Optimal Unravellings for Feedback Control in Linear Quantum Systems

<u>Howard Wiseman¹</u> and Andrew Doherty² ¹Centre for Quantum Dynamics, School of Science, Griffith University ²School of Physical Sciences, The University of Queensland

H. M. Wiseman & A. C. Doherty, Fields Institute, July 2004

Quantum Feedback Control in Linear Systems

Quantum feedback is rapidly developing, especially experimentally:

- Freezing a conditional state in cavity QED (Orozco & co, PRL, 2002)
- Sub-SQL adaptive phase estimation (Mabuchi & co, PRL, 2002)
- Deterministic spin squeezing (Mabuchi & co, Science, 2004).

For the latter two cases the theory (Wiseman, PRL, 1995; Thomsen, Mancini & Wiseman, PRA(RC), 2002) involved *linearizing the phase-space dynamics* of the measured systems.

For such linear(izable) systems, *classical* feedback control theory can be applied to good effect (Belavkin, 1987; Doherty & Jacobs & co., PRA, 1999, 2000).

New Results for Linear Quantum Systems

- Quantum fluctuation-dissipation relation
- General theory of conditional dynamics (*unravellings*)
- Corresponding Heisenberg picture equations
- N&S conditions for the existence of a SQL
- N&S condition for V to be the solution for the conditioned covariance matrix under *some* unravelling.
- N&S condition for this V to be a *stabilizing* solution
- Semi-Definite Program for a class of feedback control problems.

Outline

- 1. Quantum master equations and their unravellings
- 2. Quantum systems in phase-space
- 3. Linear quantum dynamics in phase-space
- 4. Optimal quantum control
- 5. A worked example

1. Quantum master equations

The QME is the most general autonomous differential equation for the state ρ of a quantum system (Lindblad, 1976):

$$\hbar\dot{\rho} = -i[\hat{H},\rho] + \sum_{l=1}^{L} \mathcal{D}[\hat{c}_{l}]\rho \equiv \mathcal{L}_{0}\rho$$
 (1)

- $\hat{H} = \hat{H}^{\dagger}$ is the system Hamiltonian
- $\hat{\mathbf{c}} = (\hat{c}_1, \cdots, \hat{c}_L)^\top$ is a vector of bounded operators
- $\mathcal{D}[\hat{c}]\rho \equiv \hat{c}\rho\hat{c}^{\dagger} \left(\hat{c}^{\dagger}\hat{c}\rho + \rho\hat{c}^{\dagger}\hat{c}\right)/2.$

Widely used in atomic, optical, and nuclear physics.

Unravelling quantum master equations

A QME typically applies if the system is coupled weakly to a large bath, and the bath is ignored (traced over). Because the system and bath entangle, ρ becomes mixed.

But it is not always appropriate to ignore the bath — often it can be measured, yielding information about the system and producing a conditioned system state ρ_c more pure than ρ .

If a QME can be derived then the bath can be measured repeatedly, much faster than any relevant system rate *without invalidating the QME*. We say the stochastic evolution for $\rho_c(t)$ *unravels* the QME:

$$\mathbf{E}[\mathbf{\rho}_{\mathrm{c}}(t)] = \mathbf{\rho}(t) = \exp[\mathbf{\pounds}_{0} t/\hbar] \mathbf{\rho}(0).$$
(2)

Different ways of measuring the bath lead to different unravellings.

Example: Decay of an Excited State Atom — Unravelled Evolution (Quantum Trajectories)

Example: Decay of an Excited State Atom — Ensemble Average Evolution

2. Quantum systems in Phase Space

Consider a systems of *N* degrees of freedoms, each with a canonically conjugate pair: $[\hat{q}_n, \hat{p}_m] = i\hbar \delta_{nm}$. Let

$$\hat{\mathbf{x}} = (\hat{q}_1, \hat{p}_1, ..., \hat{q}_N, \hat{p}_N)^{\top}.$$
 (3)

Then $[\hat{x}_n, \hat{x}_m] = i\hbar \Sigma_{nm}$ where Σ is a $(2N) \times (2N)$ symplectic matrix:

$$\Sigma = \bigoplus_{n=1}^{N} \sigma_n$$
, where $\sigma_n = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ (4)

We define the mean $\langle \hat{\mathbf{x}} \rangle = \operatorname{Tr} [\rho \hat{\mathbf{x}}]$ and fluctuation $\Delta \hat{\mathbf{x}} = \hat{\mathbf{x}} - \langle \hat{\mathbf{x}} \rangle$.

The Covariance Matrix and Gaussian States

The covariance matrix is defined by

$$V_{nm} = \left(\left\langle \Delta \hat{x}_n \Delta \hat{x}_m \right\rangle + \left\langle \Delta \hat{x}_m \Delta \hat{x}_n \right\rangle \right) / 2.$$
(5)

the identity $V_{nm} + i\hbar \Sigma_{nm}/2 = \text{Tr} \left[\rho \Delta \hat{x}_n \Delta \hat{x}_m\right]$ and positivity of ρ make it *necessary* that *V* satisfies the LMI

$$V + i\hbar\Sigma/2 \ge 0. \tag{6}$$

This LMI is a generalization of the Heisenberg uncertainty relation.

Gaussian quantum states are states with a Gaussian Wigner function with mean vector $\langle \hat{\mathbf{x}} \rangle$ and covariance matrix *V*. For such states it is also *sufficient* that *V* satisfy Eq. (6).

3. Linear Dynamics

A *linear* system is one for which \hat{H} is quadratic, and \hat{c} linear, in \hat{x} :

$$\hat{\boldsymbol{H}} = \frac{1}{2} \hat{\boldsymbol{x}}^{\top} \boldsymbol{G} \hat{\boldsymbol{x}} - \hat{\boldsymbol{x}}^{\top} \boldsymbol{\Sigma} \boldsymbol{B} \boldsymbol{u}(t), \quad \begin{pmatrix} \operatorname{Re}[\hat{\boldsymbol{c}}] \\ \operatorname{Im}[\hat{\boldsymbol{c}}] \end{pmatrix} = \bar{\boldsymbol{C}} \hat{\boldsymbol{x}}, \quad (7)$$

where G is real and symmetric and B and \overline{C} are real.

The QME then has a Gaussian state as its solution, with

$$d\langle \hat{\mathbf{x}} \rangle / dt = \mathbf{A} \langle \hat{\mathbf{x}} \rangle + \mathbf{B} \mathbf{u}(t)$$
 (8)

$$dV/dt = AV + VA^{\top} + D.$$
 (9)

The diffusion and drift matrices are $D = \hbar \Sigma \overline{C}^{\top} \overline{C} \Sigma^{\top}$, $A = \Sigma G + \Sigma \overline{C}^{\top} S \overline{C}$, where $S = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$.

Conditional Evolution for Linear Systems

If we require the output (measured bath observables) to be linear in $\hat{\mathbf{x}}$ then the most general output compatible with the QME is

$$\mathbf{y} = C \langle \mathbf{\hat{x}} \rangle_{\rm c} + \frac{d\mathbf{w}}{dt}.$$
 (10)

• $C = 2\sqrt{U/\hbar}\bar{C}$, where unravelling matrix $U = \frac{1}{2} \begin{pmatrix} H + Re[\Upsilon] & Im[\Upsilon] \\ Im[\Upsilon] & H - Re[\Upsilon] \end{pmatrix}$.

- i.e. infinitely many different unravellings U constrained only by: (i) $\Upsilon = \Upsilon^{\top}$, (ii) $H = \text{diag}(\eta_1, \dots, \eta_K)$ with $0 \le \eta_k \le 1$, and (iii) $U \ge 0$.
- $d\mathbf{w}$ is a vector of Wiener increments: $d\mathbf{w}d\mathbf{w}^{\top} = Idt$.

For linear systems, the state conditioned on $\mathbf{y}(t)$ is Gaussian.

Quantum Kalman Filter Equations

 $d\rho_c(t)$ can be expressed by the conditional moment equations:

$$d\langle \hat{\mathbf{x}} \rangle_{c} = [\mathbf{A} \langle \hat{\mathbf{x}} \rangle_{c} + \mathbf{B} \mathbf{u}(t)] dt + (\mathbf{V}_{c} \mathbf{C}^{\top} + \mathbf{\Gamma}^{\top}) d\mathbf{w}$$
(11)

$$\dot{V}_{\rm c} = AV_{\rm c} + V_{\rm c}A^{\top} + D - (V_{\rm c}C^{\top} + \Gamma^{\top})(CV_{\rm c} + \Gamma), \qquad (12)$$

Here $\Gamma = -\sqrt{\hbar U} S \bar{C} \Sigma^{\top}$ and (as before) $C = 2\sqrt{U/\hbar} \bar{C}$.

Note that Eq. (12) is deterministic! The final term causes a reduction in uncertainty (i.e. in the eigenvalues of V_c).

Remarkably, the set of possible V_c^{ss} , for all possible unravellings U, is simply the solution set $\{V\}$ satisfying

$$D + AV + VA^{\top} \ge 0$$
 and $V + i\hbar\Sigma/2 \ge 0.$ (13)

4. Optimal Quantum Feedback Control

In feedback control, the optimal solution to a well-defined problem is always

$$\hat{H}_{\rm fb}(t) = \hat{f}(\rho_{\rm c}(t), t) \tag{14}$$

That is, $\mathbf{y}(s)$ for s < t is irrelevant except in so far as it determines $\rho_c(t)$, as this is the observer's *state of knowledge*.

For LQG control (Linear dynamics, Quadratic cost function, Gaussian noise), the optimal solution is

$$\hat{H}_{\rm fb}(t) = \hat{\mathbf{x}}^{\top} \Sigma \boldsymbol{B} \mathbf{u}(t), \text{ with } \mathbf{u}(t) = -\boldsymbol{K}(t) \langle \hat{\mathbf{x}} \rangle_{\rm c}(t),$$
 (15)

where the matrix K(t) can be determined from A, B, and the cost functions, independently of D, C, and Γ .

Manipulability and Asymptotic Terminal-only Cost

- **Manipulable** system: *B* is full-rank (i.e. arbitrary displacements in phase-space can be performed)
- Asymptotic terminal-only cost function:

$$\boldsymbol{\Lambda} = \operatorname{Tr}\left[\hat{\mathbf{x}}^{\top} \boldsymbol{P}_{1} \hat{\mathbf{x}} \boldsymbol{\rho}_{\mathrm{ss}}\right] = \operatorname{E}_{\mathrm{ss}}\left\{\operatorname{Tr}\left[\hat{\mathbf{x}}^{\top} \boldsymbol{P}_{1} \hat{\mathbf{x}} \boldsymbol{\rho}_{\mathrm{c}}\right]\right\}$$

where P_1 is a PSD symmetric real matrix.

For any problem with terminal-only costs, the optimal K is unbounded. With manipulability we can choose K such that in

$$d\langle \hat{\mathbf{x}} \rangle_{c} = (\mathbf{A} - \mathbf{B}\mathbf{K}) \langle \hat{\mathbf{x}} \rangle_{c} + (\mathbf{V}_{c}\mathbf{C}^{\top} + \mathbf{\Gamma}^{\top}) d\mathbf{w}, \qquad (16)$$

the damping will overwhelm the noise so we can set $\langle \hat{\mathbf{x}} \rangle_{c} = \mathbf{0}$.

Picture of the Feedback

The stationary state with feedback is completely characterized by $V_{\rm c}^{\rm ss}$.

Optimizing the Unravelling

Note that $\operatorname{Tr}\left[\hat{\mathbf{x}}^{\top} \boldsymbol{P}_{1} \hat{\mathbf{x}} \boldsymbol{\rho}_{c}\right] = \langle \hat{\mathbf{x}} \rangle_{c}^{\top} \boldsymbol{P}_{1} \langle \hat{\mathbf{x}} \rangle_{c} + \operatorname{tr}\left[\boldsymbol{P}_{1} \boldsymbol{V}_{c}\right].$

Hence the minimum cost, when $\langle \hat{\mathbf{x}} \rangle_c = \mathbf{0}$, with $V_c \to V$ as $t \to \infty$, is

 $\Lambda = \operatorname{tr}[P_1 V], \text{ where } D + AV + VA^{\top} \ge 0 \text{ and } V + i\hbar\Sigma/2 \ge 0$ (17)

Question:¹ Given the deterministic no-feedback dynamics A, D (or G, \overline{C}), what is the optimal unravelling U for minimizing the cost Λ ?

It turns out that the optimal V can be solved *efficiently* (in the system size N) using **Semi-Definite Programming**. Finding a suitable unravelling U given this V is also a SDP.

¹Note that classically this is *meaningless*, as A, D do not place any constraints on how the system can be measured, because classically there is no back-action noise.

5. Example

Consider the system described by (setting $\hbar = 1$)

$$\dot{\rho} = -i[(\hat{q}\hat{p} + \hat{p}\hat{q})/2, \rho] + \mathcal{D}[\hat{q} + i\hat{p}]\rho, \qquad (18)$$

where the output arising from the second term may be monitored. Equivalently

$$\boldsymbol{A} = \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix}, \ \boldsymbol{D} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
(19)

Optical realization: a damped cavity containing an on-threshold parametric down converter with p the squeezed quadrature.

In that case the system could be displaced in its phase space by coherent driving, so we could take it to be manipulable.

The Control Problem

 Say the aim is to produce a stationary state where q = p as nearly as possible. A suitable cost function to be minimized is

$$\Lambda = \left\langle (\hat{q} - \hat{p})^2 \right\rangle_{\rm ss} = \operatorname{tr} \left[\mathbf{P}_1 V_{\rm ss} \right] \text{ with } \mathbf{P}_1 = \left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right).$$
(20)

• Assuming manipulability (so that $V_{ss} = V$) we find

$$\Lambda \approx 1.11769 \text{ for } U = \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{pmatrix}$$
(21)

where $\theta \approx 0.277896\pi$. Physically, this means the optimal unravelling is homodyne detection with θ the local oscillator phase.

CONCLUSIONS

- Feedback control problems for linear quantum systems can be treated using classical control theory.
- However, the constraints of quantum theory affect the basic structure of such problems.
- We have formulated a natural question the optimal unravelling for a particular class of control problem with no classical analogue.
- Moreover, these constraints also yield (under some assumptions) an efficient algorithm to answer this question.
- No doubt further fundamental aspects of quantum feedback control for linear systems await discovery.