
Optimal Unravellings for
Feedback Control in

Linear Quantum Systems

Howard Wiseman1 and Andrew Doherty2

1Centre for Quantum Dynamics, School of Science, Griffith University
2School of Physical Sciences, The University of Queensland

H. M. Wiseman & A. C. Doherty, Fields Institute, July 2004



Quantum Feedback Control in Linear Systems

Quantum feedback is rapidly developing, especially experimentally:

• Freezing a conditional state in cavity QED (Orozco & co, PRL, 2002)

• Sub-SQL adaptive phase estimation (Mabuchi & co, PRL, 2002)

• Deterministic spin squeezing (Mabuchi & co, Science, 2004).

For the latter two cases the theory (Wiseman, PRL, 1995;
Thomsen, Mancini & Wiseman, PRA(RC), 2002) involved linearizing
the phase-space dynamics of the measured systems.

For such linear(izable) systems, classical feedback control theory
can be applied to good effect (Belavkin, 1987; Doherty & Jacobs &
co., PRA, 1999, 2000).
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New Results for Linear Quantum Systems

• Quantum fluctuation-dissipation relation

• General theory of conditional dynamics (unravellings)

• Corresponding Heisenberg picture equations

• N&S conditions for the existence of a SQL

• N&S condition for V to be the solution for the conditioned covariance
matrix under some unravelling.

• N&S condition for this V to be a stabilizing solution

• Semi-Definite Program for a class of feedback control problems.
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Outline

1. Quantum master equations and their unravellings

2. Quantum systems in phase-space

3. Linear quantum dynamics in phase-space

4. Optimal quantum control

5. A worked example
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1. Quantum master equations

The QME is the most general autonomous differential equation for
the state ρ of a quantum system (Lindblad, 1976):

h̄ρ̇ =−i[Ĥ,ρ]+
L

∑
l=1

D[ĉl ]ρ≡ L0ρ (1)

• Ĥ = Ĥ† is the system Hamiltonian

• ĉ = (ĉ1, · · · , ĉL)> is a vector of bounded operators

• D[ĉ]ρ≡ ĉρĉ†−
(
ĉ†ĉρ+ρĉ†ĉ

)
/2.

Widely used in atomic, optical, and nuclear physics.
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Unravelling quantum master equations

A QME typically applies if the system is coupled weakly to a large
bath, and the bath is ignored (traced over). Because the system and
bath entangle, ρ becomes mixed.

But it is not always appropriate to ignore the bath — often it can
be measured, yielding information about the system and producing a
conditioned system state ρc more pure than ρ.

If a QME can be derived then the bath can be measured repeatedly,
much faster than any relevant system rate without invalidating the
QME. We say the stochastic evolution for ρc(t) unravels the QME:

E[ρc(t)] = ρ(t) = exp[L0t/h̄]ρ(0). (2)

Different ways of measuring the bath lead to different unravellings.
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Example: Decay of an Excited State Atom —
Unravelled Evolution (Quantum Trajectories)

Direct Detection
(Avalanche
Photodiode):

Heterodyne
Detection
(Laser and
Photoreceiver):

0 1 2 3
0

0.5

1

t

E
 / 

hf

0 1 2 3

−2

0

2

t

ph
as

e

0 1 2 3

−2

0

2

t

ph
as

e

0 1 2 3
0

0.5

1

t

E
 / 

hf

H. M. Wiseman & A. C. Doherty, Fields Institute, July 2004 6



Example: Decay of an Excited State Atom —
Ensemble Average Evolution

Direct Detection
(Avalanche
Photodiode):

Heterodyne
Detection
(Laser and
Photoreceiver):
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2. Quantum systems in Phase Space

Consider a systems of N degrees of freedoms, each with a
canonically conjugate pair: [q̂n, p̂m] = ih̄δnm. Let

x̂ = (q̂1, p̂1, ..., q̂N, p̂N)> . (3)

Then [x̂n, x̂m] = ih̄Σnm where Σ is a (2N)× (2N) symplectic matrix:

Σ =
NM

n=1

σn, where σn =
(

0 1
−1 0

)
(4)

We define the mean 〈x̂〉= Tr[ρx̂] and fluctuation ∆x̂ = x̂−〈x̂〉.
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The Covariance Matrix and Gaussian States

The covariance matrix is defined by

Vnm= (〈∆x̂n∆x̂m〉+ 〈∆x̂m∆x̂n〉)/2. (5)

the identity Vnm+ ih̄Σnm/2 = Tr[ρ∆x̂n∆x̂m] and positivity of ρ make it
necessary that V satisfies the LMI

V + ih̄Σ/2≥ 0. (6)

This LMI is a generalization of the Heisenberg uncertainty relation.

Gaussian quantum states are states with a Gaussian Wigner
function with mean vector 〈x̂〉 and covariance matrix V. For such
states it is also sufficient that V satisfy Eq. (6).
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3. Linear Dynamics

A linear system is one for which Ĥ is quadratic, and ĉ linear, in x̂:

Ĥ =
1
2

x̂>Gx̂ − x̂>ΣBu(t),
(

Re[ĉ]
Im[ĉ]

)
= C̄x̂, (7)

where G is real and symmetric and B and C̄ are real.

The QME then has a Gaussian state as its solution, with

d〈x̂〉/dt = A〈x̂〉+Bu(t) (8)

dV/dt = AV +VA>+D. (9)

The diffusion and drift matrices are D = h̄ΣC̄>C̄Σ>, A = ΣG+ ΣC̄>SC̄,
where S=

(
0 I
−I 0

)
.
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Conditional Evolution for Linear Systems

If we require the output (measured bath observables) to be linear
in x̂ then the most general output compatible with the QME is

y = C〈x̂〉c +
dw
dt

. (10)

• C = 2
√

U/h̄C̄, where unravelling matrix U = 1
2

(
H+Re[ϒ] Im[ϒ]

Im[ϒ] H−Re[ϒ]

)
.

• i.e. infinitely many different unravellings U constrained only by:
(i) ϒ = ϒ>, (ii) H = diag(η1, · · · ,ηK) with 0≤ ηk ≤ 1, and (iii) U ≥ 0.

• dw is a vector of Wiener increments: dwdw> = Idt.

For linear systems, the state conditioned on y(t) is Gaussian.
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Quantum Kalman Filter Equations

dρc(t) can be expressed by the conditional moment equations:

d〈x̂〉c = [A〈x̂〉c +Bu(t)]dt+
(
VcC

>+Γ>
)

dw (11)

V̇c = AVc +VcA
>+D− (VcC

>+Γ>)(CVc +Γ), (12)

Here Γ =−
√

h̄U SC̄Σ> and (as before) C = 2
√

U/h̄C̄.

Note that Eq. (12) is deterministic! The final term causes a
reduction in uncertainty (i.e. in the eigenvalues of Vc).

Remarkably, the set of possible Vc
ss, for all possible unravellings U ,

is simply the solution set {V} satisfying

D+AV +VA> ≥ 0 and V + ih̄Σ/2≥ 0. (13)
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4. Optimal Quantum Feedback Control

In feedback control, the optimal solution to a well-defined problem
is always

Ĥfb(t) = f̂ (ρc(t), t) (14)

That is, y(s) for s< t is irrelevant except in so far as it determines
ρc(t), as this is the observer’s state of knowledge.

For LQG control (Linear dynamics, Quadratic cost function,
Gaussian noise), the optimal solution is

Ĥfb(t) = x̂>ΣBu(t), with u(t) =−K(t)〈x̂〉c(t), (15)

where the matrix K(t) can be determined from A, B, and the cost
functions, independently of D, C, and Γ.
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Manipulability and Asymptotic Terminal-only Cost

• Manipulable system: B is full-rank
(i.e. arbitrary displacements in phase-space can be performed)

• Asymptotic terminal-only cost function:

Λ = Tr
[
x̂>P1x̂ρss

]
= Ess

{
Tr

[
x̂>P1x̂ρc

]}
where P1 is a PSD symmetric real matrix.

For any problem with terminal-only costs, the optimal K is
unbounded. With manipulability we can choose K such that in

d〈x̂〉c = (A−BK)〈x̂〉c +
(
VcC

>+Γ>
)

dw, (16)

the damping will overwhelm the noise so we can set 〈x̂〉c = 0.
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Picture of the Feedback

The stationary state with feedback is completely characterized by Vc
ss.
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Optimizing the Unravelling

Note that Tr
[
x̂>P1x̂ρc

]
= 〈x̂〉>c P1〈x̂〉c +tr[P1Vc].

Hence the minimum cost, when 〈x̂〉c = 0, with Vc →V as t → ∞, is

Λ = tr[P1V], where D+AV +VA> ≥ 0 and V + ih̄Σ/2≥ 0 (17)

Question :1 Given the deterministic no-feedback dynamics A,D (or
G,C̄), what is the optimal unravelling U for minimizing the cost Λ?

It turns out that the optimal V can be solved efficiently (in the system
size N) using Semi-Definite Programming . Finding a suitable
unravelling U given this V is also a SDP.

1Note that classically this is meaningless, as A,D do not place any constraints on how the system
can be measured, because classically there is no back-action noise.
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5. Example

Consider the system described by (setting h̄ = 1)

ρ̇ =−i[(q̂p̂+ p̂q̂)/2,ρ]+D[q̂+ i p̂]ρ, (18)

where the output arising from the second term may be monitored.
Equivalently

A =
(

0 0
0 −2

)
, D =

(
1 0
0 1

)
. (19)

Optical realization: a damped cavity containing an on-threshold
parametric down converter with p the squeezed quadrature.

In that case the system could be displaced in its phase space by
coherent driving, so we could take it to be manipulable.
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The Control Problem

• Say the aim is to produce a stationary state where q = p as nearly
as possible. A suitable cost function to be minimized is

Λ =
〈
(q̂− p̂)2

〉
ss = tr[P1Vss] with P1 =

(
1 −1
−1 1

)
. (20)

• Assuming manipulability (so that Vss = V) we find

Λ≈ 1.11769 for U =
(

cos2θ cosθsinθ
cosθsinθ sin2θ

)
(21)

where θ≈ 0.277896π. Physically, this means the optimal unravelling
is homodyne detection with θ the local oscillator phase.
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CONCLUSIONS

• Feedback control problems for linear quantum systems can be
treated using classical control theory.

• However, the constraints of quantum theory affect the basic
structure of such problems.

• We have formulated a natural question — the optimal unravelling for
a particular class of control problem — with no classical analogue.

• Moreover, these constraints also yield (under some assumptions)
an efficient algorithm to answer this question.

• No doubt further fundamental aspects of quantum feedback control
for linear systems await discovery.
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