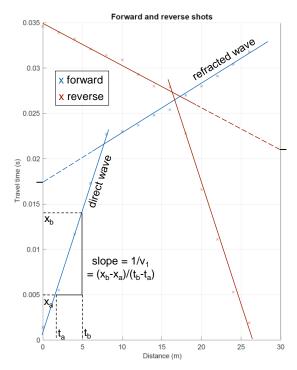
EPSC 240: GEOLOGY IN THE FIELD VOLCANIC ROCKS & DIATREMES

WEDNESDAY

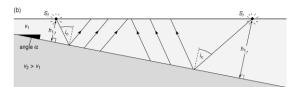
- Volcanic rocks on Île Ste-Hélène
- -4°C, windy
- Either meet at 1:35 in FDA 348 and go to Parc Jean Drapeau together, <u>or</u> meet us at the outcrop at 2
- <complex-block>

Tickets

WEDNESDAY



SEISMICS REPORT


- Calculate v_1 , v_{2d} , v_{2u} from slopes
- v_{2d}, v_{2u} (down/up dip) are <u>apparent</u> velocities
- Extrapolate slopes of refracted wave arrivals to x = 0, solve for depth to bedrock (h₁, h₂)

$$t = \frac{x}{v_2}^0 + 2h_1 \sqrt{\frac{1}{v_1^2} - \frac{1}{v_2^2}}$$

 Note: the distance h is normal to the bedrock, not vertical distance

SEISMICS REPORT

- Calculate dip angle (γ or α) using your v_{2d} and v_{2u} from slopes
- Calculate angle of incidence θ₁₂ and check your answers for apparent velocities with the equations
- → How accurate are the velocities derived from the t-x plot?

$$\gamma_1 = \frac{1}{2} \left[\sin^{-1}(\frac{v_1}{v_{2d}}) - \sin^{-1}(\frac{v_1}{v_{2u}}) \right]$$

 $\theta_{12} = \frac{1}{2} \left[\sin^{-1}(\frac{v_1}{v_{2d}}) + \sin^{-1}(\frac{v_1}{v_{2u}}) \right]$

Apparent velocity down dip =

$$v_{2d} = \frac{v_1}{\sin(\theta_{12} + \gamma_1)} < v_2$$

Apparent velocity up dip =

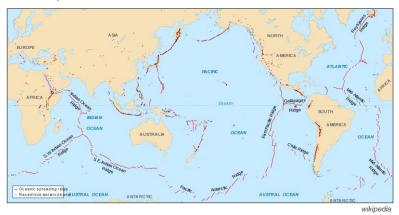
$$=\frac{v_1}{\sin(\theta_{12}-\gamma_1)}$$

SEISMICS REPORT

- Reports as described in lab handout, except
- Reduce methods to a few sentences (describe what we would have done)
- Word limits for all sections are guidelines
 → can reduce by 50%

EXTRUSIVE IGNEOUS ROCKS

· Lava, ash, debris, mixture of all


IGNEOUS ROCK CLASSIFICATION

Fine Grained	Rhyolite	Dacite	Andesite	Basalt	
Coarse Graine	d Granite	Granodiorite	Diorite	Gabbro	Peridotite
80 —	Quartz		Pla	ium-Rich gioclase Idspars	
60– Percent	Potassium Feldspar	/			
by 40-		odium-Rich Plagioclase			Olivine
Volume 20 –		Feldspars	P	yroxene	
	Biotite	Amphib	ole		
0-	700°C Increasing Temperature of Crystallization				1200°C
		Increasing Potassium, Sodium, and Aluminum			
		Increasing C			
	75% Increasing Silica Content				45%

www.physicalgeography.net

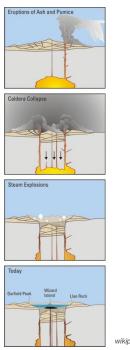
VOLCANOES

 Volcanoes are the surface expression of Earth's dynamic system (transfer of energy and mass from the interior to surface)

MID OCEAN RIDGE VOLCANOES

VOLCANOES ON LAND

Stratovolcanoes, shield volcanoes, lava domes; tuff cones, scoria cones; calderas



EFFECT OF SILICA

- Shield volcanoes form from effusive eruption of low-viscosity lava (basalt) → gently sloping
- Stratovolcanoes form from intermediateviscosity lava. Mixture of flows, ash, pumice (composite volcanoes) → steeper slopes
- Lava domes form from high viscosity lava (rhyolite). Too thick to flow → solidifies in volcanic edifice

CALDERAS

- Collapse structures formed by evacuation of magma chamber
- Rapid eruption of large volumes • of magma removes underlying support for surface materials

wikipedia

DESCRIBING VOLCANIC ROCKS

- Aphanitic (groundmass)
- Porphyritic (phenocryst)
- Vesicular (vesicles)
- Pyroclastic Welded/poorly welded
- Xenoliths Composition, size/shape

MAAR-DIATREME VOLCANOES

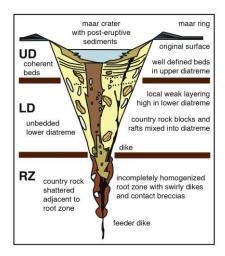

- Maar: Crater with floor below the pre-eruptive surface, surrounded by a relatively thin ejecta ring extending ~1 km from the crater rim.
- Ejecta ring: Volcanic debris (*pyroclastics*) such as ash, pumice, tuff.
- Can be formed by a phreatomagmatic eruption (lava encounters groundwater)
 > Explosive!

Image: Smithsonian Institute

MAAR-DIATREME VOLCANOES

- **Diatreme**: Breccia-filled volcanic vent formed by a gaseous explosion
- Upper bedded deposits: formed by sedimentation on surfaces open to the atmosphere
- Lower unbedded deposits
- Root zone: transition from magmatic feeder dike to clastic deposits, formed by fragmentation of magma and enclosing country rock

DIATREME FILL

- Upper diatreme: bedded volcaniclastics
- Lower diatreme: breccia of country rock fragments in an aphanitic matrix

Photo: Round Butte, Hopi Buttes volcanic field. White line: transition between bedded upper diatreme and unbedded lower diatreme. Dashed line: zone with more country rock fragments. Height of photo ~8 m.

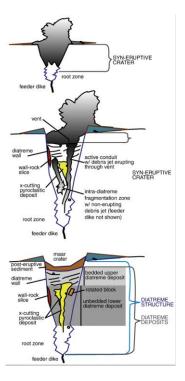
White and Ross (2011) J Volcanol Geotherm Res 201: 1-29

DIATREME FILL

 Diatreme fill becomes fluidized from vigorous streaming of magmatic volatiles though solid debris

→ Separates the fine particles from the larger clasts

Photo: Standing Rocks West, Hopi Buttes volcanic field. Lower diatreme deposits showing steeply dipping contact between two units of unbedded pyroclastics. Height of image ~ 4m.

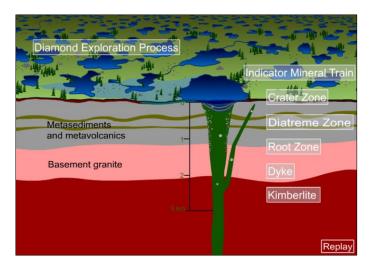


White and Ross (2011) J Volcanol Geotherm Res 201: 1-29

DIATREME FORMATION

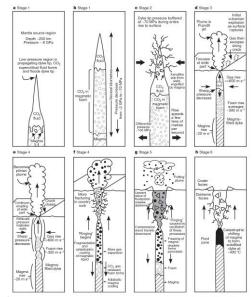
- Cool deposition (absence of welding)
- Episodic processes (multiple ejecta-ring layers, multiple beds in the upper diatreme, and cross-cutting structures in the lower diatreme and upper diatreme)
- Strong or buttressed diatreme walls (steep pipe walls)
- In-ground energy release (broken-up country rock)
- Particle distribution by ballistic trajectories and pyroclastic density currents (ejecta rings)

White and Ross (2011) J Volcanol Geotherm Res 201: 1-29


KIMBERLITES

- Special case of diatreme fill that is ultramafic
- Derived directly from the mantle
- Pressures of 6–8 GPa
 Corresponds to depths of 200–250 km
- Sometimes have diamonds!

KIMBERLITES - MORPHOLOGY Components of a kimberlite: EPICLASTICS TUFF RING PYROCLASTICS Crater zone PYROCLASTICS RATER FACIES DIATREME Diatreme zone Root zone http://www.bcminerals.ca/i/video/kimberlite-anim.swf DIKES ED Mitchell (1986) Kimberlites, Plenum NY


KIMBERLITES - MORPHOLOGY

kimberlite animation: www.canterraminerals.com/s/home.asp

KIMBERLITE FORMATION

- Dyke initiation in a deep CO₂-rich source region in the mantle
- Rapid propagation of the dyke tip
- When the tip breaks the surface of the ground, gas release causes a depressurization wave to travel into the magma

Wilson and Head (2007) Nature 447: 53-57