

Distances to core-collapse supernovae

Elisabeth Gall (QUB/MPA), Rubina Kotak (QUB),
Bruno Leibundgut (ESO), Stefan Taubenberger (ESO/MPA), Wolfgang Hillebrandt (MPA),
Markus Kromer (Stockholm)

Extragalactic Distances

- Many different methods
- Galaxies
- Mostly statistical
- Secular evolution, e.g. mergers
- Baryonic acoustic oscillations
- Supernovae
- Excellent (individual) distance indicators
- Three main methods
- (Standard) luminosity, aka 'standard candle'
- Expanding photosphere method
- Angular size of a known feature

Physical parameters of core collapse SNe

- Light curve shape and the velocity evolution can give an indication of the total explosion energy, the mass and the initial radius of the explosion

Observables:

- length of plateau phase Δt
- luminosity of the plateau L_{v}
- velocity of the ejecta v_{ph}
- $E \propto \Delta t^{4} \cdot v_{\text {ph }}{ }^{5} \cdot L^{-1}$
- $M \propto \Delta t^{4} \cdot v_{\text {ph }}{ }^{3} \cdot L^{-1}$
- $R \propto \Delta t^{-2} \cdot V_{p h}{ }^{-4} \cdot L^{2}$

Expanding Photosphere Method

- Modification of Baade-Wesselink method for variable stars
- Assumes
- Sharp photosphere
\rightarrow thermal equilibrium
- Spherical symmetry
\rightarrow radial velocity
- Free expansion

Photosphere Expansion

- Measured from absorption lines
- formed close to the photosphere
- not hydrogen lines \rightarrow Fe II
- remove redshift (from galaxy spectrum)
- Colour
- K-corrections (redshift)

Photosphere Expansion

Hamuy et al. (2001)
Elmhamdi et al. (2003)

Expanding Photosphere Method

$$
\theta=\frac{R}{D}=\sqrt{\frac{f_{\lambda}}{\zeta_{\lambda}^{2} \pi B_{\Lambda}(T)}} ; R=v\left(t-t_{0}\right)+R_{0} ; D_{A}=\frac{v}{\theta}\left(t-t_{0}\right)
$$

- R from radial velocity
- Requires lines formed close to the photosphere
- D from the surface brightness of the black body
- Deviation from black body due to line opacities
- Encompassed in the dilution factor ζ^{2}

Expanding Photosphere Method

- Multiple filters
- Influence of known date of explosion

Gall et al., in prep.

Expanding Photosphere Method

- Measures an angular size distance
- Not important in the local universe
- Interesting for cosmological applications
- Mostly for H_{0}
- Cosmology
- Include time dilation
- Metric theories of gravity imply

$$
D_{L}=(1+z)^{2} D_{A}
$$

z	$\frac{D_{L}}{D_{A}}$
0.1	1.21
0.15	1.32
0.2	1.44
0.25	1.56
0.3	1.69
0.35	1.82

Expanding Photosphere Method

- Principle difficulties
- Explosion geometry/spherical symmetry
- Uniform dilution factors?
- Develop tailored spectra for each supernova \rightarrow Spectral-fitting Expanding Atmosphere Method (SEAM)
- Absorption
- Observational difficulties
- Needs multiple epochs
- Spectroscopy to detect faint lines
- Accurate photometry

Hubble Diagram

- Independent of distance ladder

Standardizable Candle Method

Introduced by Hamuy \& Pinto (2002)

- Normalised luminosity during the plateau phase of SNe IIP
- Normally at 50 days after explosion
Used widely for SNe IIP
- Nugent et al. 2006
- Poznanski et al. 2009
- Olivares et al. 2010
- Maguire et al. 2010
- Polshaw et al. 2015

Standardizable Candle Method

- Straightforward simple method
- Only few observations required
- Issues
- Need to know explosion time
- Often not too obvious from observational data
- Measurement during a 'faint' epoch
- Plateau and not maximum
- Spectroscopy often difficult
- Faint phase and faint lines
- Attempts to use prominent hydrogen lines

Distance to SN 2013eq ($z=0.041$)

- Use EPM and CSM to measure distance to same supernova
- EPM provides explosion date to be used by CSM

Gall et al. 2016

Dilution factor	Filter	D_{L} Mpc	Averaged D_{L} Mpc	t_{0}^{\star} days*	Average t_{0}^{\star} days *	t_{0}^{\diamond} MJD
	B	163 ± 45		5.8 ± 10.5		
H01	V	125 ± 22	151 ± 18	-0.5 ± 5.4	4.1 ± 4.4	56499.6 ± 4.6
	I	165 ± 23		7.1 ± 6.0		
	B	177 ± 48		4.7 ± 9.8		
D05	V	136 ± 23	164 ± 20	-1.3 ± 5.1	3.1 ± 4.1	56500.7 ± 4.3
	I	180 ± 25		5.9 ± 5.6		

Estimate	t_{0}^{\diamond}	V_{50}^{*}	I_{50}^{*}	v_{50}	μ	D_{L}
of t_{0} via	MJD	mag	mag	$\mathrm{km} \mathrm{s}^{-1}$	mag	Mpc
EPM - H01	56499.6 ± 4.6	19.05 ± 0.09	18.39 ± 0.04	4880 ± 760	36.03 ± 0.43	160 ± 32
EPM - D05	56500.7 ± 4.3	19.06 ± 0.09	18.39 ± 0.04	4774 ± 741	35.98 ± 0.42	157 ± 31
Rise time - G15	56496.6 ± 0.3	19.03 ± 0.05	18.39 ± 0.04	5150 ± 353	36.13 ± 0.20	168 ± 16

Testing GR

