

FAO/China Intensive Training Course on Tilapia Lake Virus (TiLV)

Sun Yat Sen University, Guangzhou, China 18-24 June 2018

Session 1

Junhong XIA

The biology and culture status worldwide of tilapia

Email: xiajunh3@mail.sysu.edu.cn; HP:13711013684

Outline

- 1. Biology of tilapia
- 2. Overview of commercial species and lines
- 3. Challenges facing in tilapia culture
- 4. Exercise on hand sexing of tilapia

PART 1

Biology of tilapia

Common and scientific names

Tilapia is the common name for cichlids

Three Genera: more than 70 species identified

Oreochromis: maternal mouthbrooders

Sarotherodon: paternal and biparental mouthbrooders

Tilapia: substrate incubators

Commercial species:

Nile tilapia *Oreochromis niloticus*

Blue tilapia: Oreochromis aureus

Mozambique tilapia Oreochromis mossambicus

Mouth breeding species

 Parents carry the fertilized eggs and young fish in their mouths for several days after the yolk sac is absorbed

Geographic distribution and habitats

- endemic to Africa, Jordan, and Israel
- mainly freshwater fish and less commonly found living in brackish water
- inhabiting shallow streams, ponds, rivers and lakes

Feeds

Omnivorous

Phytoplankton

Insect larvae

Benthic algae

Artificial feed

Tolerance to key water quality parameters

Salinity tolerance

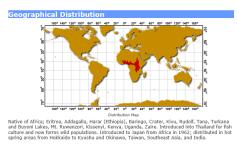
Fish	Salinity Tolerance for Growth	Salinity Tolerance for Reproduction
Nile Tilapia	Grows well at salinities up to 15 ppt	Reproduce well at salinities up to 5-10 ppt
Blue Tilapia	Grows well at salinities up to 20 ppt	Reproduce well at salinities up to 5-10 ppt
•	Grows well at salinities approaching seawater	Reproduce well at salinities up to 10-15 ppt

Tilapia spawning is best in lower salinities. The fry perform better at salinities less than 5 ppt.

Temperature tolerance

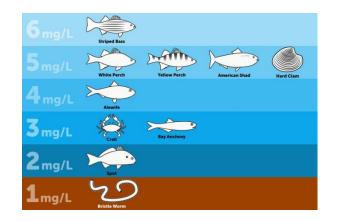
Tilapia Activity	Temperature Range			
Feeding	Stops below 17° C			
Harvesting	Stress and mortality from handling increases below 18° C			
Reproduction	Best above 27° C, no reproduction below 20° C			
Growth	Optimal from 28-29° C			

Temperature sensitivity


The blue tilapia has the greatest cold tolerance and dies 7 ° C

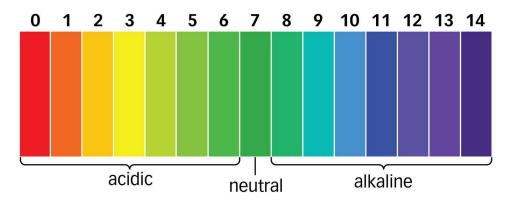
All other species of tilapia will die at a range 11 to 17 ° C

 Generally not in temperate climates due to their inability to survive in cold water

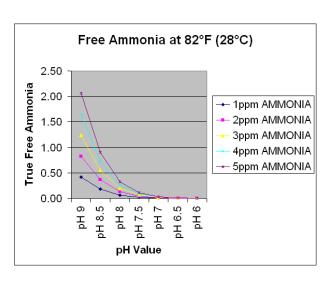


Native Range: Tropical and subtropical Africa, and Middle East.

Dissolved Oxygen

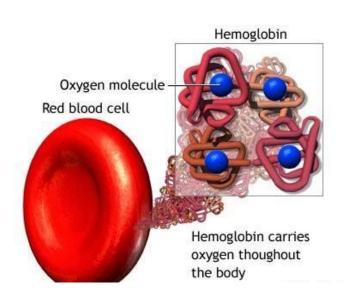

Tilapia are able to tolerate dissolved oxygen levels less than 0.3 mg/L, a level that would prove fatal to most other farmed fish.

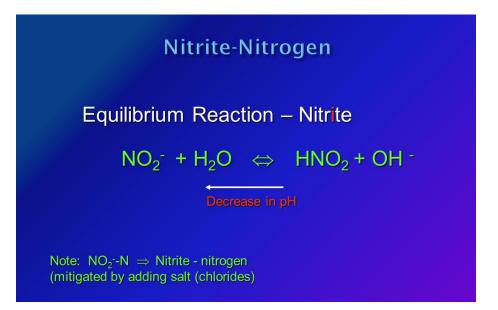
how much oxygen the Bay's living creatures need to survive?


pН

Tilapia can survive in pH ranging from 5 to 10, but optimal pH is between 6 to 9.

Ammonia


Ammonia Level	Effect on Tilapia
0.08 mg/L or above	Depressed feeding
0.2 mg/L or above	Some mortality occurs
1 mg/L or above	Mortalities, particularly among fry and juveniles
2 mg/L or above	Massive mortality



Low pH increases ammonium (NH4), while high pH would increases ammonia (NH3).

Nitrate

 For optimal cultivation, nitrate concentrations should be kept below 27 mg/L. To prevent nitrate problems in recirculating systems, chloride concentrations are often maintained at 100 to 150 mg/L chloride.

Adaptation to a very wide range of conditions
high salinities, high temperatures, high
ammonia concentrations, and low oxygen levels

Tolerant of high stocking density

Exotic and invasive species

100 OF THE WORLD'S WORST INVASIVE ALIEN SPECIES

(Psidium cattleianum)

(Tamarix ramosissima)

(Rubus ellipticus)

(Eriocheir sinensis)

(Mnemiopsis leidyi)

(Cercopagis pengoi)

(Carcinus maenas)

(Asterias amurensis)

(Linevithema humile)

(Pheidole megacephala)

(Anoplolepis gracilipes)

(Platydemus manokwari)

(Trogoderma granarium)

(Wasmannia auropunctata) (Solenopsis invicta)

(Coptotermes formosanus shiraki)

(Aedes albopictus)

(Vespula vulgaris)

(Cinara cupressi)

(Achatina fulica)

(Lymantria dispar)

(Euglandina rosea)

(Rana catesbeiana)

(Eleutherodactylus coqui)

(Micropterus salmoides)

(Bufo marinus)

(Salmo trutta)

(Cyprinus carpio)

(Bemisia tabaci)

(Anoplophora glabripennis)

(Anopheles quadrimaculatus)

(Dreissena polymorpha)

(Pomacea canaliculata)

(Potamocorbula amurensis)

(Mytilus galloprovincialis)

(Sphagneticola trilobata)

MICRO-ORGANISM

avian malaria banana bunchy top virus rinderpest virus

MACRO-FUNGI

chestnut blight crayfish plague Dutch elm disease frog chytrid fungus phytophthora root rot

AQUATIC PLANT

caulerpa seaweed common cord-grass wakame seaweed water hyacinth

LAND PLANT

African tulip tree black wattle Brazilian pepper tree cogon grass cluster pine erect pricklypear fire tree giant reed gorse hiptage Japanese knotweed Kahili ginger Koster's curse kudzu lantana leafy spurge leucaena melaleuca mesquite miconia mile-a-minute weed mimosa privet pumpwood purple loosestrife quinine tree

shoebutton ardisia

(Plasmodium relictum) (Banana bunchy top virus) (Rinderpest virus)

(Cryphonectria parasitica) (Aphanomyces astaci) (Ophiostoma ulmi) (Batrachochytrium dendrobatidis) (Phytophthora cinnamomi)

(Caulerpa taxifolia) (Spartina anglica) (Undaria pinnatifida) (Eichhornia crassipes)

(Spathodea campanulata) (Acacia mearnsii) (Schinus terebinthifolius) (Imperata cylindrica) (Pinus pinaster) (Opuntia stricta) (Myrica faya) (Arundo donax) (Ulex europaeus) (Hiptage benghalensis) (Fallopia japonica) (Hedychium gardnerianum) (Clidemia hirta) (Pueraria montana var. lobata) (Lantana camara) (Euphorbia esula) (Leucaena leucocephala) (Melaleuca quinquenervia) (Prosopis glandulosa) (Miconia calvescens) (Mikania micrantha) (Mimosa pigra) (Ligustrum robustum) (Cecropia peltata) (Lythrum salicaria) (Cinchona pubescens) (Ardisia elliptica)

LAND PLANT (CONTINUED)

Siam weed strawberry guava tamarisk wedelia yellow Himalayan raspberry

AQUATIC INVERTEBRATE

Chinese mitten crab comb jelly fish hook flea golden apple snail green crab marine clam Mediterranean mussel Northern Pacific seastar zebra mussel

LAND INVERTEBRATE

Argentine ant Asian longhorned beetle Asian tiger mosquito big-headed ant common malaria mosquito common wasp crazy ant cypress aphid flatworm Formosan subterranean termite giant African snail gypsy moth khapra beetle little fire ant red imported fire ant rosy wolf snail sweet potato whitefly

AMPHIBIAN

bullfrog cane toad Caribbean tree frog

FISH brown trout

carp large-mouth bass

FISH (CONTINUED) (Chromolaena odorata) Mozambique tilapia

Mozambiaue tilania (Oreochromis mossambicu
Nile perch (Lates niloticus)
rainbow trout (Oncorhynchus mykiss)
walking catfish (Clarias batrachus)
Western mosquito fish (Gambusia affinis)

BIR

Indian myna bird (Acridotheres tristis) red-vented bulbul (Pycnonotus cafer) starling (Sturnus vulgaris)

REPTILE

brown tree snake (Boiga irregularis) red-eared slider (Trachemys scripta)

MA MMA

(Trichosurus vulpecula) brushtail possum domestic cat (Felis catus) goat (Capra hircus) grey squirrel (Sciurus carolinensis) macaque monkey (Macaca fascicularis) (Mus musculus) mouse nutria (Myocastor coypus) (Sus scrofa) rabbit (Oryctolagus cuniculus) red deer (Cervus elaphus) red fox (Vulpes vulpes) ship rat (Rattus rattus) small Indian mongoose (Herpestes javanicus) (Mustela erminea)

Species were selected for the list using two criteria: their serious impact on biological diversity and/or human activities, and their illustration of important issues of biological invasion. To ensure a wide variety of examples, only one species from each genus was selected. Absence from the list does not imply that a species poses a lesser threat.

Development of the 100 of the World's Worst Invasive Alien Species list has been made possible by the support of the Fondation d'Entreprise TOTAL (1998 - 2000).

For further information on these and other invasive alien species consult The Global Invasive Species Database:

www.issg.org/database

 Tilapia are on the IUCN's 100 of the World's Worst Alien Invasive Species list

Fish species in the IUCN list

FISH

brown trout (Salmo trutta)

carp (Cyprinus carpio)

large-mouth bass (Micropterus salmoides)

Mozambique tilapia (Oreochromis mossambicus)

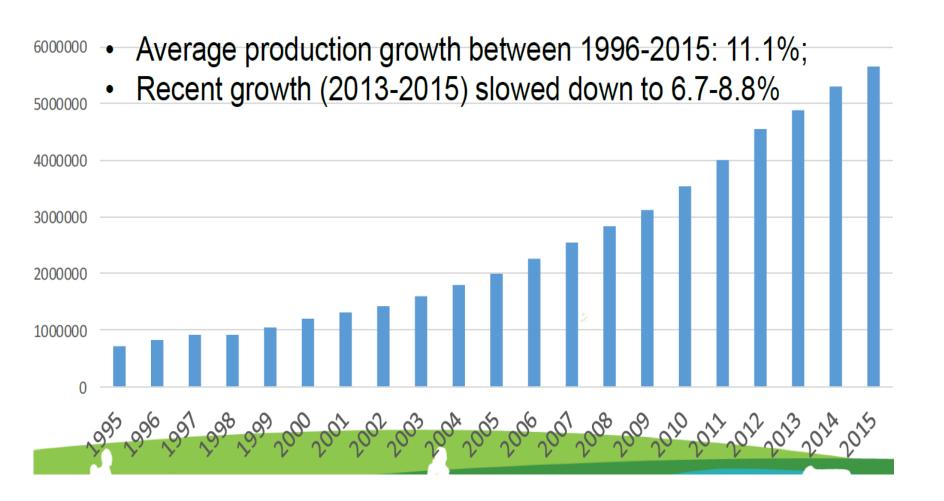
Nile perch (Lates niloticus)

rainbow trout (Oncorhynchus mykiss)

walking catfish (Clarias batrachus)

Western mosquito fish (Gambusia affinis)

Fast-growing



Tilapia Growth and Feeding Rates

Month	Start Weight (g)	End Weight (g)	Growth Rate g/day	Feeding Rate (% weight)
1	1	5	0.2	15 - 10
2	5	20	0.5	10 - 7
3	20	50	1.0	7 - 4
4	50	100	1.5	4 - 3.5
5	100	165	2.0	3.5 - 2.5
6	165	250	2.5	2.5 - 1.5
7	250	350	3.0	1.5 - 1.25
8	350	475	4.0	1.25 - 1.0
9	475	625	5.0	1.0

Starting with one gram fry at month one, fingerlings would be starting at month two or three. Growth is approximate and is based on 84°F water temperature.

Trend of cultured tilapia production

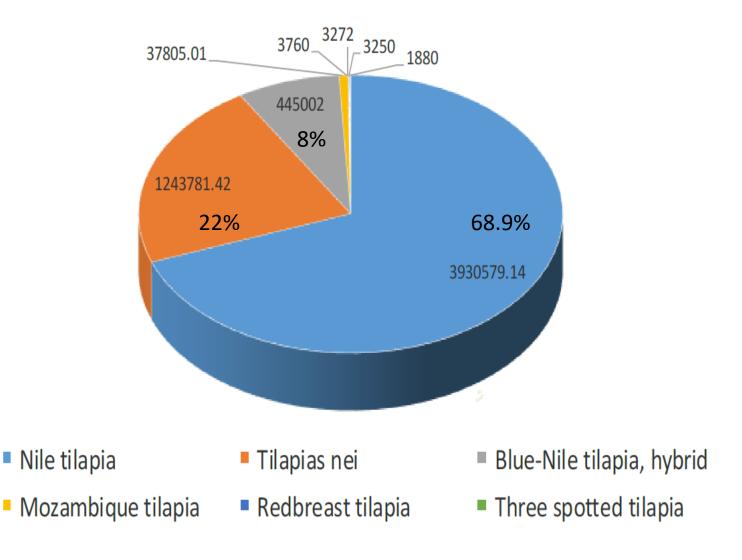
Top 10 tilapia producers in 2015

Country/reg	Production (1000 tonnes)		
China 31%		1,779.5	
Indonesia 20%		1,120.4	
Egypt	875.5		
Bangladesł	324.3		
Viet Nam	283.0		
Philippines	261.2		
Brazil	219.4		
Thailand	177.6		
Taiwan Po0	70.5		
Colombia	61.1		

World fishery production

World fishery production
| Production halieutique mondiale
| Producción pesquera mundial

Estimated value by groups of species Estimation de la valeur par groupes d'espèces Estimación del valor por grupos de especies


Species group Groupe d'espèces Grupo de especies			2009	2010	2011	2012	2013	2014	2015
Carps, barbels and other cyprinids	Capture fisheries	1 000 t	998	1 330	1 235	1 519	1 456	1 560	1 524
Carpes, barbeaux et autres cyprinidés	Pêches de capture	US\$/t	985	990	995	990	985	<i>1 000</i>	990
Carpas, barbos y otros ciprínidos	Pesca de captura	US\$ mill	983	1 317	1 229	1 504	1 434	1 560	1 509
	Aquaculture	1 000 t	22 180	23 316	23 981	25 392	26 901	28 229	29 121
	Aquaculture	US\$/t	1 325	<i>1 403</i>	<i>1 429</i>	<i>1 454</i>	<i>1 454</i>	<i>1 443</i>	<i>1 406</i>
	Acuicultura	US\$ mill	29 392	32 719	34 276	36 917	39 114	40 744	40 946
Tilapias and other cichlids Tilapias et autres cichlidés Tilapias y otros cíclidos	Capture fisheries Pêches de capture Pesca de captura	1 000 t US\$/t US\$ mill	760 1 020 775	773 1 040 804	780 1 050 819	706 1 060 748	697 1 050 731	722 1 040 750	709 1 020 724
	Aquaculture Aquaculture Acuicultura	1 000 t US\$/t US\$ mill	3 109 <i>1 5</i> 99 4 969	3 541 1 642 5 814	3 997 1 690 6 754	4 563 1 701 7 763	4 885 1 712 8 365	5 316 1 666 8 857	5 671 <i>1 570</i> 8 901
Miscellaneous freshwater fishes	Capture fisheries	1 000 t	7 192	7 498	7 399	7 631	7 785	7 779	7 915
Poissons d'eau douce divers	Pêches de capture	US\$/t	630	<i>640</i>	<i>660</i>	662	<i>650</i>	660	<i>640</i>
Peces de agua dulce diversos	Pesca de captura	US\$ mill	4 531	4 799	4 883	5 051	5 060	5 134	5 065

A big value fish

PART 2

Overview of the commercial species and lines

Cultured tilapia production by species in 2015

Commercial species

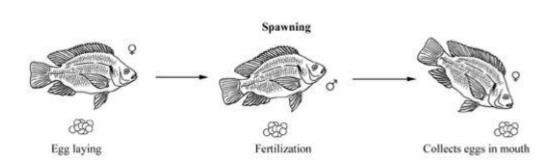
Nile tilapia *Oreochromis niloticus*

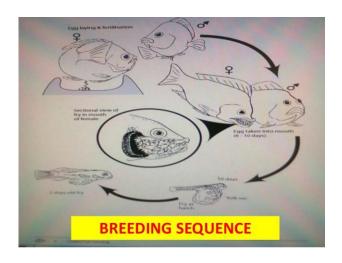
Mozambique tilapia *Oreochromis* mossambicus

Blue tilapia *Oreochromis aureus*

Oreochromis is the genus of greatest aquacultural importance

Nile tilapia

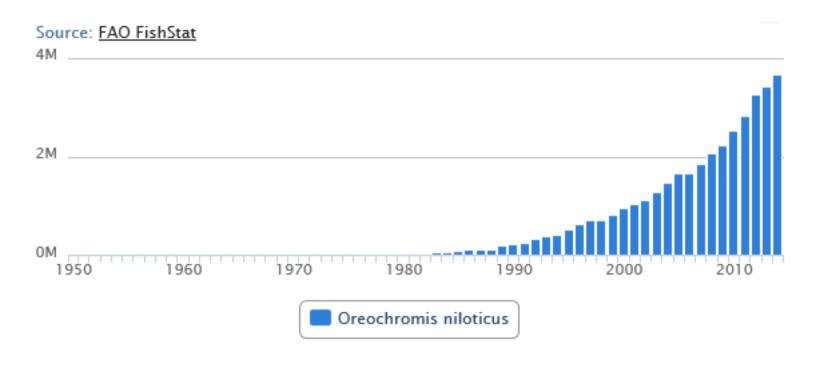




Biology

- Occur in a wide variety of freshwater habitats like rivers, lakes, sewage canals and irrigation channels
- 2. Does not do well in pure salt water, but is able to survive in brackish water

Life cycle


- Sexual maturity is reached at 3-6 months depending on temperature
- Reproduction occurs only when temperatures are over 20° C.
- Several yearly spawnings every 30 days
- A single male probably fertilises the eggs of more than one female
- Female carries eggs in her mouth

Temperature range

Table 1. Classification of growth and reproduction of the Nile tilapia in relation to temperature.

CLASS	TEMPERATURE REGIME	INTERPRETATION
1	t=<14°C	Unable to grow and reproduce
2	Intermediate	Growth and reproduction discontinuous
3	t>=22°C for 12 months	Continuous growth; reproduction possible throughout the year

Global aquaculture production

Local Names

English: Nile mouthbrooder, Nile tilapia.

More than 70% of these farmed fish are Nile tilapiaderived lines

Blue tilapia

Environment: Freshwater; brackish

Tropical; 8° C - 30° C

Distribution: Africa and Eurasia

Feeds on phytoplankton and small quantities of zooplankton

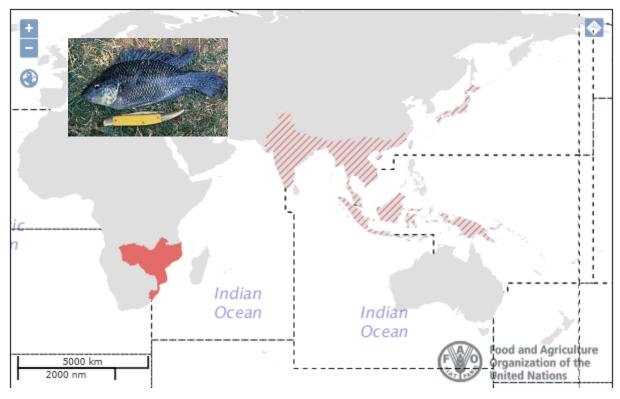
Maternal mouthbrooder

Sexual maturity in ponds reached at age of 5-6 months

Economic traits

 1.Cold tolerant, occurring at temperatures ranging from 8-30° C
 Cold tolerant tilapia new lines

 2. Generating genetically male tilapia hybrids by interspecific hybridization • Hybrid tilapia by crossing *O. niloticus* ($xx \stackrel{?}{\rightarrow}$) and *O. aureus* ($zz \stackrel{?}{\rightarrow}$).

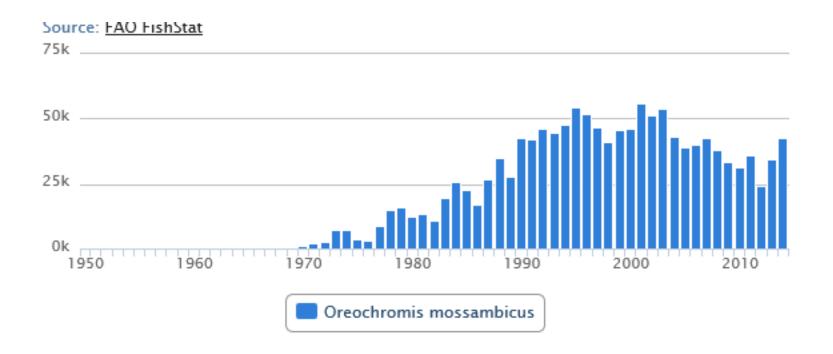

Grow rapidly (20 and 70% higher body weight than its female and male parent, respectively)

Resistant to disease (Wang et al. 1989).

High male rate: obtained 52% to nearly 100%males in such pair crosses (Pruginin et al. 1975)

Low male rates have been the result of using impure/contaminated stocks of one or both species.

Mozambique tilapia

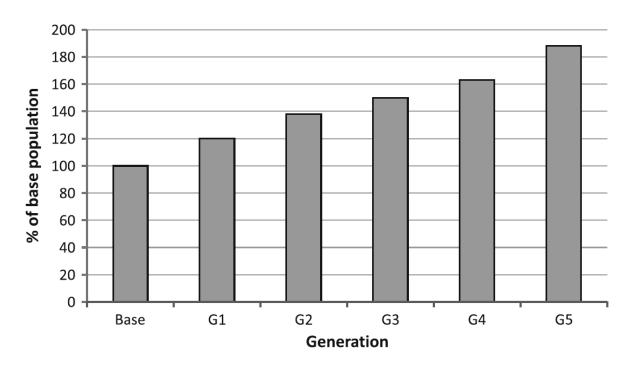


Geographical distribution

Biology

- Freshwater; brackish;saltwater
- Tropical; Extended temperature range 8-42 $^{\circ}$ C, natural temperature range 17-35 $^{\circ}$ C
- Maternal mouthbrooder
- Reaches sexual maturity may at an age of just over 2 months
- Known to tolerate full strength seawater (Green 1997)

Global aquaculture production


Year 2014: 42363 tonnes

Commercial lines

 Genetically Improved Farmed Tilapia (GIFT) and GIFT –derived lines

Faster-growing strains of Nile tilapia

Fig. 3.3 Selection response in the GIFT project for increased body weight at harvest, measured as the percentage of the base population mean. For each generation, the response is calculated by comparing progeny of selected parents and progeny of parents with average breeding values. Reproduced from Bentsen et al. (2003) by permission of Elsevier

In 2008, WorldFish reported that GIFT had achieved a genetic gain in live weight of at least 64 per cent in the nine generations since the base population was established.

The most farmed tilapia lines in the world

Currently, More than 100 countries now farm tilapia

 For example, In the Philippines, 70% of farmed tilapia is either GIFT strain or of GIFT- derived origin reported by Asian Development Bank

Red tilapia

Genetic mutants selected from tilapia species

Taiwanese red tilapia: a cross between a mutant reddish-orange female *O. mossambicus* and a normal male *O. niloticus* in 1960s (Galman and Avtalion 1983)

Florida red tilapia strain: a normal colored *O. hornorum* female crossed with a red-gold male *O. mossambicus* in the 1970s (Behrends *et al.*, 1982)

Israel red tilapia strain: red Nile tilapia originating from Egypt crossed with wild-type Blue tilapia (Hulata et al. 1995)

Other red tilapia strains are likely to have been developed but published information on their origins is unavailable

Disadvantage

1. Selection of a best strain for culture difficult

The genetic makeup of most red tilapia is unknown. All 3 original stains have been crossed with other red tilapia of unknown origin or with wild-type *Oreochromis sp.*

2. Low survival of juvenile red tilapia hybrids

Average survival of red tilapia was 51 % compared to 91 % for nile tilapia.

Reason: bird predation on the easily seen red fish

Advantage

1. Consumers will often pay a higher price/kg for red tilapia than for a Nile tilapia of equivalent weight

Consumers relate the red color to a number of marine fishes with similar coloration and high market value.

2. Red tilapia is preferred for culture in saltwater and less Off-flavor taste.

Red tilapia with Mozambique tilapia heritage can be cultured in full strength seawater.

Nile tilapia can be adapted to 25 to 30 g/l saltwater but growth is inhibited in salinities above 15 g/l (Popma and Lovshin 1996)

Muddy Off-flavor is more prevalent in tilapia raised in freshwater than in saltwater.

41

PART 3

Challenges in tilapia culture

1. How to produce all-male fingerlings for growout?

Why1: Sexual dimorphism in growth rates and male tilapia grow faster than females.

Why2: Avoid of uncontrolled reproduction

excessive recruitment of fingerlings, competition for food, and stunting of the original stock

Commercially applicable techniques used to produce monosex fingerlings

 Hand sexing labor intensive

Interspecific hybridization
 vigilance is required to maintain broodstock

Sex reversal with male steroids

Concerns

- pose a health risk to workers
- affect consumer acceptance of the fish
- hormone residues may damage water quality and biodiversity
- treated with steroids is not approved by FDA and is illegal to sell as foodfish in the U. S.

2. Environmental stressors

 Adaptation to a very wide range of conditions high salinity, high temperatures, high ammonia concentrations, and low oxygen levels

Tolerant of high stocking density

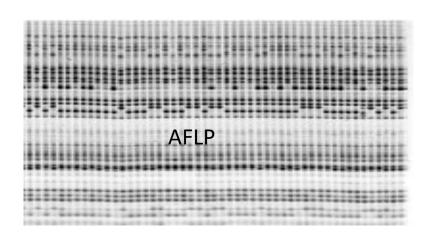
Cold temperature cause losses of tilapia in Guangxi, China (2016/1/27)

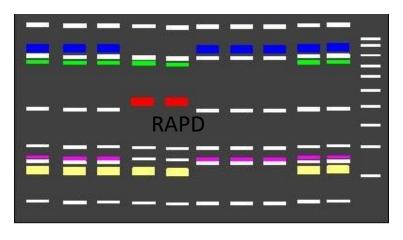
Disease-resistant fish?

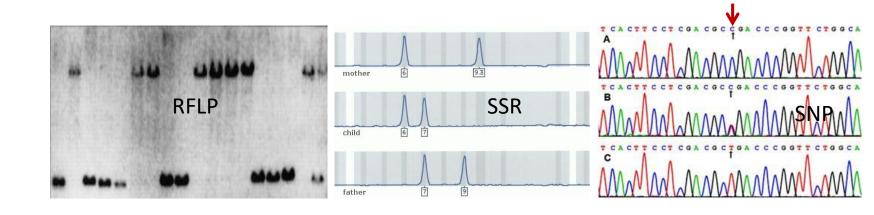
Specific Pathogens

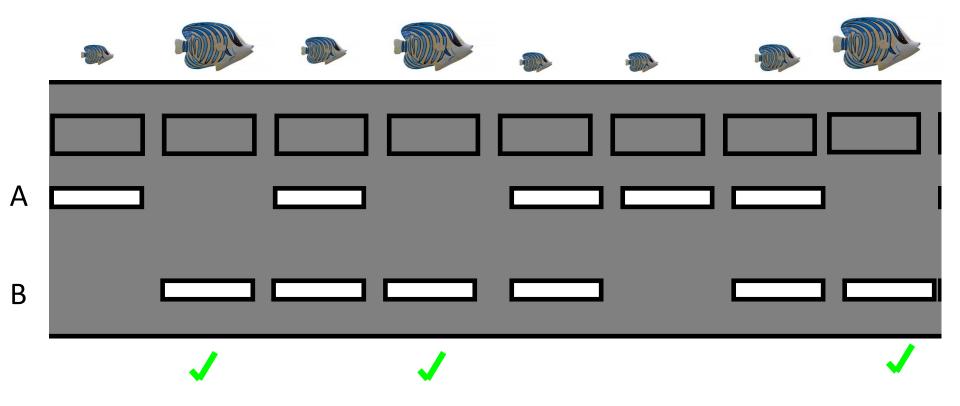
- Streptococcus
- Aeromonas
- Trichodina
- Columnaris
- Tilapia Iridovirus
- Tilapia lake virus

How to meet challenges in tilapia culture?



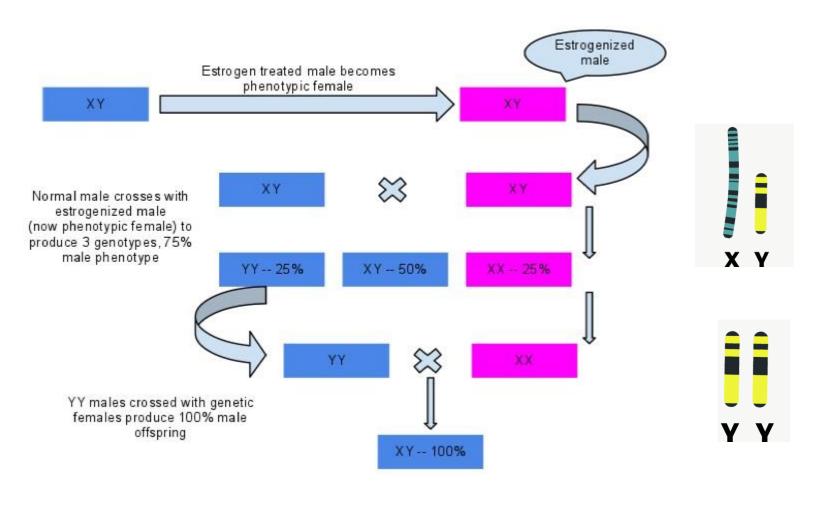

Opinions on breeding


Traditional genetic breeding
Cross-breeding
Genetic modification
Marker-assisted Selection

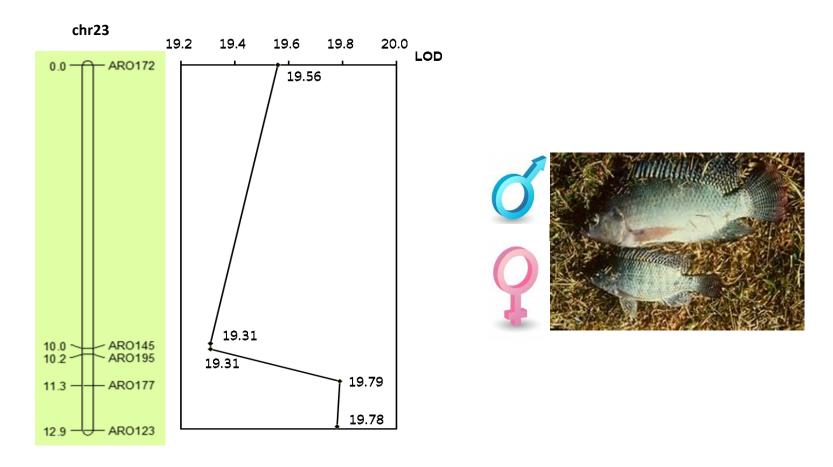


Molecular markers: genetic variation in DNA

*Advantage

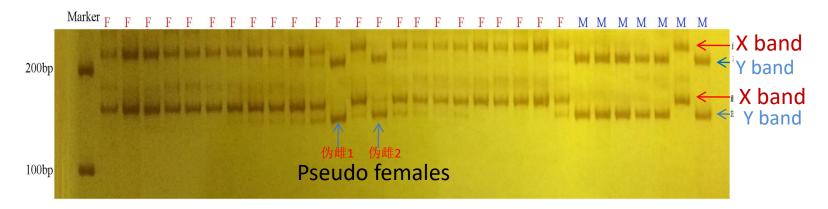

Less time More efficient

Association of markers with economic traits


For example

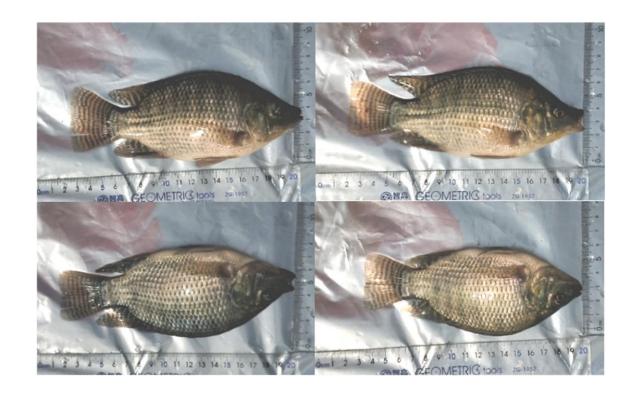
MAS selection of YY supermale tilapia

All male production using YY supermales

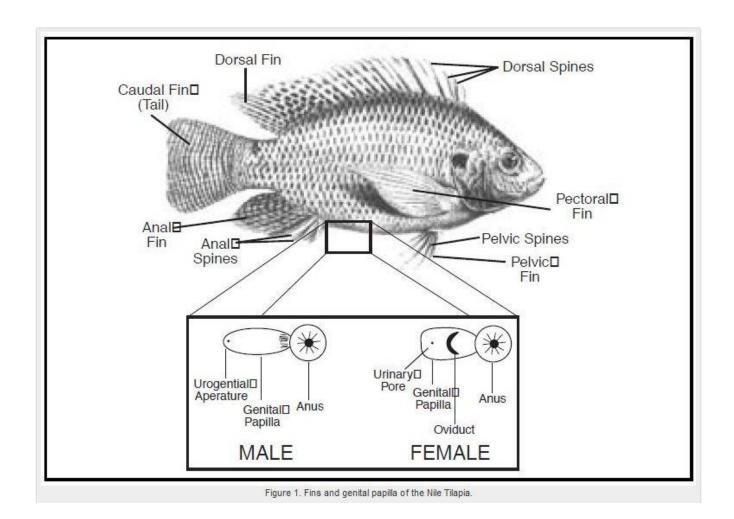

QTLs in 2 selection families

The accurate rate for linked markers are 84.7% and 90.6% in two families respectively.

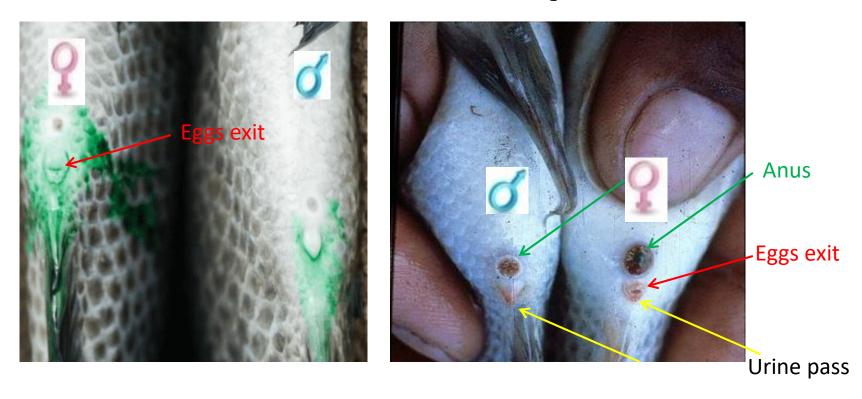
Results



Screening of pseudo females (XY genotypes) using one marker


44 pseudo-females and >400 YY supermales

The male rate in the progeny population produced by crossing YY supermales with XX females


•The rate is 99.6% (N = 914)

PART 4 Exercise on hand sexing of tilapia

Fins and genital papilla of the Nile Tilapia. (Credit: Tilapia: Life History and Biology by Thomas Popma and Michael Masser)

How to Sex Tilapia

Examining the genital papilla (located immediately behind the anus) In males the genital papilla has only one opening (through which both milt and urine pass).

In females has two opening (the eggs exit through a separate oviduct and only urine passes through the urinary pore.)

Thanks