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LECTURE 4:  
“MAGNETIC INTERACTIONS” 

- Dipole vs exchange magnetic interactions. 
- Direct and indirect exchange interactions. 
-  Anisotropic exchange interactions. 
-  Interplay between orbital and magnetic order. 
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-  Follows directly from Maxwell equations 
-  Direct interaction between two magnetic moments 
-  depends on their relative orientation 

The dipolar interaction is very weak:  

Long range interaction, responsible for demagnetizing field and ferro-
magnetic domains. 
Dipolar interaction are important only when the exchange interactions 
are small. 

r ~ 1Å,  
µ1=µ2=1µB 4π r3 

U 
µ1µ2  

=> U ~ 10-23J = 1K 
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-  Magnetism is fully quantum mechanical 

Competition between the kinetic energy of the electrons squeezed in a 
small box and the Coulomb repulsion 

Kinetic energy ~                    ≈ eV 

Kinetic energy       ~                    ≈ eV 
ħ2   π2  

2m   L2 

Coulomb energy    ~                    ≈ eV 
e2 

4πε0 L 

Spin-orbit               ≈ meV 
Magneto-crystalline anisotropy      ≈ µeV 

The size of atoms is given by the 
balance of these two terms: 
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Light atoms: 
Z small 

Electrons far apart: 
Weakly interacting 

Heavy atoms: 
Z huge  

Electrons drawn tightly 
together by nucleus: 
Strongly interacting and 
prone to correlated behavior 
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Quantum-mechanical description of identical particle 

-  Indistinguishable particles: 
-  Bosons: share the same quantum state 

photons, gluons, phonons, helium-4 atoms. 

-  Fermions: follows the Pauli exclusion principle 
Electrons, neutrinos, quarks, protons, neutrons, helium-3 atoms 

-  Symmetry of quantum states 
-  Symmetrical (bosons) and anti-symmetrical (fermions) overall wavefunctions 

-  Statistical properties of identical particles system: 
-  Fermions: Fermi-Dirac statistic 
-  Bosons: Bose-Einstein statistic 
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Electron Wavefunction 

Pauli spin matrices 

=> 

SPINOR: representation of the spin part of electron wavefunction 

ψ(x,+1/2) =>  ψ(x,-1/2) =>  
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Spinor representation I 

Pauli spin operators 

And Ŝz take the eigenvalues ms = ±1/2 (units of ħ):  

We define the eigenstates (spinor states) corresponding to the component along 
along the z-axis as : 

By analogy, the eigenstates corresponding to the spin pointing along the 
others cartesian coordinate are: 
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Spinor representation II 

A generic quantum state could be represented as can be written as as a linear 
combination of spinors states: 

with the normaliztion 

Notice that the magnitude  

The eigenvalues of Ŝ2 are S(S+1) 

-  The commutation relations between spin operators are: 
 [Ŝx, Ŝy] = i  Ŝz       … and cyclic permutation 

-  The operator Ŝi commutes with the operator Ŝ2: 
 [Ŝ2, Ŝi] = 0 

 … which means that we can simultaneously know both the total spin and one 
of its components 
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Coupling of two spins I 

The coupling of two spins is described by the Heisenberg Hamiltonian: 

As we have already see in the previous discussion, the total spin operator for 
two particle system is a linear combination of the individual spin operators: 

If the particle are two electrons, i.e. spin-½ particles, the total spin 
quantum number is S=0 or S=1. 

The eigenvalues of Ŝtot
2 are S(S+1) = 0, 2 for S=0, 1 respectively 

=> 
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Coupling of two spins II 

Because the eigenvalues of (Ŝ1)2 and (Ŝ2)2 are both ¾ :  

From :  

S=0 0 ¾  ¾  

S=1 2 ¾  ¾  

= 

= 

+ 

+ +2(+¼)   

+2(-¾)    

And then the eigenvalues of the Hamiltonian H=A Ŝ1
. Ŝ2 are the two 

energy levels: 

=> Ŝ1
. Ŝ2

  

¼   

- ¾    

Notice that  A = – (ES – ET)  is proportional to the exchange integral in the 
Heisenberg Hamiltonian … as we will see  

ET = ¼ A  S=1  triplet state degeneracy 2S+1=3     

ES = -¾ A  S=0  singlet state degeneracy 2S+1=1  



L. Paolasini - LECTURES ON MAGNETISM- LECT.4  

Coupling of two spins III 

The z-component of the spin ms along a magnetic field takes the values ms=0 for 
the singlet and ms=-1,0,1 for the triplet if a magnetic field   

Singlet ground state S=0 
Anti-ferromagnetic coupling  

Triplet ground state S=1 
 Ferromagnetic coupling 
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Two electron wavefunctions  

The wave function associated to the  two states                      

 is symmetric under exchange of the two spins 

But the states 

are not anti- symmetric, or symmetric under the 
exchange of spin  
… just because:  

Symmetric (triplet χT) Anti-symmetric (singlet χS) 
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 The wave overall functions ΨS or ΨT must be anti-symmetric (because 
the electrons are Fermions). 

Energies of two states: 

J= 

Effective Hamiltonian: 

Spin part 

J=exchange constant 
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We can extend the two electron model to a system of many electrons, and write 
the Hamiltonian of Heisenberg model as:  

Where Jij could be replaced by the exchange constant J between the  two first 
neighbour electrons:  

J>0  ES > ET Triplet ground state  Ferromagnetic interaction 
J<0  ET > ES  Singlet ground state  Anti-ferromagnetic interaction 

or  
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J>0  ES > ET   
Triplet ground state 

J<0  ET > ES   
Singlet ground state 

1st Hund rule 
Minimize Coulomb repulsion 

Favour bonding orbitals  
Save kinetic energy 

ΨS ΨT 

Anti-symmetric spatial state 
Ferromagnetic coupling  

Symmetric spatial state 
Antiferromagnetic coupling  
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Interaction between neighbours atoms due to the overlap of 
neighbouring magnetic orbitals. 

But the exchange interaction is normally short ranged, and cannot 
explain the long range ordered magnetic structure! 

In rare earths the 4f atomic orbitals fall down very rapidly with distance and 
the exchange integral is very small. 

The direct exchange is active  in metals, albeit a correct description need to 
consider both the localized and the band character of the electrons 
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Competition between the kinetic exchange interaction involving the 
ligands between two magnetic ions and Coulomb repulsion 

Kinetic term 
tij -> hopping integral 

Coulomb inter-atomic repulsion 
ni=Nel/Nsites -> occupation number 

tij >> U  => itinerant system (metallic state) 
tij << U  => localized  system (insulator) 

Forbidden by Pauli’s  
exclusion principle 

Kinetic Energy gain 
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If the ligands are take into account, we consider the charge-transfer 
hopping tpd  and the Coulomb repulsion term Upp 

Mott-Hubbard insulator 
Δ  >> U 

Charge transfer insulator 
Δ  << U 

dn + dn dn-1 + dn+1 

dn + p6 dn+1 p5 = dn+1 L 
(Biquadratic exchange) 
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Udd 

Udd 

Δ=Ed-Ep 
Wd Wp 

Wd 

Δ	


Egap = Udd −Wd = U - Δ Egap = ∆ − (Wp + Wd/2) 

Mott-Hubbard insulator 
Δ >> U 

Charge-transfer insulator 
Δ << U 

Ex.: V2O3, Ti2O3, Cr2O3.  Ex.: CuCl2, CuBr2, CuO, NiCl2, NiBr2. 
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U/W > Δ/W  => Charge transfer and gap is p-d type   
U/W < Δ/W  => Mott-Hubbard and gap is d-d type   

U/W 

Δ/W 
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Occurs in mixed valence ions which display different oxidation states 

Ex.: LaMnO3:  Mn3+ (3d4) and Mn4+ (3d3) 
Hopping between eg shells allowed for a ferromagnetic alignement of 
Mn3+ and Mn4+ ions (1st Hund’s rule satisfied)  
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Canting of magnetic moments and a resulting net magnetization M≠0 in an 
otherwise collinear antiferromagnet (weak ferromagnetism)    

The Dzyaloshinskii-Moriya (DM) interaction is an antisymmetric, anisotropic 
exchange coupling between two spins S1 and S2 on a lattice bond r12 with no 
inversion center: 

The Dzyaloshinskii-Moriya vector D  is proportional spin-orbit coupling constant λ, 
and depends on the position of the oxygen ion a between two magnetic transition 
metal ions. 

Ex.: α-Fe2O3, MnCO3, CoCO3, multiferroics.  

HDM= D12 . S1 x S2  D12 ~ λ a x r12 
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Indirect exchange interaction mediated by the conduction electrons,  
It is called also RKKY (Ruderman, Kittel, Kasuya and Yosida) interaction. 

kF=Fermi wavevector 

π/kF 

The coupling is oscillatory and could be ferromagnetic or antiferromagnetic, 
depending on the separation of neighbours atoms. 

Important coupling in the case of Rare-earths intermetallic compounds. 
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-  Orbital ordering influence the superexchange interactions because the 
lowering of local crystal field symmetries affect the spatial part of 
wavefunctions, and thus the hopping integrals 
-  The orbital configurations and the resulting ferromagnetic or 
antiferromagnetic exchange interactions are summarized in the : 

Goodenough-Kanamori-Anderson rules: 

RULE 1: Half-filled orbitals: 180º superexchange 

RULE 2: Half-filled 90º exchange 

RULE 3: Overlap half-filled and empty 180º exchange 
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Half-filled orbitals: 180º superexchange 
- Already considerend in the case of superexchange 
- Can be due to a direct overlap of 3d orbitals (Mott-hubbard) or mediated by 
ligands (Charge-transfer) 
-  Is always strong and favours an antiferromagnetic exchange between 
neighbors ions 

-  Ex.: Most of transition-metal oxides, , LaMnO3, KCuF3… 
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Half-filled orbitals: 90º exchange 
-  Electron hopping via different ligand orbitals (ex. 2p oxygen) 
-  1st Hund’s rule at oxygen site favours a ferromagnetic exchange 
-  This exchange interaction is weak 

Ex.: Spin ladders, zig-zag spin chains, exotic magnetic structures 



L. Paolasini - LECTURES ON MAGNETISM- LECT.4  

Overlap half-filled and empty 180º exchange 

Ex. : Low dimensional magnetic systems (1D or 2D magnetic structures) 

- Overlap between an occupied and an unoccupied  orbital 
- The hopping favour a ferromagnetic alignement of spins in the same 
unoccupied orbital site 
-  Weak ferromagnetic intra-site exchange 
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The superexchange Hamiltonian must be generalized to include the 
ORBITAL degree of freedom among with the spin ones. 

Exemples: 
- Colossal magnetoresistence in Manganites 
- Low dimensional magnetism 
- Spin ladders 
- Supraconductivity? 

Close interrelation between the spin and orbital structure 

H’ ~ Si • Sj 

H” ~ τi • τj 

H’” ~ Si • τj 

Super-exchange spin 

Super-exchange orbit (pseudo-spin) 

Mixed term 
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(Kugel and Khomskji. Sov. Phys. Usp. 25 (1982) 231) 

1st GKH rule: 180° exchange path  
Strong AF exchange 

JAF~   
2t2  

U 

K 

Cu 3dy2+z2 

Cu 3dx2+z2 

F 2p  

ΔCF

Eg

t2g

  Cu2+: 3d9, S=1/2 

Hole degeneracy

3rd GKH rule: Overlap filled-empty orbitals 
Weak F exchange 

JF~   
2t2  

U- JH 
-
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H = J S . S 


