

Distances to core-collapse SUPERNOVAE Elisabeth Gall (QUB/MPA), Rubina Kotak (QUB), Bruno Leibundgut (ESO), Stefan Taubenberger (ESO/MPA), Wolfgang Hillebrandt (MPA), Markus Kromer (Stockholm)

Extragalactic Distances

- Many different methods
 - Galaxies
 - Mostly statistical
 - Secular evolution, e.g. mergers
 - Baryonic acoustic oscillations
 - Supernovae
 - Excellent (individual) distance indicators
 - Three main methods
 - (Standard) luminosity, aka 'standard candle'
 - Expanding photosphere method
 - Angular size of a known feature

Physical parameters of core collapse SNe

• Light curve shape and the velocity evolution can give an indication of the total explosion energy, the mass and the initial radius of the explosion

Observables:

- length of plateau phase Δt
- luminosity of the plateau L_V
- velocity of the ejecta v_{ph}

• E
$$\propto \Delta t^4 \cdot v_{ph}^5 \cdot L^{-1}$$

• M $\propto \Delta t^4 \cdot v_{ph}^3 \cdot L^{-1}$
• B $\propto \Delta t^{-2} \cdot v_{ph}^{-4} \cdot L^{-2}$

pr

- Modification of Baade-Wesselink method for variable stars
- Assumes
 - − Sharp photosphere
 → thermal equilibrium
 - − Spherical symmetry
 → radial velocity
 - Free expansion

Photosphere Expansion

- Measured from absorption lines
 - formed close to the photosphere
 - not hydrogen lines \rightarrow Fe II
 - remove redshift (from galaxy spectrum)
- Colour
 - K-corrections (redshift)

Photosphere Expansion

$$\theta = \frac{R}{D} = \sqrt{\frac{f_{\lambda}}{\zeta_{\lambda}^2 \pi B_{\Lambda}(T)}}; R = \nu(t - t_0) + R_0; D_A = \frac{\nu}{\theta}(t - t_0)$$

- R from radial velocity
 - Requires lines formed close to the photosphere
- *D* from the surface brightness of the black body
 - Deviation from black body due to line opacities
 - Encompassed in the dilution factor ζ^2

- Multiple filters
- Influence of known date of explosion

- Measures an angular size distance
 - Not important in the local universe
 - Interesting for cosmological applications
 - Mostly for H_0
- Cosmology
 - Include time dilation
 - Metric theories of gravity imply $D_L = (1 + z)^2 D_A$

z	$\frac{D_L}{D_A}$
0.1	1.21
0.15	1.32
0.2	1.44
0.25	1.56
0.3	1.69
0.35	1.82

- Principle difficulties
 - Explosion geometry/spherical symmetry
 - Uniform dilution factors?
 - Develop tailored spectra for each supernova
 Spectral-fitting Expanding Atmosphere Method (SEAM)
 - Absorption
- Observational difficulties
 - Needs multiple epochs
 - Spectroscopy to detect faint lines
 - Accurate photometry

Hubble Diagram

Independent of distance ladder

Standardizable Candle Method

Introduced by Hamuy & Pinto (2002)

- Normalised luminosity during the plateau phase of SNe IIP
- Normally at 50 days after explosion
- Used widely for SNe IIP
 - Nugent et al. 2006
 - Poznanski et al. 2009
 - Olivares et al. 2010
 - Maguire et al. 2010
 - Polshaw et al. 2015

Standardizable Candle Method

- Straightforward simple method
 - Only few observations required
- Issues
 - Need to know explosion time
 - Often not too obvious from observational data
 - Measurement during a 'faint' epoch
 - Plateau and not maximum
 - Spectroscopy often difficult
 - Faint phase and faint lines
 - Attempts to use prominent hydrogen lines

Distance to SN 2013eq (z=0.041)

- Use EPM and CSM to measure distance to same supernova
- EPM provides explosion date to be used by CSM Gall et al. 2016

	Dilution factor	Filt	er $D_{\rm L}$ Mpc	Averaged D _I Mpc		t_0^{\star} days*		Averag days	$e_{*} t_{0}^{\star}$	t_0^\diamond MJD		
	H01	B V I	163 ± 45 125 ± 22 165 ± 23	151 ± 18		$5.8 \pm 10.5 \\ -0.5 \pm 5.4 \\ 7.1 \pm 6.0$		4.1 ± 4.4 56 499			$.6 \pm 4.6$	
	D05	B V I	177 ± 48 136 ± 23 180 ± 25	164 ± 20		4.7 ± 9 -1.3 ± 5 5.9 ± 5	.8 .1 .6	3.1 ± 4.1		56 500.7 ± 4.3		
=	Estimate of t_0 via		t_0^\diamond MJD	V [*] ₅₀ mag	V_{50}^* mag		$v_{50} m km s^{-1}$		μ mag		D _L Mpc	
_	EPM – H01 EPM – D05		56499.6 ± 4.6 565007+43	19.05 ± 0.09 19.06 ± 0.09	18 18	3.39 ± 0.04 3.39 ± 0.04	4880 4774	$0 \pm 760 36.03 \pm 0.4$ $4 \pm 741 35.98 \pm 0.4$		± 0.43 + 0.42	160 ± 32 157 + 31	
	Rise time – G15		56496.6 ± 0.3	19.03 ± 0.05	18	3.39 ± 0.04	5150	± 353	36.13	± 0.12 ± 0.20	167 ± 51 168 ± 16	

Testing GR

