Lecture 2: Atmospheric Thermodynamics
Ideal Gas Law (Equation of State)
\square Hydrostatic Balance
\square Heat and Temperature
Conduction, Convection, Radiation
Latent Heating
\square Adiabatic Process
\square Lapse Rate and Stability

The Ideal Gas Law

An equation of state describes the relationship among pressure, temperature, and density of any material.
\square All gases are found to follow approximately the same equation of state, which is referred to as the "ideal gas law (equation)".

I Atmospheric gases, whether considered individually or as a mixture, obey the following ideal gas equation:

gas constant (its value depends on the gas considered)

Gas Constant

The ideal gas law can be applied to the combination of atmospheric gases or to individual gases.
\square The value of gas constant for the particular gas under consideration depends on its molecular weight:

$$
\mathbf{R}_{\mathrm{gas}}=\mathbf{R}^{*} / \mathbf{M}_{\mathrm{gas}}
$$

where $\mathbf{R}^{*}=$ universal gas constant $=8314.3 \mathrm{~J} \mathrm{deg}^{-1} \mathrm{~kg}^{-1}$
The gas constant for dry atmospheric air is:
$\mathrm{R}_{\text {air }}=\mathrm{R}^{*} / \mathrm{M}_{\text {air }}=8314.3 / 28.97=287 \mathrm{~J} \mathrm{deg}^{-1} \mathrm{~kg}^{-1}$
$\left(\mathrm{M}_{\text {air }} \cong 0.80 * \mathrm{M}_{\mathrm{N} 2}+0.20 * \mathrm{M}_{\mathrm{O} 2}=0.80 * 28+0.2 * 32=28.8\right)$
The gas constant for water vapor is:
$\mathrm{R}_{\text {vapor }}=\mathrm{R}^{*} / \mathrm{M}_{\text {vapor }}=8314.3 / 18.016$
$=461 \mathrm{~J} \mathrm{deg}^{-1} \mathrm{~kg}^{-1}$
$\underset{\text { Prof Jin. } \mathrm{Yi} \text { Yu }}{\text { ESS5 }}$

Applications of the Gas law

$$
\begin{aligned}
& \text { Question: Calculate the density of water vapor which exerts a } \\
& \text { pressure of } 9 \mathrm{mb} \text { at } 20^{\circ} \mathrm{C} \text {. } \\
& \hline \text { Answer: } \\
& \text { Use the ideal gas law: } \quad \mathbf{P}_{\mathrm{v}}=\rho \mathbf{R}_{\mathrm{v}} \mathbf{T} \\
& \text { and } \mathrm{P}_{\mathrm{v}}=9 \mathrm{mb}=900 \mathrm{~Pa}(\mathrm{a} \mathrm{SI} \text { unit) } \\
& \qquad \mathrm{R}_{\mathrm{v}}=\mathrm{R}^{*} / \mathrm{M}_{\mathrm{v}}=461 \mathrm{~J} \mathrm{deg}^{-1} \mathrm{~kg}^{-1} \\
& \mathrm{~T}=273+20\left({ }^{\circ} \mathrm{C}\right)=293 \mathrm{~K} . \\
& \text { So we know the density of water vapor is: } \\
& \quad \begin{array}{l}
\rho=\mathrm{P}_{\mathrm{V}} /\left(\mathrm{R}_{\mathrm{v}} \mathrm{~T}\right)=900 /(461 * 293)=6.67 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{-3}
\end{array} \\
& \text { (from Atmospheric Sciences: An introductory Survey) }
\end{aligned}
$$

Virtual Temperature

Moist air has a lower apparent molecular weight that dry air.
\rightarrow The gas constant for 1 kg of moist air is larger than that for 1 kg of dry air.
\rightarrow But the exact value of the gas constant of moist air would depend on the amount of water vapor contained in the air.
\rightarrow It is inconvenient to calculate the gas constant for moist air.

It is more convenient to retain the gas constant of dry air and use a fictitious temperature in the ideal gas equation.
\rightarrow This fictitious temperature is called "virtual temperature".
\rightarrow This is the temperature that dry air must have in order to has the same density as the moist air at the same pressure.
\rightarrow Since moist air is less dense that dry air, the virtual temperature is always greater than the actual temperature.

$\underset{\substack{\text { ESrof Jin-Yi Yu }}}{\underset{\text { ES }}{ }}$

How to Calculate Virtual Temperature?

$$
T_{v}=\frac{T}{1-\left(\frac{e}{p}\right)(1-\varepsilon)}
$$

Where
T: actual temperature
p : actual (total) pressure $=p_{d}+e$
p_{d} : partial pressure exerted by dry air
e: partial pressure exerted by water vapor
$\varepsilon=\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{v}}=0.622$

What Does Hydrostatic Balance Tell Us?

The hydrostatic equation tells us how quickly air pressure drops wit height.\rightarrow The rate at which air pressure decreases with height $(\Delta \mathrm{P} / \Delta \mathrm{z})$ is equal to the air density (ρ) times the acceleration of gravity (g)

The Scale Height of the Atmosphere

One way to measure how soon the air runs out in the atmosphere is to calculate the scale height, which is about 10 km .
\square Over this vertical distance, air pressure and density decrease by 37% of its surface values.
\square If pressure at the surface is 1 atmosphere, then it is 0.37 atmospheres at a height of $10 \mathrm{~km}, 0.14$
$(0.37 \mathrm{x} 0.37)$ at $20 \mathrm{~km}, 0.05(0.37 \times 0.37 \mathrm{x} 0.37)$ at 30 km , and so on.
\square Different atmospheric gases have different values of scale height.

What Is Air Temperature?

- Air temperature is a measurement of the average internal kinetic energy of air molecules.

Increase in internal kinetic energy in the form of molecular motions are manifested as increases in the temperature of the body.

The First Law of Thermodynamics

\square This law states that (1) heat is a form of energy that (2) its conversion into other forms of energy is such that total energy is conserved.

The change in the internal energy of a system is equal to the heat added to the system minus the work down by the system:

Heat and Temperature

- Heat and temperature are both related to the internal kinetic energy of air molecules, and therefore can be related to each other in the following way:

How to Change Air Temperature?

- Add (remove) heat to (from) the air parcel (diabatic processes)
(1) Conduction: requires touching
(2) Convection: Hot air rises
(3) Advection: horizontal movement of air
(4) Radiation: exchanging heat with space
(5) Latent heating: changing the phase of water
\square Without adding (removing) heat to (from) the air parcel
(1) Adiabatic Process: Expanding and compressing air

Conduction

Conduction is the process of heat transfer from molecule to molecule.
This energy transfer process requires contact.

Air is a poor conductor. (with low thermal conductivity)

Conduction is not an efficient mechanisms to transfer heat in the atmosphere on large spatial scales.

Latent Heating

Latent Heat of Evaporation

The latent heat of evaporation is a function of water temperature, ranging from 540 cal per gram of water at $100^{\circ} \mathrm{C}$ to 600 cal per gram at $0^{\circ} \mathrm{C}$.
\square It takes more energy to evaporate cold water than evaporate the same amount of warmer water.
$\underset{\text { Prof. Jin-Yi Yu }}{\text { ESS5 }}$

Adiabatic Process

IIf a material changes its state (pressure, volume, or temperature) without any heat being added to it or withdrawn from it, the change is said to be adiabatic.

DThe adiabatic process often occurs when air rises or descends and is an important process in the atmosphere.
(from Meteorology:
(from Meteorology:
Understanding the Atmosphere)

Latent heat is the heat released or absorbed per unit mass when water changes phase.
\square Latent heating is an efficient way of transferring energy globally and is an important energy source for Earth's weather and climate.

What Happens to the Temperature?

- Air molecules in the parcel (or the balloon) have to use their kinetic energy to expand the parcel/balloon.

Therefore, the molecules lost energy and slow down their motions
\rightarrow The temperature of the air parcel (or balloon) decreases with elevation. The lost energy is used to increase the potential energy of air molecular.

Similarly when the air parcel descends, the potential energy of air molecular is converted back to kinetic energy.
\rightarrow Air temperature rises.

Dry Adiabatic Lapse Rate

(from Meteorology: Understanding the Atmosphere)

Moist Adiabatic Lapse Rate

[^0]

Environmental Lapse Rate

\square The environmental lapse rate is referred to as the rate at which the air temperature surrounding us would be changed if we were to climb upward into the atmosphere.

DThis rate varies from time to time and from place to place.
$\stackrel{\text { ESS5 }}{\text { Prof Jin-Yi Yu }}$

Static Stability

(from Meteorology Today)
Static stability is referred as to air's susceptibility to uplift.
The static stability of the atmosphere is related to the vertical structure of atmospheric temperature.
To determine the static stability, we need to compare the lapse rate of the atmosphere (environmental lapse rate) and the dry (moist) adiabatic lapse rate of an dry (moist) air parcel.

Static Stability of the Atmosphere

$\Gamma \mathrm{e}=$ environmental lapse rate
$\Gamma \mathrm{d}=$ day adiabatic lapse rate
$\Gamma \mathrm{m}=$ moist lapse rate
\square Absolutely Stable
$\Gamma \mathrm{e}<\Gamma \mathrm{m}$
\square Absolutely Unstable
$\Gamma \mathrm{e}>\Gamma \mathrm{d}$
\square Conditionally Unstable
$\Gamma \mathrm{m}<\Gamma \mathrm{e}<\Gamma \mathrm{d}$
e

Day/Night Changes of Air Temperature

At the end of a sunny day, warm air near the surface, cold air aloft.
In the early morning, cold air near the surface, warm air aloft.
The later condition is called "inversion", which inhibits convection and can cause sever pollution in the morning.

Potential Temperature (θ)

The potential temperature of an air parcel is defined as the the temperature the parcel would have if it were moved adiabatically from its existing pressure and temperature to a standard pressure P_{0} (generally taken as 1000 mb).

$\theta=$ potential temperature $\mathrm{T}=$ original temperature
$\mathrm{P}=$ original pressure
$\mathrm{P}_{0}=$ standard pressure $=1000 \mathrm{mb}$
$\mathrm{R}=$ gas constant $=\mathrm{R}_{\mathrm{d}}=287 \mathrm{~J} \mathrm{deg}^{-1} \mathrm{~kg}^{-1}$
$\mathrm{C}_{\mathrm{p}}=$ specific heat $=1004 \mathrm{~J} \mathrm{deg}^{-1} \mathrm{~kg}^{-1}$ $\mathrm{R}_{\mathrm{p}} / \mathrm{C}_{\mathrm{p}}=0.286$

Water Vapor In the Air

Evaporation: the process whereby molecules break free of the liquid volume.

Condensation: water vapor molecules randomly collide with the water surface and bond with adjacent molecules.

How Much Heat Is Brought Upward By Water Vapor?

\square Earth's surface lost heat to the atmosphere when water is evaporated from oceans to the atmosphere.

The evaporation of the 1 m of water causes Earth's surface to lost 83 watts per square meter, almost half of the sunlight that reaches the surface.The global averaged precipitation is also about 1 meter per year.
\square Without the evaporation process, the global surface temperature would be $67^{\circ} \mathrm{C}$ instead of the actual $15^{\circ} \mathrm{C}$.

Specific .vs. Relative Humidity

Specific Humidity: How many grams of water vapor in one kilogram of air (in unit of $\mathrm{gm} / \mathrm{kg}$).
Relative Humidity: The percentage of current moisture content to the saturated moisture amount (in unit of \%).
Clouds form when the relative humidity reaches 100%
$\underset{\text { Prof. Jin-Yi Yu }}{\text { ES55 }}$

How to Saturate the Air?

- Two ways:
(1) Increase (inject more) water vapor to the air $(A \rightarrow B)$.
(2) Reduce the temperature of the air $(\mathrm{A} \rightarrow \mathrm{C})$.

Dew Point Temperature

Dew point temperature is another measurement of air moisture.
\square Dew point temperature is defined as the temperature to which moist air must be cool to become saturated without changing the pressure.
\square The close the dew point temperature is to the air temperature, the closer the air is to saturation.
(f)${ }_{\text {Prof. Jin. Yi Yu }}^{\text {Ess }}$

[^0]: from Meteorology: Understanding the Atmosphere)
 $\underset{\text { Prof. Jin.Yi Yu }}{\text { ESS5 }}$

