2. Homework in "Group Theory for Physicists"

SoSe 22

One-dimension Unitary Irreducible Representations (UIR)

Problem 3: The braid group B_n is defined via its generators ε_i , i = 1, ..., n - 1, obeying

$$\varepsilon_i \varepsilon_j = \varepsilon_j \varepsilon_i \quad \text{for} \quad |i - j| > 1$$

 $\varepsilon_i \varepsilon_{i+1} \varepsilon_i = \varepsilon_{i+1} \varepsilon_i \varepsilon_{i+1}$

a) Show that the complete set of one-dimensional UIR of B_n can be enumerated by the uncountable infinite set $\alpha \in [0, 2\pi]$.

b) The generators P_i of the permutation group S_n can be defined via above generators $P_i = \varepsilon_i$ with the additional requirement $P_i^2 = e$, where e is the trivial group element. Show that the one-dimensional UIR of S_n are fully characterizable by two distinct values of α in above set.

Problem 4: Consider the group SO(2) of proper rotations in the 2-dimensional plane with group elements

$$g(\varphi) = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}, \qquad \varphi \in [0, 2\pi[.$$

a) Show that SO(2) is isomorphic to U(1), the group of unitary rotations in the complex plane $\{e^{i\varphi}|\varphi\in[0,2\pi[\}\}.$

b) Show that all 1-dimensional UIR of $U(1) \simeq SO(2)$ are characterizable by a countable infinite set $m \in \mathbb{Z}$.

Problem 5: Consider the group T^3 of linear translations in \mathbb{R}^3 . That is, the group of translations moving an arbitrary fixed $\vec{a} \in \mathbb{R}^3$ into $\vec{a} + \vec{x} \in \mathbb{R}^3$:

$$T^3: \begin{cases} \mathbb{R}^3 \to \mathbb{R}^3 \\ \vec{a} \mapsto \vec{a} + \vec{x} \end{cases} \quad \vec{x} \in \mathbb{R}^3.$$

a) Show that the elements of T^3 can be represented by a 4×4 matrix of the form

$$g(\vec{x}) = \begin{pmatrix} \mathbf{1}_3 & \vec{x} \\ \vec{0}^T & 1 \end{pmatrix}$$
, where $\mathbf{1}_3$ is the 3d unit matrix, $\vec{0}^T := (0, 0, 0)$ and $\vec{x} \in \mathbb{R}^3$.

Is this representation unitary and/or irreducible?

b) Show that the 1-dimensional UIR of T^3 are given by $D_{\vec{k}}(g) := \exp\{-i\vec{k}\cdot\vec{x}\}, \ \vec{k}\in\mathbb{R}^3$.