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∗ Centre de Géosciences, MINES ParisTech, PSL Research University
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Abstract—This paper addresses sparse component analysis, a
powerful framework for blind source separation and extraction
that is built upon the assumption that the sources of interest are
sparse in a known domain. We propose and discuss a necessary
and sufficient condition under which the `0 pseudo-norm can be
used as a contrast function in the blind source extraction problem
in both instantaneous and convolutive mixing models, when the
number of observations is at least equal to the number of sources.
The obtained conditions allow us to relax the sparsity constraint
of the sources to its maximum limit, with possibly overlapping
sources. In particular, the W-disjoint orthogonality assumption
of the sources can be discarded. Moreover, no assumption is done
on the mixing system except invertibility. A differential evolution
algorithm based on a smooth approximation of the `0 pseudo-
norm is used to illustrate the benefits brought by our contribution.

Keywords—Blind Source Separation, Blind Source Extraction,
Convolutive Mixture, Sparse Component Analysis, `0 pseudo-norm,
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I. INTRODUCTION

Blind source separation (BSS) and blind source extraction
(BSE) problems arise in many applications such as speech
processing, medical imaging or geophysics [1]. Independent
component analysis (ICA) has been developed as a powerful
tool for solving BSS and BSE problems when the original
sources can be considered as statistically independent random
variables [1]. In some cases, this assumption fails and other
priors must be considered such as sparsity, for which the `0
pseudo-norm is the most common measure. Sparse component
analysis (SCA) has emerged as another powerful tool for
solving BSS and BSE problems [2].

Since earliest works [3], SCA has shown to be efficient
in the blind identification of the mixing system, especially in
under-determined problems when there are less observations
than sources. Some techniques make the strong assumption that
the original sources are W-disjoint orthogonal [4], allowing
only one source to be active at each point of the considered
signal representation. Other techniques assume that the sources

and the mixing system are non-negative. For this assumption,
the necessary and sufficient conditions have been discussed
in [5].

For instantaneous mixtures with at least as many observa-
tions than sources, a sufficient condition for the `0 pseudo-
norm to be a contrast function for BSE has been proposed
in [6]. But, to our knowledge, necessary and sufficient condi-
tions, on the sources only, have not been discussed yet. In this
sense, the present work extend some results proposed in [6].
The paper is organised as follows. BSS and BSE problems are
presented in section II. Section III gives the definitions of the
key concepts used hereafter. Section IV presents our results
on necessary and sufficient conditions. Finally, section V
describes a numerical example with a differential evolution
algorithm.

II. BLIND SOURCE SEPARATION AND EXTRACTION

A BSS problem consists of recovering a set of original
signals s[n] ∈ RQ, n = 1, . . . , N , through R linear com-
binations of these sources. For an instantaneous mixture, the
observations are given by the mixing equation

x[n] = As[n], (1)

where the mixing matrix A ∈ RR×Q is unknown. For a finite
impulse response multiple-input multiple-output (FIR-MIMO)
convolutive mixture [7], the mixing equation is given by

x[n] =
K∑
k=0

Aks[n− k], (2)

where K is the memory length of the mixing system and all
matrices Ak ∈ RR×Q are unknown. We consider s[n−k] = 0
if n−k < 1 in Equation 2, i.e. that the sources are zero-padded.

If R < Q, the problem is called under-determined. If
R = Q or R > Q the problem is called determined or
over-determined, respectively. When there is only one source,
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i.e. Q = 1, the problem is known as blind deconvolution
(BD). In this work, we consider R ≥ Q, i.e. the number of
observations is at least equal to the number of sources. As
shown in Figure 1, s[n] ∈ RQ denotes the vector containing
all the source values at time n and sq ∈ RN gathers all the
values of one source at indices n = 1, 2, . . . , N . A non-bold
character sq[n] indicates one single value.

The BSE problem is closely related to BSS but it aims at
recovering a single source. In SCA-based BSE problems, the
sparsest source must be recovered. The sparsity of a vector y
can be measured by its `0 pseudo-norm defined as

‖y‖0 = #{y[n] : y[n] 6= 0}. (3)

The `0 pseudo-norm gives the size of the active support
of a vector. The size of the inactive support is given by
N−‖y‖0. Previous works on SCA-based BSS mainly consider
the “column sparsity” ‖s[n]‖0 of the signals [5]. In our work,
we consider the “row sparsity” ‖sq‖0 of the signals. A de-
termined instantaneous BSE problem based on the `0 pseudo-
norm can be solved up to an amplitude ambiguity1 because
‖αy‖0 = ‖y‖0, ∀α ∈ R\{0}. For a determined convolutive
BSE problem, an additional shift ambiguity appears after the
zero padding of y because ‖δk(y)‖0 = ‖y‖0 for any time
shifting operator δk defined as δk(y) = y[n− k].

The extraction of a source in a determined convolutive BSE
problem can be achieved by finding a multiple-input single-
output (MISO) separating system of L + 1 extraction vectors
wl ∈ RR, l = 0, 1, . . . , L with L ≥ K, such that

y[n] =
L∑
l=0

wT
l x[n− l] (4)

=
L∑
l=0

wT
l

K∑
k=0

Aks[n− l − k] (5)

=
J∑
j=0

hTj s[n− j], (6)

where we defined J = K + L and the vectors hj are the
mapping vectors between the original sources and the extracted
signal defined such that hTj =

∑L
l=0 w

T
l Aj−l with 0 < j−l ≤

K. We consider x[n−l] = 0 if n−l < 1 in Equation 4, i.e. that
the observations are zero-padded. For instantaneous problems,
we have K = L = 0 and a single extraction vector w0 needs
to be recovered.

III. DEFINITIONS

Considering the amplitude and shift ambiguities in BSE
problems based on the `0 pseudo-norm, we call Sq the set of
solutions in the extracted vector space corresponding to the
extraction of sq such that

Sq = {y : y = αδk(sq), ∀α ∈ R\{0}, ∀k ∈ Z}, (7)

where δk denotes the time shift operator. We call Gq the set of
all mapping vectors such that {hj}Jj=0 ∈ Gq ⇔ y ∈ Sq (see
Equation (6)). The set Gq denotes the solution set of global
mapping corresponding to the correct extraction of the source

1In BSS problems, a permutation ambiguity also appears.
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Fig. 1. Clarification of the notations: sq contains all the values of one source
and s[n] contains the values of all sources for index n. A single sample of a
source q for index n is denoted sq [n]. The same notations are used for the
observations.

sq . The BSE problem is equivalently solved when y ∈ Sq or
when {hj}Jj=0 ∈ Gq .

Definition 1: A function f is said to be a contrast function
for the extraction of the source sq if f(y) > f(sq), ∀y /∈
Sq [1].

The properties describing a set of source signals {sq}Qq=1
can be divided in two categories. A first category contains the
properties of each single signal sq taken independently from
the others. A second category contains the properties linked
to the relations between several signals, i.e. s[n]. For instance,
the kurtosis is defined for a single source, independently from
the others. On the other hand, the covariance structure or the
statistical dependence are properties defining the way all the
sources interact between them.

Auto-regressive processes refer to the first category of
signal properties. A signal sq is said to be an auto-regressive
process of order D if there exists a set of D + 1 parameters
cd such that [8]

D∑
d=0

cdsq[n− d] = 0, (8)

where at least two parameters cd are non-null. From a geo-
metric point of view, any set of D+1 consecutive coefficients
extracted from an auto-regressive process is located in a
hyperplane in RD+1 defined by its normal vector c = {cd}Dd=0.

We propose to extend the concept of auto-regressive pro-
cesses to the second category of properties by introducing the
concept of inter-regressive processes. A set of Q signals is said
to be an inter-regressive process of order D if there exists a
set of Q× (D + 1) parameters cqd such that

Q∑
q=1

D∑
d=0

cqdsq[n− d] = 0, (9)

where at least two parameters cqd are non-null. From a
geometric point of view, any set of D + 1 consecutive source
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(a) Auto-regressive process

(b) Inter-regressive process

Fig. 2. Examples of construction of (a) an auto-regressive process of order
D = 8 and length E = 2 and (b) an inter-regressive process of order D = 6
and length E = 2 for Q = 3 signals. See detailed comments in the text
below.

vectors extracted from an inter-regressive process and forming
a set of Q(D + 1) coefficients is located in a hyperplane in
RQ(D+1). For an inter-regressive process of order D = 0,
Equation (9) can be written as cTs[n] = 0. When there is
only one source, Q = 1, an inter-regressive process becomes
an auto-regressive process.

Both the above definitions generally consider that Equa-
tions (8) and (9) must be true for all indices n or for a closed
support of consecutive indices. For our purpose, we propose
to expand these definitions. A signal is said to yield an auto-
regressive process of order D and length E ∈ N if Equation (8)
is true for E indices n, possibly not consecutive. Equivalently,
signals are said to yield an inter-regressive process of order D
and length E ∈ N if Equation (9) is true for E indices n,
possibly not consecutive.

Figure 2 shows the construction of both auto-regressive
and inter-regressive processes of hypothetical length E = 2.
For the auto-regressive process, each black square is fully
determined by the value of all antecedent grey dots, with a
unique set of parameters {cd}. For the inter-regressive process,
each black square is fully determined by the value of all
antecedent and concomitant grey dots, with a unique set of
parameters {cqd}. Figure 3 shows an example of an inter-
regressive process of order D = 0 and length E = 6 for
three sources. The position of each samples is shown in the
source space.

IV. NECESSARY AND SUFFICIENT CONDITIONS

In this section, we give necessary and sufficient conditions,
on the sources only, to use the `0 pseudo norm as a contrast
function in linear BSE problems, for both instantaneous and
convolutive mixtures. In other words, we discuss the conditions
under which the solution of the `0 pseudo-norm minimisation
problem

{wl}∗ = min
{wl}

∥∥∥∥∥y[n] =
L∑
l=0

wT
l x[n− l]

∥∥∥∥∥
0

, (10)

extracts a signal y∗ ∈ S1 corresponding to the recovery of
the sparsest source. Without loss of generality, we consider
that the sources are sorted in order of decreasing sparsity such
that ‖s1‖0 < ‖s2‖0 < · · · < ‖sQ‖0. We also assume that
‖s1‖0 < ‖sq‖0 , ∀q 6= 1, to avoid any competition between
the extraction of the sparsest source s1 and another source. For
the sake of clarity, the instantaneous case is treated first and
then the generalisation to the convolutive case is presented.
Both proofs are similar.

Theorem 1 (Extraction from instantaneous mixture): The
`0 pseudo-norm is a contrast function for the extraction of
the sparsest source s1 if and only if the sources do not have
any inter-regressive process of order 0 with a length higher
than or equal to the size of the inactive support of s1.

Proof: From Definition 1, the `0 pseudo-norm is a contrast
function for the extraction of s1 if and only if

‖s1‖0 < ‖y‖0 ∀y /∈ S1,

i.e. if and only if

‖s1‖0 < #{y[n] = hTs[n] : y[n] 6= 0} ∀h /∈ G1,
‖s1‖0 < N −#{y[n] = hTs[n] : y[n] = 0} ∀h /∈ G1,
N − ‖s1‖0 > #{y[n] = hTs[n] : y[n] = 0} ∀h /∈ G1,
N − ‖s1‖0 > E∗,

where we defined

E∗ = max
[
#{y[n] = hTs[n] : y[n] = 0}, h /∈ G1

]
.

N − ‖s1‖0 is the number of null values of s1. E∗ is the
maximum length of an inter-regressive process of order 0
among the sources.

Theorem 2 (Extraction from convolutive mixture): The `0
pseudo-norm is a contrast function for the extraction of the
sparsest source s1 if and only if the sources do not have any
inter-regressive process of order J = K + L with a length
higher than or equal to the size of the inactive support of s1.

Proof: From Definition 1, the `0 pseudo-norm is a contrast
function for the extraction of s1 if and only if

‖s1‖0 < ‖y‖0 ∀y /∈ S1,

i.e. if and only if

‖s1‖0 < #{y[n] =
J∑
j=0

hTj s[n− j] : y[n] 6= 0} ∀h /∈ G1,

‖s1‖0 < N −#{y[n] =
J∑
j=0

hTj s[n− j] : y[n] = 0} ∀h /∈ G1,

N − ‖s1‖0 > #{y[n] =
J∑
j=0

hTj s[n− j] : y[n] = 0} ∀h /∈ G1,

N − ‖s1‖0 > E∗,

where we defined

E∗ = max

#{y[n] = J∑
j=0

hTj s[n− j] : y[n] = 0}, h /∈ G1

 .
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Fig. 3. Example of three sources having an inter-regressive process of order
D = 0 and length E = 6. In the right hand figure, the grey dots circled in
black in the source space belong to this inter-regressive process and are inside
the same hyperplane.

N − ‖s1‖0 is the number of null values of s1. E∗ is the
maximum length of an inter-regressive process of order J =
K + L among the sources.

In both Theorems 1 and 2, the assumption of W-disjoint
orthogonality of the sources is not necessary and the sources
can overlap. This will be shown in the next section. SCA is
often presented as a method able to separate signals violating
the independence assumption. We emphasis here that this
assertion is true below the limit defined by Theorem 1 and
2: the limit for SCA-based BSE is one kind of strong linear
dependency among the sources, named an inter-regressive
process.

V. NUMERICAL EXAMPLES

We propose to illustrate Theorem 2 using a synthetic ex-
ample solved with a differential evolution (DE) algorithm [9],
combined with a gradient approach. The `0 pseudo-norm is
approximated by a smooth version (SL0) proposed by [10]
with a Gaussian kernel such that

‖y‖0,σ = N −
N∑
n=1

e−y[n]
2/2σ2

, (11)

where σ is a shaping parameter and the vector y is nor-
malised by its `2 norm. We fixed 2σ2 = 10−3 as we have
limσ→0 ‖y‖0,σ = ‖y‖0. The search of the extraction vectors
{wl}Ll=0 is performed in the time domain. The scale and shift
ambiguities are not avoided by a specific parametrisation but
an extracted vector y is projected back on the `2-ball before
the computation of its smooth `0 pseudo-norm.

We adopt a DE/rand/1 strategy [9]. The number of indi-
viduals in the population is chosen to be ten times the number
of parameters, i.e. Npop = 10 × R(L + 1). A single individ-
ual in the population is denoted wi0 where the superscript
i0 ∈ {1, 2, . . . , Npop} indicates its position in the population.
An individual wi0 contains a set of extracting vector {wi0

l }Ll=0.
At each generation and for each target individual wi0 , a mutant
individual vi0 is created such that

vi0 = wi1 + F × (wi2 −wi3) (12)

where F is the DE scale parameter and the superscripts i1, i2,
i3 denote individuals different from i0. A trial individual ui0
is created by crossing the target and the mutant individuals in

such a way that each parameter ui0 [r] has a probability Cr to
equal vi0 [r] and a probability (1 − Cr) to equal wi0 [r]. The
best individual between the target and the trial individual is
kept in the next generation. We set F = 1 and Cr = 1/2.

After a sufficient convergence of the population around a
solution by using the DE algorithm, a gradient approach is used
to update the best individual and obtain the final solution. The
gradient of the objective function with respect to a parameter
is given by

∂ ‖y‖0,σ
∂wl[r]

=
1

σ2

N∑
n=1

xr[n− l]y[n]e−y[n]
2/2σ2

. (13)

The best individual is updated in opposite direction of the
gradient until convergence.

Sparse signals of length N = 128 are mixed according
to Equation (2) by a FIR-MIMO system of length K = 4
with Q = 2 inputs and R = 3 outputs. This configuration
guarantees that the global mixing-separating system exists, i.e.
that the z-transform polynomial matrix representing the mixing
system is left invertible [11]. The extraction is performed
after zero-padding the observations by considering the FIR-
MISO system of Equation (4) with length L = 7. Figure 4
shows the recovery of the sparse signal s1 satisfying the
conditions required by Theorem 2. Figure 5 shows an example
in which the conditions required by Theorem 2 are violated by
constructing an inter-regressive process among the sources. In
this case, the desired sparsest signal s1 cannot be recovered.

VI. CONCLUSION

Our work focused on the problem of blind extraction
of the sparsest source in both instantaneous and convolutive
models. By considering the case in which the number of
mixtures is greater or equal to the number of sources, we
provide a necessary and sufficient condition for the extraction
of the sparsest source when minimizing the `0 pseudo-norm.
Future work will include the generalisation to the blind source
separation problem and complex-valued sources. Also, only
FIR systems have been considered. A more general framework
should include systems with infinite impulse response as well.
Finally, the robustness to noise should be investigated. These
aspects will be treated in a future expanded article.
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