Electrodynamic Tethers for Exploration of Jupiter and its Icy Moons

Juan R. Sanmartin

Universidad Politécnica de Madrid

** Galileo mission: A successful but handcuffed mission

- * GAMs → Waiting period + Protracted trip
- * Too much chemical propellant, little scientific payload
- * RTG (and Solar) power sources too weak
- * Little orbit manoeuvring after capture
- * Low capability for transmitting data

Challenge: Fuller exploration of Jupiter and its moons

** NASA's approach to the challenge:

- * Europan Orbiter (National Research Council) /scrapped in 2002
- * August 2003 Aerospace America editorial:
 - → Project *Prometheus* on using NEP

Nuclear reactors for power, and for powering e-thrusters

* Heavy, "unfriendly" systems: 20 - tons JIMO (scrapped)

Juno Polar Jovian Orbiter // Neptune-Triton Vision Mission

- ** ESA's approach to the challenge:
- * Jovian Minisat Explorer keeps features of Galileo
- * From RTG's back to solar arrays:
 - → develop LILT cells with concentrators
- * If failed, reversion to RTG's: problematic;
 - Pu 238 oxide scarce, expensive $(10^6 \notin / \text{kg})$; ITAR problem
- * S/C split \rightarrow Jovian Europan Orbiter + Jovian Relay Satellite

GAMs to get JEO down to Europa in 550 days

- ** New approach: Tapping Jupiter's rotational energy
- * No GAMs, RTG's, solar arrays, chemical propulsion, NEP
- * Two light S/C; direct trip; "light" tether system

More scientific payload, data-handling capability

- * Free-lunch, <u>fast</u> manoeuvring (tour)
- * S/C capture critical

Performance dependent on ambient conditions (B, N_e)

* Model uncertainties: S/C 1 (nominal values), S/C 2 (safety margin)

** Power generation, Drag, Thrust at an ED Tether

*
$$\overline{E}(tether\ frame) - \overline{E}(plasma\ frame) = \left(\overline{v}_{orb} - \overline{v}_{pl}\right) \wedge \overline{B} \equiv \overline{E}_{m}$$

Outside: \overline{E} (tether frame) $\approx \overline{E}_m$

Inside: \overline{E} (tether frame) = $\overline{I} / A \sigma_{cond}$

Lorentz force $L\bar{I} \wedge \bar{B}$ $(\bar{I} \bullet \bar{E}_m > 0)$

$$\Rightarrow (L\bar{I} \wedge \overline{B}) \bullet (\bar{v}_{orb} - \bar{v}_{pl}) = -L\bar{I} \bullet \overline{E}_{m}$$

Thrust if \bar{v}_{orb} opposite $\bar{v}_{orb} - \bar{v}_{pl}$

* Energy ε_{mech} and angular momentum H in planet/light-satellite system

$$\begin{split} \varepsilon_{mech}\left(a\right) &= \frac{1}{2}I_{pl}\Omega_{pl}^{2} - \frac{\mu_{pl}M_{sat}}{2a},\\ I_{pl}\Omega_{pl} &+ \frac{\mu_{pl}M_{sat}}{a\Omega_{orb}} = const \equiv H_{0} > 0, \quad \Omega_{orb} = \sqrt{\frac{\mu_{pl}}{a^{3}}} > 0 \end{split}$$

* If
$$\frac{4}{3^{3/4}} \times I_{pl} \sqrt{\frac{\mu_{pl}}{(I_{pl}/M_{sat})^{3/2}}} < H_0$$

- $\varepsilon(a)$ presents maximum / minimum with rigid-body motion $(\Omega_{pl} = \Omega_{orb})$
- * Maximum is unstable under dissipation (tidal, air-drag, ED-tether)

For M_{sat} small enough (artificial satellite) $\rightarrow a(max) = a_{st}$

* Drag in westward LEO but thrust if $a > a_{st}$ in eastward LEO (Alfven's interplanetary engine concept involved no ε_{mech} -maximum)

** Tether consumes little expellant at Hollow Cathode

HC's reach $I_{hc}/\dot{m}_{hc} \approx 10^2 \, \text{A} / \text{mg s}^{-1}$ (charge/mass ratio of proton)

$$\frac{Lorentz\ force}{\dot{m}_{hc}} \sim L \times \frac{I_{hc}}{\dot{m}_{hc}} B \approx 10,000 \frac{km}{s} \times L(km) \times B(gauss)$$

* Compare to rocket (electric) thruster: $\frac{Thrust}{\dot{m}prop} \equiv g_0 \times I_{SP} \sim 3 (30) \frac{km}{s}$

** A (thin) tether itself, if left bare, collects electrons efficiently

$$I \rightarrow I_{av}$$

No effective potential barrier

- \Rightarrow No space-charge effect
- * Also, no magnetic effects
- * Tape collects same current,
 is lighter than round wire
 of equal lateral surface

** The Jupiter free-lunch tour

- * The synchronous (stationary) orbit lies at $a_{st} \approx 2.24 R_J$ (elliptic orbits modify condition $a < \text{or} > a_{st}$ for drag or thrust)
- * Drag/Thrust only applied well within plasmasphere
- * Current shut off at convenience
- * Tether used as power source (plug in electric load)
- * S/C approaches with relative velocity $v_{\infty} \sim 5.7$ km/s,

perijove at
$$r_p \sim 1.5 R_J \rightarrow e-1 = v_{\infty}^2 r_p / \mu_J \approx 0.027$$

* After capture, closed orbits evolve under repeated Lorentz force

A: Capture / Lowering apojove. B: Raising perijove. C: Raising apojove / Escape

- * Phase A: Best perijove for capture, best final apojove?
- * Ph. C: Perijove? 2/3, 3/4 resonances with Io at $3.10 R_J$, $3.84 R_J$
- * Raise apojove of S/C 1 to Io

use Lorentz thrust by fast-flowing Io torus

to accelerate S/C 1 to Io's velocity \rightarrow capture

* Raise S/C 2 apojove to Io;

use torus thrust to raise perijove to *Io*

Next, raise apojove to Europa?

escape back to Earth?

** Capture over drag path $\sim \pi r_p$ sets mass-ratio condition

$$\alpha \times LI_{av}B \times \pi r_p = (1 + \beta) \times \frac{1}{2} M_{S/C} v_{\infty}^2$$

$$I_{av} = \frac{2}{5} \times \frac{2wL}{\pi} \times eN_e \times \sqrt{\frac{2eE_mL}{m_e}}$$

$$\frac{M_{SC}}{m_t} = \frac{8\alpha}{5(1+\beta)} \times \frac{m_eN_er_p}{\rho h} \times \frac{\sqrt{2eE_mL/m_e} \times LeB/m_e}{v_{\infty}^2} = 4$$

* $N_e \approx 10^3$ cm⁻³, B ≈ 1.6 gauss, E_m ≈ 4.8 V/m at $r_p = 1.5$ R_J

Al tape, thickness h = 0.05 mm, L = 50 km, $\alpha = 0.5$, $\beta = \frac{3}{4}$

Width $w = 2 \text{cm} \implies m_t = 135 \text{ kg}, \quad M_{SC} = 540 \text{ kg}, \quad I_{av} = 11.9 \text{A}$

* Phase A

$$\frac{1}{2} v_{hp}^{2} - \frac{\mu_{J}}{r_{p}} = \frac{1}{2} v_{\infty}^{2} \rightarrow \frac{1}{2} v_{1p}^{2} - \frac{\mu_{J}}{r_{p}} = -\beta \frac{1}{2} v_{\infty}^{2} \equiv -\frac{\mu_{J}}{2 a_{1}}$$

$$\frac{1}{2} v_{2p}^{2} - \frac{\mu_{J}}{r_{p}} = -(1+2\beta) \frac{1}{2} v_{\infty}^{2} \equiv -\frac{\mu_{J}}{2 a_{2}}, \dots$$

$$\frac{\mu_J}{v_\infty^2 a_n} = n - 1 + n\beta \quad \to \quad a_1 = 72.8 \ R_J, \quad T_1 = 76.5 \ d; \quad a_3 = 12.8 \ R_J, \quad T_3 = 5.6 \ d$$

- * Thermal issues? // Power generation? // Radiation survival?
- * From $I_{av}E_mL = 2.86$ Mw, ~ 30 Kw extracted at electric load
- * Expellant used in phase A, $m_{hc} \sim M_{SC} \times v_p / (LBI_{hc}/\dot{m}_{hc}) \sim 10^{-4} M_{SC}$

* Orbital/tether dynamics? Because of the low gravity gradient, tether spun when deployed by end thrusters

A 20 minutes period spin provides tether tension and gyroscopic stability

The spin also produces a Δv between tether tips

that might be exploited to release a probe to visit a Jovian moon

* Phase C

Raise S/C to circular orbit at $3.84 R_J$

With perijove at 3.84 R_J raise apojove to Io's orbit at 5.9 R_J Hohmann transfer velocity,

$$v_a = v_{Io} \times \sqrt{\frac{2r_p}{r_p + a_{IO}}} 0.89 v_{Io} \qquad (v_{Io} << \Omega_J a_{Io})$$

Inside the dense *Io* torus fast rotating at Ω_J

(outside Io's small sphere of influence (radius 7200 km, R_{Io} = 1820 km) use Lorentz thrust to increase the apojove velocity (raising perijove)

* After few apojove passes, Io may capture S/C at a few kms altitude