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1 Introduction

1.1 Motivation and Literature Review

Two of the assumptions of expected utility theory seem less satisfactory than the others, those of com-
pleteness and independence. Completeness requires that decision makers are able to compare and express
clear preferences between any two risky prospects, while independence requires that decision makers rank
prospects only by their distinct characteristics, disregarding their common aspects.

That the completeness axiom may be too demanding was recognized from the outset by von Neumann
and Morgenstern (1947) who say that “It is conceivable – and may even in a way be more realistic –
to allow for cases where the individual is neither able to state which of two alternatives he prefers nor
that they are equally desirable.” Aumann (1962), who was the first to study expected utility theory
without the completeness axiom, claims that “Of all the axioms of utility theory, the completeness
axiom is perhaps the most questionable. Like others of the axioms, it is inaccurate as a description of
real life; but unlike them, we find it hard to accept even from a normative viewpoint.” Later studies by
Shapley and Baucelles (1998), Dubra, Maccheronni and Ok (2004) and, most recently, Galaabaatar and
Karni (2012) all conclude that the departure from completeness axiom leads to expected multi-utility
representations.

Experimental evidence, such as the Allais paradox, motivated developments in the 1980s of theories of
decision making under risk that depart from the independence axiom. These theories include Quiggin’s
(1982) anticipated utility theory, Chew and MacCrimmon’s (1979) weighted utility theory, Yaari’s (1987)
dual theory, Dekel’s (1986) implicit weighted utility, and Gul’s (1991) theory of disappointment aversion.1

Thus far, the only works that simultaneously depart from both the completeness and independence
axioms are Maccheroni (2004), Safra (2014) and Zhou (2014). Maccheroni (2004) showed that without the
completeness axiom the representation of Yaari’s dual theory entails the existence of a set of probability
transformation functions such that one risky prospect is preferred over another if and only if its rank-
dependent expected value is larger according to every probability transformation function in that set.
Safra (2014) studied a general model of decision making under risk that has the betweenness property.2

Safra showed that without completeness, the representation entails the existence of a set of continuous
functionals displaying betweenness such that one risky prospect is preferred over another if and only if it
is assigned a higher value by every element in this set. Weighted utility theory, the subject of this work,
also displays the betweenness property but is more structured and therefore calls for a different analysis.

The objective of this paper is to study weighted utility theory without the completeness axiom. Intro-
duced by Chew and MacCrimmon (1979) and Chew (1983, 1989), weighted utility theory is based on a
natural weakening of the independence axiom to a ratio substitution property, allowing the outcomes to
hold different degrees of salience for the decision maker, captured in the representation by the namesake
weight function. Incompleteness in weighted utility theory may thus be the result not only of indecisive
tastes, captured by a set of utility functions that rank the outcomes differently, but also of conflicting
perceptions of the alternatives presented, captured by a set of weight functions that represent different
transformations of the probabilities, or some combination of both. We begin by analyzing the general
multiple weighted expected utility model, and follow with the two special cases of multiple utilities paired
with a single weight function, or a single utility paired with multiple weights.

1.2 An Informal Review

To set the stage and develop some intuition, we begin with an informal review. Let X = {x1, . . . , xn}
be the set of outcomes, and denote the set of lotteries over X by ∆(X) = {p ∈ Rn+ :

∑
x∈X p(x) = 1}.3

Denote by δx the degenerate lottery that assigns x ∈ X unit probability mass. Let � be a strict
preference relation over ∆(X), that is, an irreflexive and transitive binary relation which may or may
not be negatively transitive. If � violates the independence axiom and instead satisfies only the weaker

1See Karni and Schmeidler (1991) for a review of this literature.
2Models of decision making under risk with the betweenness property include Chew (1983), Dekel (1986) and Gul (1991).
3For each p, q ∈ ∆(X) and α ∈ [0, 1], define αp+ (1− α)q ∈ ∆(X) by (αp+ (1− α)q)(x) = αp(x) + (1− α)q(x) for all

x ∈ X. Then ∆(X) is a convex subset of the linear space Rn.
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substitution axiom of Chew (1989), then there exists a utility function u and a nonnegative weight
function w mapping X to R, such that, for all p, q ∈ ∆(X),

p � q ⇐⇒
∑
x∈X p(x)w(x)u(x)∑
x∈X p(x)w(x)

>

∑
x∈X q(x)w(x)u(x)∑
x∈X q(x)w(x)

.

For example, if n = 3 and δx3
� δx2

� δx1
, the indifference map induced by (??) is depicted in Figure 1

below. The indifference curves all emanate from a source point o lying outside the simplex.

x�
1

x�
3

x�
2

p
3

p
1

o

Figure 1: Weighted Utility

Figure 1 depicts a decision maker that attaches greater weight to the extreme outcomes x1 and x3 than
to the median outcome x2, indicating that the former have more influence on his evaluation of any
particular lottery than their probability would justify. The degree of risk aversion would vary across the
simplex and thus the decision maker would exhibit Allais-type behavior, being willing to take risks when
he feels he has nothing to lose that he would otherwise avoid if his alternatives were more attractive.
The extent of this distortion depends on the proximity of the source point o to the simplex and as it is
moved farther away from the diagram, approaches the parallel indifference map of expected utility.

Now suppose that � is also incomplete. As in multiple expected utility models with independence
such as those of Dubra, Maccheroni, and Ok (2004), and Galaabaatar and Karni (2012), the preference
relation cannot be meaningfully characterized with indifference curves, as two lotteries that are not
strictly comparable are not necessarily equivalent. Consider the lottery p in Figure 2 below, let B(p) =
{r ∈ ∆(X) : r � p} and W (p) = {r ∈ ∆(X) : r ≺ p} respectively denote the upper and lower contour
sets of p, and observe that they are demarcated by rays emanating from a pair of distinct source points
o1 and o2. Unlike in classic weighted utility theory, these rays are not indifference curves, but indicate
only that no two lotteries lying on a single ray are strictly comparable, a relation which is not transitive
and hence not an equivalence relation.

Nevertheless these incomparability curves do inherit many of the properties of indifference curves from
the weighted utility setup. As each set of such curves converges at a source point, each in turn has a
weighted linear utility representation as in (??), with the two sources o1 and o2 respectively corresponding
to utility and weight pairs (u1, w) and (u2, w). As the diagram indicates, for any lottery to be strictly
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Figure 2: Multiple Utilities

preferred to p it must lie above both of the incomparability curves intersecting p, and thus the preference
relation has a multiple weighted expected utility representation, with a set of utilities U = {u1, u2}.

p � q ⇐⇒
∑
x∈X p(x)w(x)u(x)∑
x∈X p(x)w(x)

>

∑
x∈X q(x)w(x)u(x)∑
x∈X q(x)w(x)

, ∀u ∈ U . (1)

Two other aspects of this setup are noteworthy. Firstly, every point on the line segment connecting o1

and o2 also projects a set of incomparability curves, always lying between the rays projected by the two
endpoints. Any such point oκ would thus also be a source point and correspond to some utility uκ,
which could be included within U without altering the preference relation it represents. The location of
oκ between o1 and o2 implies that uκ would be some convex combination of u1 and u2, and thus could
not contradict any ordering jointly established by these utilities. This leads us to conclude that, just as
in multiple expected utility models with independence, the representation will only be unique up to some
closed convex hull, though as the utilities here are not linear we will need to adopt a slightly different
approach to establish this result.

Secondly, the line segment connecting the source points o1 and o2 is parallel to that connecting the best
and worst outcomes δx3

and δx1
. Hence these sources are equidistant from the simplex and represent

different utilities paired with the same weight function. As the incomparability curves projected from
o1 are everywhere steeper than those projected from o2, u1 is uniformly more risk averse than u2. This
naturally leads us to consider the dual case, where a single utility function might be paired with multiple
weight functions.

Figure 3(a) depicts such a case, where there are a pair of source points o1 and o2 corresponding to
utility-weight pairs (u,w1) and (u,w2). Here the utility functions are identical, as the incomparability
curves drawn from both sources through δx2

coincide and thus rank the median outcome identically, but
as o2 is closer to the simplex, w2 represents a greater deviation from the uniform weights of expected
utility theory. Figure 3(b) depicts a similar case, where there are again two sources o1 and o2, and
two corresponding utility-weight pairs (u,w) and (u,w2), but here o2 is located on the other side of the
simplex. This produces incomparability curves that fan in rather than out, and indicating that x2 is
weighted more heavily than the extreme outcomes, rather than less. The preferences depicted in either
incomparability map would have a representation consisting of the single utility u and multiple weights
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(a) (b)

Figure 3: Multiple Weights

W = {w1, w2}.

p � q ⇐⇒
∑
x∈X p(x)w(x)u(x)∑
x∈X p(x)w(x)

>

∑
x∈X q(x)w(x)u(x)∑
x∈X q(x)w(x)

, ∀w ∈ W. (2)

Note that in the multiple weight case depicted in Figure 3(a), analogously to the multiple utility case
depicted in Figure 2, we may include in W the weight function wκ corresponding to any point oκ on
the line segment connecting o1 and o2 without altering the preferences. However, attempting the same
in Figure 3(b) would be invalid, as it would produce source points lying within the simplex. In this
case, we can instead include any source points lying on the line defined by o1 and o2 but not on the
segment connecting them, effectively connecting o1 to o2 through the point at infinity, as any of these
would produce incomparability curves that lie between those projected from the endpoints and hence
their inclusion would not alter the representation.

Finally, we consider the general case that incorporates both multiple utilities and multiple weights, as
depicted in Figure 4. Here the four source points Ω = {o11, o12, o21, o22} correspond to pairs of utility
and weight functions V = {(u1, w1), (u1, w2), (u2, w1), (u2, w2)} and the preferences depicted have the
representation

p � q ⇐⇒
∑
x∈X p(x)w(x)u(x)∑
x∈X p(x)w(x)

>

∑
x∈X q(x)w(x)u(x)∑
x∈X q(x)w(x)

, ∀ (u,w) ∈ V. (3)

Here the set of utility-weight pairs is separable, as V = U ×W = {u1, u2} × {w1, w2}, though this need
not be the case generally. Any point lying in the convex hull of Ω would map to a utility-weight pair
that could be included in V without altering the preferences represented. Therefore, this representation
admits any of the models considered so far as special cases, with the single utility or single weight cases
in (1) and (2) if respectively U orW are singletons, weighted utility if V is a singleton, multiple expected
utility if every element of W is a constant function, and finally expected utility if all of these hold.

The next section introduces the basic model. Section 3 details the general multiple weighted expected
utility model, with the special cases of a single utility or single weight covered in section 4. Concluding
remarks appear in section 5 and the proofs are collected in section 6.
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Figure 4: Multiple Weighted Expected Utility

2 Analytical Framework

2.1 Preference Structure

Let X = {x1, . . . , xn} be a set of outcomes and ∆(X) = {p ∈ Rn+ :
∑
x∈X p(x) = 1} the set of lotteries

over X. Let � be a binary relation on ∆(X), which we refer to as a strict preference relation. The set
∆(X) is said to be �-bounded if there are best and worst outcomes x, x ∈ X such that δx � δx � δx, for
all x ∈ X \ {x, x}, which we assume throughout.4 Number the elements in X in nondecreasing order of
preference, so that x = x1 and x = xn.

If the strict preference relation � is negatively transitive, then its negation ¬(p � q) defines the complete
and transitive weak preference relation p 4 q. The multiplicity of the utility representation thus depends
on this assumption being violated, so that defining the incomparability relation p � q as the conjunction
of ¬(p � q) and ¬(p ≺ q), we obtain a relation that is not necessarily transitive and thus not necessarily
an equivalence relation, unlike the indifference relation this would normally define under completeness.5

Intuitively, the inability to rank a pair of alternatives does not necessarily mean that the decision maker
considers them to be identical, but rather may imply that he evaluates them by multiple criteria that
disagree on their ranking.

We assume throughout that � is a continuous strict partial order.

(A.1) (Strict Partial Order) The preference relation � is irreflexive and transitive.

(A.2) (Continuity) For all p, q, r ∈ ∆(X) if p � q then there is α ∈ (0, 1) such that αp+ (1− α)r � q
for all α > α and if q � r, there is α ∈ (0, 1) such that q � αp+ (1− α)r for all α < α.

While this continuity axiom is not standard, it has the advantage of implying both the Archimedean
and betweenness properties, which are standard in a range of models including expected, weighted,
and implicit weighted utility theory.6 The Archimedean property implies that no lotteries in ∆(X) are
infinitely superior or inferior to any other, while betweenness asserts that a probability mixture of two
lotteries must rank between them.

4Generally speaking, ∆(X) is �-bounded if there are p, p ∈ ∆(X) such that p � p � p for all p ∈ ∆(X)\{p, p}. However,
anticipating the monotonicity of the strict preference relation described below, there is no essential loss in our definition.

5We may still define weak preference and indifference relations that have the usual properties by following Galaabaatar
and Karni (2013) and letting p < q if r � p implies r � q, and p ∼ q if p < q and p 4 q.

6See Dekel (1986) for an example and Chew (1989) for a review of this class of models.
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(Archimedean) For all p, q, r ∈ ∆(X) such that p � q � r there are α, α′ ∈ (0, 1) such that αp+ (1−
α)r � q � α′p+ (1− α′)r.

(Betweenness) For all p, r ∈ ∆(X) and α ∈ (0, 1), p � r implies p � αp+ (1− α)r � r.

Proposition 1 Continuity implies the Archimedean and betweenness properties.

For every α ∈ [0, 1], let ζα ≡ αδxn + (1 − α)δx1
. For every p ∈ ∆(X), let A(p) = {α ∈ [0, 1] : p � ζα}

denote the range of utility values assigned to p, measured along the line connecting the best and worst
outcomes. The following proposition establishes that each of these utility ranges is a closed interval.

Proposition 2 For all p ∈ ∆(X), there are α, α ∈ [0, 1] such that A(p) = [α, α].

In the standard expected utility and multiple expected utility models, applying the independence axiom
at this step produces the desired utility representation.

2.2 Partial Substitution

At the core of weighted utility theory is the weak substitution axiom that replaces the independence
axiom,7 which can be equivalently expressed as a ratio substitution property.

(Weak Substitution) For all p, q ∈ ∆(X), p ∼ q if and only if for every β ∈ (0, 1) there is γ ∈ (0, 1)
such that βp+ (1− β)r ∼ γq + (1− γ)r for all r ∈ ∆(X).

(Ratio Substitution) For all p, q ∈ ∆(X), p ∼ q if and only if there is τ > 0 such that for every

β ∈ (0, 1), βp+ (1− β)r ∼ βτq+(1−β)r
βτ+(1−β) for all r ∈ ∆(X).

That these are equivalent can be shown by setting τ = γ/(1−γ)
β/(1−β) , and interpreting this odds ratio as the

weight of p relative to that of q. If � is complete, a weighted linear utility function can thus be obtained
by finding, for each xi ∈ X, the unique αi such that δxi ∼ ζαi , and τi satisfying ratio substitution
between these two lotteries, and for any p ∈ ∆(X) repeatedly applying weak substitution to obtain

p ≡
n∑
i=1

piδxi ∼
p1τ1ζα1 +

∑n
i=2 piδxi

p1τ1 +
∑n
i=2 pi

∼ · · · ∼
∑n
i=1 piτiζαi∑n
i=1 piτi

= ζ∑n
i=1

piτiαi∑n
i=1

piτi

≡ ζαp . (4)

By betweenness, the above implies that for any p, q ∈ ∆(X), p � q ⇔ αp > αq, so that we obtain a
weighted utility representation by setting u(xi) = αi and w(xi) = τi for i = 1, . . . , n. The critical step
in this construction lies in exploiting the transitivity of the indifference relation ∼.

For preferences � that are not necessarily complete, we consider a modification that replaces the indif-
ference relation ∼ with the incomparability relation � defined earlier.

(A.3) (Partial Substitution) For all p, q ∈ ∆(X), p � q if and only if for every β ∈ (0, 1) there is
γ ∈ (0, 1) such that βp+ (1− β)r � γq + (1− γ)r for all r ∈ ∆(X).

The next lemma establishes the analogous ratio substitution property in our setup.

Lemma 1 If � satisfies (A.1)-(A.3), then for all p, q ∈ ∆(X), p � q if and only if there is τ > 0 such

that for every β ∈ (0, 1), βp+ (1− β)r � βτq+(1−β)r
βτ+(1−β) for all r ∈ ∆(X).

For any pair of incomparable lotteries, define the set of substitution odds ratios as

T (p, q) =

{
τ > 0 : βp+ (1− β)r � βτq + (1− β)r

βτ + (1− β)
, ∀β ∈ (0, 1), r ∈ ∆(X)

}
.

Note that by (A.3), T (p, q) 6= ∅ if and only if p � q. Under completeness, weak substitution implies
that for every β ∈ (0, 1) we have a unique γ ∈ (0, 1), which can be seen by picking any r � q and
applying betweenness, and therefore that the odds ratio τ must be unique as well. This is not the case
here however, as � is intransitive and hence T (p, q) is not necessarily a singleton, implying that lotteries
may have a range of weights in addition to a range of utility values.

7See Chew (1989).
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Proposition 3 For all p, q ∈ ∆(X) such that p � q, there are τ , τ > 0 such that T (p, q) = [τ , τ ].

We can now attempt to replicate the construction of the utility representation as in (4). For every
i = 1, . . . , n, consider picking some αi ∈ A(δxi) and τi ∈ T (δxi , ζαi), and then repeatedly applying
partial substitution to yield

p ≡
n∑
i=1

piδxi �
p1τ1ζα1

+
∑n
i=2 piδxi

p1τ1 +
∑n
i=2 pi

� · · · �
∑n
i=1 piτiζαi∑n
i=1 piτi

= ζ∑n
i=1

piτiαi∑n
i=1

piτi

≡ ζαp . (5)

However, as � is intransitive, (5) does not necessarily imply that p � ζαp . Intuitively, if � is complete,
then every αi and τi is unique, so that we can obtain for any p the unique αp by simply taking the weighted
convex combination as in (4). Under incompleteness, while we know that each xi ∈ X has utility range
A(δxi), if we arbitrarily select {α1, . . . , αn} ∈

∏n
i=1A(δxi), these values need not be assigned by the

same utility function, and hence the αp produced by (5) need not belong to A(p). It is the converse,
that every αp ∈ A(p) can be constructed from some {α1, . . . , αn} ∈

∏n
i=1A(δxi), which we need to show

to ensure that preference relation can be represented by a set of weighted linear utility functions.

2.3 Source Space

As discussed in the introduction, a preference relation with a multiple weighted expected utility repre-
sentation can be visualized as a simplex of lotteries with incomparability curves projected from a set
of source points lying outside the simplex. Suppose we have p, q ∈ ∆(X) such that p � q, and some
τ ∈ T (p, q). By definition, for every β ∈ (0, 1) and r ∈ ∆(X), the line defined by βp + (1 − β)r and
βτq+(1−β)r
βτ+(1−β) is an incomparability curve. All of these curves converge at some source point o, and as its

location can depend on neither β nor r, we have that

o =
1

β(1− τ)
[βp+ (1− β)r]− βτ + (1− β)

β(1− τ)

[
βτq + (1− β)r

βτ + (1− β)

]
=
p− τq
1− τ

. (6)

Define the source space Ω as the collection of all such source points.

Ω =

{
o =

p− τq
1− τ

: p � q, τ ∈ T (p, q)

}
The following proposition asserts that Ω fully characterizes the incomparability relation � and, conse-
quently, the preference relation � as well. It states that any line connecting two lotteries is an incompa-
rability curve if and only if it is projected from some source point o ∈ Ω.

Proposition 4 For every p, q ∈ ∆(X), p � q if and only if there is τ ∈ T (p, q) such that o = p−τq
1−τ ∈ Ω.

For each p define Φ(p) = {(αp, τp) : αp ∈ A(p), τp ∈ T (p, ζαp)} as the collection of associated utility and

weight pairs, each defining a source point op =
p−τpζαp

1−τp ∈ Ω.

A utility function over X is given by a collection of utility weight pairs {(αi, τi)}ni=1 corresponding to

each of the degenerate lotteries {δxi}ni=1 such that (αp, τp) =
(∑n

i=1 piτiαi∑n
i=1 piτi

,
∑n
i=1 piτi

)
∈ Φ(p) for any

lottery p ∈ ∆(X). Define the set of all such collections as

Ψ =

{
{(αi, τi)}ni=1 : (αp, τp) =

(∑n
i=1 piτiαi∑n
i=1 piτi

,

n∑
i=1

piτi

)
∈ Φ(p), ∀ p ∈ ∆(X)

}
.

Every ψ = {(αψi , τ
ψ
i )}ni=1 ∈ Ψ defines a weighted linear utility function, and letting oψi =

δxi−τ
ψ
i ζαψ

i

1−τψi
∈ Ω

denote the source point that ψ associates with outcome xi, we have for every p ∈ ∆(X) that

oψp =
p− τψp ζαψp

1− τψp
=

∑n
i=1 pi(1− τ

ψ
i )oψi∑n

i=1 pi(1− τ
ψ
i )

∈ Ω. (7)
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That is, the source point associated with any lottery p is also a weighted convex combination of elements
of {oψi }ni=1.8 Collecting these points forms a convex subset of the source space, Oψ = {oψp }p∈∆(X) ⊆ Ω

which characterizes a function pair (uψ, wψ). Therefore, to establish the representation theorem, we need
to show that the collection of these subsets covers the source space

⋃
ψ∈ΨO

ψ = Ω, so that the collection
of function pairs Ψ defines fully characterizes the incomparability map and by extension the preference
relation � itself.

3 Representation

3.1 Existence

Before presenting the main theorem, we first establish some preliminary results. Suppose we start with
any single lottery p, then we can find some other lottery q to which it is incomparable p � q. Applying
the partial substitution axiom, this relation implies the existence of a set of incomparability curves
converging at a source point o, which is collinear with p and q. Lemma 2 asserts that we can find a third
lottery r that is incomparable to both p and q, as well as any lottery on the incomparability curve they
define, so that the three lotteries together define an incomparability plane.

Lemma 2 If � satisfies (A.1)-(A.3), then for all p, q ∈ ∆(X), the following statements are equivalent:

1. [(i)]

2. p � q.

3. There exists r ∈ ∆(X) such that λp+ (1− λ)q � r for all λ ∈ [0, 1].

4. There exists r ∈ ∆(X) and τp, τq > 0 such that for all λ ∈ [0, 1] and β ∈ (0, 1), β[λp+ (1− λ)q] +

(1− β)s � β[λτp+(1−λ)τq ]r+(1−β)s
β[λτp+(1−λ)τq ]+(1−β) for all s ∈ ∆(X).

5. There exists r ∈ ∆(X) such that p′ � q′ for all p′, q′ ∈ ∆({p, q, r}).

By Lemma 2, every source point that projects a set of incomparability curves lies on a source line, on
which every point is itself a source, which in turn projects a set of incomparability planes. The natural
next step is to generalize this property, allowing us to construct a set of source points that will fully
characterize a utility function.

Any collection P ⊆ ∆(X) of lotteries constitutes an incomparability set if p � q for any p, q ∈ ∆(P ),9

thus forming the natural higher dimensional analogue to the incomparability curves and incomparability
planes encountered so far. As δxn � δx1

implies � is non-empty, ∆(P ) ( ∆(X) and an incomparability
set is at most of dimension n−2. The following lemma shows that, starting from any pair of incomparable
lotteries, we can build up to such a maximal set.

Lemma 3 If � satisfies (A.1)-(A.3), then for all P ⊆ ∆(X), the following statements are equivalent:

1. [(i)]

2. p � q for all p, q ∈ ∆(P ) and dimP < n− 2.

3. There exists r ∈ ∆(X) \∆(P ) such that p � r for every p ∈ ∆(P )

8By definition of ψ, we have that

oψp =
p− τψp ζαψp

1− τψp
=

∑n
i=1 piδxi − (

∑n
i=1 piτ

ψ
i )ζ∑n

i=1
piτ

ψ
i
α
ψ
i∑n

i=1
piτ

ψ
i

1− (
∑n
i=1 piτ

ψ
i )

=

∑n
i=1 piδxi − (

∑n
i=1 piτ

ψ
i )

∑n
i=1 piτ

ψ
i ζαψ

i∑n
i=1 piτ

ψ
i


1− (

∑n
i=1 piτ

ψ
i )

=

∑n
i=1 pi(δxi − τ

ψ
i ζαψi

)∑n
i=1 pi(1− τ

ψ
i )

=

∑n
i=1 pi(1− τ

ψ
i )

 δxi−τ
ψ
i ζαψ

i

1−τψi


∑n
i=1 pi(1− τ

ψ
i )

=

∑n
i=1 pi(1− τ

ψ
i )oψi∑n

i=1 pi(1− τ
ψ
i )

∈ Ω.

9We slightly abuse notation here to define ∆(P ) = {q =
∑
p∈P πpp : {πp}p∈P ⊆ R≥0}, that is, the set of reduced

compound lotteries over P .
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4. There exists r ∈ ∆(X) \ ∆(P ) and {τp}p∈P ⊆ R>0 such that for all {πp}p∈P ⊆ R+ such that∑
p∈P πp = 1 and β ∈ (0, 1), β

(∑
p∈P πpp

)
+ (1− β)s � β(

∑
p∈P πpτp)r+(1−β)s

βτq+(1−β) for all s ∈ ∆(X).

5. There exists r ∈ ∆(X) \∆(P ) such that p′ � q′ for all p′, q′ ∈ ∆(P ∪ {r}).

Starting with any pair of incomparable lotteries, we can repeatedly apply Lemma 3 to add to it until we
obtain a maximal incomparability set P . The following lemma shows that every such P maps to some
utility function generated by a ψ ∈ Ψ.

Lemma 4 If � satisfies (A.1)-(A.3), then for all p, q ∈ ∆(X), p � q if and only if there is ψ ∈ Ψ such

that
∑n
i=1 piτ

ψ
i α

ψ
i∑n

i=1 piτ
ψ
i

=
∑n
i=1 qiτ

ψ
i α

ψ
i∑n

i=1 qiτ
ψ
i

.

Note that Lemma 4 also implicitly establishes Ψ 6= ∅ as long as the incomparability relation is itself
nonempty. We are now ready to present the main representation theorem.

Theorem 1 Let � be a binary relation over ∆(X), then ∆(X) satisfies (A.1)-(A.3) if and only if there
is a set V of utility u : X 7→ R and weight w : X 7→ R>0 function pairs (u,w) such that for every
p, q ∈ ∆(X),

p � q ⇐⇒
∑
x∈X p(x)w(x)u(x)∑
x∈X p(x)w(x)

>

∑
x∈X q(x)w(x)u(x)∑
x∈X q(x)w(x)

, ∀ (u,w) ∈ V.

3.2 Uniqueness

Having established the existence of a utility representation, we now turn our attention to the question
of uniqueness. As our model lies at the convergence of weighted utility and multiple utility theory, our
uniqueness result naturally must incorporate elements of the uniqueness results found in both. From
weighted utility models, we know that taking an affine transformation of a utility function u will not
preserve its weighted linearity, and we must instead apply a rational affine transformation to both u and
the associated weight function w jointly.

Proposition 5 For utility and weight function (u,w) and constants a, b, c, d such that ad > bc, define

the rational affine transformation (ũ, w̃) =
(
au+b
cu+d , w[cu+ d]

)
. Then for every p, q ∈ ∆(X),∑

x∈X p(x)w(x)u(x)∑
x∈X p(x)w(x)

>

∑
x∈X q(x)w(x)u(x)∑
x∈X q(x)w(x)

⇐⇒
∑
x∈X p(x)w̃(x)ũ(x)∑
x∈X p(x)w̃(x)

>

∑
x∈X q(x)w̃(x)ũ(x)∑
x∈X q(x)w̃(x)

.

The utility functions we construct from Ψ are normalized, with (uψ(x1), wψ(x1)) = (0, 1) for the worst
outcome and (uψ(xn), wψ(xn)) = (1, 1) for the best, for every ψ ∈ Ψ. The following proposition shows
that any function pair (u,w) has a rational affine transformation (û, ŵ) that is similarly normalized,
which in turn maps to some collection ψ ∈ Ψ.

Proposition 6 Let the collection V represent �. Then for every (u,w) ∈ V there is a normalized rational
affine transformation (û, ŵ) such that {(û(xi), ŵ(xi))}ni=1 ∈ Ψ.

For any V, define the normalized set as V̂ = {(û, ŵ) : (u,w) ∈ V}. In multiple expected utility models
with independence, if we have a set Û of normalized utilities, some elements may merely be convex
combinations of others and may be excluded without altering the preferences that Û represents. A
similar idea exists here, though we cannot simply take convex combinations of weighted linear functions
that simultaneously preserve weighted linearity while maintaining the preference ordering.10 Rather than
trying to define some convex closure of V̂ directly, we instead narrow our focus to a neighborhood around
some p ∈ ∆(X). For every (u,w) ∈ V̂, define the local utility function up : X 7→ R by setting

up = wu+ (1− w)

[∑
x∈X p(x)w(x)u(x)∑
x∈X p(x)w(x)

]
≡ wu+ (1− w)ūp. (8)

10Given (u1, w1), (u2, w2) ∈ V̂ and κ ∈ (0, 1), we could take a direct convex combination by setting uκ = κu1 + (1−κ)u2

and wκ = κw1 + (1− κ)w2, but unless w1 = w2, this would not preserve weighted linearity. Alternatively, we could take

the weighted convex combination and set uκ =
κw1u1+(1−κ)w2u2

κw1+(1−κ)w2 and wκ = κw1 + (1 − κ)w2. This however would not

necessarily preserve the ordering of lotteries, as uk(xi) > uk(xj) for k = 1, 2 does not imply uκ(xi) > uκ(xj).
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As up gives a normalized linear approximation11 of (u,w) around p, collecting all such up gives a set

Ûp = {up = wu+ (1− w)ūp : (u,w) ∈ V̂} of local utility functions that form a multiple expected utility
representation that approximates � around p. Furthermore, as in standard multiple utility models, we
may include any local utility in the convex hull 〈Ûp〉 = {uπp =

∑
ukp∈Up

πkukp :
∑
ukp∈Up

πk = 1} without

altering the preferences.

Proposition 7 For every p ∈ ∆(X) there is a convex set 〈Ûp〉 of utilities up : X 7→ R such that for every
q ∈ ∆(X),

p � q ⇐⇒
∑
x∈X

p(x)up(x) >
∑
x∈X

q(x)up(x), ∀up ∈ 〈Ûp〉.

The transformation in (8) is many to one, as around every p, any pair (u,w) ∈ V̂ maps to local utility
up ∈ Ûp, but it is not necessarily the case that wu+ (1− w)ūp ∈ Ûp implies (u,w) ∈ V̂. By Proposition

7, any up in the convex hull 〈Ûp〉 is also consistent with � in a neighborhood around p, which leads us
to define the set of pairs (u,w) everywhere consistent with � as

〈V̂〉 = {(u,w) : up = wu+ (1− w)ūp ∈ 〈Ûp〉,∀ p}.

The set 〈V̂〉 is the maximal set of normalized utility and weight pairs that agrees with the ordering of lot-
teries prescribed by �. The uniqueness theorem presented below asserts that two utility representations
are identical if and only if they generate the same such maximal normalized sets.

Theorem 2 For j = 1, 2, let �j be a binary relation over ∆(X) that has a multiple weighted expected
utility representation by a set Vj of utility u : X 7→ R and weight w : X 7→ R>0 function pairs (u,w).

The preferences are identical �1=�2 if and only if 〈V̂1〉 = 〈V̂2〉.

4 Special Cases

Weighted utility theory with incomplete preferences admits incompleteness arising either from conflicting
perceptions, represented by multiple weight functions, or from indecisive tastes, represented by multiple
utility functions. Thus the general framework we have devised admits a pair of special cases, those of
multiple utilities paired with a single weight function V = U×{w} or a single utility paired with multiple
weights V = {u} ×W.

In non-expected utility, local risk attitudes are captured by the local utility functions and global risk
attitude depends on the variations of the local risk attitudes, as in Machina (1982). In weighted utility,
the utility and weight functions play distinct roles, with the shape of the utility function capturing the
decision maker’s risk attitude while the weight function captures the nature and degree of the variation
in local attitudes. Specifically, the weight function reflects the extent to which the indifference map
exhibits the fanning in or fanning out structure described by Machina (1982).12

A decision maker with multiple utility functions and a single weight function has incomplete preferences
solely due to his indecisive risk attitude, and has no more difficulty evaluating a lottery than he would
evaluating each of its possible outcomes. On the other hand, a decision maker with a single utility
function and multiple weight functions is sure of his risk attitude, but is indecisive when comparing
lotteries because he is unsure of how to perceive randomness, and thus cannot always rate lotteries
properly even if he knows how would rank their components.

11Since w(x1) = w(xn) = 1, we have that up(x1) = u(x1) = 0 and up(xn) = u(xn) = 1. Furthermore,

∑
x∈X

p(x)up(x) =
∑
x∈X

p(x)w(x)u(x) +

1−
∑
x∈X

p(x)w(x)

[∑x∈X p(x)w(x)u(x)∑
x∈X p(x)w(x)

]
=

∑
x∈X p(x)w(x)u(x)∑
x∈X p(x)w(x)

.

12Fanning out reflects a decision maker who underweights the median outcome relative to the extremes, corresponding
to monotonically increasing local risk aversion with respect to first order stochastically dominating shifts, whereas fanning
in reflects an overweight of the median outcome and hence decreasing local risk aversion.
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4.1 Multiple Utilities

A decision maker whose preferences are represented by multiple utilities paired with a single weight
function is indecisive about the valuation of each of the outcomes in X, but is confident of how much
importance to attach to these outcomes when evaluating any lottery p ∈ ∆(X). For example, the
decision maker may have several utilities exhibiting varying degrees of risk aversion, but is sure of how
much attention he should pay to each of the possible payoffs. To ensure that a preference relation � has
such a representation, we adopt a stronger variant of the partial substitution axiom.13

(A.4) (Unique Substitutability) For all p, q ∈ ∆(X), p � q if and only if for every β ∈ (0, 1) and
γ ∈ (0, 1) , either γq+ (1− γ)r � βp+ (1−β)r or βp+ (1−β)r � γ′q+ (1− γ′)r for all γ′ < γ and
r ∈ ∆(X).

Axioms (A.1), (A.2), and (A.3) jointly with (A.4) imply that, for every p � q, there must be a unique
substitution ratio T (p, q) = {τp,q}. We prove this claim as part of the proof of the following lemma which
shows that for every p we can pair a unique weight τp with any of the utility values αp ∈ A(p).

Lemma 5 If � satisfies (A.1), (A.2), (A.3) and (A.4), then for all p ∈ ∆(X) there is τp > 0 such that
Φ(p) = A(p)× {τp}.

This result leads directly into the following representation theorem.

Theorem 3 Let � be a binary relation over ∆(X), then ∆(X) satisfies (A.1),(A.2),(A.4) if and only if
there is a set U of utility functions u : X 7→ R and a weight function w : X 7→ R>0 such that for every
p, q ∈ ∆(X),

p � q ⇐⇒
∑
x∈X p(x)w(x)u(x)∑
x∈X p(x)w(x)

>

∑
x∈X q(x)w(x)u(x)∑
x∈X q(x)w(x)

, ∀u ∈ U .

It directly follows that a multiple utility, single weight representation is equivalent to applying a one-time
transformation to the entire probability space and constructing a multiple expected utility representation
over the transformed probability space. For any p, define the transformed lottery pw such that pw(x) =

p(x)w(x)∑
x∈X p(x)w(x) for every x ∈ X, and define the relation �w such that pw �w qw if and only if p � q. Then

it immediately follows that �w has a multiple expected utility representation as

pw �w qw ⇐⇒
∑
x∈X

pw(x)u(x) >
∑
x∈X

qw(x)u(x), ∀u ∈ U .

While this transformation may appear to indicate that we could apply the uniqueness results from
multiple expected utility to U , by Theorem 2 there is in fact a broader set of equivalent representations.

For example, suppose we had U = {u1, u2} and set ũj = auj+b
cuj+d and w̃j = w[cuj + d] for j = 1, 2. Then

Ṽ = {(ũ1, w̃1), (ũ2, w̃2)} would represent the same preferences as U × {w}, even though the former has
multiple weight functions while the latter has only one.

4.2 Multiple Weights

A decision maker whose preferences are represented by a single utility function paired with multiple
weight functions is confident of how he would evaluate all of the outcomes in X, but is indecisive over
how much importance each of these outcomes carries when evaluating a lottery p ∈ ∆(X). Such a
decision maker would be sure of his tastes, but when trying to compare alternative lotteries is unable to
determine what aspects to focus on and attach more weight to. To ensure that a preference relation has
such a representation, we impose the following axiom.

(A.5) (Unique Solvability) For all x ∈ X, and α ∈ [0, 1] either ζα � δx or δx � ζα′ , for all α′ < α.

Axioms (A.1), (A.2), and (A.3) jointly with (A.5) implie that every degenerate lottery has only a single
utility value. We prove this claim as part of the proof of Theorem 4, below. Consequently, A(δxi) = {αi}

13Axioms (A.4) and (A.5) below are based on an idea first advanced by Galaabaatar and Karni (2013) in the form of an
axiom dubed complete beliefs.
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for every i = 1, . . . , n, but may take multiple weight values so that T (δxi , ζαi) need not be a singleton,
and hence non-degenerate lotteries p ∈ ∆(X) \X may still have multiple utility values. Imposing this
assumption leads to a single utility, multiple weight representation.

Theorem 4 Let � be a binary relation over ∆(X), then ∆(X) satisfies (A.1)-(A.3), (A.5) if and only if
there is a utility function u : X 7→ R and a set W of weight functions w : X 7→ R>0 such that for every
p, q ∈ ∆(X),

p � q ⇐⇒
∑
x∈X p(x)w(x)u(x)∑
x∈X p(x)w(x)

>

∑
x∈X q(x)w(x)u(x)∑
x∈X q(x)w(x)

, ∀w ∈ W.

Unlike in the multiple utility, single weight case, there is no simple transformation here that we can apply
to produce a more familiar multiple utility representation. In this case, the decision maker is unsure of
how to perceive randomness, as each of his weight functions distort his focus differently. While he is able
to rank all of the outcomes, his ability to evaluate lotteries is compromised by his inability to determine
which components he should be paying attention to.

4.3 Behavioral Manifestations

To illustrate the difference between the two sources of indecisiveness, recall that the main empirical
manifestation of incompleteness is inertia. Given an alternative, a, in some choice set, there is a range
of non-comparable alternatives that will not be accepted if they were offered in exchange for a. In other
words, given the default alternative, a, the decision makers’ behavior may be described by the maxim
“when in doubt do nothing.”

In weighted utility theory with incomplete preferences, the nature of inertia depends on the source of
indecisiveness. Specifically, if his indecisiveness is due to risk attitude then the decision maker displays
inertia everywhere. By contrast, if the source of his indecisiveness is perceived randomness then the deci-
sion maker displays inertia everywhere except at degenerate lotteries δx. These are testable implications.
For example, the subject in an experiment may receive δx by default and be offered the opportunity to
trade it for some lottery {ζα. Using standard experimental methods it is possible to verify if the subject
switches at one point, thus indicating indecisiveness due to perceived randomness, or choose to hold on
to δx over a range ζα indicating indecisiveness due to risk attitudes.

The following example illustrates another property that distinguishes the two special case. Let X =
{x1, x2, x3}, and suppose that δx3 � δx2 � δx1 . Let p = βδx3 + (1− β) δx2 and p′ = βδx1 + (1− β) δx2 for
some β ∈ (0, 1) . Define ᾱ2 = inf{α | ζα � δx2

} and α2 = sup{α | δx2 � ζa}. Then we have the following
implications:14

If the source of indecisiveness is perceived randomness then ᾱ2 = α2 := α̂. Moreover,

inf{γ | γδx3
+ (1− γ) ζα̂ � p} = inf{γ | γδx3

+ (1− γ) ζα̂ � p′}

and
sup{γ | p � γδx3

+ (1− γ) ζα̂} = sup{γ | p′ � γδx3
+ (1− γ) ζα̂}.

If the source of indecisiveness is risk attitude, then ᾱ2 > α2. Moreover,

inf{γ | γδx3 + (1− γ) ζᾱ2 � p} = sup{γ | p′ � γδx3 + (1− γ) ζα2
},

and
sup{γ | p � γδx3

+ (1− γ) ζᾱ2
} = inf{γ | γδx3

+ (1− γ) ζα2
� p′}.

5 Concluding Remarks

In this paper, we considered a model of decision making under risk for preferences that satisfy neither
independence nor completeness. We obtain a utility representation by the agreement of a set of utilities, as
in multiple utility theory, each of which is weighted linear in the probabilities, as in weighted utility theory,

14The validity of these observations is immediate upon eyeballing Figures 2 and 3.
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thus linking these separate strands in the literature under a unified framework. This representation
further admits a variety of additional cases with distinct interpretations, as incomplete preferences may
be due to ambivalent risk attitudes or incognizance of the relative salience of the possible outcomes. By
directly imposing additional axioms that eliminate either of these possibilities, we obtain special cases
where the multiplicity in the representation is restricted to either the utility or weight functions alone.
The general framework we have devised thus serves as a useful foundation for studying decision making
under risk from a variety of different perspectives.

6 Proofs

6.1 Proofs of Propositions

6.1.1 Proof of Proposition 1

To show that (A.2) implies the Archimedean property, let p, q, r ∈ ∆(X) such that p � q � r. Then,
by (A.2) there are α, α ∈ (0, 1) such that if we pick α, α′ ∈ (0, 1) such that α > α and α′ < α,
αp+ (1− α)r � q � α′p+ (1− α′)r.

To show that (A.2) implies betweenness, let p, r ∈ ∆(X) and p � r. Let q = r, then since p � q, by
repeated application of (A.2) we have αp + (1 − α)r � r, for all α ∈ (0, 1). Now let q = p, then since
q � r, by repeated application of (A.2) we have p � αp+ (1− α)r, for all α ∈ (0, 1). �

6.1.2 Proof of Proposition 2

Fix p ∈ ∆(X). Define α = inf{α : p ≺ ζα}. Suppose for α′ ≤ α we have p ≺ ζα′ , then since by (A.2)
there is β ∈ (0, 1) such that p ≺ βζα′ + (1 − β)δx = ζα′′ , but since α′′ = βα′ < α, this contradicts the
definition of α. Now suppose that for α′ > α we have ¬(p ≺ ζα′), then for all α′′ < α′ we have ¬(p ≺ ζα′′)
or else p ≺ ζα′′ ≺ ζα′ , which implies that α′ ≤ inf{α : p ≺ ζα} = α, a contradiction. Thus ¬(p ≺ ζα′)
if and only if α′ ≤ α. Now define α = sup{α : p � ζα}, by a similar argument ¬(p � ζα′) if and only if
α′ ≥ α. Therefore, we have that p � ζα′ if and only if α′ ∈ [α, α]. �

6.1.3 Proof of Proposition 3

Fix p, q ∈ ∆(X) such that p � q. For every r ∈ ∆(X), define

TL(p, q, r) =

{
τ > 0 : ∃β, βp+ (1− β)r � βτq + (1− β)r

βτ + (1− β)

}
,

TR(p, q, r) =

{
τ > 0 : ∃β, βp+ (1− β)r ≺ βτq + (1− β)r

βτ + (1− β)

}
,

T (p, q, r) =

{
τ > 0 : ∀β, βp+ (1− β)r � βτq + (1− β)r

βτ + (1− β)

}
.

Let R = {r ∈ ∆(X) : ¬(r � p) ∨ ¬(r � q)} denote the set of all lotteries that are comparable with
either p or q. We will establish that for every r ∈ R, T (p, q, r) is a closed interval [τ r, τ r], and for every
r /∈ R, there is s ∈ R such that T (p, q, r) ⊇ T (p, q, s). Taken together these will allow us to conclude
that T (p, q) is given by the intersection of closed intervals and is hence itself a closed interval.

Suppose r ∈ R. Then if r � q, define τ r = inf TL(p, q, r) and τ r = supTR(p, q, r).15 Suppose that for
τ ′ ≤ τ r we have τ ′ ∈ TL(p, q, r), then there is τ ′′ ∈ TL(p, q, r) such that τ ′′ < τ ′ ≤ τ r, contradicting
the definition of τ r.

16 Now suppose that for τ ′ > τ r we have τ ′ /∈ TL(p, q, r), then we must have

15Let τr =∞ if TL(p, q, r) = ∅ and τr = 0 if TR(p, q, r) = ∅.
16If τ ′ ∈ TL(p, q, r) then there is β ∈ (0, 1) such that βp+ (1− β)r � βτ ′q+(1−β)r

βτ ′+(1−β) . This implies by (A.2) that there is

λ ∈ (0, 1) such that

βp+ (1− β)r �
λ[βτ ′ + (1− β)]

[
βτ ′q+(1−β)r
βτ ′+(1−β)

]
+ (1− λ)r

λ[βτ ′ + (1− β)] + (1− λ)
=
λβτ ′q + (1− λβ)r

λβτ ′ + (1− λβ)
.

Letting τ ′′ =
λτ ′β/(1−λβ)
β/(1−β) < τ ′ completes the argument.
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τ ′′ /∈ TL(p, q, r) for every τ ′′ < τ ′17, and therefore τ ′ ≤ inf TL(p, q, r) = τ r, a contradiction. Thus
τ ′ ∈ TL(p, q, r) if and only if τ ′ > τ r, and by a similar argument τ ′ ∈ TR(p, q, r) if and only if τ ′ < τ r.
This implies that τ ′ ∈ T (p, q, r) if and only if τ ′ ∈ [τ r, τ r].

If r ≺ q, then we can define τ r = inf TR(p, q, r) and τ r = supTL(p, q, r)18 and apply a similar argument
to the above. If r � q and either r � p or r ≺ p, we can again repeat the argument above by switching
p and q and noting that τ ′ ∈ T (p, q, r) if and only if 1

τ ′ ∈ T (q, p, r). Thus for every r ∈ R, T (p, q, r) is a
closed interval [τ r, τ r].

Now suppose r /∈ R. Then if there is r′ ∈ ∆({p, q, r}) such that r′ � q, there are λ, α ∈ [0, 1] such that
r′ = λ[αp+ (1−α)r] + (1−λ)q � q, so that by betweenness we have s = αp+ (1−α)r � q. This implies
that there is s ∈ R such that T (p, q, r) ⊇ T (p, q, s).19 A similar result follows if we have s ∈ ∆({p, q, r})
such that s ≺ q. Likewise, if there is s ∈ ∆({p, q, r}) such that s � p or s ≺ p, we repeat the argument
again noting that τ ∈ T (p, q, r) if and only if 1

τ ∈ T (q, p, r), so that T (p, q, r) ⊇ T (p, q, s) if and only if
T (q, p, r) ⊇ T (q, p, s).

Now suppose that for s ∈ ∆({p, q, r}) we have s � p and s � q. If for some θ ∈ (0, 1) we have
s � θp+(1−θ)q, then by betweenness p � θp+(1−θ)q and by the argument above, T (p, θp+(1−θ)q, r) ⊇
T (p, θp + (1 − θ)q, s), which in turn implies T (p, q, r) ⊇ T (p, q, s).20 A similar result follows if for some
θ ∈ (0, 1) we have s ≺ θp + (1 − θ)q. Finally, if for all s ∈ ∆({p, q, r}) and θ ∈ (0, 1) we have
s � θp+ (1− θ)q, then T (p, q, r) = R,21 so that T (p, q, r) ⊇ T (p, q, s) for all s ∈ R.

By definition we have that T (p, q) =
⋂
r∈∆(X) T (p, q, r). Note that T (p, q) is bounded if any T (p, q, r)

is bounded, which we can establish by setting r = δx.22 Since for every r /∈ R there is s ∈ R such that
T (p, q, r) ⊇ T (p, q, s), we have that T (p, q) =

⋂
r∈R T (p, q, r) =

⋂
r∈R[τ r, τ r]. Letting τ = supr∈R τ r and

τ = infr∈R τ r, we have that T (p, q) = [τ , τ ]. �

6.1.4 Proof of Proposition 4

Necessity is immediate from Lemma 1 and the definition of Ω. To prove sufficiency suppose that for
p, q ∈ ∆(X) there is τ > 0 such that o = p−τq

1−τ ∈ Ω, then there are p′, q′ ∈ ∆(X) such that p′ � q′ and

17Otherwise if some τ ′′ ∈ TL(p, q, r), then for some β ∈ (0, 1) we have βp + (1 − β)r � βτ ′′q+(1−β)r
βτ ′′+(1−β) �

βτ ′q+(1−β)r
βτ ′+(1−β) ,

implying τ ′ ∈ TL(p, q, r) as well.
18As before, let τr =∞ if TR(p, q, r) = ∅ and τr = 0 if TL(p, q, r) = ∅.
19Pick τ ∈ T (p, q, s) and for any β ∈ (0, 1), let β′ = β + (1 − β)α so that p′ = βp + (1 − β)s = β′p + (1 − β′)r and let

q′ =
β′τq+(1−β′)r
β′τ+(1−β′) . Then we have that

p′ �
βτq + (1− β)s

βτ + (1− β)
=
βτq + (1− β)αp+ (1− β)(1− α)r

βτ + (1− β)
=

(1− β)αp′ + β[β′τ + (1− β′)]q′

(1− β)α+ β[β′τ + (1− β′)]
.

By betweenness, the above implies that p′ � q′, and taking the odds ratio gives us τ ∈ T (p, q, r).
20We can show that for any t ∈ ∆(X) there is a one to one mapping from T (p, q, t) to T (p, θp + (1 − θ)q, t) by noting

that, again by betweenness,

βp+ (1− β)t �
θτ [βp+ (1− β)t] + (1− θ)[βτ + (1− β)]

[
βτq+(1−β)t
βτ+(1−β)

]
θτ + (1− θ)[βτ + (1− β)]

=
βτ [θp+ (1− θ)q] + (1− β)[θτ + (1− θ)]t

βτ + (1− β)[θτ + (1− θ)]
.

Taking the odds ratio of the above, we conclude that τ ∈ T (p, q, t) if and only if τ
θτ+(1−θ) ∈ T (p, θp + (1 − θ)q, t). Thus

T (p, θp+ (1− θ)q, r) ⊇ T (p, θp+ (1− θ)q, s) if and only if T (p, q, r) ⊇ T (p, q, s).
21Pick β ∈ (0, 1) and let s = βp+ (1− β)r, and for any τ > 0 let θ = 1

1−τ . Then by assumption βp+ (1− β)r � p−τq
1−τ

and invoking betweenness yet again we have that

βp+ (1− β)r �
[βp+ (1− β)r]− β(1− τ)

[
p−τq
1−τ

]
1− β(1− τ)

=
βτq + (1− β)r

βτ + (1− β)
.

This implies τ ∈ T (p, q, r) for every τ > 0.
22Since for any β ∈ (0, 1) we have r � βp+ (1− β)r, by (A.2) there is γ ∈ (0, 1) such that γq+ (1− γ)r � βp+ (1− β)r,

implying τr >
γ/(1−γ)
β/(1−β)

. Likewise for any γ ∈ (0, 1) we have r � γq+(1−γ)r, so there is β ∈ (0, 1) such that βp+(1−β)r �

γq + (1− γ)r so that τr <
γ/(1−γ)
β/(1−β) .
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τ ′ ∈ T (p′, q′) such that

o =
p− τq
1− τ

=
p′ − τ ′q′

1− τ ′
.

Rearranging, this implies that

r′ ≡ (1− τ ′)p− (1− τ)p′

τ − τ ′
=

(1− τ ′)τq − (1− τ)τ ′q′

τ − τ ′
,

p =
1− τ
1− τ ′

p′ +
τ − τ ′

1− τ ′
r′ ≡ βp′ + (1− β)r′,

q =
(1− τ)τ ′

(1− τ ′)τ
q′ +

τ − τ ′

(1− τ ′)τ
r′ ≡ γq′ + (1− γ)r′.

Since p′ � q′ by assumption and τ ′ = γ/(1−γ)
β/(1−β) ∈ T (p′, q′), we have that

p = βp′ + (1− β)r′ � βτ ′q′ + (1− β)r′

βτ ′ + (1− β)
= q.

�

6.1.5 Proof of Proposition 5

Define v = wu, so that for p ∈ ∆(X) we may write

[
V (p)
W (p)

]
=

[
v(x1) · · · v(xn)
w(x1) · · · w(xn)

]p(x1)
...

p(xn)

 = Vp,

U(p) =

∑n
i=1 p(xi)v(xi)∑n
i=1 p(xi)w(xi)

=
V (p)

W (p)
.

For p, q ∈ ∆(X), we have that U(p) > U(q) if and only if

W (p)W (q)[U(p)− U(q)] = V (p)W (q)− V (q)W (p) =

∣∣∣∣V (p) V (q)
W (p) W (q)

∣∣∣∣ =
∣∣Vp Vq

∣∣ = |VP| > 0.

Now consider a positive affine transformation

Ṽ =

[
ṽ(x1) · · · ṽ(xn)
w̃(x1) · · · w̃(xn)

]
=

[
a b
c d

] [
v(x1) · · · v(xn)
w(x1) · · · w(xn)

]
= AV.

This implies that Ũ(p) > Ũ(q) if and only if |ṼP| = |A||VP| > 0, so that the ranking of lotteries is
unchanged as long as |A| > 0, or ad− bc > 0. �

6.1.6 Proof of Proposition 6

Let V represent �, pick any pair (u,w) ∈ V, and let v = wu. We begin by showing that there exists
a normalized function pair (û, ŵ) for which (u,w) is a rational affine transformation, so that there are
a, b, c, d such that [

v(x1) v(xn)
w(x1) w(xn)

]
=

[
a b
c d

] [
v̂(x1) v̂(xn)
ŵ(x1) ŵ(xn)

]
=

[
a b
c d

] [
0 1
1 1

]
.

Solving for these constants, we see that we indeed have a positive rational affine transformation as long
as u ranks the best element xn above the worst x1, since[

a b
c d

]
=

[
v(x1) v(xn)
w(x1) w(xn)

] [
0 1
1 1

]−1

=

[
v(xn)− v(x1) v(x1)
w(xn)− w(x1) w(x1)

]
,∣∣∣∣a b

c d

∣∣∣∣ = w(x1)[v(xn)− v(x1)]− v(x1)[w(xn)− w(x1)] = w(x1)w(xn)[u(xn)− u(x1)] > 0.
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Inverting this matrix, we transform (u,w) back to the normalized (û, ŵ).

[
a b
c d

]−1

=

[
w(x1) −v(x1)

−[w(xn)− w(x1)] v(xn)− v(x1)

]
w(x1)[v(xn)− v(x1)]− v(x1)[w(xn)− w(x1)]

=

[
w(x1) −w(x1)u(x1)

−[w(xn)− w(x1)] w(xn)u(xn)− w(x1)u(x1)

]
w(x1)w(xn)[u(xn)− u(x1)]

.

For any x ∈ X, we have that

[
v̂(x)
ŵ(x)

]
=

[
a b
c d

]−1 [
v(x)
w(x)

]
=

[
w(x1) −w(x1)u(x1)

−[w(xn)− w(x1)] w(xn)u(xn)− w(x1)u(x1)

] [
w(x)u(x)
w(x)

]
w(x1)w(xn)[u(xn)− u(x1)]

=

[
w(x1)w(x)[u(x)− u(x1)]

w(xn)w(x)[u(xn)− u(x)] + w(x1)w(x)[u(x)− u(x1)]

]
w(x1)w(xn)[u(xn)− u(x1)]

.

This gives us the utility and weight functions

û(x) =
v̂(x)

ŵ(x)
=

w(x1)w(x)[u(x)− u(x1)]

w(xn)w(x)[u(xn)− u(x)] + w(x1)w(x)[u(x)− u(x1)]
,

ŵ(x) =
w(xn)w(x)[u(xn)− u(x)] + w(x1)w(x)[u(x)− u(x1)]

w(x1)w(xn)[u(xn)− u(x1)]
.

It is easily verified that (û(x1), ŵ(x1)) = (0, 1) and (û(xn), ŵ(xn)) = (1, 1). Now for every p ∈ ∆(X),
define

Û(p) =

∑n
i=1 p(xi)ŵ(xi)û(xi)∑n

i=1 p(xi)ŵ(xi)
=

∑n
i=1 piτiαi∑n
i=1 piτi

= αp, Ŵ (p) =

n∑
i=1

p(xi)ŵ(xi) =

n∑
i=1

piτi = τp.

Since the utility function is normalized by assumption, we have that for any α that

Û(ζα) =
αŵ(xn)û(xn) + (1− α)ŵ(x1)û(x1)

αŵ(xn) + (1− α)ŵ(x1)
= α, Ŵ (ζα) = αŵ(xn) + (1− α)ŵ(x1) = 1.

We have for every β ∈ (0, 1) and r ∈ ∆(X) that

Û(βp+ (1− β)r) =
βŴ (p)Û(p) + (1− β)Ŵ (r)Û(r)

βŴ (p) + (1− β)Ŵ (r)

=
βτpŴ (ζαp)Û(ζαp) + (1− β)Ŵ (r)Û(r)

βτpŴ (ζαp) + (1− β)Ŵ (r)
= Û

(
βτpζαp + (1− β)r

βτp + (1− β)r

)
.

This implies that every βp + (1 − β)r � βτpζαp+(1−β)r

βτp+(1−β) , so that (αp, τp) ∈ Φ(p) for every p ∈ ∆(X) and

hence {(û(xi), ŵ(xi))}ni=1 = {(αi, τi)}ni=1 ∈ Ψ. �

6.1.7 Proof of Proposition 7

Let V̂ be a normalized set of utilities that represents �, and for every (uk, wk) ∈ V, define

Uk(p) =

∑
x∈X p(x)w(x)uk(x)∑
x∈X p(x)wk(x)

, W k(p) =
∑
x∈X

p(x)wk(x).

Around any lottery p ∈ ∆(X), let ūkp = Uk(p) and Ûp = {ukp = wkuk + (1 − wk)ūkp : (uk, wk) ∈ V} be
the set of normalized local utilities. For every q ∈ ∆(X), let

Ukp (q) =
∑
x∈X

q(x)ukp(x) =
∑
x∈X

q(x)[wk(x)uk(x) + [1− wk(x)]Uk(p)] = W k(q)Uk(q) + [1−W k(q)]Uk(p).
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Since Ukp (p) = Uk(p), we have Ukp (p) − Ukp (q) = W k(q)[Uk(p) − Uk(q)]. Thus p � q if and only if

Uk(p) > Uk(q) for every (uk, wk) ∈ V̂, which in turn holds if and only if Ukp (p) > Ukp (q) for every

ukp ∈ Ûp. Denote the convex hull of Ûp by 〈Ûp〉 = {uπp =
∑
ukp∈Up

πkukp :
∑
ukp∈Up

πk = 1}, then

Ukp (p) > Ukp (q), ∀ukp ∈ Up ⇐⇒ Uπp (p) =
∑
ukp∈Up

πkUkp (p) >
∑
ukp∈Up

πkUkp (q) = Uπp (q), ∀uπp ∈ 〈Ûp〉.

Therefore, p � q if and only if every Uπp (p) > Uπp (q), completing the proof. �

6.2 Proofs of Lemmas

6.2.1 Proof of Lemma 1

Fix p, q ∈ ∆(X) such that p � q. Fix r ∈ ∆(X) and pick β, γ ∈ (0, 1) such that γ/(1−γ)
β/(1−β) > 0 and that

satisfy partial substitution so that s ≡ βp + (1 − β)r � γq + (1 − γ)r ≡ t. Now pick β′, γ′ ∈ (0, 1)

such that τ ≡ γ′/(1−γ′)
β′/(1−β′) = γ/(1−γ)

β/(1−β) , proving the proposition requires showing that u ≡ β′p+ (1− β)′r �
γ′q + (1− γ′)r ≡ v.

o p q

r

s

t

s'

r'

t'u

v

Figure 5: Proof of Lemma 1

As depicted in Figure 5, the extensions of the lines st and uv intersect at some source point lying outside
of the simplex on the extended line pq, located at o = p−τq

1−τ . Draw parallel lines from s and r such
that the line from s intersects uv at some point s′, and extending ps′ intersects the line from r at some
r′, and let t′ denote the intersection of uv and qr′. By Desargues’ theorem, the triangles rst and r′s′t′

are perspective from the line opq, and hence the lines rr′, ss′, and tt′ are parallel. This implies that
s′ = βp + (1− β)r′ and t′ = γq + (1− γ)r′, and hence by weak substitution that s′ � t′. Since both s′

and t′ lie on uv, we have by betweenness that u � v as well, completing the proof. �

6.2.2 Proof of Lemma 2

(i)⇒ (ii) Pick p, q ∈ ∆(X) and suppose that p � q, and pick r, r ∈ ∆(X) such that r � p, q � r. For
every λ, let Aλ = {α ∈ [0, 1] : λp+ (1− λ)q � αr+ (1− α)r}. By Proposition 2 we have that each
Aλ is a closed interval [αλ, αλ]. If A∗ =

⋂
λAλ = ∅, then there are λ1, λ2 ∈ [0, 1] and α′ ∈ (0, 1)

such that αλ1
> α′ > αλ2

, so that λ1p + (1 − λ1)q � ζα′ � λ2p + (1 − λ2)q. By betweenness, if
λ1 > λ2 then p � q, and if λ1 < λ2 then p ≺ q. As either would contradict p � q, we must have
that A∗ 6= ∅, so letting r = αr + (1− α)r for any α ∈ A∗ establishes the result.

(ii)⇒ (iii) Pick p, q ∈ ∆(X) such that p � q and pick any τ∗ ∈ T (p, q), so that there is a source

point o∗ = p−τ∗q
1−τ∗ ∈ Ω. Pick r, r ∈ ∆(X) such that r � p, q � r, then by the above, there is

r = αr + (1 − α)r ∈ ∆(X) such that every λp + (1 − λ)q � r. We need to show that there are
τp, τq > 0 such that every λτp + (1− λ)τq ∈ T (λp+ (1− λ)q).

For every λ ∈ [0, 1], let pλ = λp+ (1− λ)q and τ∗λ = λτ∗+ (1− λ), then since τ∗ ∈ T (p, q) we have
that

o∗ =
p− τ∗q
1− τ∗

=
[λp+ (1− λ)q]− [λτ∗ + (1− λ)]q

1− [λτ∗ + (1− λ)]
=
pλ − τ∗λq
1− τ∗λ

∈ Ω.

This implies by Proposition 4 that τ∗λ ∈ T (pλ, q). We now claim that there is some τq ∈ T (q, r)
such that for every λ ∈ [0, 1], τ∗λτq ∈ T (pλ, r). Suppose not, then since by Proposition 3 the weight

18



ranges are closed intervals T (pλ, r) = [τλ, τλ] and T (q, r) = [τ q, τ q], there is λ ∈ [0, 1] such that

τ∗λ > τλ
τq

or τ∗λ <
τλ
τq

. Assume the former without loss of generality, then there is τ ′q < τ q and

τ ′λ > τλ such that τ∗λ =
τ ′λ
τ ′q

. Let s = r � r, then we have that since τ ′λ > τλ, o′λ =
pλ−τ ′λr
1−τ ′λ

/∈ Ω, so

that for some β ∈ (0, 1),

p′λ = βpλ + (1− β)s � βτ ′λr + (1− β)s

βτ ′λ + (1− β)
≡ r′.

Now let γ =
βτ∗λ

βτ∗λ+(1−β) so that τ∗λ = γ/(1−γ)
β/(1−β) . Since τ ′q < τ q, o

′
q =

q−τ ′qr
1−τ ′q

/∈ Ω so that

q′ = γq + (1− γ)s ≺
γτ ′qr + (1− γ)s

γτ ′q + (1− γ)
≡ r′′

Since by construction τ ′λ = τ∗λτ
′
q, taking the above together we have that p′λ � r′ = r′′ � q′, but

as τ∗λ ∈ T (pλ, q) implies p′λ � q′, this is a contradiction. Thus we must have that τ∗λ ≤
τλ
τq

, and

a similar argument shows τ∗λ ≥
τλ
τq

. Therefore, there is τq ∈ [τ q, τ q] such that τ∗λτq ∈ T (pλ, r) for

every λ.

Figure 6: Proof of Lemma 2 [(ii)⇒ (iii)]

This argument is illustrated in Figure 6, showing the contradiction when the claim is violated for
λ = 1, so that τ∗τq /∈ T (p, r).23 Letting τp = τ∗τq ∈ T (p, r), this implies [λτ∗ + (1 − λ)]τq =
λτp + (1− λ)τq ∈ T (λp+ (1− λ)q, r) for every λ, completing the proof.

23For every p, q ∈ ∆(X) let S(p, q) = {o = p−τq
1−τ : τ ∈ T (p, q)} the range of source points on the line defined by p and

q. For any p ∈ ∆(X), let I(p) = {r′ = αr + (1 − α)r � p : α ∈ [0, 1]} the range of mixtures of r and r to which p is

incomparable, then r ∈ I(p) and τ ∈ T (p, r) implies that r′ =
βτr+(1−β)r
βτ+(1−β) ∈ I(βp + (1 − β)r). As shown in Figure 6, if

o∗ ∈ S(p, q), then we must be able to draw a line from it that intersects both S(p, r) and S(q, r), or else there are o′p, o
′
q /∈ Ω

that indicate I(p′) and I(q′) are disjoint, so that p′ � q′ which in turn would imply o∗ /∈ Ω.
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(iii)⇒ (iv) Pick p, q ∈ ∆(X) such that p � q and suppose there is r ∈ ∆(X) and τp, τq > 0 such that
every λτp + (1− λ)τq ∈ T (λp+ (1− λ)q, r). This defines a line of source points

O(p, q) =

{
oλ =

λp+ (1− λ)q − [λτp + (1− λ)τq]r

1− [λτp + (1− λ)τq]
: λ ∈ [0, 1]

}
⊆ Ω.

Now pick p′, q′ ∈ ∆({p, q, r}), then there are τ ′p, τ
′
q > 0 such that we can define source points

o′p =
p′−τ ′pr
1−τ ′p

and o′q =
q′−τ ′qr
1−τ ′q

.24 Now let τ ′t =
τ ′p
τ ′q

and λ′t = 1
1−τ ′t

, then we have that

o′t =
λ′t(1− τ ′p)o′p + (1− λ′t)(1− τ ′q)o′q
λ′t(1− τ ′p) + (1− λ′t)(1− τ ′q)

=
(p′ − τ ′pr)−

τ ′p
τ ′q

(q′ − τ ′qr)

(1− τ ′p)−
τ ′p
τ ′q

(1− τ ′q)
=
p′ − τ ′tq′

1− τ ′t
∈ Ω.

Figure 7: Proof of Lemma 2 [(iii)⇒ (iv)]

As Figure 7 shows, for any p′, q′ ∈ ∆({p, q, r}) we can draw a line connecting these two lotteries
that intersects the source line O(p, q) at some o′t. By Proposition 4 this implies that p′ � q′ and
τ ′t ∈ T (p′, q′).

(iv)⇒ (i) This is immediate.

As (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (i), the four statements are equivalent. �

6.2.3 Proof of Lemma 3

The steps in this proof follow much of the same logic as the proof of Lemma 2.

(i)⇒ (ii) Suppose that P is an incomparability set, then if dimP < n−2 we can pick r, r ∈ ∆(X)\∆(P )
such that r � p � r for every p ∈ ∆(P ). For every p ∈ ∆(P ) let Ap = {α : p � αr + (1 − α)r} =
[αp, αp]. If A∗ =

⋂
p∈∆(P )Ap = ∅, then there are p1, p2 ∈ ∆(P ) and α′ such that αp1 > α′ > αp2 .

But this implies that p1 � p2, a contradiction. Picking any α ∈ A∗ 6= ∅ and letting r = αr+(1−α)r
establishes the result.

24Let p′ ≡ µpp + µqq + (1 − µp − µq)r and q′ ≡ νpp + νqq + (1 − νp − νq)r and τ ′p = µpτp + µqτq + (1 − µp − µq) and
τ ′q = νpτp + νqτq + (1− νp − νq). Then we have that

o′p =
p′ − τ ′pr
1− τ ′p

=
[µpp+ µqq + (1− µp − µq)r]− [µpτp + µqτq + (1− µp − µq)]r

1− [µpτp + µqτq + (1− µp − µq)]
=

[
µpp+µqq

µp+µq

]
−
[
µpτp+µqτq
µp+µq

]
r

1−
[
µpτp+µqτq
µp+µq

] .

Letting λ′p =
µp

µp+µq
shows that o′p ∈ O(p, q) ⊆ Ω, and by a similar argument o′q ∈ Ω.

20



(ii)⇒ (iii) Fix r ∈ ∆(X) \∆(P ) satisfying (ii). Let Pk = {p1, . . . , pk} ⊆ P be a basis for ∆(P ), then

it will be sufficient to show that there are {τ1, . . . , τk} ∈ Rk>0 such that for every q =
∑k
j=1 πjpj ∈

∆(Pk), we have that τq =
∑k
j=1 πjτj ∈ T (q, r).

Claim For any ` ≤ k, let P` = {p1, . . . , p`}, then there is {τ1, . . . , τ`} ∈ R`>0 such that for every

q =
∑`
j=1 πjpj ∈ ∆(P`), we have that τq =

∑`
j=1 πjτj ∈ T (q, r).

Proof We establish this property by induction. For the base case, if ` = 1 then the simplex is a
singleton ∆({p1}) = {p1} so the property is trivially satisfied by picking any τ1 ∈ T (p1, r). For

the inductive step, suppose that we have such {τ1, . . . , τ`} ∈ R`>0 and let τq =
∑`
j=1 πjτj for every

q ∈ ∆(P`). By Lemma 2, for every q1, q2 ∈ ∆(P`) we have that q1 � q2 and furthermore that
τq1
τq2
∈ T (q1, q2).

Pick any p ∈ P \∆(P`), then since P is an incomparability set p � q for any q ∈ ∆(P`), by Lemma
2 we have that

Zqp = {τp ∈ T (p, r) : λτp + (1− λ)τq ∈ T (λp+ (1− λ)q, r), ∀λ ∈ [0, 1]} = [τ qp, τ
q
p] 6= ∅.

By Lemma 2, τp ∈ Zqp implies that
τp
τq
∈ T (p, q). Suppose that Z∗p =

⋂
q∈∆(P`)

Zqp = ∅, then there

are q1, q2 ∈ ∆(P`) and τ ′p such that τ q1p > τ ′p > τ q2p . This in turn implies that
τ ′p
τq1

< inf T (p, q1)

and
τ ′p
τq2

> supT (p, q2). Letting s = r � p, for β ∈ (0, 1) we have that

βq1 + (1− β)s �
β
(
τq1
τ ′p

)
p+ (1− β)s

β
(
τq1
τ ′p

)
+ (1− β)

�
β
(
τq1
τq2

)
q2 + (1− β)s

β
(
τq1
τq2

)
+ (1− β)

This contradicts
τq1
τq2
∈ T (q1, q2), and hence Z∗p 6= ∅. Let p = p`+1 and pick any τ`+1 ∈ Z∗p`+1

, then

we have that the set {τ1, . . . , τ`+1} ∈ R`+1
>0 has the desired property.25 This completes the proof of

the claim. �

Returning to the proof of the lemma, set ` = k and choose {τ1, . . . , τk} ∈ Rk>0 that satisfies the

claim. Then for every p ≡
∑k
j=1 πjpj ∈ P , letting τp =

∑k
j=1 πjτj establishes the result.

(iii)⇒ (iv) Fix r ∈ ∆(X) \∆(P ) and {τp}p∈P ⊆ R>0 satisfying (iii). Pick q1, q2 ∈ ∆(P ∪ {r}). Then
for i = 1, 2, qi = θir+(1−θi)q′i for some q′i ≡

∑
p∈∆(P ) πp,ip ∈ P . Then letting τ ′i =

∑
p∈P πp,iτp ∈

T (q′i, r) and τi = θi+(1−θi)τ ′i , there is a source point at oi =
q′i−τ

′
ir

1−τ ′i
= qi−τir

1−τi ∈ Ω. By construction,

we have that λτ ′1 + (1−λ)τ ′2 ∈ T (λq′1 + (1−λ)q′2, r). Thus, letting τ∗ = τ1
τ2

and λ∗ = 1
1−τ∗ we have

that

o∗ =
λ∗(1− τ1)o1 + (1− λ∗)(1− τ2)o2

λ∗(1− τ1) + (1− λ∗)(1− τ2)
=

(q1 − τ1r)− τ1
τ2

(q2 − τ2r)
(1− τ1)− τ1

τ2
(1− τ2)

=
q1 − τ∗q2

1− τ∗
∈ Ω

By Proposition 4, this implies that q1 � q2 and τ∗ ∈ T (q1, q2).

(iv)⇒ (i) This is immediate.

As (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (i), the four statements are equivalent. �

6.2.4 Proof of Lemma 4

Fix p, q ∈ ∆(X). By repeated application of Lemma 3, we have that p � q if and only if they both belong
to the some maximal incomparability set P ⊆ ∆(X) with dimP = n − 2. Note that since δxn � δx1 ,
by betweenness there is a unique α such that ζα ∈ P . Hence for every i = 2, . . . , n − 1 there exists
some pi = λiδxi + (1 − λi)ζθi ∈ ∆(P ) ∩ ∆({xi, x1, xn}). By Lemma 3, this implies that there exist

25For any q =
∑`+1
j=1 πjpj , let λ = πj and q′ =

∑`
j=1 πjpj∑`
j=1 πj

. Then since τ`+1 ∈ Z∗p`+1
⊆ Zq

′
p`+1

, we have that
∑`+1
j=1 πjτj =

λτ`+1 + (1− λ)τq′ ∈ T (λp`+1 + (1− λ)q′, r) = T (q, r).
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{τ ′2, . . . , τ ′n−1} such that every τ ′i ∈ T (pi, ζα) and hence (α, τ ′i) ∈ Φ(pi). Letting τi = 1
λi
τ ′i +

(
1− 1

λ i

)
and

αi =
τ ′iα−(1−λi)θi
τ ′i−(1−λi) = [λiτi+(1−λi)]α−(1−λi)θi

λiτi
, then we have that

oi =
δxi − τiζαi

1− τi
=
λiδxi + (1− λi)ζθi − [λiτi + (1− λi)]ζα

1− [λiτi + (1− λi)]
=
pi − τ ′iζα

1− τ ′i
∈ Ω.

This implies that every (αi, τi) ∈ Φ(δxi).

For every p′ ≡
∑n
i=1 πiδxi ∈ ∆(X) there is q′ =

∑n−1
i=2 π

′
ipi ∈ ∆(P ) such that p′ = λ′q′ + (1 − λ′)ζθ′ .

This implies that

(α, τ ′q) =

(∑n−1
i=2 π

′
iτ
′
iα∑n−1

i=2 π
′
iτ
′
i

,

n−1∑
i=2

π′iτ
′
i

)
=

(∑n−1
i=2 π

′
i[λiτiαi + (1− λi)θi]∑n−1

i=2 π
′
i[λiτi + (1− λi)]

,

n−1∑
i=2

π′i[λiτi + (1− λi)]

)
∈ Φ(q′).

Letting τ ′p = λ′τ ′q + (1− λ′) and α′p =
λ′τ ′qα+(1−λ′)θ′

λ′τ ′q+(1−λ′) we have

o′p =
p′ − τ ′pζα′p

1− τ ′p
=

[λ′q′ + (1− λ′)ζθ′ ]− [λ′τ ′qζα + (1− λ′)ζθ′ ]
1− [λ′τ ′q + (1− λ′)]

=
q′ − τ ′qζα

1− τ ′q
∈ Ω.

This implies (α′p, τ
′
p) ∈ Φ(p′). Furthermore, letting (α1, τ1) = (0, 1) and (αn, τn) = (1, 1), we have that

p′ = λ′
n−1∑
i=2

π′i[λiδxi + (1− λi)ζθi ] + (1− λ′)ζθ′ ≡
n∑
i=1

πiδxi ,

(α′p, τ
′
p) =

(
λ′
∑n−1
i=2 π

′
i[λiτiαi + (1− λi)θi] + (1− λ′)θ′

λ′
∑n−1
i=2 π

′
i[λiτi + (1− λi)] + (1− λ′)

, λ′
n−1∑
i=2

π′i[λiτi + (1− λi)] + (1− λ′)

)

=

(∑n
i=1 πiτiαi∑n
i=1 πiτi

,

n∑
i=1

πiτi

)
∈ Φ(p′).

Since the above holds for any p ∈ ∆(X), the collection {(αi, τi)}ni=1 ∈ Ψ.

This construction is shown in Figure 8.26 Returning to the proof, we have that for every p, q ∈ ∆(X)
that p � q if and only if they lie on some maximal incomparability set P , which defines {(αi, τi)}ni=1 ∈ Ψ.
Since there is a unique α ∈ [0, 1] for which p, q, ζα ∈ P , we must have αp = αq = α, which completes the
proof. �

6.2.5 Proof of Lemma 5

We begin by proving the following claim

Claim Given (A.1), (A.2), and (A.3), axiom (A.4) implies that for all p, q ∈ ∆(X), p � q if and only if
for every β ∈ (0, 1) there is a unique γ ∈ (0, 1) such that βp+ (1− β)r � γq+ (1− γ)r for all r ∈ ∆(X).

Proof Suppose that there are p, q ∈ ∆(X), p � q and β ∈ (0, 1) and γ, γ′ ∈ (0, 1) , γ > γ′, such
that βp + (1 − β)r � γq + (1 − γ)r and βp + (1 − β)r � γ′q + (1 − γ′)r for some r ∈ ∆(X). Let
γ̄ = sup{γ ∈ (0, 1) | βp+ (1− β)r � γq+ (1− γ)r}. That such γ̄ exists follows from the fact that the set
is bounded and nonempty. By definition, γ̄ ≥ γ > γ′. Moreover, since the incomparable sets are closed,
βp+(1−β)r � γ̄q+(1− γ̄)r. By definition, for all γ ∈ (γ̄, 1) , γq+(1−γ)r � βp+(1−β)r. By (A.4) since
γ′ ∈ (0, γ̄], βp+(1−β)r � γ′q+(1−γ′)r for all r ∈ ∆(X). This contradicts βp+(1−β)r � γ′q+(1−γ′)r
for some r ∈ ∆(X). Hence, γ is unique.

26The existence of a maximal incomparability set P implies that ∆(P ) crosses every triangle ∆({x1, xi, xn}), formed by
the best and worst outcomes along with some third outcome xi ∈ X, at some p′i. Furthermore, as betweenness implies that
we may have at most one ζα ∈ ∆(P ), every pi � ζα, so that we may find a source point oi in the usual manner. Drawing
a line from oi through δxi allows us to find the utility weight pair (αi, τi) for xi. By the result of Lemma 3, every point on
the line connecting two source points is itself a source point o′p, and drawing this through any lottery p′ ∈ ∆(X) produces
the pair (α′p, τ

′
p) which is in turn a linear combination of the (αi, τi).
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Figure 8: Proof of Lemma 4

Suppose there are p, q ∈ ∆(X), β ∈ (0, 1) and γ, γ′ ∈ (0, 1) , γ > γ′, and (γq+(1−γ)r � βp+(1−β)r or
βp+(1−β)r � γ′q+(1−γ′)r), for some r ∈ ∆(X). Then, it is no true that γq+(1−γ)r � βp+(1−β)r
or βp+ (1− β)r � γ′q + (1− γ′)r for all γ′ < γ and r ∈ ∆(X). Thus, by p � q. 4

To prove the lemma, fix p ∈ ∆(X) and (α1, τ1), (α2, τ2) ∈ Φ(p). If τ1 6= τ2, let

β∗ =
τ2α2 − τ1α1

(1− τ1)τ2α2 − (1− τ2)τ1α1
,

α∗ =
β∗τ1α1

β∗τ1 + (1− β∗)
=

β∗τ2α2

β∗τ2 + (1− β∗)
=
τ2α2 − τ1α1

τ2 − τ1
,

τ1∗ = β∗τ1 + (1− β∗) =
(τ2 − τ1)τ1α1

(1− τ1)τ2α2 − (1− τ2)τ1α1
,

τ2∗ = β∗τ2 + (1− β∗) =
(τ2 − τ1)τ2α2

(1− τ1)τ2α2 − (1− τ2)τ1α1
.

Then for j = 1, 2, we have

oj =
p− τ jζαj

1− τ j
=

[β∗p+ (1− β∗)δx1
]− [β∗τ jζαj + (1− β∗)δx1

]

1− [β∗τ j + (1− β∗)]
=

[β∗p+ (1− β∗)δx1
]− τ j∗ζα∗

1− τ j∗
∈ Ω.

This implies that (α∗, τ j∗) ∈ Φ(β∗p + (1 − β∗)δx1) for j = 1, 2, but as τ1 6= τ2 implies τ1∗ 6= τ2∗, this
would violate (A.4), so we must have τ1 = τ2. Hence, there is a unique τp such that αp ∈ A(p) implies
(αp, τp) = Φ(p) = A(p)× {τp}. �
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6.3 Proof of Theorem 1

(Necessity) Suppose that there is such a V that represents �. Then for any (uk, wk) ∈ V, define

Uk(p) =

∑
x∈X p(x)wk(x)uk(x)∑

x∈X p(x)wk(x)
, W k(p) =

∑
x∈X

p(x)wk(x).

Hence p � q if and only if Uk(p) > Uk(q) for every (uk, wk) ∈ V. It is easily verified that Uk is
weighted linear.27 To show that � satisfies (A.1), note that for every p ∈ ∆(X), ¬(Uk(p) > Uk(p)),
so� is irreflexive, and that for every p, q, r ∈ ∆(X), Uk(p) > Uk(q) > Uk(r) implies Uk(p) > Uk(r),
so � is transitive.

To show that � satisfies (A.2), pick p, q, r ∈ ∆(X) such that p � q, then Uk(p) > Uk(q) for every
(uk, wk) ∈ V. If so we can define αk ∈ (0, 1) such that

Uk(αkp+ (1− αk)r) =
αkW k(p)Uk(p) + (1− αk)W k(r)Uk(r)

αkW k(p) + (1− αk)W k(r)
= Uk(q),

αk =
W k(r)[Uk(q)− Uk(r)]

W k(p)[Uk(p)− Uk(q)] +W k(r)[Uk(q)− Uk(r)]
.

If Uk(q) > Uk(r), let αk = αk, otherwise let αk = 0, and let α = inf(uk,wk)∈V α
k. Then for any

α > α we have that Uk(αp+(1−α)r)) > Uk(q) for every (uk, wk) ∈ V and hence αp+(1−α)r � q.
By a similar argument, there is α ∈ (0, 1) such that α < α implies q � αp+ (1− α)r.

To show that � satisfies (A.3), pick p, q ∈ ∆(X) such that p � q. This implies that there are
(u1, w1), (u2, w2) ∈ V such that U1(p) ≥ U1(q) and U2(p) ≤ U2(q). Define

Uκ(p) =
κW 1(p)U1(p) + (1− κ)W 2(p)U2(p)

κW 1(p) + (1− κ)W 2(p)
, Wκ(p) = κW 1(p) + (1− κ)W 2(p)

Then there is some κ ∈ [0, 1] such that Uκ(p) = Uκ(q). For every β ∈ (0, 1), fix γ ∈ (0, 1) such

that the odds ratio γ/(1−γ)
β/(1−β) = Wκ(p)

Wκ(q) , so for every r ∈ ∆(X) we have

Uκ(βp+ (1− β)r) =
βWκ(p)Uκ(p) + (1− β)Wκ(r)Uκ(r)

βWκ(p) + (1− β)Wκ(r)
=
βW

κ(p)
Wκ(q)W

κ(q)Uκ(q) + (1− β)Wκ(r)Uκ(r)

βW
κ(p)

Wκ(q)W
κ(q) + (1− β)Wκ(r)

=
γWκ(q)Uκ(q) + (1− γ)Wκ(r)Uκ(r)

γWκ(q) + (1− γ)Wκ(r)
= Uκ(γq + (1− γ)r).

Thus we can have neither that βp + (1 − β)r � γq + (1 − γ)r nor βp + (1 − β)r ≺ γq + (1 − γ)r,
implying that βp+ (1− β)r � γq + (1− γ)r.

Thus � satisfies (A.1)-(A.3) if it has a multiple weighted expected utility representation.

(Sufficiency) Suppose � satisfies (A.1)-(A.3). Then for every ψ ∈ Ψ we can construct utility and
weight functions by letting uψ(xi) = αi and wψ(xi) = τi for i = 1, . . . , n. For every p ∈ ∆(X), set

Uψ(p) = αp =

∑n
i=1 piτiαi∑n
i=1 piτi

=

∑n
i=1 p(xi)w(xi)u(xi)∑n

i=1 p(xi)w(xi)
,

Wψ(p) = τp =

n∑
i=1

piτi =

n∑
i=1

p(xi)w(xi).

27For every p, q ∈ ∆(X) and λ ∈ (0, 1), we have that

Uk(λp+ (1− λ)q) =

∑
x∈X(λp+ (1− λ)q)(x)wk(x)uk(x)∑

x∈X(λp+ (1− λ)q)(x)wk(x)
=
λ
[∑

x∈X p(x)wk(x)uk(x)
]

+ (1− λ)
[∑

x∈X q(x)wk(x)uk(x)
]

λ
[∑

x∈X p(x)wk(x)
]

+ (1− λ)
[∑

x∈X q(x)wk(x)
]

=
λWk(p)Uk(p) + (1− λ)Wk(q)Uk(q)

λWk(p) + (1− λ)Wk(q)
.
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Suppose p � q, then by Lemma 4 we have that for every ψ ∈ Ψ, Uψ(p) 6= Uψ(q). Suppose that for
some ψ ∈ Ψ we have Uψ(p) < Uψ(q), then we can pick some r � p � q and β ∈ (0, 1) such that
Uψ(βp+(1−β)r) = Uψ(q). This would imply by Lemma 4 that βp+(1−β)r � q, but betweenness
implies r � βp+ (1− β)r � p � q. Thus we must have Uψ(p) > Uψ(q) for every ψ ∈ Ψ.

Now suppose Uψ(p) > Uψ(q) for every ψ ∈ Ψ. Then by Lemma 4 ¬(p � q) and by the argument
above ¬(p ≺ q), so we conclude that p � q. We conclude that p � q if and only if Uψ(p) > Uψ(q)
for every ψ ∈ Ψ. Letting V = {(uψ, wψ) : ψ ∈ Ψ} establishes the representation.

Thus � satisfies (A.1)-(A.3) only if it has a multiple weighted expected utility representation.

This completes the proof. �

6.4 Proof of Theorem 2

(Necessity) Suppose that 〈V̂1〉 = 〈V̂2〉 ≡ V∗, then for every p ∈ ∆(X) we have that 〈Û1
p 〉 = 〈Û2

p 〉 =
{up = wu+ (1− w)ūp : (u,w) ∈ V∗} ≡ U∗p . By Proposition 7, this implies that for any q ∈ ∆(X),

p �1 q ⇐⇒
∑
x∈X

p(x)up(x) >
∑
x∈X

q(x)up(x), ∀up ∈ U∗p ⇐⇒ p �2 q.

This implies that �1=�2.

(Sufficiency) Suppose, without loss of generality, that there is (u∗, w∗) ∈ 〈V̂1〉 \ 〈V̂2〉. Then for some
p ∈ ∆(X) we have that u∗p = w∗u∗ + (1 − w∗)ū∗p ∈ 〈Û1

p 〉 \ 〈Û2
p 〉. For j = 1, 2, define the local

domination cone Djp = {λ(p − q) : q ≺j p, λ ≥ 0}. By definition d ∈ Djp if and only if there are

λ ≥ 0 and q ∈ ∆(X) such that d = λ(p− q), and since p �j q, by Proposition 7 we have that∑
x∈X

d(x)up(x) = λ
∑
x∈X

[p(x)− q(x)]up(x) > 0, ∀up ∈ 〈Û jp〉

Since u∗p /∈ 〈Û2
p 〉, by the separating hyperplane theorem there is d ∈ D2

p such that∑
x∈X

d(x)up(x) > 0 ≥
∑
x∈X

d(x)u∗p(x), ∀up ∈ 〈Û2
p 〉

Hence there are λ ≥ 0 and q ∈ ∆(X) such that d = λ(p − q). This implies on one hand that∑
x∈X p(x)up(x) >

∑
x∈X q(x)up(x) for every up ∈ 〈Û2

p 〉, so that p �2 q, but on the other hand

that
∑
x∈X p(x)u∗p(x) ≤

∑
x∈X q(x)u∗p(x), so that as u∗p ∈ 〈Û1

p 〉, we have ¬(p �1 q). Hence, �1 6=�2.

Therefore, we conclude that �1=�2 if and only if 〈V̂1〉 = 〈V̂2〉. �

6.5 Proof of Theorem 3

(Necessity) Suppose we have U and w that represent �. Then for every uk ∈ U , let

Uk(p) =

∑
x∈X p(x)w(x)uk(x)∑

x∈X p(x)w(x)
, W (p) =

∑
x∈X

p(x)w(x).

Letting V = U ×{w}, by Theorem 1 we have that (A.1) and (A.2) are satisfied. To show that (A.4)
is satisfied, pick p, q ∈ ∆(X) such that p � q, then there are u1, u2 ∈ U such that U1(p) ≥ U1(q)

and U2(p) ≤ U2(q). For every β ∈ (0, 1), fix τ = γ/(1−γ)
β/(1−β) = W (p)

W (q) , then for every r ∈ ∆(X),

U1(βp+ (1− β)r) =
βW (p)U1(p) + (1− β)W (r)U1(r)

βW (p) + (1− β)W (r)

≥
βW (p)
W (q)W (q)U1(q) + (1− β)W (r)U1(r)

βW (p)
W (q)W (q) + (1− β)W (r)

=
γW (q)U1(q) + (1− γ)W (r)U1(r)

γW (q) + (1− γ)W (r)
= U1(γq + (1− γ)r).
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Likewise, U2(βp+ (1−β)r) ≤ U2(γq+ (1− γ)r), which implies that βp+ (1−β)r � γq+ (1− γ)r.

To show that the substitution ratio τ = W (p)
W (q) is unique let r = δxn , then for τ ′ < W (p)

W (q) there is

β ∈ (0, 1) such that Uk(βp+(1−β)r) < Uk
(
βτ ′q+(1−β)r
βτ ′+(1−β)

)
for all uk ∈ U , and likewise for τ ′ > W (p)

W (q)

there is β ∈ (0, 1) such that Uk(βp + (1 − β)r) > Uk
(
βτ ′q+(1−β)r
βτ ′+(1−β)

)
for all uk ∈ U . This implies

that τ , and therefore γ, is unique, so that (A.4) is satisfied.

(Sufficiency) Suppose that � satisfies (A.1),(A.2),(A.4). Then by Theorem 1 we have a representation
by V = {(uψ, wψ) : ψ ∈ Ψ}. By Lemma 5, for every xi ∈ X there is τi > 0 such that Φ(δxi) =
A(δxi)× {τi}, and thus wψ(xi) = τi ≡ w(xi) for every ψ ∈ Ψ. Thus letting U = {uψ : ψ ∈ Ψ}, we
have that V = U × {w}, so that � has the desired representation.

This completes the proof. �

6.6 Proof of Theorem 4

We begin by proving the uniquness of the utility assigned to the outcomes.

Claim Given (A.1), (A.2) and (A.3), axiom (A.5) implies that for all x ∈ X, there is a unique α ∈ [0, 1]
such that δx � ζα.

Proof Suppose that there exist α, α′ ∈ (0, 1), α > α′ such that δx � ζα and δx � ζα′ . Define ᾱ =
sup{α ∈ (0, 1) | δx � ζα}. By Proposition 2, δx � ζᾱ. By definition ᾱ ≥ α > α′. Hence, by (A.5), for all
α ∈ (ᾱ, 1) , ζα � δx. Since α′ ∈ (0, ᾱ], by (A.5) δx � ζα′ . A contradiction of δx � ζα′ . Thus, there is a
unique α ∈ [0, 1] such that δx � ζα.

We turn now to the proof of the theorem.

(Necessity) Suppose we have u and W that represent �. Then for every wk ∈ W, let

Uk(p) =

∑
x∈X p(x)wk(x)u(x)∑
x∈X p(x)wk(x)

, W k(p) =
∑
x∈X

p(x)wk(x).

Letting V = {u} × W, by Theorem 1 we have that (A.1)-(A.3) are satisfied. To show that (A.5)

is satisfied, for every xi ∈ X set αi = u(xi)−u(x1)
u(xn)−u(x1) , so that for every wk ∈ W we have Uk(δxi) =

u(xi) = αu(xn) + (1− α)u(x1) = U(ζα) if and only if α = αi.

(Sufficiency) Suppose that � satisfies (A.1)-(A.3),(A.5). Then by Theorem 1 we have a representation
by V = {(uψ, wψ) : ψ ∈ Φ}. By (A.5), for every xi ∈ X there is a αi such that Φ(δxi) =
{αi}×T (δxi , ζαi), and thus uψ(xi) = αi ≡ u(xi) for every ψ ∈ Ψ. Thus lettingW = {wψ : ψ ∈ Ψ},
we have that V = {u} ×W, so that � has the desired representation.

This completes the proof. �
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