ME 417

Design of Alternative Energy Systems

Fuel Cell Problems

- 1. Determine the ideal voltage, current, and required mass flow rate of hydrogen for an ideal air/hydrogen fuel cell operating at 101 kPa and 350 K that is producing 25 kW.
- 2. Determine the ideal voltage, current, and required mass flow rate of ethanol (C_2H_6O) for an ideal air/ethanol-water fuel cell operating at 101 kPa and 280 K that is producing 500 kW. You may take the c_P of ethanol to be 2.77 kJ/(kg·K).
- 3. Determine the ideal voltage, current, number of stacks required, and required mass flow rate of isopropanol (C₃H₇OH) for an ideal air/isopropanol –water fuel cell operating at 101 kPa and 298 K that is producing 50 kW. You may take the following properties for liquid isopropanol.

 $c_P = 2.35 \text{ kJ/(kgK)}$ $\overline{h}_f = -316,000 \text{kJ/kmole}$ $\overline{s}^o (\text{at298K}) = 194.6 \text{kJ/(kmole \cdot K)}$