket. The 

 

Figure 4.12: Hydrophobicity experienced by remaining ligand sets.  

Hydrophobicity experienced by (a) AMP, (b) FAD, (c) FMN, (d) GLC, (e) PO4 and (f) Steroid molecules 

within their binding pockets. The level of experienced hydrophobicity is given by the Hydrophobicity 

Environmental Scores (HES) (see section 4.2.3) and is coloured from magenta to white to green for 

polar environments with less than -1 HES to 0 to hydrophobic environments with values above 1 HES. 

The ordering of the ligands is adopted from Figure 4.10. The PQS-Id of the protein structure in which 

the ligand was found is given below each ligand. The representative conformer for each set has a 

yellow label. 
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average atomic ESP and HES were calculated for each ligand set and plotted in Figure 4.13 

and Figure 4.14. Next to the figures are depicted ESP and HES generated by the ligands in 

isolation. In contrast to many single cases (see NAD in Figure 4.7 and heme in Figure 4.9), 

the average values of the physicochemical properties show complementary characteristics 

between protein and ligand for the majority of the cases. From Figure 4.13 it becomes evident 

that usually electrostatically positive protein potentials are neutralised by electrostatically 

negative ligand potentials and vice versa.  

 

A closer look to the ESP in Figure 4.13a reveals average positive electrostatic potentials for 

all adenine groups and all phosphate groups, whether as separate entities or part of larger 

molecules. Note that despite the similarity between AMP and ATP, the latter is usually bound 

in pockets with higher positive potential due to the larger number of metal ions coordinated to 

the phosphate tail of ATP. The highly hydrophobic heme and steroid molecules, as well as 

glucose and the nicotinamide moiety in NAD, are mainly surrounded by negative potential. 

 

Figure 4.13: Average electrostatic potentials for Data set I. 

(a) Average electrostatic potentials that each ligand set in the data set !feels" within protein binding sites. 

(b) Electrostatic potentials calculated for each ligand molecule in isolation. The electrostatic potentials 

are coloured from red to white to blue for values below -5 kcal/mol to 0 to above 5 kcal/mol. 
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Figure 4.14a shows that steroids and the porphyrin core of heme molecules are bound in very 

hydrophobic environments together with the flavin moieties in FAD and FMN. Due to the large 

number of !-CH and !-! interactions involving adenine moieties in the data set, these 

moieties experience large HES despite being of moderate polar nature.  

 

The comparison of the averaged electrostatic potentials from the proteins (Figure 4.13a) and 

the ligands (Figure 4.13b) on each ligand atom reveals a correlation of only R2 = 0.25. The 

correlation for HES is higher with R2 = 0.66. Both numbers are relatively small and indicate 

rather little interdependence between the protein!s or ligand!s physicochemical properties. 

However they still exceed the correlation between all 100 individual binding-site/ligand 

complexes, with R2 = 0.14 for ESP and R2 = 0.35 for HES, demonstrating that the average 

physicochemical properties show a higher complementarity than individual protein-ligand 

 

Figure 4.14: Average hydrophobicity scores for Data set I. 

(a) Average hydrophobicity that each ligand set in the data set "experiences! within protein binding 

sites. (b) Hydrophobicity of the ligand molecule in isolation. The level of experienced hydrophobicity is 

given by the Hydrophobicity Environmental Scores (HES) (see section 4.2.3) and is coloured here from 

magenta to white to green for polar environments with less than -1 HES to 0 to hydrophobic 

environments with values above 1 HES. 
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pairs. 

 

The standard deviation of the absolute ESP and the HES are given in Table 4.1. ESP shows 

large variations with standard deviations several times larger than the average value. The 

highest variation is seen for phosphate binding pockets having a standard deviation of 14.64 

kcal/mol•e, whilst the lowest variation is seen in steroid binding pockets with 3.93 kcal/mol•e. 

The variation of HES is generally less and is around four times smaller than the average 

standard deviation of ESP.  

 

Although the absolute values of ESP and HES have a high standard deviation and thus are 

very variable, their values are consistently of the same sign. Figure 4.15 shows for each 

ligand atom the Sign Change Ratio (SCR) (see section 4.2.5) for ESP and HES. Cyan colour 

indicates no variation (0%) for a ligand atom with score values all with the same sign; the 

 

Figure 4.15: Variation of physicochemical properties in protein binding pockets. 

Variation of physicochemical property scores measured by the sign change ratio of the scores at each 

atom. Variation is coloured from cyan to white to orange for relative sign-changes of 0% to 25% to 50%. 

0% represents no score variation for the property. 50% illustrates highest variation with half of the ligand 

set having positive and half of the ligand set having negative score values. 
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highest variation (50%) is coloured orange reflecting half positive and half negative score 

values. According to Figure 4.15 half of all ligand atoms in Data set I experience electrostatic 

potential and hydrophobicity scores of low SCR whereas half experience high SCR. 

Hydrophobic moieties in ligand molecules often occupy equivalent hydrophobic environments, 

like the flavin groups in FAD, FMN or the porphyrin core in heme molecules or steroid 

molecules, but have their electrostatic environments change. Similar observations can be 

made for central phosphate groups in FAD and NAD. Thus, the interactions are on average 

complementary and vary widely in their magnitude.  

4.3.5 Comparison of properties between ligand sets 

The calculation of ESP and HES for each ligand atom allowed the comparison of 

physicochemical properties within ligand sets, but not among ligand sets, as there are no 

complete atom-atom correspondences between different ligands. However, to answer 

questions such as whether e.g. AMP binding pockets possess similar physicochemical 

properties to steroid binding pockets, or whether physicochemical properties of binding 

pockets allow the prediction of its ligand, it was essential to compare ligand sets with each 

other.  

 

In Chapter 3, I have presented a framework for the description and comparison of ligand and 

cleft shapes employing spherical harmonics (Morris, 2006; Morris, et al., 2005). For the 

problem stated above the same framework was utilised to describe the distribution of the 

physicochemical properties that ligand experience from their proteins. The property scores 

were considered as a function on a unit sphere allowing their expansion with spherical 

harmonic functions. Note that in such expansions lmax = 0 gives a weighted average property 

score and lmax = 1 describes the general tendency of the score distribution (see section 

2.5.2.3.2 and Figure 4.16). The expansion leads to a coefficient vector of 225 numbers that 
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uniquely and analytically describe the distribution of the ESP and HES independent of shape 

and size (disregarding the implicit incorporation of shape and size when measuring the 

physicochemical properties on the ligand molecule). A Euclidean metric applied on pairs of 

coefficient vectors was employed to compare pairs of physicochemical property distributions. 

In order to compare the physicochemical properties independent of the ligand conformations, 

the ESP and HES experienced by each ligand set member were mapped on a ligand set 

representative, similar to Figure 4.4. Furthermore, to satisfy the observations that the property 

scores vary less in their sign than in their absolute values, a cut-off was applied on ESP 

below -1 kcal/mol•e and above 1 kcal/mol•e. The same cut-off was utilised on HES scores 

below -1 and above 1. For the shape description of the binding pockets a new cleft model, the 

convex cleft model, was implemented as a fourth cleft model to the already existing 

Conserved, Interact and Ligand Cleft Models in CleftXplorer. The Convex Cleft Model bases 

on the Interact Cleft Model but in addition excludes all SURFNET spheres that are not 

enclosed by the convex hull (see section 2.3.2.2) of the ligand interacting protein atoms. The 

Convex Cleft Model leads generally to a reduction of the !buffer zone" volume with a higher 

shape complementarity between cleft and ligands.  

 

It should be stressed at this point that the comparison of physicochemical properties between 

ligand sets is in general troublesome. Suppose an ATP and a phosphate molecule bind at 

overlapping surface areas on a protein, with the phosphate"s binding site being a subset of 

the ATP"s binding site. As all previous pictures in this chapter have depicted, the 

physicochemical properties of a protein can largely vary within short distance. In our 

approach, which describes the van der Waals surface of a molecule as a single valued 

function f(!,!), this can lead to different property scores at equivalent sample points (!,!) for 

both molecules. Furthermore, the assessment of the contribution of each molecular descriptor 

to the molecular recognition of a ligand set, requires the independent comparison of each 

descriptor. The physicochemical properties must be therefore detached from size and shape 

(disregarding the implicit incorporation of the shape when measuring the physicochemical 

properties on a ligand molecule). This however can lead to biologically meaningless results in 
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particular for ligand molecules that cannot sterically fit to each others binding site but 

experience similar physicochemical properties. I was aware of these problems, however 

performed the subsequent analysis to demonstrate the power and the diversity of spherical 

harmonic functions but primarily in the hope that some general tendencies about molecular 

recognition could be inferred.  

 

 

Figure 4.16: Spherical harmonics reconstruction of electrostatic potential distribution. 

Reconstruction of the electrostatic potential distribution that AMP experiences in the bacterial peptide 

synthetase (PQS-Id: 1amu_1) with spherical harmonic functions. The potentials are measured at the 

atom centres and mapped on the dots of the van der Waals surface of the AMP (centre of picture). The 

potential reconstruction is shown on the shape reconstruction of AMP (lmax = 14) with different degrees 

of termination in the spherical harmonics series expansion, going clockwise from low quality with 

lmax = 0 to high quality with lmax = 14. 
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The spherical harmonic expansion was employed to test whether the ligand sets in Data set I 

experience discriminative pattern of physicochemical properties within protein binding sites. 

The !Area Under the receiver-operator-characteristics Curve" (AUC) is a convenient way to 

measure the performance of such a classification attempt (see section 3.2.2). Table 4.2 lists 

the AUC values for the physicochemical properties, for the ligand and binding pocket shapes 

as well as for their linear combination. Of all the properties analysed, the geometric properties 

stand out with an average AUC value for the ligand molecules of 0.93 and for the Convex 

Cleft Model of 0.87. Note, that the small difference in the AUC values here and in Table 3.2 

are due to the hydrogen atoms that were added to the molecules in this chapter. The AUC 

values for the geometric properties are more than 0.11 units higher than for HES 

(AUC = 0.76) and ESP (AUC = 0.74). Looking more carefully at the AUC values of individual 

ligand sets, it is evident that FAD, HEM and PO4 tend to have unique physicochemical 

features with AUC values above 0.75 for both ESP and HES, which allows them to be fairly 

easily discriminated from the remaining ligands in the data set. In contrast, AMP and FMN 

molecules have the least discriminative properties with the lowest AUC values for all 

physicochemical properties. It turns out that the pattern of ESP and HES on both AMP and 

FMN molecules often resembles ATP and PO4 binding sites.  

 

Table 4.2 holds in addition to the AUC values of the single descriptors, the AUC values of the 

linear combinations of the same descriptors. For each binding site, comparison the linear 

combination with weight factors set to one was calculated over the ESP and HES coefficient 

distances. The resulting new scores were reordered and the AUC value was recalculated.  

 

The linear combination of the physicochemical properties without shape information had 

minor effects on the AUC values, most often scoring in-between the AUC values of the single 

physicochemical descriptors. However, for the FAD ligand set an increase of about 0.1 AUC 

units was detected, which was caused mainly by the complementary variation of ESP and 

HES in the FAD ligand set. According to Figure 4.15, ESP varies highly at the adenosine and 

flavin moiety, which however is highly conserved for HES. Combining both properties into a 
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single coefficient distance merges the conserved moieties of ESP and HES and leads to an 

average AUC of 0.92 (see Table 4.2). Shape plays a minor role in the ligand set of FAD with 

an AUC of 0.74 for the convex cleft model. Similarly, for the ATP ligand set the classification 

based on shape improved when physicochemical properties were included. In contrast, for 

the AMP, ATP, FMN, NAD, PO4 and Steroid ligand sets the linear combination of the 

physicochemical properties increased by at least 0.1 AUC units when shape information was 

added. The superior classification performance of linearly combined properties gives 

evidence that molecular recognition is in general a mutual cooperation of various geometrical 

and physicochemical factors and not induced by a single property, however with a proneness 

towards shape complementarity. This conclusion is in line with previous work (Jiang, et al., 

2002).  

 

Table 4.2: AUCs for geometrical and physicochemical properties. 

Descriptor All AMP ATP FAD FMN GLC HEM NAD PO4 Steroid 

Ligand shape 0.93 0.99 0.90 0.80 0.94 1.00 1.00 0.82 1.00 1.00 

Cleft shape 0.87 0.90 0.80 0.74 0.85 0.93 0.97 0.78 0.95 0.93 

Hydrophobicity 0.76 0.54 0.79 0.81 0.65 0.67 0.94 0.63 0.79 0.95 

Electrostatic 
 

0.74 0.59 0.71 0.76 0.60 0.94 0.78 0.68 0.85 0.51 

 

Electro +  

Hydrophobic 
0.80 0.56 0.80 0.90 0.62 0.95 0.91 0.71 0.87 0.80 

 

Cleft Shape +  

Electro +  

Hydrophobic 

0.92 0.84 0.92 0.88 0.85 0.98 0.98 0.83 0.98 0.97 

Area under Receiver operator characteristic Curve (AUC) for geometrical and physicochemical 

properties and their linear combination for all ligand sets in Data set I. The lowest and highest AUC 

for each property is coloured purple and green respectively. Red coloured numbers highlight the 

highest AUC among the physicochemical properties ofr each ligand set. 
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4.4 Discussion 

The starting point for this work was to explore the validity of the assumption that binding sites, 

which bind the same ligand, achieve their selectivity by providing a similar physicochemical 

environment. To analyse this ligand-binding pocket relationship, semi-empirical calculations 

were performed to compute and then compare the electrostatic and hydrophobic 

environments in 100 protein binding sites. The binding pockets were analysed in groups with 

each group member binding the same ligand. The results reveal large variations in protein 

environments experienced by each ligand. These large quantitative differences indicate the 

absence of perfect physicochemical complementarity between binding site and ligand. This 

work gives evidence that - similar to the concept of convergent evolution of gene and protein 

function - nature has evolved multiple binding solutions for the same ligand. For some 

proteins it may not matter how the ligand binds to its receptor, but merely that it binds and so 

a diverse range of strategies of binding the same ligand have evolved. However, the 

imperfect complementarity raises the question as to how proteins utilise physicochemical 

forces to distinguish between different small molecules in their environment.  

 

For promiscuous enzymes, such discrimination is not required. These enzymes are able to 

perform their function on various different ligand molecules (Copley, 2003; Khersonsky, et al., 

2006) that cannot all display physicochemical complementarity to the binding site. In fact, 

enzymes with new functions might have evolved from ancestral proteins that were 

promiscuously binding a second substrate molecule. In the course of time, mutations at the 

active site might have caused the enzyme to loose its affinity towards its original substrate 

and become selective only for the second substrate (Khersonsky, et al., 2006). Promiscuity 

can also be advantageous for the survival of a species under varying environmental 

conditions, in particular for prokaryotes. It could give the organism the ability to maintain its 

function under contrary conditions, thereby guaranteeing the survival of the organism (James 

and Tawfik, 2003). The variation that was observed in this thesis in the geometrical and 

physicochemical properties of protein binding sites supports the role of promiscuity in protein 
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evolution. The partial complementarity between binding site and ligand would allow proteins 

to bind their original substrate molecule and maintain their original function. However, at the 

same time they could explore other substrate molecules with similar binding affinities that 

would allow them to eventually alternate their biochemical function within a cell. 

 

But for non-promiscuous enzymes, the contrasting local concentrations of ligands and 

proteins in cell compartments will have a large effect on the collision frequency and therefore 

on the overall binding of both binding partners. Albe et al. have estimated that substrate 

molecules have double the concentration as their protein counterparts (Albe, et al., 1990) and 

Kurland and colleagues showed that eukaryotic proteins have a variety of distributions across 

cell compartments (Kurland, et al., 2006). Unfortunately data on the local protein–metabolite 

concentration within cells are not available for the majority of proteins for which we have 3D 

structural models in the PDB. However, such data is essential for the analysis and simulation 

of cellular processes.  

 

Regardless of the simplicity of the approach in this chapter, it was possible to observe some 

general principles of molecular recognition, including the contribution of the hydrophobic 

interactions to molecular recognition (Davis and Teague, 1999; Gilson and Zhou, 2007; 

Gruber, et al., 2007). In this work, the hydrophobicity was observed to vary relatively little 

among each set of ligands (see Table 4.1 and section 4.3.4). In contrast, the electrostatic 

potential varies widely and is highly influenced by neighbouring chemical compounds. The 

importance of entropic energy contributions is also supported by the !buffer zone", i.e. the free 

space between a binding pocket and its bound ligand (see Figure 3.10), which can stabilize 

entropically the protein-ligand complex by allowing the ligand and the binding site residues to 

retain some of their vibrational motion and flexibility (Boehm and Klebe, 1996). It should be 

pointed out that the correlation of the computed properties with experimental observations 

(e.g. binding constants and redox potentials) is modest at best. In some cases, violations 

against the principle of molecular complementarity turned out to be a prerequisite for the 

protein"s biochemical function (see section 4.3.2.3). Herein, no considerations were paid to 
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the binding specificity and discrimination power of proteins towards their cognate ligands, 

which adds a further level of complexity to the analysis of the protein ligand interaction in 

silico. In particular most allosteric and induced-fit enzymes lack a correlation between binding 

affinity and specificity due to the smaller magnitude of !!G as compared to the free binding 

energy !G (Schneider, 2008). Consequently, a protein can demonstrate specificity towards 

its ligand despite having a low complementarity and thus binding affinity. Furthermore, recent 

results on in vivo proteins have shown that partially or fully intrinsically disordered proteins are 

common, in particular among cell signalling proteins and transcription factors, with each 

undergoing a transition from a disordered to an ordered structure upon ligand binding (James 

and Tawfik, 2003). In this respect, the “New View” model for protein folding was briefly 

introduced in section 2.3.2.4. According to the “New View” model a disordered protein exists 

in different isomeric states. Recent experiments on antibody-antigen complexes showed that 

each of the isomeric states could bind different antigens with high specificity but low affinity 

(James, et al., 2003). In particular it was found that the shape complementarity in antibody-

antigen interfaces is lower than in other protein-protein interfaces (Jones and Thornton, 

1996). The lack in shape complementarity permits an antibody to recognise spontaneously 

new antigens that have not been seen so far in the antibody!s evolutionary history (Uversky, 

et al., 2005), which defines the strength of the immune system against pathogenic intruders. 

 

The observations from this chapter confirm results found by some earlier studies that were 

made on limited data sets (see references in the introduction to this chapter), yet the myth of 

exact complementarity remains. The observations have consequences for a number of 

applications, particularly those related to function prediction and virtual screening. Function 

prediction methods from structure are frequently based on detecting similarities between 

annotated and functionally unknown binding sites. The very basis of these approaches is, 

however, challenged if complementarity is not a given. Such methods must cope with this 

variation and include a probabilistic term in their similarity search that accounts for the 

observations in this chapter that the same ligand can bind in one binding site via electrostatic 

interactions, in another via entropic contributions or in a third via purely van der Waals 
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interactions. A workaround to the probabilistic description could be the utilization of !3D 

consensus binding profiles". Such profiles would represent the physicochemical environment 

that a ligand on average experiences in various proteins. A similarity search would than 

involve the comparison of the physicochemical properties of a potential ATP binding site 

against a set of 3D consensus binding profiles. Not just would this decrease the screening 

time for a whole database, but it also might increase the prediction accuracy, as the average 

properties tend to have higher complementarity to the ligand properties than single binding-

site/ligand-complexes. 

 

Despite well-developed theory and extensive progress in molecular simulations computational 

approaches to calculate both enthalpic and entropic energies are still limited in accuracy 

(Gilson and Zhou, 2007). The accurate computation of these terms is, however, necessary to 

understand the fine balance of binding forces underlying protein-ligand interactions and to 

make reliable predictions of binding energies. Scoring functions implemented in docking 

applications typically employ a rather simplistic model of molecular recognition to allow the 

screening of a myriad binding poses (Jain, 2006). As a result, the average accuracy of 

docking applications lies within 1.5 – 2 Å root mean square deviation in about 70-80% of 

cases. Most of these success are cases in which ligand and protein are relatively rigid 

(Sousa, et al., 2006). Docking calculations performed by Angelo D. Favia with a MM-GBSA 

model (Lyne, et al., 2006) on Data set I showed unfavourable positive energies of up to +170 

kcal/mol for 20 protein ligand complexes (see Table 4.3). The results in this chapter show that 

computational shortcuts based on complementarity can be dangerous and that more 

sophisticated models would be required for accurate predictions of binding energies and 

binding poses that take into account all factors and forces currently known to contribute to 

molecular binding. In particular desolvation energies (Koehl, 2006) at the protein binding site 

and entropy gain/loss of ligand and binding site molecules (Gilson and Zhou, 2007) will need 

addressing. This complexity will provide a challenge for computational biology, be it for the 

accurate calculation of binding free energies or the derivation of more empirical approaches. 
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Table 4.3: Binding free energies calculated for Data set I 

PDB id 
Ligand 

Code 

MM-GBSA 

(kcal/mol) 
PDB id 

Ligand 

Code 

MM-GBSA 

(kcal/mol) 
PDB id 

Ligand 

Code 

MM-GBSA 

(kcal/mol) 

1qf5 PO4 -525.15 1jq5 NAD -86.49 1d7c HEM -37.97 

1tco PO4 -365.55 1hsk FAD -85.46 1jp4 AMP -36.66 

1e9g PO4 -292.09 1tb7 AMP -84.66 1e3r AND -36.41 

1ew2 PO4 -259.06 2a5f NAD -82.88 1fds EST -36.03 

1b8a ATP -242.12 1dv2 ATP -82.08 1j99 AND -35.95 

1gn8 ATP -216.45 1bdg GLC -79.72 1cq1 GLC -34.96 

1ho5_1 PO4 -212.91 1p4c FMN -78.19 1nf5_2 GLC -32.19 

1h6l PO4 -206.42 1p4m FMN -76.40 1hex NAD -25.34 

1lby PO4 -191.97 1tox_1 NAD -75.06 1esq ATP -23.04 

1rdq ATP -186.30 2gbp GLC -74.81 1iqc_1 HEM -6.30 

1e8x ATP -165.08 1mvl FMN -71.62 1jr8 FAD -5.62 

1a0i ATP -162.21 1ib0 NAD -69.71 1eqg HEM -3.78 

1qax NAD -160.58 2npx NAD -69.46 12as AMP -3.51 

1dy3 ATP -148.79 1cqj_1 PO4 -64.75 1qpa HEM 0.24 

1dnl FMN -145.84 1gwe HEM -61.77 1c0a AMP 1.06 

1mi3_1 NAD -143.30 1og3 NAD -60.68 1a6q PO4 2.74 

3grs FAD -138.67 1po5 HEM -59.94 1b8o PO4 4.16 

1qla HEM -122.34 1o9t ATP -57.48 1sox HEM 4.70 

1e2q ATP -118.03 1cqx FAD -55.69 1qb8 AMP 5.26 

1brw PO4 -117.41 1lhu EST -51.42 8gpb AMP 11.04 

1t2d NAD -115.52 1k1w GLC -51.03 1qhu HEM 14.78 

1k87 FAD -115.20 1s7g NAD -49.62 1dk0 HEM 18.24 

1ayl ATP -114.46 1h69_1 FAD -47.69 1pp9 HEM 20.25 

1kvk ATP -109.16 1qkt EST -46.99 1naz HEM 20.62 

1rlz NAD -108.89 1kht AMP -46.48 1l5w PO4 30.68 

1tid ATP -104.91 1mew NAD -46.25 1d0c HEM 39.22 

1amu_1 AMP -104.18 1f5v FMN -46.17 1dak PO4 51.63 

1l7m_1 PO4 -102.47 1ew0 HEM -45.53 1euc PO4 59.25 

1e8g FAD -101.47 1ja1_1 FMN -45.34 1fbt PO4 70.85 

1evi FAD -101.11 1lyv PO4 -44.02 1np4 HEM 72.38 

1pox FAD -98.70 1o04_1 NAD -42.53 1ejd PO4 79.75 

2cpo HEM -90.76 1d1q PO4 -38.66 1ej2 NAD 107.63 

1jqi FAD -90.29 1a49_1 ATP -38.12 1gyp PO4 171.24 

      1ct9_1 AMP * 

Binding site ligand complexes are sorted according to their calculated binding free energy from low (top 

left) to high (bottom right). *The binding free energy calculation for 1ct9_1 could not be completed due 

to missing parameters for the uranium NCC metal ions. 
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4.5 Conclusion 

This chapter expands the work in Chapter 3 on the geometrical variation in protein binding 

pockets and ligands by analysing the same binding-pocket / ligand-complexes with respect to 

their physicochemical properties. Here, the analysis continued on the same binding sites and 

showed that neighbouring chemical components must be included in the calculation of 

physicochemical properties. Metal ions in particular had the ability to invert the sign of the 

experienced electrostatic potentials on a ligand and to induce attractive forces where 

originally repulsive forces were detected (Figure 4.2). Similar sign inversions of electrostatic 

potentials on ligands molecules were observed when the solvent screening effect was 

reduced by assigning the ligands a dielectric constant of !L = 4 (Figure 4.3). Furthermore, it 

was demonstrated that the physicochemical properties ligands experience when bound to 

different binding pockets vary significantly (Figure 4.4, Figure 4.7, Figure 4.9, Figure 4.10). 

This high variation reflects large energy fluctuations that are sometimes functionally 

necessary, including changes in the sign of the potentials for corresponding atoms in a ligand 

set (Figure 4.15). To overcome repulsive electrostatic interactions, proteins were observed to 

utilise attractive aromatic interactions to their ligands (Figure 4.11, Figure 4.12). 

Complementarity was observed to some extent only for averaged properties in the ligand set 

(Figure 4.13 and Figure 4.14).  
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Chapter 5  

Automated Ligand Recognition in 

Electron Density Maps 

5.1 Introduction 

Since the beginning of automatic protein model building (see section 2.2.1.3), almost all 

emphasis was placed on the construction of the protein model alone. Less importance was 

attributed to the automatic fitting of ligand and polynucleotide molecules into electron density 

maps. Two of the very first programs to perform automated ligand fitting were ESSENS 

(Kleywegt and Jones, 1997) and X-LIGAND (Oldfield, 2001). ESSENS used a minimum 

function to score and find the best fit of a template ligand to a given electron density. 

However, this matching was computationally intensive, requiring systematic rotations of the 

ligand around each density grid point. With X-LIGAND the first automated flexible ligand fitting 

procedure was introduced. X-LIGAND first selected closed regions of density also called 

density blob at different contour thresholds, sigma (!), in a difference electron density map. 

Such a map represents the residual electron density of a full density map after the density of 

the protein model is removed. Mathematically a difference electron density map can be 

computed by subtracting calculated structure factors FC of the protein model from the 

experimental observed structure factors FO of the experiment (FO – FC). Having obtained all 

density blobs in the difference electron density map X-ligand selects those blobs that have a 

comparable volume to the ligand molecule. Next numerous conformers of the ligand are 

generated on the fly and matched to the density blobs by an alignment of their principal 

moments of inertia. Several other methods have been introduced since then. The ligand fitting 
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procedure in RESOLVE (Terwilliger, 2003) follows the principle of fragment-based docking, 

where the ligand is first divided into rigid fragments and later step-wise constructed inside the 

density blobs by connecting the fragments following a density fit scoring function. BLOB 

(Diller, et al., 1999) uses a Monte Carlo sampling technique to scan the electron density grid 

for an appropriate location for the ligand molecule. Aishima and coworkers have developed a 

technique (Aishima, et al., 2005) that simplifies the isosurface of a density blob with medial 

axes, following the idea of skeletonisation of the main chain density (see section 2.2.1.3). The 

set of medial axes is matched to the connectivity graph of the ligand using a graph-matching 

algorithm. Lately, AutoSolve (Mooij, et al., 2006) and work by Wlodek and coworkers (Wlodek, 

et al., 2006) were introduced for the automatic ligand fitting. AutoSolve uses a genetic 

algorithm to optimize the location and conformation of the ligand within difference maps. The 

scoring function for the genetic algorithm includes in addition to a density overlap score, 

protein-ligand interaction terms and ligand internal energy terms to distinguish similar shaped 

ligand molecules and exclude energetically unfavourable ligand conformations. Wlodek et al. 

took the idea further and minimized the internal energy of an ensemble of ligand conformers 

before aligning ligand and density blobs in terms of their moment of inertia and matching their 

shapes with Gaussian volume functions. 

 

Since version 6.1, ARP/wARP also allows the automated fitting of ligand molecules into 

difference electron density maps (Evrard, et al., 2007; Zwart, et al., 2004). The algorithm of 

the ligand-fitting module consists mainly of five steps:  

 

1. Create a difference electron density map 

2. Extract the largest blob of electron density from the difference map 

3. Represent density blob with spare set of grid points 

4. Construct the ligand by assigning atom labels to the sparse-grid nodes via label-

swapping  

5. Refine electron density with fitted ligand 
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The most recent ARP/wARP version 7.0 features new functionality in the ligand fitting module 

(Langer, et al., 2008); important ones are filter procedures to locate the location of ligand 

binding sites within the second step of the general algorithm. These filter procedures aim at 

removing insignificant densities in the difference map that are unlikely to have been produced 

by the ligand of interest. Difference electron density maps always contain in addition to the 

density of ligand molecules a number of features that originate from experimental noise, 

protein model uncertainties, solvent molecules and other small and partially ordered ligands 

such as crystallisation agents. These densities can be recognized and removed with a 

fragmentation tree filter, which makes use of the common characteristics of non-ligand 

density blobs, namely their smaller volume and their rapid decay into separate smaller blobs 

with increasing contour threshold.  

 

 

 

Figure 5.1: Fragmentation tree filtering of electron density blobs  

The filtering was performed on the difference density map of Adenylosuccinate synthetase (PDB-Id: 

1mf0). Density blobs of small molecules (here AMP and GDP) distinguish themselves from noise (i.e. 

experimental noise, model uncertainty, ions, solvent) by a high volume prolonging over a large range of 

contour threshold (!) and a fragmentation at only higher threshold levels. 
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The fragmentation tree plots the density blob volume as a function of the contour level. The 

highest information content is found usually between ! = 1.0 and ! = 6.0. For the filtering, 

only those densities are selected that have a certain size and fragment only at later contour 

thresholds (see Figure 5.1). The fragmentation tree filter is able to significantly reduce the 

number of density blobs in a difference map.  

 

The second filter of ARP/wARP!s ligand binding site locator, searches for gross-shape 

similarities between candidate density blobs and a ligand molecule using the following seven 

intrinsic geometric features: 

 

1. Surface to volume ratio 

2. Bounding box limits 

3. Principal moments of inertia 

4. Rotation match score 

5. Eigenvalues from covariance matrix 

6. Distance histogram 

7. Geodesic distance histogram 

 

Only density blobs that are geometrically most similar to the ligand of interest are passed 

further down to the third step in the overall algorithm. Although the seven geometric features 

are appropriate for characterizing the shape of a density blob or a molecule, they are not a 

genuine shape descriptor like the expansion coefficient of spherical harmonic functions 

introduced in Chapter 3 and have therefore some drawbacks. Firstly, the linear combination of 

all features is non-trivial. Currently, the scoring function for the geometric features consists of 

a sum of 36 linear combinations of the seven features. The weights for each linear 

combination were trained with a genetic algorithm and may require recalculation if applied to 

a different data set. Secondly, the features are to a certain degree correlated and not 

independent from each other, making it difficult to evaluate false-positive or false-negative 

predictions. And finally, some of the features are relatively time consuming to calculate.  
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In collaboration with Victor Lamzin and Gerrit Langer from EMBL Hamburg, the spherical 

harmonics shape descriptor of CleftXplorer was suggested as a supplement to the geometric 

features. In the previous two chapters, the functionality of the spherical harmonic shape 

descriptor was demonstrated. Thus, the question about the application of the shape 

descriptor to blobs in difference electron density maps was not whether the descriptor was 

able to capture the shape of density blobs but rather whether the density blobs would show 

sufficient resemblance to the ligand molecules to allow their recognition. After all, the density 

blob of ligand molecules in electron density maps is smaller in size and in its shape details 

distinct from that of the ligand molecule due to noise and partial disorder (see Figure 5.2). 

Spherical harmonics in ligand density recognition have the potential to exceed all methods 

mentioned above in their accuracy/speed performance. All of the methods above are either 

accurate in their shape matching but computationally exhausting or vice versa. With this 

approach, various experimental protocols involving the comparison of numerous entities can 

be realised with minimal computational cost. For example, given an electron density of an 

unknown ligand, a large ensemble of ligand conformers can be matched to the density. 

Similarly, given a density map with unidentified location of a known ligand, the whole density 

map can be screened for density blobs with a 

similar shape to the ligand, and this all in little 

computation time.  

 

As a proof of principle, this chapter will show 

tests of the spherical harmonic shape 

descriptor as a filter of density blobs for the 

automated ligand-fitting module in 

ARP/wARP. An overview of its performance 

will be shown together with a comparison to 

the performance of the geometric features. 

The chapter will end with a discussion about 

successful and failed predictions and 

 

Figure 5.2: Electron density of an ATP.  

Electron density blob of ATP in hydrolase 

1ii0 at a contour threshold ! = 1.70. Note the 

smaller volume of the black coloured density 

blob as compared to the varicoloured ligand 

and their distinct shape details. The density 

blob is shown with and without the ligand 

superimposed.  
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conclusions about the range of applicability of the spherical harmonic shape descriptor in 

automated ligand recognition.  

5.2 Methods 

The spherical harmonic shape descriptor used to capture the shape of density blobs was 

extracted from CleftXplorer, which is described in the Methods section of Chapter 3. In order 

to avoid repetition only a brief overview of the algorithm will be given.  

5.2.1 Algorithm summary 

All candidate density blobs were processed by a subroutine of CleftXplorer. In order to make 

the density blobs readable by the subroutine, all blobs were first converted into clusters of 

density grid points (see Figure 5.2 and Figure 5.3). For the remaining part of this chapter, all 

density blobs will be referred to as density clusters, reflecting their representation by a cluster 

of grid points. After having read the coordinates of the density cluster, the subroutine 

translated the density cluster with its centre of mass to the Cartesian coordinate origin and 

rotated the cluster such that its principal moments of inertia coincide with the three Cartesian 

axes x,y,z in the order of their eigenvalue magnitude. Having transformed the density cluster, 

the spherical 21-design integration layout was mapped on the outmost surface shell of the 

cluster. The resulting single valued radial function f(!,") was expanded with spherical 

harmonics and the derived expansion coefficients were stored. The same approach was 

applied to the molecular surface of ligand molecules. Eventually, both sets of shapes were 

compared by comparing the ligand and density coefficient vectors using a Euclidean distance 

metric. 
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5.2.2 Performance measure 

The performance of the spherical harmonic shape descriptor!s ability to predict the correct 

density cluster for a ligand within a difference map was tested with the same statistics as in 

Chapter 3, the Area Under the receiver operator characteristics Curve (AUC). In an AUC 

calculation the fraction of true hits is plotted against the fraction of false hits when an ordered 

list of scores is ranked from best to the worst, and the area under the resulting curve is 

computed. In this work, electron density clusters at various contour thresholds (!) originating 

from the ligand in question were referred to as true hits (true/correct density clusters) and all 

others were labelled as false hits (false/incorrect density clusters). AUC values of 1.0 indicate 

perfect classification (i.e. all true positives occupy the highest ranks without exception) and 

0.5 indicate random classification (with equal number of true and false positives being 

retrieved as the list is processed).  

5.3 Data set 

To test the performance of spherical harmonics for the automated ligand recognition, a data 

set in consultation with Gerrit Langer was compiled. For the data set all 29,742 diffraction 

data sets from the Electron Density Server (Kleywegt, et al., 2004) (as on the 1st April 2008) 

were downloaded. The associated protein structures from the Protein Data Bank (PDB) 

(Berman, et al., 2000) were refined without any HETATM entries, i.e. without ligand and 

solvent molecules, against the diffraction data. This step caused a worsening in the 

correlation between the experimentally observed and modelled structure factors, but 

conformed to real experiments where the atom coordinates of the ligand molecules are 

unknown and not available for the refinement routine of the protein model (see section 

2.2.1.2). Subsequently, difference electron density maps were calculated with refmac5 (Winn, 

et al., 2003) and filtered with the fragmentation tree approach, giving a list of candidate 
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density clusters. The list of candidate density clusters was redundant as it held the same 

density at different contour thresholds (see Figure 5.3). Protein structure models were further 

checked to fulfil the following criteria: 

 

1. Resolution of density map: 2.0 Å - 2.5 Å 

2. Map correlation: > 75% 

3. Number of non-hydrogen atoms in Ligand: 20 - 40  

4. Occupancy of Ligand: 100% 

5. Ratio of true hits in the list of density cluster: 20% to 80%. 

6. Number of total density clusters examined: < 400  

 

Of the initial 29,742 density maps from the Electron Density Server, only 471 maps with 548 

ligand molecules passed all filters and satisfied the above conditions. The large majority of 

density maps did not satisfy the above best-case scenario. A subset of 12 ligand molecules 

was randomly chosen from the large data set to form a small Data set III (see Appendix B, 

Table B.1) for the evaluation of two parameters in the expansion coefficient calculation, 

leaving 536 entries in the large Data set III (see Appendix B, Table B.2). Both parameters 

addressed the two problems stated above, namely the size difference between ligand 

molecules and the differences in their shapes. Note, for the small Data set II, the ligand 

conformations as found in the X-ray structure were used to optimize the parameters for the 

ideal case of having the ligand in its correct conformation for the fitting procedure. For the 

large Data set III, ideal coordinates for the ligand, as found in the HIC-Up database 

(Kleywegt, 2007), were used to screen the density clusters, resembling the real case scenario 

of not knowing the true conformation of the ligand in the crystal structure prior to the fitting 

process. 
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5.4 Results  

The following scenario was tested to assess the performance of the spherical harmonic 

shape descriptor for the automated ligand recognition. Given a difference electron density 

map of a protein structure with a known bound ligand present, can the spherical harmonic 

shape descriptor identify all correct density clusters of the ligand from the mass of clusters in 

the difference map by ranking them highest?  

5.4.1 Parameter assessment 

Data set II with 12 test cases showed that the electron density clusters of small molecules 

were often smaller in volume and distinct in their shape details when compared to the 

volumetric representation of the molecule itself (see Figure 5.2). This geometrical difference is 

caused primarily by the preference of the filtering program to select higher contour thresholds 

that lead to smaller sized density clusters. Nevertheless, both characteristics had to be 

considered in the expansion coefficient calculation before any test on the performance of the 

shape descriptor could be conducted. Two parameters in the expansion coefficient calculation 

were therefore tested: 

 

Figure 5.3: Electron density at various contour thresholds.  

Depicted as black coloured dots are the electron densities of an ATP in the bacterial ATPase 1ii0 at 

different contour thresholds (!). Increasing ! causes the density to shrink until ! = 3, at which point the 

density looses its integrity. 
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1. The step-wise increase of the zeroth order coefficient by a factor of 0.708 to a 

maximum of 7.08. According to Figure 3.5 and the observed 3.54 : 1 ratio between 

surface RMSD and coefficient distance, this simulates a gradual increase in the size 

of the density cluster by inflation steps from 0.2 Å to a maximum of 2.0 Å. 

2. Variation of the degree of termination lmax from 0 to 14 in the expansion of the radial 

function with spherical harmonics. Lower termination degrees should capture gross 

shape, but not detailed features. 

 

Figure 5.4 shows the overall performance of the shape descriptor at different inflation radii 

and degrees of expansion termini. The best classification with an average AUC value of 0.833 

was achieved with an inflation radius of 0.6 Å and lmax = 5, followed by 0.6 Å and lmax = 4 with 

an AUC = 0.832. However due to a lower standard deviation while having a comparable AUC 

 

 

Figure 5.4: Spherical harmonics performance at changing parameters. 

Average classification performance of the spherical harmonics shape descriptor for various coefficient 

expansion termini lmax and inflation radii. The Area Under the Curve (AUC) were calculated for each 

parameter pair and averaged over Data set III. For the recognition of density clusters the parameters 

were set to lmax  = 6 and inflation radius = 0.6 (red curve). 
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value of 0.822 (data not shown) it was decided to set the inflation radius to 0.6 Å and the 

expansion terminus to lmax = 6.  

5.4.2 Ligand recognition with spherical harmonics 

Applying the parameters determined above to Data set III, the spherical harmonic shape 

descriptor achieves an average AUC value of 0.69 with an average standard deviation of 0.26 

units. Figure 5.5 shows the distribution of AUC values obtained for all 536 ligand molecules in 

Data set III. Despite the absence of a conformation generator in CleftXplorer the histogram 

shows that the spherical harmonics shape descriptor performs reasonably well.  

 

In 35 cases, the spherical harmonic shape descriptor ranked all true density clusters at top 

rank positions achieving an AUC of 1.0. Most of these cases were density clusters of either 

rigid molecules or ligands that had a 

distinct size and shape difference to the 

remaining ligands in the X-ray structure. 

In 145 cases an AUC value higher than 

0.9 was achieved. However for about a 

third of Data set III the shape descriptor 

performed no better than random with 

AUC smaller than 0.5. For four density 

maps, the AUC value was even 0.0, 

implying that all true density clusters 

were ranked at end of the ranking list. A 

close look at those cases revealed 

extreme situations in the experimental 

observed diffraction data that shall be 

 

Figure 5.5: Spherical harmonics performance 

on Data set III.  

Distribution of AUC values in the large data set 

based on the comparison of ligand and density 

clusters with the spherical harmonics shape 

descriptor. 
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discussed next.  

 

The case of the dehydrogenase 1tv5 and its 

ligand N8E (see Figure 5.6) shows that 

flexible ligand molecules bound partially to the 

protein generate electron density only for 

those parts, which are rigidly bound to the 

protein. Mobile moieties, in particular those 

protruding into the solvent do not appear in 

the density map, preventing global shape 

descriptors the recognition of the complete 

ligand molecule in the partial density.  

 

Another problem arose due to poor phases of structure factors (see section 2.2.1.2) in the 

oxidase 1y30 and its ligand FMN. The poor phases caused the density to loose entirely the 

shape signature of the ligand (see Figure 

5.7). In such situations, a shape descriptor 

is unlikely to successfully perform any 

sensible prediction. The dodecaethylene 

glycol 12P in the aminooxidase 2b9x shows 

another limitation of the spherical 

harmonics shape descriptor, namely its 

restriction to describe only star-like shaped 

surfaces (see section 3.4.3.3). The glycol 

conformation as found in the aminooxidase 

is clearly non-star shaped, that CleftXplorer 

can just approximate by the outermost shell 

of the surface. The error that this 

approximation produces causes the density 

 

Figure 5.6: Limitations of spherical 

harmonics: ligand flexibility. 

The ligand N8E (grey and red coloured 

spheres) in the dehydrogenase (PDB Id: 

1tv5) only produces density (black coloured 

dots) with its ring formed portion. The linear 

extension on the right hand side is flexible, 

highly solvated and unbound. 

 

 

 

 

Figure 5.7: Limitations of spherical 

harmonics: poor phases. 

Poor phases lead to hardly interpretable 

difference map of the oxidase 1y30 and its 

ligand FMN hinder a good match between the 

ligand (varicoloured) and its density cluster 

(black coloured dots). 
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cluster to resemble the density of a neighbouring FAD molecule (see Figure 5.8), that 

eventually due to its larger size matches the large glycol molecule with lower coefficient 

distance.  

 

The last case that exhibits an AUC = 0.0 was found for GTP!s density cluster in the protein 

structure of polyhedrin 2oh7. The poor performance of the shape descriptor in this particular 

example was caused by the conformational difference between the ideal coordinates that 

were used to scan the density clusters and the conformation as found in the X-ray structure 

(see Figure 5.9). The already technically difficult situation was made worse by poor phases 

(see above example of FMN in 1y30). Altogether, the elongated conformation of the ideal 

coordinates of GTP was confused with the density cluster of a neighbouring ATP molecule 

that existed in a similar conformation.  

 

Figure 5.8: Limitations of spherical harmonics: non star-like shapes. 

Dodecaethylene glycol (a) and its density clusters (b) as found in the aminooxidase (PDB-Id: 2b9x). The 

non-star-like conformation of the glycol molecule produces expansion coefficients (shown as 

reconstructed mesh shapes calculated at lmax = 6) that are similar to those of the FAD density cluster 

(c). Density clusters are depicted as black coloured dots in (b) and (c). 

 

 

Figure 5.9: Limitations of spherical harmonics: false ligand conformation. 

The conformational difference between the ideal coordinates (a) of GTP in the polyhedrin (PDB-Id: 

2oh7) and the coordinates found in the X-ray structure (b) complicate the prediction of GTP!s true 

density clusters in the difference map. 
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5.4.3 Spherical harmonics vs. geometric features 

Having demonstrated the principal functionality of the spherical harmonic shape descriptor for 

the automated ligand recognition, the next step was its comparison to the geometric features 

that were already implemented in ARP/wARP v7.0. Not only does the comparison clarify 

which of the shape representations is superior over the other in predicting true density 

clusters, but more importantly whether the scores of the shape descriptor and shape features 

are correlated or not. The latter could be important for the integration of both shape 

representations into a single exclusive similarity score (see section 5.5) 

 

 

 

 

Figure 5.10: Scatter plot of spherical harmonics vs. geometric features performances. 

Comparison of the performances of spherical harmonics shape descriptor and geometric features as 

measured by AUC values. The average AUC value of both shape representations is plotted in blue with 

the first and third quartile shown as error bars. Circled dots in red colour are discussed in detail in the 

main text.  
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5.4.3.1 Performance comparison 

Figure 5.10 shows a scatter plot of the achieved AUC values for both spherical harmonics 

shape descriptor and geometric features. The average AUC value is shown as a blue square 

with first and third quartile depicted as error bars. On average both shape representations 

performed comparably well and only a closer look revealed a slight superiority of the 

geometric features with an average AUC of 0.71, over the shape descriptor with an average 

AUC = 0.69. The quartiles of the AUC values were also similar. However, for single cases 

large differences in the performances could be observed. In the following four extreme 

examples circled in red in Figure 5.10 will be discussed. 

 

The first circle shows those cases for which both shape representations ranked all true 

density clusters at the top positions. 17 such cases were found in Data set III, among them 

five different density maps of the archaic diphthine synthetase with the substrate analogue S-

adenosyl-homocysteine SAH. All five X-ray structures feature a distinct size difference 

between the true density clusters of the substrate analogue and the remaining false density 

clusters making it simple for both shape representations to predict all true density clusters 

(see Figure 5.11).  

 

 

Figure 5.11: Good spherical harmonics vs. good geometric features performance. 

Shape descriptors for ligand fitting work well in cases in which the true density clusters (green) have a 

distinct size and shape to the remaining false density clusters (red) in the difference map, such as for S-

adenosyl-homocysteine (SAH) (varicoloured spheres) in the diphthine synthases 2huq and 2dsh. The 

green and red coloured meshes represent the reconstructed shapes (lmax = 6) of the most similar true 

and false density clusters respectively and are superimposed for visual comparison reasons. The 

reconstructed shape of the ligand is shown as an orange coloured mesh in the centre of the figure.  
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The second circle in Figure 5.10 depicts the example of a cytidine-monophosphate C5P found 

in the Escherichia coli RNAse 2ix0, for which the spherical harmonic shape descriptor 

performed poorly with an AUC = 0.2, whilst the geometric features predicted perfectly with an 

AUC = 1.0. An investigation into the ranking list of the shape descriptor revealed the closest 

 

 

Figure 5.12: Bad spherical harmonics vs. good geometric features performance. 

(a) At the first glance it seems that the most similar true density cluster of the C5P (green coloured 

mesh) in the RNAse (PDB-Id: 2ix0) is more similar to C5P itself (varicoloured spheres and orange 

coloured mesh) then the most similar false density cluster (red coloured mesh). The meshes represent 

reconstructed shapes (lmax = 6) calculated from the associated expansion coefficients. For visual 

comparison, the ligand shapes are superimposed with the density cluster shapes. The electron 

densities are shown in black coloured dots. (b) Plotting the square differences between ligand and 

density cluster coefficients shows that the first coefficient, i.e. the overall size of the false density cluster 

matches almost the ligand size, whilst the true density cluster separates itself size-wise. 
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true density cluster at rank nine with a coefficient distance of 4.09, whereas the top ranked 

false density cluster scored a coefficient distance of 3.75. A comparison of the reconstructed 

shape of C5P and the most similar true and false density cluster suggests a higher similarity 

for the true cluster (see Figure 5.12a). However an inspection of the distances between each 

ligand and density cluster coefficient reveals almost no distance between the zeroth order 

coefficient of the ligand and the false density cluster, indicating that both have a similar overall 

size (see Figure 5.12b). The true density cluster, despite having on average a smaller 

distance for all other coefficients, is not able to compensate the large difference in the overall 

size, thus scoring worse than the false density cluster.  

 

The origin of the false density is unclear. The X-ray structure reveals a 50 Å distance to the 

C5P ligand binding site. However, its location in a ribonuclease II domain would suggest it to 

be the density of a RNA degradation product that was overlooked by the authors. 

Unfortunately, homologous structures in the PDB do not show any small molecule bound at 

the same location, giving no clues as to the nature of the density. With a working 

conformation generator for small molecules 

in CleftXplorer and the E-coli metabolome 

(Nobeli, et al., 2003) it would be interesting 

to analyse which metabolite best fits into 

the density. 

 

The third circle in Figure 5.10 illustrated the 

failure of both shape representations to 

predict the true density cluster by the case 

of the thymidylate synthase 1lcb and its 

coenzyme analogue dihydrofolic acid DHF. 

Both representations found all true density 

clusters of DHF to be least similar to the 

ligand, achieving an AUC without any 

 

 

Figure 5.13: Bad spherical harmonics vs. 

bad geometric features performance. 

Dihydrofolic acid DHF in thymidylate synthase 

(PDB-Id: 1lcb) lacks a continuous electron 

density cluster above the contour threshold of 

! = 1, making it impossible for the geometric 

features and the shape descriptor to match the 

whole ligand to the partial density clusters. The 

density is shown at a contour threshold of 

! = 1.7 as black coloured wireframe. 
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score. An examination of the electron density around the ligand shows that the density is split 

into two distinct partial densities above a contour threshold of ! = 1 (see Figure 5.13). Such 

discontinuous densities are often caused by poor phases from wrong or incomplete protein 

models. The discontinuous density makes it impossible for any global shape descriptor such 

as the two employed in this chapter to match the ligand to its density in this particular 

example at threshold levels above ! = 1.  

 

The final circle highlights the case of the saccharomyces cerevisiae chaperone 2cgf inhibitor 

P2N, for which the spherical harmonic shape descriptor (AUC = 1.0) outperformed the 

geometric features (AUC = 0.07). A clear and easy explanation about the poor performance of 

the geometric features is difficult to state due to the nature of its score function (see 5.1 

Introduction). Therefore, the focus will be rather on the spherical harmonics shape descriptor. 

Looking at the reconstructed shapes of P2N and the most similar true and false density 

clusters, it becomes evident that the true density cluster, despite the twist in its orientation, is 

indeed more similar to the ligand molecule in size and shape than the closest false density 

cluster (see Figure 5.14).  

 

 

Figure 5.14: Good spherical harmonics vs. bad geometric features performance. 

The spherical harmonic shape descriptor predicted the true density cluster (black coloured dots at the 

left hand side) of the inhibitor P2N (central varicoloured spheres) to the chaperone (PDB-Id: 2cgf) as the 

top ranked hit. In contrary did the geometric features predict a false density cluster as the most similar 

cluster to the ligand molecule (black coloured dots at the right hand side). The meshes around the true 

density cluster (green), false density cluster (red) and the ligand (orange) are reconstructed shapes 

calculated from expansion coefficients (lmax = 6). 
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5.4.3.2 Coefficient distance vs. geometric feature 

similarity 

Both shape representations were comparable in predicting the true density clusters within 

difference density maps, with an average AUC value of around 0.70. A scatter plot (see 

Figure 5.15) of the feature similarities and the coefficient distances shows however that both 

shape representations are not similar in their scores and rather independent with modest 

correlation of R2 = 0.2. The measurable correlation is negative due to the inverse relationship 

between the similarity metric of the geometric features and the distance metric of the 

spherical harmonics shape descriptor (see Figure 5.15).  

 

The distinct similarity scores of both shape representations have an impact on the ranking list 

positions of the density clusters. Figure 5.16 shows the difference in the ranking positions for 

true density clusters in Data set III. The histogram reveals that 44.3% of all true density 

clusters hold a comparable ranking position with a difference of ±10% relative to the complete 

ranking list. The majority of the true density clusters however differ by more than 10% 

 

Figure 5.15: Scatter plot of spherical harmonics vs. geometric feature scores. 

Scatter plot showing the modest correlation between the geometric feature similarity and the expansion 

coefficient distance between ligand molecule and true density clusters (green coloured points). The 

linear regression graph is given as a red coloured line together with its linear equation. 
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indicating a complementarity in the scoring and ranking of density clusters by both shape 

representations. The average Sperman rank correlation coefficient that measures the 

correlation between any two sequences of ranking positions is found for Data set III to be R’ 

= 0.64. The significant deviation from the perfect positive correlation value of R’ = 1.0 

supports the general tendency of both shape descriptors to assign all density clusters similar 

rank positions, however with a large number of exceptions for which the rank position for the 

same density cluster differs considerably among both shape representations. 

 

5.5 Discussion  

The goal of any automated ligand fitting procedure in protein model building is to locate the 

ligand!s density within a difference map and place the ligand in the correct conformation into 

the density without any human intervention. The spherical harmonics shape descriptor is well 

suited to pursue the first part of the goal as shown in the results section. The second part 

 

Figure 5.16: Histogram on complementary ranks between both shape representations. 

Presented are the ranking position differences for true density clusters relative to the total number of 

density clusters for each protein in Data set III. The ranking positions were calculated and compared 

between geometric feature similarity and spherical harmonic coefficient distances. 
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however is less straightforward. Any rigid shape representation such as the geometric 

features implemented in the current version of ARP/wARP or the spherical harmonic shape 

descriptor require the calculation of shape characteristics for each ligand conformation. A 

systematic sampling of the entire conformational space of a ligand however can be too time 

consuming to be employed as a screening tool for difference electron density maps or 

databases. In general, the number of conformers N for a given ligand is bounded to a 

maximum of  
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where ! is the rotation increment in radian and T is the number of torsion angles. In practice 

however, the number is less, as some conformations are impossible due to steric constraints. 

Given this equation, the number of conformers grows exponentially with every additional 

torsion bond, becoming impracticable for highly flexible molecules. An alternative to a 

systematic sampling is the advanced random sampling of the conformational space using a 

genetic algorithm or a Monte Carlo sampling technique (Leach, 2001b), combined with 

clustering of all conformers according to their shape similarity (Leach and Gillet, 2003a). Each 

cluster would be represented by a single conformation and only cluster representatives would 

be compared to the difference maps. After the most similar clusters are determined, a second 

comparison circle could be executed to determine the most similar conformations within a 

cluster. 

  

However, even if the query ligand exists in the same conformation as found in the X-ray 

structure it is not guaranteed that all true density clusters will be found. For example, for the 

assessment of the expansion coefficient parameters in section 4.4.1, the ligand 

conformations as found in the X-ray structure were used. But rather than accomplishing a 

perfect prediction with maximum performance, an AUC of 0.83 was measured. In addition, 

one should not forget that the results presented here are the best-case scenario. The large 

majority of publically available electron density maps were excluded from the data set prior to 
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the analysis (see section 5.3) mostly due to their insufficient quality, which inevitable suggests 

a worsening in the performance for the majority of solved X-ray crystal structures.  

 

The main cause for the prediction deficiency is noise that originates from erroneous phase 

estimates, partial atomic occupancies, non star-shaped density clusters or high local 

disorders of ligand molecules. The first error source can be corrected with the introduction of 

the ligand into the refinement process of the protein model reducing thereby the difference 

between experimentally observed and calculated structure factors (see section 2.2.1.2). The 

second error source is due to the spherical harmonics being a global shape descriptor, i.e. it 

assesses the overall similarity between two shapes similar to the root mean square deviation 

measure for a set of atomic coordinates. Although a global shape descriptor is unable to carry 

out a partial shape matching which is needed for the second problem, one could exploit the 

fragmental nature of most small molecules and truncate the ligand into several fragments. An 

ATP molecule, for example, could be split into an adenine, glucose, triphosphate as well as 

adenosine and glucose-triphosphate moiety. The spherical harmonics could then be applied 

to all moieties allowing it to match partial densities within difference maps. A second limitation 

of spherical harmonic functions is their restriction to work on star-like shapes as only star-

shaped entities are defined by a single valued radial function. Highly flexible molecules 

however might adopt non-star shaped conformations. Several attempts have been made to 

work around this limitation such as the conformal mapping of closed arbitrary shaped 

surfaces to a unit sphere (Li and Hartley, 2007), or the application of the spherical harmonics 

to shells of various radii termed radial spherical extent function (Kazhdan, et al., 2003) that 

would cover the whole density cluster. A more elegant solution is the application of Zernike 

moments (Mak, et al., 2007) to describe a multi-valued radial function R(r) allowing the 

straight shape description of a non-star shaped density cluster. For the last problem no 

simple solutions exists. Flexible structural elements such as highly solvated small molecules 

or loop regions do not produce any strong electron density that can be measured and will 

always present a challenge for any automated ligand fitting software.  
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Despite these problems, an improvement in the prediction performance of the shape 

descriptor could be achieved by combining the expansion coefficients with the geometric 

features that are already implemented in ARP/wARP. After all, as shown in section 5.4.3.2, 

both shape representations score and rank complementary, i.e. distinct from each other, the 

similarity of density clusters. The complementarity would allow one shape representation to 

correct a false-positive/negative prediction of the other shape representation. However the 

linear combination due to the difference in the statistical nature of both scores is non-trivial 

(Leach and Gillet, 2003b). The expansion coefficient distance measures the distance between 

two shapes using a Euclidean distance metric, whereas the geometric feature similarity 

measures the similarity between two shapes inducing both scores to be negatively correlated. 

A further problem arises due to the difference in the range values of both scores. The 

Euclidean metric ranges from 0 to ! with 0 being the highest similarity score, whilst the range 

of the geometric feature similarity values is bounded between +1 to -1 with +1 being the 

highest similarity score. In order to combine both scores a normalization would be required 

that maps every expansion coefficient distance and geometric feature similarity to the range 

of 0 and 1. For the bounded geometric feature similarity, such normalization is 

straightforward. For the unbounded coefficient distance there are two options: either choose a 

relative normalization constant that changes within different data sets and depends on the 

maximum coefficient distance found in the data set, or select an arbitrary coefficient distance 

as an absolute normalization constant and set all higher distances to the normalization 

constant. Based on the coefficient distance bins in Figure 3.6, a good candidate for an 

absolute normalization constant could be the coefficient distance of 10. A united score D 

could then be calculated with:  
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where w are weights for both scores, SHnorm are the normalised expansion coefficient 

distances and GFnorm are the normalised geometric feature similarity. The success of such a 

combination approach remains to be tested.  
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5.6 Conclusion 

Here I have presented a new fast screening methodology for the automated recognition of 

ligand molecules from electron density maps. The methodology is based on the comparison 

of expansion coefficients of spherical harmonic functions that describe the shape of density 

clusters (Figure 5.3) and ligand molecules. The performance of the shape descriptor was 

tested on a large data set of difference electron density maps (Figure 5.5) and found 

comparable performance to the well-established geometric features in ARP/wARP v.7.0 

(Figure 5.15, Figure 5.16). However, in contrast to the geometric features, the spherical 

harmonic functions are a genuine shape descriptor and as such have several advantages. 

The speed and accuracy of spherical harmonic shape descriptors permits an effortless 

implementation of different screening scenarios, such as screening a specific or even all 

density clusters in a difference map against a large database of small molecules. The 

prediction performance of the shape descriptor was found to be highest for density resolutions 

better than 2.5 Å containing a rigid ligand with full occupancy for which good phase estimates 

exist (Figure 5.6 to Figure 5.14). Implemented in an existing ligand fitting software such as the 

one, which is part of ARP/wARP package, the spherical harmonic shape descriptor can 

function as a powerful fast pre-filtering and recognition method for candidate density clusters. 
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Chapter 6  

Final Remarks 

The work presented in this thesis challenges the concept that molecular recognition requires 

perfect molecular complementarity. In Chapter 3 and Chapter 4 I have shown that the shape 

complementarity and complementarity in physicochemical properties between small 

molecules and their protein receptors varies to a large extent. These results raise new 

questions about the nature of molecular interactions, such as:  

 

1. To what extent is non-complementarity tolerated between proteins and ligands? 

2. Is there a correlation between the binding affinity and the degree of molecular 

complementarity? 

3. What is the role of solvent in mediating a ligand to a non-complementary binding site? 

4. How does the flexibility of the binding site residues and the ligand affect molecular 

recognition? 

6.1.1 Caveats 

This work is limited in several respects. It might be important to distinguish the ligands in 

Data set I according to their functional role, i.e. whether a ligand is a substrate, product, 

cofactor etc. This distinction is important, as reaction products are likely to be the least 

complementary to their binding sites to ease their detachment from the protein. Cofactor 

binding sites are expected to have evolved to high complementarity to their cognate ligand 

molecule as in many protein families (e.g. short-chain dehydrogenases/reductases), the 
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cofactor remains the same throughout the family (NAD(P)(H)), whereas substrate molecules 

show large variation (alcohols, sugars, steroids, aromatic compounds) (Persson, et al., 2003). 

In my analyses, I have not distinguished between any types of ligands. All members of a 

ligand set were treated equal.  

 

Furthermore, the spherical harmonics shape descriptor presented in this thesis, requires a 

star-shaped object. Non-star shaped objects are recast to resemble a star-shape, which in 

some cases can cause significant deviations from the real shape. As listed in the Discussion 

to Chapter 5, there are various approaches to circumvent this problem, which however have 

not been tested yet.  

 

Finally, ionisable amino acids in all protein structures were protonated according to their 

estimated pKa value with the empirical method of PROPKA. More accurate pKa calculations 

based on Poisson-Boltzmann electrostatics (Bashford and Karplus, 1990; Miteva, et al., 2005; 

Nielsen and McCammon, 2003; Nielsen and Vriend, 2001; Yang, et al., 1993) could change 

estimated protonation states on some ionisable amino acids that are found in the binding site 

and induce changes in the calculated molecular electrostatic potentials. However, these 

changes are expected to be small as PROPKA was tested to reproduce experimental pKa 

values with an average root mean square deviation of 0.89 (Li, et al., 2005). A factor that is 

neglected in most electrostatic calculations is the polarisability of single atoms within highly 

charged local environments. Current methodologies treat all atoms in a protein as fixed partial 

charges. However it was shown that the incorporation of polarisability in the electrostatic 

calculations is crucial and can change previously measured repulsive forces to attractive 

forces between protein and ligand molecules (Kundu and Gupta-Bhaya, 2004).  
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6.1.2 Future developments 

Possible future developments of this project could be to implement a web interface to 

CleftXplorer for public use. A database could be constructed that holds and presents shape 

and physicochemical properties for all binding pockets in the PDB. Users could then submit 

their structure to the database, define the binding site and compare their binding pocket 

against binding sites in the PDB using spherical harmonic expansion coefficients. In addition, 

tools could be provided to compare homologous binding sites or binding sites with the same 

ligand in a similar manner as presented in this thesis. The database could be of great interest 

to pharmacologists, but also to anyone who seeks to understand the physicochemical nature 

of the function of their protein.  

 

The next step from the scientific point of view to Chapter 3 and Chapter 4 would be the 

experimental determination of accurate binding affinity data for each protein-ligand complex in 

the data set. The computational predictions of binding affinities is still limited in accuracy 

(Gilson and Zhou, 2007). The binding free energy calculations conducted on Data set I (see 

Table 4.3) were lacking any correlation with the observed variation in the physicochemical 

properties, making it impossible to explain the origin of the variation. Accurate affinity data 

from experiments could change this outcome. It can be expected however that the biological 

necessity of intermolecular interactions may well require low affinity complexes to be 

favoured. 

 

The automated recognition of ligands in electron density maps with spherical harmonic shape 

descriptors currently lacks accuracy. Using the unrefined electron density alone for ligand 

recognition seems insufficient and demands further information to be added into the electron 

density fitting procedure in the form of constraints. These constraints could come from NMR 

spectroscopy experiments, where nuclear spin transfer effects, also called Nuclear 

Overhauser Effects (NOE), between the protein and ligands or chemical shift changes of the 

protein upon ligand binding are tested (Meyer and Peters, 2003). Computational constraints 
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could be placed by virtual screening methods on the preliminary protein model excluding all 

ligand candidates that do not fit into the binding site.  

6.1.3 Function prediction 

The initial aim behind the development of CleftXplorer was its application for protein function 

prediction by comparing a query binding site, from a protein of unknown function, against a 

database of annotated binding sites or potential ligand molecules. The analysis and results in 

Chapter 3 made it clear that CleftXplorer!s performance was acceptable only if the binding 

pocket could be accurately defined in the Interact or the Ligand Cleft Model. However, for 

proteins of unknown function, neither the exact location nor the precise identity of all binding 

site residues is known. Estimating the identity of binding site residues based on their 

evolutionary conservation resulted in large cleft models with adjacent substrate and cofactor 

binding pockets that were merged together into a single Conserved Cleft Model. For the 

spherical harmonics shape descriptor to work as a function prediction method, the large 

Conserved Cleft Models must be divided into smaller volumes such that each volume gives 

an accurate representation of the binding pocket. In collaboration with Dr. Kazuto Yamazaki a 

framework was developed for the spherical harmonic functions to be employed as local shape 

descriptors in protein-ligand induced-fit docking (Yamazaki, et al., 2009). Within the 

framework, a cleft model of a binding site is divided into a diverse set of Voronoi partitions. All 

adjacent partitions are enumerated and recombined to give subsite candidates. Subsites that 

have on average a repulsive van der Waals potential and are smaller than a minimum size 

are disregarded, while the remaining subsite candidates are described with the spherical 

harmonic shape descriptor and compared against expansion coefficients of chemical 

compounds. For function prediction purposes, the same framework could be applied to obtain 

an accurate cleft model of a binding pocket from within a Conserved Cleft Model. Important 

for such a function prediction method would be the incorporation of a probabilistic term in the 

similarity search that accounts for the variation in the molecular complementarity as observed 
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in this thesis. A workaround to the probabilistic description could be the utilization of !3D 

consensus binding profiles". Such profiles would illustrate the average shape of all binding 

sites that bind the same ligand and represent the physicochemical environment that a ligand 

on average experiences in various proteins. A similarity search would then involve the 

comparison of the geometrical and physicochemical properties of a query binding site against 

a set of 3D consensus binding profiles.  

6.1.4 Final conclusion 

Discovering the principles of molecular recognition is vital if computational biology is to 

become a predictive discipline that is able to model and simulate cellular processes in living 

cells. Without a comprehensive knowledge in molecular recognition, computational biology 

will remain a monitoring science unable to reliably predict molecular interactions in living cells. 

The two main challenges in molecular interaction prediction remain the flexibility of protein 

binding partners and the inability of scoring functions to distinguish true from false positive 

predictions (Janin and Wodak, 2007; Sousa, et al., 2006). 

 

Protein dynamics and motions in X-ray structures are usually only visible as a lack of !clarity" 

caused by the averaging process over many molecules. Molecular dynamics simulations 

attempt to overcome this obstacle by simulating motions in proteins using the X-ray structure 

as the starting point for their calculation. The steadily growing computer power, development 

of faster algorithms and better physicochemical parameterization in recent years have 

improved dynamic simulations (Dodson and Verma, 2006). Soon, larger molecular dynamic 

simulations will be possible and hopefully allow a deeper investigation of the importance of 

protein dynamics in molecular recognition (Karplus and McCammon, 2002).  

 

But most likely, the explicit simulation of water molecules in and around proteins will have the 

biggest impact on our comprehension of molecular recognition. Molecules are solvated in 
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water and their interaction occurs in water. For many years water was necessarily omitted in 

molecular docking and mapping applications as their in silico simulation was computationally 

expensive. It was hoped that shape and physicochemical complementarity would be sufficient 

to drive molecular interactions. But many crystal structures of proteins show conserved water 

molecules at binding interfaces or next to binding sites and suggest an active role for water 

molecules in the protein-ligand complex. Especially for molecular parts that interact via 

hydrophobic interactions, water acts as a !molecular glue" and induces the interaction of 

protein and ligand molecules. The first methodologies that simulated hydration effects on 

protein structures considered water as a continuum but had in general limited success. A 

second generation of simulation software treated water molecules explicitly but did not reach 

the expected accuracy especially due to the immense computational cost that dynamic 

simulations require. The growing computer power will eventually help in this field to provide 

simulations of hydration effects under physical conditions (Levy and Onuchic, 2006).  

 

As long as the general mechanisms of molecular recognition and binding are little understood, 

successful predictions of molecular interactions will remain rare. However, once we achieve a 

comprehensive understanding of the fundamental processes in molecular binding, the de 

novo design of enzymes, i.e. the alternation of the enzymatic function, will be within reach. 

Other than inorganic catalysts, enzymes catalyze their reactions under mild conditions with 

high specificity and rate enhancements. This unique property makes enzymes attractive for 

many industrial processes although often they do not catalyze the required chemical 

reactions. Methods like rational-design and directed evolution in protein engineering have 

shown to be very useful in producing desired functionality in enzymes. As the factors for 

protein integrity namely, hydrogen bonds and hydrophobic effects, are well understood, many 

enzymes have been successfully altered to stabilize the structural integrity against harmful 

chemicals, or extreme temperature and pH conditions. Comparable results could not be 

obtained for altering the catalytic machinery of enzymes (Bolon, et al., 2002). Only few 

enzymes so far have been successfully altered like the modification of an inert ribose-binding 

protein into a highly active triose-phosphate-isomerase (Dwyer, et al., 2004).  
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Maybe, the challenges that we face in computational biology at the beginning of the 21st 

century are still very difficult, but I believe that advances in theory, algorithms and computer 

power will eventually lead to the golden goal of computational biology, namely the in silico 

simulations of a living cell in atomic detail. 
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Appendix A 

Data set I 

Table A.1: Data set of 100 binding sites being non-homologous in 9 ligand sets. 

No Ligand Set PQS-Id Chain-

Id 

Protein EC Code CATH Code Ligand Ligand 

Chain-Id 

Ligand 

Residue 

Number 

Ligand 

Altern 

Loc 

1 AMP 12as A Asparagine synthetase 6.3.1.1 3.30.930.10 AMP X 2 _ 

2  1amu_1 A Gramicidin synthetase  5.1.1.11 2.30.38.10 

3.40.50.980 

AMP A 551 _ 

3  1c0a A Aspartyl t-RNA synthetase  6.1.1.12 3.30.1360.30 AMP E 800 _ 

4  1ct9_1 A Asparagine synthetase  6.3.5.4 3.40.50.620 AMP A 1100 _ 

5  1jp4 A Bisphosphate nucleotidase  3.1.3.7 3.40.190.80 AMP B 601 _ 

6  1kht B Adenylate kinase  2.7.4.3 3.40.50.300 AMP D 2193 _ 

7  1qb8 A Adenine phosphoribosyltransferase  2.4.2.7 3.40.50.2020 AMP C 300 _ 
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No Ligand Set PQS-Id Chain-

Id 

Protein EC Code CATH Code Ligand Ligand 

Chain-Id 

Ligand 

Residue 

Number 

Ligand 

Altern 

Loc 

8  1tb7 B cAMP-specific-cyclic phosphodiesterase  3.1.4.17 1.10.1300.10 AMP C 401 _ 

9  8gpb A Glycogen phosphorylase  2.4.1.1 3.40.50.2000 AMP B 930 _ 

10 ATP 1a0i _ ATP-dependent DNA ligase  6.5.1.1 3.30.470.30 

3.30.1490.70 

ATP _ 1 _ 

11  1a49_1 A Pyruvate kinase  2.7.1.40 3.20.20.60 ATP A 535 _ 

12  1ayl A Phosphoenolpyruvate carboxykinase  4.1.1.49 2.170.8.10 

3.90.228.20 

ATP A 541 _ 

13  1b8a A Aspartyl-tRNA synthetase  6.1.1.12 3.30.930.10 ATP C 500 _ 

14  1dv2 A Biotin carboxylase  6.3.4.14 3.30.470.20 

3.30.1490.20 

ATP C 1000 _ 

15  1dy3 A Pyrophosphokinase  2.7.6.3 3.30.70.560 ATP A 200 _ 

16  1e2q A Thymidylate kinase  2.7.4.9 3.40.50.300 ATP A 302 _ 

17  1e8x A Phosphatidylinositol kinase  2.7.1.153 1.10.1070.11 

3.30.1010.10 

ATP A 2000 _ 

18  1esq A Hydroxyethylthiazole kinase  2.7.1.50 3.40.1190.20 ATP D 300 _ 

19  1gn8 B Phosphopantetheine adenylyltransferase  2.7.7.3 3.40.50.620 ATP B 600 _ 

20  1kvk A Mevalonate kinase  2.7.1.36 3.30.230.10 ATP C 535 _ 

21  1o9t A Adenosylmethionine synthetase  2.5.1.6 3.30.300.10 ATP B 1397 _ 

22  1rdq E cAMP-dependent protein kinase  2.7.1.37 1.10.510.10 

3.30.200.20 

ATP A 600 B 

23  1tid A Anti-sigma F factor  2.7.1.37 3.30.565.10 ATP E 200 _ 
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No Ligand Set PQS-Id Chain-

Id 

Protein EC Code CATH Code Ligand Ligand 

Chain-Id 

Ligand 

Residue 

Number 

Ligand 

Altern 

Loc 

24 FAD 1cqx A Flavohemoprotein  1.14.12.1

7 

2.40.30.10 

3.40.50.80 

FAD A 405 _ 

25  1e8g B Vanillyl-alcohol oxidase  1.1.3.38 3.30.43.10 

3.30.465.20 

FAD B 600 _ 

26  1evi B D-amino acid oxidase  1.4.3.3 3.30.9.10 

3.40.50.720 

FAD C 353 _ 

27  1h69_1 A NAD(P)H dehydrogenase 1.6.99.2 3.40.50.360 FAD A 1274 _ 

28  1hsk A Acetylenolpyruvoylglucosamine reductase  1.1.1.158 3.30.43.10 

3.30.465.10 

FAD D 401 _ 

29  1jqi A Short chain acyl-CoA dehydrogenase  1.3.99.2 1.20.140.10 

2.40.110.10 

FAD E 399 _ 

30  1jr8 B Oxidreductase  1.8.3.? 1.20.120.310 FAD C 334 _ 

31  1k87 A Proline dehydrogenase  1.5.99.8 3.20.20.220 FAD C 2001 _ 

32  1pox A Pyruvate oxidase mutant  1.2.3.3 3.40.50.1220 

3.40.50.970 

FAD A 612 _ 

33  3grs A Glutathione reductase  1.8.1.7 3.50.50.60 FAD A 479 _ 

34 FMN 1dnl A Pyridoxine-phosphate oxidase  1.4.3.5 2.30.110.10 FMN C 250 _ 

35  1f5v A Oxidoreductase  1.?.?.? 3.40.109.10 FMN C 360 _ 

36  1ja1_1 A NADPH-cytochrome reductase  1.6.2.4 3.40.50.360 FMN A 1751 _ 

37  1mvl A Lyase  4.1.1.36 3.40.50.1950 FMN D 1001 _ 

38  1p4c A Mandelate dehydrogenase  1.1.3.15 3.20.20.70 FMN E 490 _ 



Appendix A 

 

170 

No Ligand Set PQS-Id Chain-

Id 

Protein EC Code CATH Code Ligand Ligand 

Chain-Id 

Ligand 

Residue 

Number 

Ligand 

Altern 

Loc 

39  1p4m A Transferase  2.7.1.26 2.40.30.30 FMN B 401 _ 

40 Glucose 1bdg A Hexokinase  2.7.1.1 3.30.420.40 

3.40.367.20 

GLC A 501 _ 

41  1cq1 A Quinoprotein glucose dehydrogenase  1.1.5.2 2.120.10.30 GLC C 3 _ 

42  1k1w A Transferase  2.4.1.25 3.20.20.? 

1.20.?.? 

2.70.98.? 

GLC C 653 _ 

43  1nf5_2 C Transferase  ?.?.?.? 1.10.530.10 

3.90.550.10 

GLC D 527 _ 

44  2gbp _ Periplasmic binding protein  ?.?.?.? 3.40.50.2300 GLC _ 310 _ 

45 Heme 1d0c A Endothelial nitric oxide synthase  1.14.13.3

9 

3.90.340.10 HEM A 500 _ 

46  1d7c A Cellobiose dehydrogenase  1.1.99.18 2.60.40.1210 HEM A 401 _ 

47  1dk0 A Heme-binding protein  ?.?.?.? 3.30.1500.10 HEM A 200 _ 

48  1eqg A Prostaglandin synthase  1.14.99.1 1.10.640.10 HEM A 601 _ 

49  1ew0 A Transferase  2.7.3.? 3.30.450.20 HEM A 501 _ 

50  1gwe A Catalase  1.11.1.6 2.40.180.10 HEM A 504 _ 

51  1iqc_1 A Heme peroxidase  1.11.1.5 1.10.760.10 HEM A 401 _ 

52  1naz E Oxygen transport  ?.?.?.? 1.10.490.10 HEM E 200 _ 

53  1np4 B Nitrophorin  ?.?.?.? 2.40.128.20 HEM B 185 _ 

54  1po5 A Cytochrome 1.14.14.1 1.10.630.10 HEM A 500 _ 
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No Ligand Set PQS-Id Chain-

Id 

Protein EC Code CATH Code Ligand Ligand 

Chain-Id 

Ligand 

Residue 

Number 

Ligand 

Altern 

Loc 

55  1pp9 C Oxidoreductase  ?.?.?.? 1.20.810.10 HEM C 501 _ 

56  1qhu A Binding protein hemopexin  ?.?.?.? 2.110.10.10 HEM A 500 _ 

57  1qla C Oxidoreductase  ?.?.?.? 1.20.950.10 HEM G 1 _ 

58  1qpa B Lignin peroxidase  1.11.1.14 1.10.420.10 

1.10.520.10 

HEM B 350 _ 

59  1sox A Sulfite oxidase  1.8.3.1 3.10.120.10 HEM A 502 _ 

60  2cpo _ Oxidoreductase  1.11.1.10 1.10.489.10 HEM _ 396 _ 

61 NAD 1ej2 B Nicotinamide adenylyltransferase  2.7.7.1 3.40.50.620 NAD H 1339 _ 

62  1hex A Isopropylmalate dehydrogenase  1.1.1.85 3.40.718.10 NAD A 400 A 

63  1ib0 A NADH-cytochrome reductase  1.6.2.2 3.40.50.80 NAD B 1994 _ 

64  1jq5 A Glycerol dehydrogenase  1.1.1.6 1.20.1090.10 

3.40.50.1970 

NAD I 401 _ 

65  1mew A Monophosphate dehydrogenase  1.1.1.205 3.20.20.70 NAD E 987 _ 

66  1mi3_1 A Oxidoreductase  1.1.1.21 3.20.20.100 NAD A 1350 _ 

67  1o04_1 A Aldehyde dehydrogenase  1.2.1.3 3.40.309.10 

3.40.605.10 

NAD A 6501 _ 

68  1og3 A T-cell ADP-ribosyltransferase  2.4.2.31 2.30.100.10 NAD A 1227 _ 

69  1qax A Methylglutaryl-coenzyme reductase  1.1.1.88 3.30.70.420 

3.90.770.10 

NAD G 1001 _ 

70  1rlz A Deoxyhypusine synthase  2.5.1.46 3.40.910.10 NAD H 700 _ 

71  1s7g B NAD-dependent deacetylase  3.5.1.? 3.40.50.1220 NAD F 701 _ 
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No Ligand Set PQS-Id Chain-

Id 

Protein EC Code CATH Code Ligand Ligand 

Chain-Id 

Ligand 

Residue 

Number 

Ligand 

Altern 

Loc 

72  1t2d A Lactate dehydrogenase  1.1.1.27 3.40.50.720 

3.90.110.10 

NAD E 316 _ 

73  1tox_1 A Diphtheria toxin  2.4.2.36 3.90.175.10 NAD A 536 _ 

74  2a5f B Protein transport  2.4.2.36 3.90.210.10 NAD C 1536 _ 

75  2npx A NADH peroxidase  1.11.1.1 3.50.50.60 NAD A 818 _ 

76 Phosphate 1a6q _ Phosphatase  3.1.3.16 3.60.40.10 PO4 _ 701 _ 

77  1b8o C Purine nucleoside phosphorylase  2.4.2.1 3.40.50.1580 PO4 F 599 _ 

78  1brw A Pyrimidine nucleoside phosphorylase  2.4.2.2 3.40.1030.10 PO4 C 2001 _ 

79  1cqj_1 B Succinyl-CoA synthetase  6.2.1.5 3.30.1490.20 PO4 B 904 _ 

80  1d1q B Tyrosine phosphatase  3.1.3.48 3.40.50.270 PO4 C 402 _ 

81  1dak A Dethiobiotin synthetase  6.3.3.3 3.40.50.300 PO4 C 803 _ 

82  1e9g A Inorganic pyrophosphatase  3.6.1.1 3.90.80.10 PO4 A 3001 A 

83  1ejd C Enolpyruvyltransferase  2.5.1.7 3.65.10.10 PO4 F 2431 _ 

84  1euc A Succinyl-CoA synthetase  6.2.1.4 3.40.50.261 PO4 C 224 _ 

85  1ew2 A Phosphatase  3.1.3.1 3.40.720.10 PO4 C 1005 _ 

86  1fbt B Bisphosphatase  3.1.3.46 3.40.50.1240 PO4 C 100 _ 

87  1gyp A Glyceraldehyde-phosphate dehydrogenase  1.2.1.12 3.30.360.10 PO4 A 359 _ 

88  1h6l A Phytase  3.1.3.8 2.120.10.20 PO4 A 501 _ 

89  1ho5_1 B Nucleotidase  3.1.3.5 3.60.21.20 PO4 B 2603 _ 

90  1l5w A Maltodextrin phosphorylase  2.4.1.1 3.40.50.2000 PO4 D 998 _ 

91  1l7m_1 A Phosphoserine phosphatase  3.1.3.3 3.40.50.1000 PO4 A 720 _ 
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No Ligand Set PQS-Id Chain-

Id 

Protein EC Code CATH Code Ligand Ligand 

Chain-Id 

Ligand 

Residue 

Number 

Ligand 

Altern 

Loc 

92  1lby A Bisphosphatase  3.1.3.25 3.30.540.10 

3.40.190.80 

PO4 C 293 _ 

93  1lyv A Protein-tyrosine phosphatase  3.1.3.48 3.90.190.10 PO4 B 1000 _ 

94  1qf5 A Adenylosuccinate synthetase  6.3.4.4 3.40.440.10 PO4 C 2 _ 

95  1tco A Serine-threonine phosphatase  3.1.3.16 3.60.21.10 PO4 D 507 _ 

96 Steroid 1e3r B Isomerase  5.3.3.1 3.10.450.50 AND B 801 _ 

97  1fds A Hydroxysteroid-dehydrogenase  1.1.1.62 3.40.50.720 EST A 350 _ 

98  1j99 A Alcohol sulfotransferase  2.8.2.2 3.40.50.300 AND B 401 A 

99  1lhu A Sex hormone-binding globulin  ?.?.?.? 2.60.120.200 EST G 301 _ 

100  1qkt A Estradiol receptor  ?.?.?.? 1.10.565.10 EST C 600 _ 

_ is a placeholder for unlabelled chains and alternative locations. ? is a placeholder for unavailable information. 
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Appendix B 

Data set II 

Table B.1: Small data set of 12 ligand molecules within difference electron density maps. 

No Ligand PDB-Id 
Res  

[Å] 
# Total ! -clusters # Assoc. ! -clusters 

1 114 

 

1hw8 2.10 220 169 

2 AMP 

 

1mf0 2.50 141 67 

3 ATP 

 

1ii0 2.40 295 105 

4 CLR 

 

2rh1 2.40 102 28 

5 EST 

 

1iol 2.30 63 27 

6 FDI 

 

1b9s 2.50 48 20 

7 FMN 

 

1oo5 2.50 63 41 

8 HYF 

 

1m13 2.15 18 12 
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No Ligand PDB-Id 
Res  

[Å] 
# Total ! -clusters # Assoc. ! -clusters 

9 KTN 

 

1jin 2.30 80 63 

10 PCP 

 

1a95 2.00 205 125 

11 SAH 

 

2dsi 2.20 80 22 

12 SAM 

 

1h1d 2.00 154 84 

The table shows from left to right the ligand!s PDB three letter code, the ligand in ball-stick 

representation as found in PDBsum (Laskowski, et al., 2005), the PDB-Id of the protein structure 

from which the ligand was extracted, the resolution of the protein!s X-ray data, the total number of 

density (!) clusters after fragmentation tree filtering, the total number of redundant density (!) 

clusters found at the same location of the ligand in the difference electron density map. 

 

Data set III 

Table B.2: Large data set of 536 ligand molecules within difference electron density maps. 

No Ligand PDB-Id 
Res 

[Å] 
# Total ! -clusters # Assoc. ! -clusters 

1 GTT 11gs 2.30 19 30 
2 GDP 1a4r 2.50 82 75 

3 GNH 1a4r 2.50 75 82 

4 PCP 1a96 2.00 114 113 

5 TOL 1ah3 2.30 33 83 

6 NPE 1aj7 2.10 8 14 

7 BOG 1aua 2.50 53 19 

8 FKP 1azs 2.30 49 88 
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No Ligand PDB-Id 
Res 

[Å] 
# Total ! -clusters # Assoc. ! -clusters 

9 GSP 1azs 2.30 88 49 
10 UFP 1b02 2.50 8 32 

11 ATP 1b39 2.10 10 6 

12 RA2 1b9v 2.35 54 32 

13 SAH 1bc5 2.20 74 50 

14 MNO 1bmq 2.50 74 28 

15 PIC 1bzj 2.25 62 26 

16 PQQ 1c9u 2.20 65 18 

17 MAL 1cdg 2.00 93 38 

18 MAL 1cgv 2.50 173 44 

19 101 1cs4 2.50 49 173 

20 FOK 1cs4 2.50 62 164 

21 GSP 1cs4 2.50 88 132 

22 FOK 1cul 2.40 46 129 

23 GSP 1cul 2.40 80 90 

24 MAL 1cxe 2.10 162 45 

25 MTX 1d1g 2.10 73 98 

26 DGP 1del 2.20 24 38 

27 ADP 1djn 2.20 176 208 

28 BMS 1dkf 2.50 88 33 

29 OLA 1dkf 2.50 52 81 

30 MHF 1dnp 2.30 96 140 

31 MTX 1dre 2.60 73 37 

32 GNT 1dx6 2.30 85 65 

33 HUX 1e66 2.10 88 42 

34 ATP 1e8x 2.20 68 123 

35 ATP 1ee1 2.06 42 93 

36 E20 1eve 2.50 78 90 

37 ADP 1f48 2.30 112 87 

38 AMP 1fa9 2.40 47 76 

39 BRL 1fm6 2.10 65 62 

40 REA 1fm6 2.10 66 76 

41 GSB 1fro 2.20 67 44 

42 PNN 1fxv 2.25 11 26 

43 GDP 1gim 2.50 41 48 

44 IMP 1gim 2.50 52 51 

45 GDP 1gin 2.80 81 25 

46 IMP 1gin 2.80 36 81 

47 DH2 1gp5 2.20 44 70 

48 DQH 1gp5 2.20 51 63 

49 LAT 1gwv 2.50 66 119 

50 UDP 1gwv 2.50 114 62 

51 BIA 1h1d 2.00 61 84 

52 E10 1h22 2.15 42 119 

53 E12 1h23 2.15 49 83 

54 GDP 1h2t 2.10 68 32 
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No Ligand PDB-Id 
Res 

[Å] 
# Total ! -clusters # Assoc. ! -clusters 

55 AIC 1h8s 2.40 12 27 
56 GDP 1ha3 2.00 161 126 

57 AOE 1hj1 2.30 20 28 

58 SAH 1hnn 2.40 159 128 

59 FMN 1huv 2.15 47 30 

60 ADP 1hw8 2.10 58 197 

61 D16 1i00 2.50 36 43 

62 UMP 1i00 2.50 85 56 

63 ADP 1ihu 2.15 120 95 

64 ADP 1ii0 2.40 81 259 

65 ENA 1isi 2.10 107 86 

66 NMN 1isj 2.30 55 160 

67 DCU 1j07 2.35 33 105 

68 ATP 1j21 2.20 265 112 

69 WRA 1j3i 2.33 90 101 

70 UMP 1j3k 2.10 144 179 

71 OLA 1j78 2.31 31 59 

72 739 1jcq 2.30 87 123 

73 FPP 1jcq 2.30 88 143 

74 SUC 1jcq 2.30 58 171 

75 EST 1jgl 2.15 39 23 

76 UVC 1jh7 2.40 22 13 

77 DEB 1jio 2.10 40 88 

78 FMN 1jnw 2.07 41 20 

79 DEQ 1jt6 2.54 48 185 

80 GTT 1k0a 2.50 30 58 

81 MAL 1k1y 2.40 27 56 

82 FMN 1kbi 2.30 131 56 

83 AMP 1kht 2.50 78 24 

84 IMP 1kkf 2.60 44 43 

85 YPA 1knu 2.50 14 46 

86 SAH 1kyw 2.40 61 30 

87 SAH 1kyz 2.20 81 28 

88 AMP 1kz8 2.00 99 70 

89 PFE 1kz8 2.00 69 91 

90 NCN 1l4f 2.10 40 20 

91 7RP 1l5l 2.00 77 46 

92 7RA 1l5m 2.00 67 39 

93 T80 1lbt 2.50 31 46 

94 DHF 1lcb 2.50 7 7 

95 TMP 1lcb 2.50 12 12 

96 TMF 1lce 2.50 26 13 

97 FPP 1ld7 2.00 76 143 

98 SUC 1ld7 2.00 57 163 

99 U66 1ld7 2.00 85 123 

100 IMO 1lny 2.20 94 36 
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No Ligand PDB-Id 
Res 

[Å] 
# Total ! -clusters # Assoc. ! -clusters 

101 IMO 1lon 2.10 51 19 
102 GER 1lv0 2.00 15 44 

103 5GP 1lvg 2.10 65 48 

104 ADP 1lvg 2.10 39 63 

105 AMP 1mc1 2.16 47 58 

106 GSH 1md3 2.03 41 48 

107 GSH 1md4 2.10 81 41 

108 MOA 1mei 2.20 36 88 

109 XMP 1mei 2.20 88 36 

110 GDP 1mez 2.40 78 34 

111 GDP 1mf0 2.50 81 64 

112 IDP 1mrd 2.30 66 31 

113 GDP 1mre 2.30 61 33 

114 TDG 1muq 2.30 39 111 

115 BNE 1mzc 2.00 59 105 

116 FPP 1mzc 2.00 83 113 

117 SUC 1mzc 2.00 55 144 

118 FMN 1n07 2.45 23 91 

119 SO1 1n0u 2.12 68 28 

120 GDR 1n7g 2.20 69 267 

121 GDP 1nht 2.50 19 16 

122 PGS 1nht 2.50 18 20 

123 153 1nhu 2.00 27 18 

124 ADP 1njf 2.30 46 156 

125 ATG 1njf 2.30 151 40 

126 ADP 1nks 2.57 85 295 

127 AMP 1nks 2.57 264 119 

128 MAL 1nl5 2.10 72 29 

129 APC 1nus 2.20 55 50 

130 NMN 1nus 2.20 79 41 

131 AMP 1nv7 2.15 97 75 

132 UFP 1o28 2.10 301 86 

133 LMS 1obh 2.20 125 58 

134 A8B 1odc 2.20 71 31 

135 FMN 1ofd 2.00 141 176 

136 BEL 1oon 2.49 25 50 

137 MAL 1ot2 2.10 55 169 

138 TAL 1oum 2.40 90 27 

139 DBM 1ov6 2.40 33 19 

140 P33 1oxn 2.20 37 58 

141 P33 1oxq 2.30 28 84 

142 ADP 1p61 2.21 62 52 

143 ADP 1p72 2.10 48 37 

144 GDP 1p9b 2.00 50 25 

145 IMO 1p9b 2.00 47 26 

146 MAL 1pez 2.32 107 55 
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No Ligand PDB-Id 
Res 

[Å] 
# Total ! -clusters # Assoc. ! -clusters 

147 ADP 1pfk 2.40 198 79 
148 PRX 1pg3 2.30 123 43 

149 FFO 1pj7 2.10 46 73 

150 MAL 1pj9 2.00 59 103 

151 ANP 1pjk 2.50 10 12 

152 880 1pmq 2.20 55 15 

153 TPP 1pow 2.50 166 149 

154 TPP 1pox 2.10 140 152 

155 FMN 1ps9 2.20 62 196 

156 AMP 1ptw 2.30 68 20 

157 LAT 1puu 2.30 84 229 

158 GSH 1px6 2.10 101 48 

159 GSH 1px7 2.03 79 51 

160 A3P 1q20 2.30 74 44 

161 PLO 1q20 2.30 49 70 

162 A3P 1q22 2.50 77 63 

163 AND 1q22 2.50 75 70 

164 ATP 1qhg 2.50 76 27 

165 ADP 1r0y 2.55 185 56 

166 MTX 1rb3 2.30 101 138 

167 AFB 1re0 2.40 76 92 

168 GDP 1re0 2.40 68 61 

169 MTX 1rh3 2.40 67 72 

170 ADP 1rk2 2.25 126 81 

171 DEO 1ros 2.00 50 35 

172 TYD 1rrv 2.00 113 76 

173 D7P 1rs9 2.22 76 275 

174 MTX 1rx3 2.20 34 52 

175 DDF 1rx4 2.20 35 56 

176 RIO 1s3z 2.00 57 65 

177 APR 1s7g 2.30 40 152 

178 ATP 1s9j 2.40 79 39 

179 BBM 1s9j 2.40 41 88 

180 FPP 1sa4 2.10 88 132 

181 JAN 1sa4 2.10 69 119 

182 SUC 1sa4 2.10 65 157 

183 MTH 1sd2 2.10 51 18 

184 666 1so2 2.40 177 187 

185 ORX 1szr 2.15 65 178 

186 PLG 1szr 2.15 76 192 

187 C8E 1t16 2.60 39 20 

188 B3N 1t67 2.31 20 29 

189 ADP 1t6x 2.29 25 82 

190 BGL 1taq 2.40 47 23 

191 BOG 1tcb 2.10 68 52 

192 BOG 1tcc 2.50 40 85 
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No Ligand PDB-Id 
Res 

[Å] 
# Total ! -clusters # Assoc. ! -clusters 

193 FMN 1tll 2.30 113 259 
194 GHA 1tqu 2.03 33 20 

195 ADP 1tuu 2.50 43 52 

196 AMP 1tuu 2.50 50 51 

197 FMN 1tv5 2.40 35 122 

198 N8E 1tv5 2.40 43 144 

199 SAM 1tv8 2.20 113 228 

200 FRZ 1tvo 2.50 24 23 

201 CB3 1tvv 2.30 13 7 

202 CB3 1tvw 2.50 9 26 

203 SAH 1tw2 2.50 133 44 

204 SAH 1tw3 2.35 100 77 

205 CBS 1tw5 2.30 89 117 

206 UDH 1tw5 2.30 106 88 

207 PA7 1u0y 2.30 51 45 

208 BAU 1u1c 2.20 245 66 

209 181 1u1d 2.00 298 75 

210 NEC 1u2o 2.10 75 83 

211 MTX 1u70 2.50 29 59 

212 MAL 1ua3 2.01 33 36 

213 MLR 1ua3 2.01 30 23 

214 ALH 1ung 2.30 31 36 

215 IXM 1unh 2.35 58 97 

216 RRC 1unl 2.20 18 68 

217 A8N 1ut6 2.40 59 171 

218 PF3 1utz 2.50 114 66 

219 AMP 1uxn 2.30 83 24 

220 AMP 1uxu 2.25 82 136 

221 AMP 1uxv 2.35 81 37 

222 NFG 1uyq 2.20 56 42 

223 D1L 1uyr 2.50 76 64 

224 SLB 1v3c 2.30 104 60 

225 DAN 1v3d 2.28 124 103 

226 HA1 1v48 2.20 49 28 

227 MRK 1v4s 2.30 49 54 

228 AMP 1v8s 2.20 10 5 

229 P2S 1va6 2.10 51 43 

230 BNG 1vgo 2.50 71 73 

231 TES 1vpo 2.15 21 21 

232 FMN 1vrq 2.20 81 163 

233 ACD 1vyg 2.40 4 1 

234 CB3 1vzd 2.50 10 9 

235 CB3 1vze 2.30 9 26 

236 UMP 1vze 2.30 47 45 

237 SIA 1w1x 2.00 98 204 

238 SIA 1w20 2.08 113 156 
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No Ligand PDB-Id 
Res 

[Å] 
# Total ! -clusters # Assoc. ! -clusters 

239 SIA 1w21 2.08 113 155 
240 TS0 1w29 2.30 29 127 

241 TS1 1w29 2.30 98 127 

242 DN1 1w3c 2.30 24 37 

243 DN2 1w3c 2.30 13 37 

244 ADP 1w4b 2.30 42 11 

245 GL8 1w4l 2.16 63 34 

246 ADP 1w5t 2.40 38 126 

247 ANP 1w5t 2.40 111 33 

248 GNT 1w6r 2.05 88 42 

249 EQU 1w6y 2.10 11 14 

250 GNT 1w76 2.30 94 123 

251 TDP 1w88 2.30 112 46 

252 DAN 1wcq 2.10 191 56 

253 SAH 1wng 2.10 54 24 

254 ANP 1wuu 2.50 273 86 

255 FRK 1wxy 2.50 18 8 

256 F29 1wzy 2.50 16 11 

257 FMN 1x31 2.15 88 176 

258 ADP 1x3m 2.20 21 42 

259 ATP 1xdp 2.50 14 9 

260 SAM 1xds 2.30 104 78 

261 REA 1xiu 2.50 70 27 

262 ATP 1xkv 2.20 34 100 

263 188 1xkw 2.00 51 22 

264 OCB 1xl8 2.20 56 42 

265 CIO 1xlx 2.19 47 20 

266 PIL 1xm4 2.31 68 25 

267 G7M 1xmm 2.50 63 125 

268 M7G 1xmm 2.50 121 53 

269 7DE 1y2j 2.55 17 47 

270 FMN 1y30 2.20 1 4 

271 GDP 1y3a 2.50 254 140 

272 C0R 1y5r 3.00 108 162 

273 E89 1y5x 2.10 79 28 

274 CIE 1ybh 2.50 88 234 

275 APC 1ybu 2.40 9 5 

276 APR 1yc2 2.40 50 135 

277 PQQ 1yiq 2.20 63 87 

278 BOG 1yk3 2.20 48 104 

279 BNG 1ymg 2.24 52 19 

280 PY4 1ynu 2.25 32 95 

281 ADP 1yp4 2.30 121 130 

282 ADQ 1yp4 2.30 41 130 

283 AMP 1yxu 2.24 60 65 

284 AMP 1yz0 2.07 136 158 
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No Ligand PDB-Id 
Res 

[Å] 
# Total ! -clusters # Assoc. ! -clusters 

285 SAH 1yz3 2.40 158 87 
286 BOG 1yz4 2.40 28 7 

287 2FA 1z35 2.50 88 24 

288 DAN 1z4v 2.30 88 230 

289 DAN 1z4z 2.50 82 219 

290 DEB 1z8q 2.00 26 67 

291 CTP 1za2 2.50 89 105 

292 C01 1zeo 2.50 37 19 

293 2HI 1zg3 2.35 58 35 

294 SAH 1zg3 2.35 26 50 

295 HMK 1zga 2.35 24 42 

296 SAH 1zga 2.35 17 43 

297 GSH 1zgn 2.10 64 29 

298 SUC 1zs2 2.16 47 30 

299 PRP 1zvw 2.30 33 82 

300 BI5 1zyj 2.00 28 16 

301 BOG 1zyj 2.00 21 30 

302 DP9 1zzt 2.14 81 289 

303 AMP 2a1u 2.11 47 100 

304 GTP 2a5f 2.02 75 74 

305 AUP 2aaq 2.60 28 67 

306 1CA 2abi 2.33 59 16 

307 CBC 2abj 2.20 166 192 

308 SAM 2adm 2.60 19 60 

309 UDH 2aec 2.00 234 90 

310 OLA 2af9 2.00 4 2 

311 UDH 2ah9 2.00 241 133 

312 SAH 2an3 2.20 155 52 

313 SAH 2an4 2.20 160 40 

314 VCA 2awh 2.00 54 112 

315 ADP 2axn 2.10 88 44 

316 EDT 2axn 2.10 40 146 

317 MA5 2azn 2.70 106 209 

318 201 2b0m 2.00 30 103 

319 FMN 2b0m 2.00 57 24 

320 TRE 2b1q 2.20 29 45 

321 CBI 2b1r 2.20 29 28 

322 VCA 2b50 2.00 41 91 

323 12P 2b9x 2.22 24 49 

324 ODD 2bab 2.00 44 92 

325 CM5 2bdm 2.30 42 39 

326 TMI 2bdm 2.30 39 56 

327 R22 2be2 2.43 66 67 

328 SUC 2be2 2.43 95 70 

329 CTP 2be9 2.60 55 102 

330 IID 2bq7 2.20 17 35 
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No Ligand PDB-Id 
Res 

[Å] 
# Total ! -clusters # Assoc. ! -clusters 

331 DFW 2brh 2.10 25 50 
332 NAR 2brt 2.20 11 19 

333 AZQ 2bxi 2.50 47 78 

334 IMN 2bxk 2.40 36 129 

335 IMN 2bxm 2.50 69 117 

336 P1Z 2bxp 2.30 44 133 

337 SIA 2c4a 2.15 94 27 

338 AMP 2c5s 2.50 58 26 

339 PXI 2c6h 2.35 85 149 

340 GTX 2c80 2.30 70 25 

341 PHR 2c9d 2.80 79 22 

342 QUE 2c9z 2.10 38 57 

343 UDP 2c9z 2.10 45 38 

344 GSW 2ca8 2.49 60 28 

345 GSW 2caq 2.00 40 37 

346 OAN 2cbj 2.35 106 74 

347 N8T 2cek 2.20 59 78 

348 DAN 2cex 2.20 45 47 

349 P2N 2cgf 2.20 48 31 

350 ADP 2cgj 2.26 34 23 

351 3A3 2cgu 2.50 25 21 

352 RCL 2cm9 2.30 24 14 

353 F11 2cmf 2.50 52 68 

354 ZMR 2cml 2.15 175 177 

355 GDP 2cvw 2.40 52 87 

356 TTP 2cvw 2.40 85 51 

357 ADP 2cvx 2.20 44 88 

358 DGT 2cvx 2.20 88 32 

359 TRE 2cy6 2.00 18 9 

360 A3P 2d06 2.30 158 51 

361 EST 2d06 2.30 77 129 

362 PQQ 2d0v 2.49 71 49 

363 ATP 2d1k 2.50 77 38 

364 AMP 2d1q 2.30 61 28 

365 ANP 2d32 2.40 281 76 

366 TNR 2d3s 2.35 179 124 

367 UDP 2d7i 2.50 88 38 

368 HRB 2ddq 2.35 16 15 

369 FMN 2dor 2.00 168 94 

370 ADP 2dpy 2.40 21 26 

371 SAH 2dsg 2.00 42 20 

372 SAH 2dsh 2.00 54 23 

373 SAH 2dv4 2.20 40 23 

374 GM6 2dw1 2.50 58 49 

375 L2C 2dwe 2.50 15 55 

376 ADP 2dwo 2.25 66 110 
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No Ligand PDB-Id 
Res 

[Å] 
# Total ! -clusters # Assoc. ! -clusters 

377 JTP 2dxs 2.20 34 16 
378 SAH 2e16 2.00 40 17 

379 SAH 2e4r 2.20 41 52 

380 MTA 2e5w 2.00 62 211 

381 SAH 2e8r 2.00 56 16 

382 TRE 2ebh 2.40 35 67 

383 SAH 2ed3 2.50 27 18 

384 SAH 2ed5 2.10 60 28 

385 SAH 2eg5 2.20 89 75 

386 SAH 2emu 2.20 31 23 

387 HFS 2erz 2.20 19 60 

388 OLA 2ev2 2.35 25 23 

389 OLA 2ev4 2.28 37 18 

390 BOG 2evu 2.30 19 58 

391 Y12 2ew5 2.20 4 2 

392 Y13 2ew6 2.20 3 9 

393 TPP 2ez4 2.03 130 175 

394 TDM 2ezt 2.29 117 134 

395 HTL 2ezu 2.16 90 119 

396 DYM 2f13 2.26 21 36 

397 AMP 2f17 2.50 27 80 

398 C8E 2f1c 2.30 19 50 

399 DAN 2f27 2.15 150 225 

400 FBP 2f48 2.11 88 33 

401 20S 2fah 2.09 103 223 

402 GDP 2fah 2.09 221 123 

403 SAM 2fb2 2.25 101 242 

404 FSI 2fhr 2.20 37 19 

405 S14 2fjp 2.40 118 164 

406 GSP 2fju 2.20 88 35 

407 3QC 2fme 2.10 94 164 

408 ADP 2fme 2.10 125 89 

409 JPA 2foi 2.50 86 93 

410 OLA 2ftb 2.00 10 6 

411 5IG 2g1y 2.50 125 112 

412 TDK 2g25 2.10 100 26 

413 ACF 2g5t 2.30 63 130 

414 AAF 2g63 2.00 47 130 

415 SAM 2g70 2.40 144 116 

416 FTS 2g71 2.20 99 174 

417 SAH 2g71 2.20 167 84 

418 F21 2g72 2.00 175 176 

419 SAM 2g72 2.00 144 165 

420 UMP 2g86 2.40 51 30 

421 F83 2g8n 2.15 171 166 

422 SAH 2g8n 2.15 160 167 
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No Ligand PDB-Id 
Res 

[Å] 
# Total ! -clusters # Assoc. ! -clusters 

423 FMN 2gah 2.00 47 122 
424 885 2gc8 2.20 62 20 

425 DOI 2gcq 2.00 56 29 

426 GDP 2gcq 2.00 65 24 

427 BDE 2glp 2.42 31 103 

428 ADP 2gm1 2.30 230 136 

429 796 2gu8 2.20 44 33 

430 NMN 2gvg 2.20 241 71 

431 SFG 2h2j 2.45 227 74 

432 APR 2h59 1.90 76 72 

433 B3H 2h8p 2.25 30 100 

434 N5A 2hch 2.30 78 84 

435 BOG 2hd0 2.28 67 44 

436 DMU 2hd0 2.28 25 34 

437 B3H 2hfe 2.25 36 23 

438 3TP 2hha 2.35 123 189 

439 ATR 2hk9 2.20 62 172 

440 SAH 2hnk 2.30 38 114 

441 1CN 2hoc 2.10 43 27 

442 EA5 2hp1 2.08 46 56 

443 G39 2ht8 2.40 13 8 

444 SAH 2huq 2.20 53 73 

445 SAH 2huv 2.10 66 49 

446 ANP 2hw1 2.10 8 30 

447 4HX 2hx4 2.15 63 219 

448 3CM 2hza 2.10 14 10 

449 ADP 2if8 2.40 35 40 

450 1EM 2ih1 2.40 24 37 

451 872 2iit 2.35 120 199 

452 565 2iiv 2.15 111 283 

453 MHF 2ijg 2.10 72 85 

454 CTP 2im0 2.25 25 32 

455 ACJ 2ivd 2.30 61 152 

456 ADP 2iw3 2.40 98 25 

457 QQ2 2iw6 2.30 54 17 

458 C5P 2ix0 2.44 36 21 

459 LAT 2iy8 2.50 35 64 

460 ADP 2iyz 2.30 22 11 

461 FMN 2j09 2.00 56 56 

462 ACP 2j4j 2.10 281 106 

463 UDP 2j65 2.20 47 13 

464 XMM 2jdz 2.10 17 26 

465 ADP 2jgv 2.00 46 19 

466 895 2jh5 2.50 27 18 

467 SIA 2jh7 2.07 62 33 

468 SIA 2jhd 2.30 58 30 
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No Ligand PDB-Id 
Res 

[Å] 
# Total ! -clusters # Assoc. ! -clusters 

469 ADP 2ji6 2.06 77 212 
470 ADP 2ji9 2.20 100 189 

471 ADP 2jib 2.20 111 226 

472 TPP 2jib 2.20 174 175 

473 ADP 2no9 2.15 101 78 

474 521 2nta 2.10 19 14 

475 738 2o2u 2.45 55 17 

476 TCB 2o9r 2.30 23 67 

477 PE5 2oa5 2.10 34 16 

478 F83 2obf 2.30 128 140 

479 SAH 2obf 2.30 137 122 

480 SAM 2obv 2.05 55 30 

481 U1N 2ogz 2.10 62 86 

482 ATP 2oh6 2.10 13 15 

483 CTP 2oh6 2.10 21 16 

484 ATP 2oh7 2.45 17 12 

485 GTP 2oh7 2.45 12 16 

486 8IP 2ohr 2.25 39 24 

487 IP7 2ohu 2.35 16 31 

488 UD1 2oi5 2.25 134 94 

489 UD1 2oi6 2.20 157 40 

490 19A 2ojg 2.00 33 18 

491 277 2oph 2.40 115 248 

492 DXC 2opx 2.53 58 22 

493 SAH 2owf 2.20 24 13 

494 SAH 2owg 2.10 38 47 

495 SAH 2oy0 2.80 63 16 

496 PRX 2p2b 2.20 145 96 

497 SAH 2p5c 2.40 44 25 

498 SAH 2pb4 2.10 36 24 

499 MGT 2px8 2.20 93 74 

500 SAH 2px8 2.20 93 127 

501 GTP 2pxa 2.30 74 73 

502 SAH 2pxa 2.30 84 84 

503 U5P 2q0f 2.40 31 52 

504 ADP 2q2r 2.10 50 97 

505 ATP 2q36 2.50 84 56 

506 EIC 2q9s 2.30 3 10 

507 BNG 2qks 2.20 19 55 

508 ADP 2qrd 2.41 88 138 

509 ACP 2r7k 2.10 88 60 

510 AMZ 2r7k 2.10 64 88 

511 AMZ 2r7l 2.10 71 64 

512 ATP 2r7l 2.10 64 68 

513 AMP 2r7m 2.30 120 54 

514 ADP 2r7n 2.40 69 70 
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No Ligand PDB-Id 
Res 

[Å] 
# Total ! -clusters # Assoc. ! -clusters 

515 ATP 2r86 2.50 144 111 
516 C8E 2sqc 2.00 73 57 

517 PLS 2trs 2.04 84 44 

518 ADP 2ukd 2.20 66 72 

519 C5P 2ukd 2.20 80 61 

520 AD0 2uvf 2.10 18 72 

521 ADP 2uyi 2.10 134 89 

522 ADP 2uym 2.11 125 113 

523 CDM 2v2z 2.25 128 44 

524 SIA 2v73 2.20 38 18 

525 ADP 2vb6 2.30 87 26 

526 FMN 2vbv 2.40 38 40 

527 2SA 2vd6 2.00 142 39 

528 AMP 2vd6 2.00 69 166 

529 ADP 2z0h 2.10 91 59 

530 TYD 2z0h 2.10 91 67 

531 GDP 2z1m 2.00 75 32 

532 FMN 3b6j 2.05 143 120 

533 MTA 3b7p 2.00 255 101 

534 IM2 3bfc 2.20 84 105 

535 ADP 4pfk 2.40 54 23 

536 GTT 7gss 2.20 30 17 

The table shows from left to right the ligand!s PDB three letter code, the PDB-Id of the protein structure 

from which the ligand was extracted, the resolution of the protein!s X-ray data, the total number of 

density (!) clusters after fragmentation tree filtering, the total number of redundant density (!) clusters 

found at the same location of the ligand in the difference electron density map. The ligand molecules 

are alphabetically sorted according to the PDB-Id of their protein structure. If two ligands originate from 

the same PDB file, they are additionally sorted according to their PDB three letter code. 
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