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AN OLD THEOREM ON THE GCD AND ITS APPLICATION TO PRIMES 

P. G. Tsanga r i s 
University of Athens, Greece 

J. P. Jones* 
University of Calgary, Alberta, Canada 

(Submitted July 1990) 

1. Introduction 

We show how an old theorem about the GCD can be used to define primes and 
to construct formulas for primes. We give new formulas for the characteristic 
function of the primes, the ftth prime p , the function i\(x) , and the least 
prime greater than a given number. 

These formulas are all elementary functions in the sense of Grzegorczyk [6] 
and Kalmar [12] (Kalmar elementary). From a theorem of Jones [11], it will 
follow that there exist formulas with the same range built up only from the 
four functions 

(1.1) x + y, [x/y], x 
by function composition (without sigma signs). There also exist polynomial 
formulas for the primes, but that is another subject (see [10]). 

The constructions here use a theorem of Hacks [7]. (He indicates on page 
207 of [7] that this result may have been known to Gauss. See also Dickson [2] 
vol. 1, p. 333.) Hacks [7] considered sums of the form: 

Definition 1.1: H(k9 ri) 2£ 
i= 1 

Here L̂ J denotes the floor (integer part) of x. Hacks proved that sums of this 
type could be used to define the GCD of k and ft, i.e., (fe, ft). 

Theorem 1.1 (Hacks [7]): H(k, n) = nk - k - n + (k, ft). 
Proof: The proof of this theorem requires the following two lemmas. 

Lemma 1.1: Suppose k ± ft. Then H(k, ri) = (k - 1) (ft - 1). 
Proof: ki = kj (mod ft) implies i = j (mod ft). Thus, the set {ki: i = 0, 1, 2, 
..., ft - 1} is a complete residue system mod ft. The sum of the remainders in 
this system must be equal to ft(ft - l)/2. 

Hence, let ki = vi (mod ft) where 0 < vi < ft, (i = 1, 2, ..., ft - 1). Then 
we have 

ki = ft + V. and 2>* = 2 " 
Summing the first equation, we find 

%= o 
Therefore, 

k 

n- 1 n- I n- \ 

i= 0 

k< 
0 L 

ft + vt = ft ]T 
^= 0<-

n- 1 

+ ! > ; 
£= 0 

.ft (ft - 1) ft Tlfl . , ft (ft 
—^—7j = ^ * H(k> n ) + ~ ~ ^ 

1) 

*Work supported by Natural Sciences and Engineering Research Council of Canada Research Grant 
A4525 and the N.S.E.R.C. Program of International Scientific Exchange Awards. 
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AN OLD THEOREM ON THE GCD AND ITS APPLICATION TO PRIMES 

Mul t ip ly ing by 2 and d iv id ing by n gives the r e s u l t : 
k(n - 1) = H(k, ri) + n - 1. 

Lemma 1.2: H(ad5 bd) = adbd - abd + dH(a5 b). 
Proof: Integers i such that 0 < i < bd - 1 can be written in the form i = bq + j 
where 0 < q < d and 0 < J < b* Hence, we have 

bd-l 
H(ads bd) = 2 £ 

i= 1 

ad * i 
M 

bd- 1 

i= 1 L q=oj=oL b 

d-lb-l b-ld-l 

4=0j=0 j = 0<7=0 

a • j d-l b-i 

<? = 0 j = 0 

a • j 

g*(d - 1) 
2 2a£ ̂ ^-^—— + 2d- ^H(a, b) = abd(d - 1) + dH(a5 b) 

= adbd - abd + dH(as b). 

Coronary 1.1 (Hacks [7]): H(k9 ri) = nk - k - n + (fc, n). 
Proof: Write k = ad and n = bd where a l l ) and a7 = (ks n ) . From Lemma 1.1, we 
then have H(a9 b) = ( a - !)(& - 1)* Using this together with Lemma 1.2S we 
have 

H(k9 ri) = H(ad9 bd) = adbd - a M + d(a - 1) (fc - 1) 
= adM - aid7 + a&d - da - db + d = nk - k - ri + d» 

From Corollary 1-1, it follows that the function H is commutative (symmetric), 
E(k9 n) = ff(n, /c). The function # has other interesting properties. Using an 
argument similar to the proof of Lemma 1.2, it is easy to show that 

(1.2) E(qk9 k) = qk(k - 1), H(ks qk) = qk(k - 1), 

(1.3) H(qk + P, k) = qk(k - 1) + #(r, fe). 

2. Charac te r i s t i c Funct ion of the Primes 

From Lemmas 1.1 and 1.2, we see that 

Lemma 2 A : 1 = (Zc, ri) <=* (k - 1) (n - 1) = E(/c, w ) . 
1 < (fe, n) <=> (k - l)(n - 1) < #(fe, w ) . 

Now let m = n - 1 (or m = [/nj * to be more economical). Then, by Lemma 2.1, n 
is composite if and only if 

{Ik)[I < k < m and ik - 1)(n - 1) < tf(fc, n)]. 
Hence, n is composite if and only if 

(2.D m) 
k- 1 

1 < k < m and 0 < 2 ^ 
i= l 

^ • n k- l 

i= 1 

It follows that n is composite if and only if 
k- 1 

1 < k < m and 0 < Y. I 2 (2.2) (3k) 
fc- l / 

o < E 2 
i= 1 \ 

w + 1 77? L^J 
When n is prime, these expressions are all 0. So, by summing over k9 we can 
see that n is composite if and only if 

(2.3) 0 < r (2 
0< i < k< m \ 

- n + 1 
) • 

m L^J 
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A l t e r n a t i v e l y , by summing the cons tant term, (2 .3) can be r e w r i t t e n to say t h a t 
re i s composite i f and only i f 

m lk-\ 
(2-4) 0 < £ £ (2 

k = 1 \i= l 

(re - 1)(m - l)m \Tn\ 

This is equivalent to the statement that re is composite if and only if 

^ • re - \Tn\ (2.5) 0 < m{m - 1)(1 - re) + ]T 4 
0< i<k<m 

Since these expressions are zero when re is a prime, they characterize primes. 
We summarize (2.3) in Theorem 2.1. 

Theorem 2.1: Let g(n) be defined by 

\i • re n) = E (2 
0< £< fc<W \ 

n + 1 , (2.6) <7( 

where 777 = [/n] or m = n - 1. Then, for all re > 1, re is prime if and only if 
g{n) - 0. And re is composite if and only if g{n) > 1. 

The subtraction function x - y or the sgn(^r) function can now be used to 
obtain a characteristic function for the primes. A characteristic function for 
a set is a two-valued function taking value 1 on the set and value 0 on the 
complement of the set. 

The proper subtraction function x - y is defined to be x - y for y < x and 
0 for x < y. The sign function sgn(x) is defined by sgn(#) = +1 if x > 0, by 
sgn(aN) = -1 if x < 0 and sgn(0) = 0. 

Now define re(re) to be re(re) = 1 - g(n) or define re(re) = 1 - sgn^(re). Then it 
follows from Theorem 2.1 that re(re) is a characteristic function for the set of 
primes. 

) • 

Theorem 2.2: Let h{ri) be defined by 

(2.7) h(n) = 1 i L (zlnpl - n + 1 

where m = n - I or m= [/n] . Then re is prime if and only if re (re) = 1. And re 
is composite if and only if h(n) = 0. (These statements hold for re > 1.) 

We can use the function h to construct a formula for the function TJ(X)9 
[T\(X) = the number of primes < x] . From Theorem 2.2, we have 

Theorem 2.3: The function T\(X) is given by 

\i • n 
(2.8) TT(tf) = X > ( W ) = £ l l •=• E (2 re + 1 

Proof: The idea of (2.8) is that the characteristic function h counts the primes 
< x. [We start the sum at re = 2 instead of at re = 1 because /z(l) = 1«] 

3. Formula for the nth Prime 

Define C(a, re) = 1 - (a + 1) - re. Then C(a, re) is the characteristic func-
tion of the relation a < re. That is, if a < re, then C(a, re) = 1. If re < a, 
then C(a, re) = 0. 

Now ir(i) < re if and only if i < pn> Hence C (IT (i) , n) = 1 if and only if 
i < pn. The reth prime pn is therefore given by the following formula: 

k k / 
(3-D Pn = Z COrU), n) = E [1 ^(TT(£) + 1 ^ re) 

£= 0 £= o\ 
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when k i s l a rge enough (k > pn - 1) . I t i s known t h a t 
pn < n ( log(n) + l o g ( l o g ( n ) ) ) for n > 5 

(see Rosser & Schoenfeld [13 ] ) . So we can take 
k = n2 or k = In login + 1 ) . 

Using Theorem 2.3 and the fac t t h a t 7z(l) = 1, we have 

(3-2> p . - . £ , M ( £ * 0 ) ) * *) 
Thus we have, from Theorem 2.2, 

Theorem 3.1: The nth prime, pn , is given by 

(3-3) P„ = E(l*((£(l* E f''^ 

4. Next Prime Greater than a Given Number 

The function g of Theorem 2.1 has the property that it is nonnegative and 
gin) = 0 if and only if n is a prime. The function h also has this property. 
Hence, we can use either h or g in the following construction of a formula for 
the next prime greater than a number q . (The number q can be any integer, it 
does not need to be a prime.) 

Theorem 4.1: The next prime greater than q is given by the function 
2q / J 

- j + 1 I- nil, for n > 1 

(4.1) tf(<7) = £ (l " Z (n - q)il - ff(n))V 
j = 0 \ n=0 J J = 0 

Proof: From Bertrand!s Postulate, we know that for every q > 1 there is a prime 
p such that q < p < 2q. Fix q and let p denote the least such prime p. Put 

/(n) = in - q)il - gin)). 
Then fin) > 0 for n > 0. Also /(n) > 0 if and only if q < n and gin) = 0, 
i.e., if and only if n is a prime greater than 7̂. Now 

1 ̂  ifW + /(l) + ... + fU)) = 1 for j < p. 
But 

1 - ifiO) + /(l) + ... + fU)) = 0 for p < j. 

Hence, p is equal to the sum 

(4. .2) iv(?) = i:(i - ifw + fn) + . . . + /(j))l 
,7 = 0 V / 

a sum of exactly p ones. 

Bertrand's Postulate is a theorem that was proved by P. L. Chebychev in the 
nineteenth century. See Hardy [8, p. 349] for a modern proof (due to Erdos 
[4]). 
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A COMBINATORIAL PROBLEM IN THE FIBONACCI NUMBER SYSTEM 
AND TWO-VARIABLE GENERALIZATIONS OF 

CHEBYSHEV'S POLYNOMIALS 

Wolfdieter Lang 
Institut fur Theoretische Physik, Universitat Karlsruhe 

D-W7500 Karlsruhe 1, Germany 
(Submitted July 1990) 

To my mother on the occasion of her 70th birthday. 

1. Summary 

We consider the following three-term recursion formula 

(1.1a) 5_! = 0, SQ = 1 

(1.1b) Sn = Y(n)Sn_l - Sn.2, n > 1 

(1.1c) Yin) = Yh{n) + 2/(1 - h(n)), 

where h{n) i s t h e n t h d i g i t of t h e F i b o n a c c i - l f w o r d f l 1 0 1 1 0 1 0 1 1 0 . . . g i v e n e x p l i -
c i t l y by ( s e e [ 7 ] , [ 1 1 ] , [ 9 ] , [ 2 0 ] , [ 1 9 ] ) 

( 1 . 2 ) h(n) = [ ( n + 1)<|>]. - [ft(j>] - 1, 

where [a] denotes the integer part of a real number a, and 

cj): = (1 + /5)/25 

obeying (j)2 = <J> + 1, cj) > 1, is the golden section [10], [9], [4]. 
For Y = y one recovers Chebyshev!s Sn(y) polynomials of degree ft [1], In 

the general case certain two-variable polynomials Sn(Y9 y) emerge. 
The theory of continued fractions (see [18]) shows that (-i)n Sn(Y, y) can 

be identified with the denominator of the ftth approximation of the regular con-
tinued fraction (i2 = -1) 

(1.3) [0; -il(l), -il(2), .... -il(k), ...] 

= l/(-iJ(l) + l/(-iJ(2) + l/(... . 

The polynomials Sn(Ys y) can be written as 

[nil] femax 
( 1 . 4 ) Sn(Z, y) = E ( " D * E O ; l> k)y*M-l-kyn-z{n)-i + k9 

where the coefficients (ft; £, k) are defined recursively by 

(1.5) (ft; £, k) = (ft - 1; £, fe) + ihiri - 1) + /z(n) - 1) (ft - 2; £ - 1, fc - 1) 

+ (2 - h(n - 1) - h{n))(n - 2; £ - 1, Zc), 

with certain input quantities. The range of the fe index is bounded by 

(n - z(n))}> 

£, min(£, p(ft))}, 

( 1 . 6 a ) 

( 1 . 6 b ) 

w i t h 

( 1 . 7 ) 

( 1 . 8 ) 

1992] 

amax 

z (ft) 

p(ft) 

= kmin (ft, £) : = max{0, £ -

= ^max ( n ' &) : = min{s(f t) -

= E &(&), 
/c.= i 
n - 1 

= Y, (Mfc + D + Hk) - 1). 
fc = 0 199 
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The polynomials Sn(Y9 y) are listed for n = 0(1)13 in Table 1. They are 
generating functions for the numbers (n; £, k) which are shown to have a com-
binatorial meaning in the Fibonacci number system. This system is based on the 
fact that every natural number N has a unique representation (see [23], [5], 
[21], [11], [20]) in terms of Fibonacci numbers (see [10] and [4]): 

( 1 . 9 ) N = £ S ; ^ + 2 , s- e {0 , 1 } , sisi + l = 0 . 
i= 0 

( Z e c k e n d o r f T s r e p r e s e n t a t i o n of t h e second k i n d i n which one w r i t e s t h e number 
1 a s ^2 and n o t a s Fi.) 

T a b l e 1 . Sn = Y(n)Sn.l - Sn_l9 S.l = 
7 ( n ) = Yh{n) + 2/(1 - 7z(w)) 
/z(n) = [ ( n + l)(f>] - [w<|>] - 1 

5 „ U . 2/) 

0, Sn 1 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

1 

Y 

Yy -

Y(Yy 

?3y 

?3y2 

Y^y2 

Yhy3 

Y5y3 

7 6 2 / 3 

Y^yh 

Y7y^ 

iW 

13 87,5 ?»y 

- 2) 
- 7 ( 2 7 + y) + 1 

- 72/(37 + y) + ( 2 1 + y) 

- 722/(47 + z/) + 2 7 ( 2 7 + y) - 1 

- 7 2 2 / 2 (57 + 2/) + 72/(77 + 32/) - 2 ( 7 + 2/) 

- 7 3 2 / 2 (67 + 2/) + 72z/ (117 + 42/) - 2 7 ( 3 7 + 2y) + 1 

- 7 4 2 / 2 (67 + 22/) + Y2y(llY2 + 9Iz/ + z/2) - 7 ( 6 7 2 + 1172/ + 3y2) 
+ (37 + 2z/) 
- Yky3{lY + 22/) + 7 2 2 / 2 ( 1 7 7 2 + 1072/ + 2/2) - Yy{llY2 + l5Yy + 3y2) 
+ ( 6 7 2 + 772/ + 2y2) - 1 

- 7 5 2 / 3 (87 + 22/) + 7 3 2 / 2 ( 2 3 7 2 + 1272/ + 2/2) - 7 2 2 / (287 2 + 2472/ + 4z/2) 
+ 7 ( 1 2 7 2 + 1872/ + 52/2) - (47 + 22/) 

- 7 6 2 / 3 (87 + 32/) + Yky2(23Y2 + 1972/ + 32/2) 
- 7 2 2 / (287 3 + 4172z/ + 1472/2 + 2/3) + 7 ( 1 2 7 3 + 35Y2y + 2072/2 + 3y3) 
- ( 1 0 7 2 + 972/ + 2y2) + 1 

- 762/4(97 + 32/) + 7i+2/3(3172 + 2172/ + 32/2) 
- 722/2(5173 + 53722/ + 157z/2 + y3) + 72/(4073 + 59722/ + 2472/2 + 32/3) 
- (1273 + 2872z/ + 147z/2 + 22/3) + (47 + 3y) 

In this number system N = sr • • • S2S1S0"> where the dot at the end indicates 
the Fi place which is not used. 

Proposition 1: (n; i , k ) gives the number of possibilities to choose, from the 
natural numbers 1 to n, I mutually disjoint pairs of consecutive numbers such 
that all numbers of k of these pairs end in the canonical Fibonacci number sys-
tem in an even number of zeros. 

Another formulation is possible if WythoffTs complementary sequences {A(n)} 
and {B(n)} (see [22], [7], [21], [12], [8], [9], and [4]), defined by 
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(1,10) A{n) : = [n<|>], Biri) : = [ncf)2] = n + A(n) , n = 1, 2, . . . , 
are introduced. 

Proposition 2: (n ; l9 k) is the number of different possibilities to choose, 
from the numbers 1, 2, . . . , n9 £ mutually disjoint pairs of consecutive num-
bers, sa}/-

(nl5 nl + 1), . .., (n£, n£ + 1) with rij > n^-i + 1 for j = 2, . .., £, 

such that all members of fc pairs among them, say 

(il3 £x + 1), . . ., (ife, ife + 1), 

are ^-numbers, i.e., ij = A(rrij) and ij + 1 = 4(tf?j + 1 ) for some m^ and all J = 
1, ..., k. For £ = 0, put (w; 0, 0) = 1. 

From the analysis of Wythoff's sequences one learns that A-pairs (A(mj) 9 
A(mj + 1) = A{rrij) + 1) occur precisely for mj = B(q^) for some q3- e M. All re-
maining pairs are either of the (A, B) or (5, A) type. Thus, one may state 
equivalently, 

Proposition 3: (n ; &, k) counts the number of different ways to choose, from 
the numbers 1, 2, . .., n - 1, £ distinct nonneighboring numbers such that 
exactly k numbers among them, say £]_, ..., i^ , are AB-numbers, i.e., they 
satisfy for all j = 1, . . . , k9 ij - A(B(rrij)) with some rrij GIN. 

Still another meaning can be attributed to the coefficients of the Sn poly-
nomials based on the above findings. 

Corollary: Consider the Zeckendorf representations (with 1 as F2) of the num-
bers 0, 1, 2, ..., Fn+i - 1. Then exactly (n; £, k) of them need £ Fibonacci 
numbers, k of which are of the type ^(g(m) + i) with 77? G {1, 2, . .., p(n)}. 

The representation of 0 which does not need any Fibonacci number is inclu-
ded in order to cover the case £ = 0, k = 0. 

Another set of generalized Chebyshev Sn polynomials is of interest. They 
are defined recursively by 

(1.11a) 5_x = 0, S0 = 1, 

(1.11b) Sn = Y(n + l)£n_i - Sn„2s n > 1, 

with I(n) defined by (1.1c). Table 2 shows Sn(J, 2/) for n = 0(1)13. They are 
given as (+i)n times the denominator of the nth approximation of the regular 
continued fraction 

(1.12) [0; -£l(2), -il(3), ..., -il{k), . . . ] . 

As far as combinatorics is concerned, one has to replace the numbers 1, 2, ..., 
n in the above given statements by the numbers 2, 3, ..., n + 1. 

The physical motivation for considering the polynomials Sn(Y, y) and 
Sn(Y> y) is sketched in the Appendix, where a set of 2 x 2 matrices Mn formed 
from these polynomials is also introduced. In [14], [6], and [15], n-variable 
generalizations of Chebyshevfs polynomials were introduced. For the 2-variable 
case, these polynomials satisfy a 4-term recursion formula and bear no relation 
to the ones studied in this work. 
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Table 2. Sn 
Y(n + 1) 
h{n + 1) 

Y(n + l)Sn.l - Sn_2, 5_! = 0, S0 
Yh(n + 1) + 2/(1 - h(n + 1)) 
[(n + 2)$] - [(n + !)())] - 1 

n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

sn(J, 

1 

2/ 
ly -

Y2y -

Y2y2 

S 5 ( 7 , 

Y3y3 

j V 
I 5 2 / 3 

j 5 ^ 

^io a 
J V 

I 7 2 / 5 

513a 

») 

1 = S2(Y, y) 

( 7 + y) 

- y(2Y + y) + I 

y) 
- Yy2{kY + y) + 2z/(2J + z/) - 1 

- 7 2 z / 2 ( 5 7 + y) + Jz / (77 + 3z/) - ( 3 7 + y) = S 7 ( 7 , z/) - ( 7 - z/) 

- 7 3 2 / 2 (57 + 2z/) + 72/(772 + lYy + z/2) - ( 3 7 2 + 5Yy + ly2) + 1 

- 7 3 2 / 3 (67 + 22/) + Yy2(l2Y2 + 872/ + y2) - 2/(1072 + 872/ + 2y2) 
+ .(37 + 22/) 

% 2/) 
- 7 5 z / 3 ( 7 7 + 32/) + 7 3 z / 2 ( 1 7 7 2 + 1672/ + 3y2) - 72/(1773 + 21Y2y 
+ 11J2/2 + 2/3) + ( 6 7 3 + 17J22/ + lOYy2 + 22/3) - (47 + 2y) 

- 752/ l f (87 + 32/) + 7 3 2 / 3 ( 2 4 7 2 + 1872/ + 3z/2) - 72 / 2 (347 3 + 37722/ 
+ \2Yy2 + 2/3) + # ( 2 3 7 3 •+ 32Y2y + 1372/2 + 22/3) 
- ( 6 7 2 + 1172/ + 42/2) + 1 

\ y) + ( 7 - 2/) 

2. Fundamentals of Wythoff's Sequences 
(see [22], [7], [21], [12], [8], [11], [9], [4], [19]) 

In this section we collect, without proofs, some well-known facts concern-
ing Wythoff's pairs of natural numbers, the sequence {/z(n)}, and their relation 
to the Fibonacci number system (1.9). We also introduce the counting sequences 
{z(n)} and {p(n)}. 

The special Beatty sequences {A(n)} and {B(n)} (see [22], [9], [4]) given 
by (1.10) divide the set of natural numbers into two disjoint and exhaustive 
sets, henceforth called A- and 5-numbers. For n = 0 we also define the Wythoff 
pair (4(0), 5(0)) = (0, 0). The sequence h, defined in (1.2) as 

(2.1) h(n) = A(n + 1) - A{n) - 1, 

takes on values 0 and 1 only. Wythoff's pairs (A(n), B(n)) have a simple char-
acterization in the Fibonacci number system: A(n) is represented for each n E IN 
with an even number of zeros at the end (including the case of no zero) . B(n) 
is then obtained from the represented A{n) by inserting a 0 before the dot at 
the end. Therefore, 5-numbers end in an odd number of zeros in this canonical 
number system. It is also known how to obtain the representation of A(n) from 
the given one for n. 
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The sequence h(n) (2 .1) d i s t i n g u i s h e s the two types of numbers: 

!

0 i f f n i s a S-number, 

1 i f f n i s an A-number. 
An ^-number ending in a 1 in the Fibonacci system (no end zeros) has fractional 
part from the interval (2 - $s 2(2 - (j))). Its fractional part is from the in-
terval (2(2 - (j)) 5 1) if the ^4-number representation ends in at least two zeros. 
This distinction of ^-numbers corresponds to the compositions 

A(A{ri)) = A2(n) = [ [w*]* ] and AB(n) = [ [n<$>2]<|>] , 

respectively. 
It is convenient to introduce the projectors 

(2.3) k(n) : = h(n) - (1 - h(n + 1)) = h(n)h{n + 1), 

1 - Hn) = (1 - h(n)) + (1 - h(n + 1)), 

k marks ^45-numbers: 

!

1 iff n is an AB-number 9 

0 otherwise. 
A(B(m) + 1) = AB(m) + 1, i.e., AB(m) is followed by an ^-number. Such pairs of 
consecutive numbers will be called A-pairs* Some identities for n e IN which 
will be of use later on are: 

(2.5a) AB(n) = A(n) + B(n) = 2A{n) + n = 5(4(n) + 1) - 2, 

(2.5b) 54 (n) = 2A{n) + n - 1 = 4B(n) - 1 = A(JB(n) + 1) - 2, 

(2.5c) A4(n) = A(n) + n - 1 = £(n) - 1 = A(A{n) + 1) - 2, 

(2.5d) BB(n) = 3A(n) + In = 4&4(n) + 2 = 5(5(w) + 1) - 2, 

= AAB(n) + 1. 

No three consecutive numbers can be ,4-numbers, and no two consecutive num-
bers can be 5-numbers. Among the A4-numbers ^ 1 , we distinguish between those 
which are bigger members of an 4-pair, viz, 

(2.6) AB(m) + 1 = A{B(m) + 1) = AA(A(m) + 1) for m e M, 

and the remaining ones which are called A-singles, viz, 

(2.7) AA(B(m) + 1) = A(AB(m) + 1) = BB(m) + 1 for m e IN. 

Thus, ,4-singles are A4-numbers having S-numbers as neighbors. A(n) is an 
i4-single if h(n - 1) = h(n) = 1. The .M-number 1 is considered separately 
because we can either count (0, 1) as an 4-pair or as a (5, A)-pair. 

Define z(n) to be the number of (positive) ^-numbers not exceeding n. This 
is 

n 
(2.8) z{n) = E h(k) = [ (n + 1)/<|>] = A(n + 1) - (n + 1). 

k= l 
The number of 5-numbers * 0 not exceeding n is then n - z(n) = [ (n + l)/c|)2]. 

Define p(n) to be the number of A/3-numbers (0 excluded) not exceeding n - 1. 
This is 

n- 1 
(2.9) p(n) = Y, k(m) = z(n) + z{n - 1) - n = 24 (n) - 3n + /z(n) . 

7 7 7 = 1 

The following identities hold: 

(2.10) pA(n + 1) = -A(n + l ) + 2 n + l = n - z(n) = z2(n - 1). 
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This i s j u s t the number of 5-numbers (excluding 0) not exceeding n. The 
l a s t e q u a l i t y follows with the help of 
(2.11) A(z(n - 1) + 1) = A(A(n) - n + 1) = n + 1 - h(n), 
which can be v e r i f i e d for A- and S-numbers n s e p a r a t e l y . Also, 
(2.12) pB(n) = A{n) - n = z(n - 1 ) , 
(2.13) pAB{m) = pBA(m) = m - 1. 
The p-value increases by one at each argument AB(m) + 1, due to 
(2.14) k(n) = p(n + 1) - p(n). 
The p-value m appears 2h(m) + 3 times. 

Another identity is 

(2.15) p(B(m) - 1) = pA2(m) = z(m - 1). 

The number of i4-singles (* 1) not exceeding n i s 
(2.16) pA(z(n) - p(n + 1)) = pAz2(n) = pz(n). 
F i n a l l y , 
(2.17) z(n - z{n) - 1) = z(pA(n + ! ) - ! ) = z(z2(n - 1) - 1) = p(n - 1). 

The last equality can be established by calculating B(n - z{n)). 
(2.18) B(n - z(n)) = n + 1 - 2/z(n) - 7z(w - 1) 

= n - z(n) + z(n - 2) + (1 - 7z(n)) = n - h(n) - k(n - 1), 

implying 

(2.19) A(n - s(n)) = s(n) + 1 - 2h(n) - /z(n - 1) = n - s(n) + p(n - 1). 

3. Generalized Chebyshev Polynomials 

Consider the recursion formula (1.1) with h(n) given by (1.2). For Y = y9 
the one for Chebyshevfs Sn(y) = Sn(y, y) polynomials [1] is found.* Their ex-
plicit form is 

[nil] 
(3.1) Sn{y) = £ (-l)£(n . l)yn~ll

s riew0. 

The binomial coefficient has, for I * 0, the following combinatorial mean-
ing. It gives the number of ways to choose, from the numbers 1, 2, ..., n, I 
mutually disjoint pairs of consecutive numbers. For £ = 0, this number is put 
to 1. The sum over the moduli of the coefficients in (3.1), i.e., the sum over 
the "diagonals" of Pascalfs triangle, is Fn+i> One also has 

Sn{2) = n + 1 and Sn(3) = F2{n + l)9 

which is proved by induction. 
For Y * y, a certain two-variable generalization of these Sn polynomials 

results. We claim that they are given by (1.4) where the new coefficients have 
the combinatorial meaning given in Propositions 1-3 and the Corollary of the 
first section. 

Theorem 1: Sn(Y, y) given by (1.4) with (1.5) and, (1.6) is the solution of 
recursion formula (1.1) with (1.2) inserted. 

*Sn(lf) - Un(y/2) with Un(cos 0) = sin((n + 1)0) /sin 0, Chebyshev' s polynomials of the second 
kind, for |z/| < 2. 
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Proof: By induct ion over n. For n = 0 , k m i n (0 , 0) = fcmax(0, 0) = 0 due to s (0 ) 
= 0 and, t h e r e f o r e , 5 0 = 1. In order to compute Sm v i a ( 1 . 1 ) , assuming (1 .4) 
to hold for n = m - 1 and n = m - 25 one w r i t e s 

which i s i d e n t i c a l to (1 .1c) due to the p r o j e c t o r p r o p e r t i e s of the exponents . 
Now 

z(m - 1) = z(rri) - h(m) and z(m - 2) = z{m) - h(m) - h(m - 1 ) , 
following from (2.8) and (2.1), are employed to rewrite the I and y exponents 
in the Sm^i term of (1.1b) such that exponents appropriate for Sm appear. In 
the Sm_2 term of (1.1b) a factor {l/Y)k^m'lHl/y)l"k(m~l) is in excess, which, 
when rewritten as k(m - 1)(1/J) + (1 - k{m - l)(l/y), produces two terms from 
this Sm-2 piece. In both of them the index shift I -> £ - 1 is performed, and 
in the first term k + k - 1 is used. Finally, one proves that the I and k 
range in all of the three terms which originated from Sm_i and Sm„2 in (l»lb) 
can be extended to the one appropriate for Sm as claimed in (1.4). In order to 
show this, the convention to put (n; I, k) to zero as soon as for given n the 
indices I or k are out of the allowed range has to be followed. Also, 

p(m - 2) = pirn) - k(m - 1) - k(m - 2 ) , , 

resulting from (2.9), is used in the first term of Sw_2 to verify that 
kmax(m ~ 2> & - 1) + 1 = kmax(m9 D . 

In this term, m - 1 is always an ̂ -number, and 

kmln(m - 2, £ - 1) + 1 > km±n(m, I) 

holds as well. In the second term, which originated from Sm_2> m " 1 is n o t a n 

/IB-number, and one can prove that 

km±n(m - 2, I - 1) = kmln(m, I) and kmax(m - 2, I - 1) < femax (m, Jl). 
In the Sm_i term one has, for even ms first to extend the upper i range by one, 
then the k range is extended as well, using 

fcminO - 1» JO > kmtn(m, I) and kmax (m - 1, *,) < kmax(m, I). 

The coefficients of the three terms can now be combined under one k-sum and are 
just given by (m; l9 k) due to recursion formula (1.5), which completes the 
induction proof. Our interest is now in the combinatorial meaning of the (n; 
&, k) defined by (1.5) with appropriate inputs. 

Lemma 1: Sk defined by recursions (l.la-c) satisfies, for fcei, 

(3.2) Sk = Y(k) ... 1(1) - Y{k) ... J(3)50 - Y{k) ... 1(4)^ -

... - Y(k)Sk_3 - Sk_2. 

Proof: By induction over k = 1, 2, ... . 
Remark: In (3.2) each of the k - 1 terms with a minus sign can be obtained 
from the first reference term by deletion of one pair of consecutive 

Y(i + l)J(i) for i e {1, 2, ..., fe - 1} 
and by replacement of all Y(i - 1) ••• 7(1) following to the right by S^-i- So 
there is a one-to-one correspondence between these k - 1 terms and the fc - 1 
different pairs of consecutive numbers that can be picked out of {1, 2, ..., 
n}. 
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Notation: The k - 1 terms of Sk - Y(k) ••. 1(1) given by (3-2) are denoted by 
[i, i + 1], with i = 1, 2, ..., fe - 1. E.g., for k = 5, [3, 4] = -I(5)S2, i.e., 
7(4) and Y(3) do not appear. 
Lemma 2: Sk of (3.2) consists in all of Fk+i terms if all Si appearing on the 
right-hand side of (3.2) are iteratively inserted until only products of Jfs 
occur. 

k- 1 
Proof: By induction, using SQ = 1 and 1 + ]C ̂i = f̂c+1-

i= l 
Definition 1: Q(n) is the set of Fn+i - 1 elements given by the individual terms 
of which Sn - Y(n) ••• 1(1) consists due to Lemma 2. 
Definition 2: Pz(n), for £ e {1, 2, . .., [n/2]}, is the set of £ mutually dis-
joint pairs of consecutive numbers taken out of the set {1, 2, ..., n}. 
Lemma 3: The elements of Q(n) are given by 

qiti(n) i = (-l)£J(n) ... J(n^ + 1) • Y{nit ) ... J(n^ + 1) *J(n^) 

••• *(D, 
where the £ barred J-pairs have to be omitted and 

(nix, nil + 1), ..., (nii , w^ + 1) 

is an element of P£ (n) for £ = 1, 2, ..., [n/2]. The index i numerates the 
different £ pairs: 

* - 1, 2, .... ( , ). 

Proof: Let (nx, ̂  + 1), ..., (n£, n£ + 1) with nj > n^-j + 1 for j = 2, ..., £ 
be an element of P£(n). Using the Notation, the corresponding element of Q(n) 
is obtained by picking in the [n£, n£ + 1] term of Sn the [n£_i, n£_i + 1] term 
of Sn _i which appears there, and so on, until the \n\y n\ + 1] term of 5n2-l 
is reached. If n^ = 1, one arrives at SQ - 1. If n^ > 2, one replaces the 
surviving 5^-1 by its first term, i.e., Y(rii - 1) ... J(l). In this way, each 
of the (n££) elements of P£ (n), distinguished by the label i , is mapped to a 
different element of Q(n). For all £, there are in all Pn+i - 1 such elements, 
and this mapping from U£i]/P£ to Q(n) is one-to-one. It is convenient also to 
define q$ i = Y(n) •«• J(l), which is the first term of 5W. 

Lemma 4: (3.3) q0 = ̂ ("fy «-*(*). 

Proof: Definition (2.9) of counting sequence z{n). 
Lemma 5: The general element q% ^(n) G Q(n) is given by 
(3.4) qiti(n) = j*Wyn-zW{ (__XJ£7-(2?c + £ -fĉ - a- k)}9 

if among the specific choice i of £ barred pairs of g£ .(n), as written in Lem-
ma 3, ̂  barred pairs are numerated by i4-numbers. 

Proof: A barred pair Y(i + l)Y(i) in ̂ 7£,i(n), given in Lemma 3, corresponds to 
a missing factor -I2 in Y(n) •«• 7(1) iff £ and i + 1 are both i-numbers. In 
all other cases a factor -Yz/ is missing. Therefore, the reference term q$ of 
(3.3) is changed as stated in (3.4). 

Putting these results together, we have proved Proposition 2 given in the 
first section, because the elements of Q(n) u q-Q are all the terms of Sn, and 
the multiplicity of a term with fixed powers of Y and y given in (.3.4) is just 
(n; £, k) according to (1.4). 

Proposition 1 is equivalent to Proposition 2 because of the characteriza-
tion of ̂ 4-numbers in the Fibonacci number system, as described in section 2. 

206 [Aug. 



A COMBINATORIAL PROBLEM IN THE FIBONACCI NUMBER SYSTEM 

If a pair of consecutive numbers is replaced by its smaller member, Propo-
sition 3 results from either Proposition* 

The Corollary follows from Proposition 3 and the Fibonacci representation 
explained in (1.9) - The numbers 1, 2, . .., n - 1 indicate the places I^, -̂ 35 
..., Fn, respectively. In (1*9) Si-\ = 1 if the number i e {1, 2, ..., n - 1} 
is chosen. If i = AB{m), for some m e M, the place of 

4̂£(m)+l = 4̂(B(m)+l) 
is activated. 

Comment.* The map used in the proof of Lemma 3 never produces negative powers 
of I or y. Thus, 

I - (n - z(ri)) < k < z(n) - I 
is always obeyed. On the other hand, the p(n) definition shows that 

0 < k < min(£, p(n)) 
has to hold as well. (1.6) gives the intersection of both k ranges. 

The main part of this work closes with a collection of explicit formulas 
concerning the (n; is k) numbers. Here9 the results listed in section 2 are 
used. 

A necessary condition is 

max in - Q\ 

(3.5) £ (n; I, k) = (U
 % *), 

which guarantees Sn(y, y) = Sn{y). 
The results for (n; %3 k) for I = 0, 1, 2S are: 

(3.6) & = 0: (n; 0, 0) = 1, 

(3.7a) I = 1; (n; 1, 0) = (n - 1) - p(n), 
(3.7b) (n; 1, 1) = p(n), 

(3.8a) & = 2: (n; 25 0) = ^{^) + p(n - 1) - (n - 3)p(n) + (n ~ 2)> 

(3.8b) (n; 2, 1) = (n - 3)p(n) - p(n - 1) - 2(p(2}) 5 

(3.8c) (n; 2, 2) = (p(2n)) . 

Already the & = 3 case becomes quite involved, except for (n% 3, 3) 5 which is a 
special case of 

(3.9) (n; Jt, *,) = (P(£n))> for n > AB(l) + 1. 

This is, from the combinatorial point of view, a trivial formula, which, when 
derived from the recursion formula, is due to an iterative solution of 

Pin) 
(n; I, it) = £ (&Ufc); A - 1, £ - 1), 

fe-o 
with input (BA(k)\ 0, 0) = 1. 

The last term of S^i has just the coefficient 

(3.10) (2£; I, s(2£) - JO = 1, 

where the input (2; 1, 0) = 1 was used. 
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Finally, we list some questions that are under investigation: 

(i) What do the generating functions for Sn9 Sn look like? 

(ii) Which differential equations do these objects satisfy? 

(iii) Are the Sn and Sn orthogonal with respect to some measure? 

(iv) How does the self-similarity of the h{n) sequence reflect itself in the 
polynomials Sn and Sn? 

APPENDIX 

Physical Applications 

The two-variable polynomials introduced in this work are basic for the 
solution of the discrete one-dimensional Schrodinger equation for a particle of 
mass rn moving in a quasi-periodic potential of the Fibonacci type (see [13] and 
[17]). The transfer matrix for such a model is given by 

< A . i , * „ . - ( « » > • - ; ) . 1, 0> 

with Y(n) defined by (1.1c) and (1.2). J = E - Vl, y = E - 70, where E is the 
energy (in units of ft^/lma2, with lattice constant a) and the potential at lat-
tice site n is Vn : = V(n$) with 

(V0 for 0 < x < 2 - <f> 
(A. 2) V(x) = < and V(x + 1) = V(x). 

{vl for 2 - <j) < x < 1 
The product matrix 

(A.3) Mn: = Rn ... R2Rl, 

which allows us to compute i|*w, the particle's wave-function at site number n, 
in terms of the inputs ipj anc* ô> according to 

<*•<> a * 1 ) - « • « ; ) 
t u rns out to be 

(sn, 
(A. 5) M„ = ( 

V'S'K-I > 

- 5 , 

- 5 , 
Because of det Rn = 1 = det Afn, one finds the identity 

(A. 6) SnSn - ̂ n-l^n + i = 1> 

for n e IN, which generalizes a well-known result for ordinary Chebyshev polyno-
mials. It allows to express Sn in terms of S^ with £ = 0, 1, ..., n + 1: 

1 / n^x 1 \ (A.7) Sn = —(1 + SnSn + l X — J , 

This can be proved by induction using 

Sn = —(1 + Sn+lSn-0-

Another model that leads to the same type of transfer matrices as (A.l) is 
the Fibonacci chain [2] with harmonic nearest neighbor interaction built from 
two masses rriQ and mi with mass m^u) at site number i. In this case 
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Y(n) = 2 - (u)/a)(n))25 with a)2(n) : = </mhM. 
K is the spring constant and oo the frequency. 

One-dimensional quasi-crystal models (see [16], [3]) can be transformed to 
Schrodinger equations on a regular lattice with quasi-periodic potentials as 
considered above. 
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Let FQ = 0, Fi = 1, and Fn = Fn_i + Fn _2 for n > 2, denote the sequence of 
Fibonacci Numbers. For any modulus m > 2, and residue b (mod m) 9 denote by 
v(jn9 b) the number of occurrences of b as a residue in one (shortest) period of 
Fn (mod m). 

If m = 5 with k > 05 then Fn (mod 5k) has shortest period of length 4 * 5fe, 
and z;(5k, 2?) = 4 for all & (mod 5 k ) . This is so-called uniform distribution, 
and has been studied in great detail by a number of authors (e.g., [1]5 [4], 
[5]s [6]). However, the study of the function v(m9 b) for moduli other than 5 
is still relatively unexplored. Some recent work in this area can be found in 
[2] and [3]. 

In this paper we completely describe the function v(m9 b) when m = 2k
 9 k > 

1. What makes this possible is a type of stability that occurs when k > 5. 
This stability does not seem to appear for primes other than p = 2, 5 (which 
somehow is not surprising). Of course, the values of v(2k

9 b) for k = 1, 2, 3, 
4 are easily checked by hand. We include these values for completeness. 

Main Theorem 

For Fn(mod 2k), with /c > 1, the following data appertain: 

For 1 < k < 4: 

V{2, 0) = 1, 
V{2, 1) = 2, 
tf(4, 0) = y(4, 2) = 1, 
v(89 0) = v(8, 2) = y(16, 0) = tf(16, 8) = 2, 
i>(16, 2) = 45 

y(2fc, &) = 1 if b E 3 (mod 4) and 2 < k < 4, 
y(2fc, b) = 3 if fe = 1 (mod 4) and 2 < Zc < 4, and 
V(2k

9 b) = 0 in all other cases, 1 < k < 4. 

For fe > 5: 

if & E 3 (mod 4), 
if & E 0 (mod 8), 

i?(2fc, b) = < 3 , if fe = 1 (mod 4), 
if 2? E 2 (mod 32), 
for all other residues. 

Most of our proofs proceed either by induction, or by invoking a standard 
formula for the Fibonacci sequence. Perhaps there are other proofs of our 
Theorem, but because of the absence in the literature of a convenient closed 
form for Fn (mod 2k), our methodology is quite computational. Because of their 
frequent use, we record the following two standard formulas. 

Addition Formula: If m > 1 and n > 05 then 

Subtraction Forumla: If m > n > 0, then 
Fm-n = ("l)n + 1« (Fm^Fn - « _ ! ) . 
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The main body of t h i s p a p e r c o n s i s t s i n e s t a b l i s h i n g a number of c o n g r u -
e n c e s f o r Fn (mod 2k). 

Lemma 1: Le t k > 5 . Then 

F2k_3 . 3 _ ! E 1 - 2 ^ " 2
 ( m o d 2 * ) , 

F2k-3 . 3 E 2 ^ 1 (mod 2fe + 1 ) 

Proof: We prove these formulas simultaneously by induction on fe. When k = 5, 
the results are easily checked. Now assume the result is true for k > 5, and 
write 

F2k-3 . 3 - 1 = 1 - 2k~2u 

F2K-3 . 3 = 2k~lV 

where u, V E 1 (mod 4 ) . Note t h a t a s k > 5 , we have (fc - 2) + (k - 2) > fe + 1, 
and {k - 2) + (k - 1) > k + 2 . Thus , 

F 2*~ 2 • 3-1 = F2k~3 • 3-1+2*"3 • 3 

= F2
k~3 • 3 -2 F 2 k ~ 3 • 3 + F2k~3 • 3 - l F 2 k ~ 3 . 3+1 

= (2k~lv - 1 + 2k~2u)2k~lv + (1 - 2* : - 2 u)(2* : - 1 z ; + i - 2 ^ " 2 ^ ) 

= - 2 * " 1 ! ; + 2 ^ - ^ + 1 - 2k~2u - 2 k _ 2 w (mod 2k + l) 

E 1 - 2k~l (mod 2fc+1) 
and 

F 2 k " 2 -3 = F2k~3 • 3 + 2k-3 -3 
= (1 - 2/c"2u)2^-1i; + 2k"1z;(2?c-1i; + 1 - 2k~2u) 

E 2k~lv + 2k~lv (mod 2^ + 2 ) 

E 2^ (mod 2 f c + 2 ) . 

One consequence of this lemma is that Fn (mod 2k ) has shortest period of 
length 2k~l • 3. 

Lemma 2: Let k > 5 and s > 1. Then, 

F2*-3-3e-l ~ l " S * 2k~2 (mod 2 k )' a n d 

F2*~3 - 3s ~ S * 2k~l ( m o d 2 k )' 

Proof: Lemma 1 is the case s = 1. Now proceed by induction on s, by applying 
the addition formula and Lemma 1 to 

F2k~3 .3s-l = F2k~3 -3(8-1)-l+2k-3 • 3 a n d 

F2k-3 . 3s = F2
k~3 • 3(s -l) + 2k'3 • 3 " 

The details are omitted. 

Lemma 3: Let k > 5 and n > 0. Then, 

p n (mod 2 k ) i f n E 0 (mod 3 ) , 
Fn + 2k~2 - 3 "= 

\Fn + 2 ? c " 1 (mod 2fe) i f n = 1, 2 (mod 3 ) . 

Proof: By Lemma 1, 

^ 2 k - 2 . 3 E ° ( m o d 2?C) a n d F 2 k " 2 - 3 - 1 E 1 " 2k~l ( m o d 2 ^ -
Thus , 

Fn + 2k~2 -3 = Fn-lF2k~2 • 3 + Fn^F2k~2 -3 + F2k'2 • 3-l> 
E FnF2k~2 - 3 - 1 ( m o d 2 ^ E M l " 2 * " 1 ) ^ O d 2 f c ) . 

The result follows since Fn is even precisely when n = 0 (mod 3 ) . 
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In our subsequent work we will frequently have need of the residues of Fn 
(mod 4) and Fn (mod 6). We record one period of each here, from which the 
reader can deduce the requisite congruences: 

Fn (mod 4): 05 1, 1, 2, 3, 1 
Fn (mod 6): 0, 1, 1, 2, 3, 55 2, 1,3, 4, 1, 5, 0, 5, 5, 

4, 3, 1, 4, 5, 3, 2, 5, 1 

Lemma 4: Let k > 5 and n > 0 and assume n E 0 (mod 6). Then, 

Fn+2^ -3 E Fn + ^ " l (™d 2k) . 
Proof: Analogous to the previous proof. Note that n = 0 (mod 6) if and only if 
F„ = 0 (mod 4). 

Lemma 5: If n = 3 (mod 6), then Fn = 2 (mod 32). 

Proof: Write n = 6£ + 3 with t > 0; use induction on t together with an appli-
cation of the addition formula to 6̂(£ + l) + 3 = ^6(t + 3) + 6* 

Lemma 6: If n = 3 (mod 6) and k > 5, then for all s > 1, 

Proof: We treat the two cases ± separately. 

Case +: 

F2k-3-3s + n= F2k~3 . 3 s - A + F2k~3 « 3sFn+1 
E (1 - s • 2 k _ 2 ) F n + s - 2k~:L (mod 2fe) 

= Fn - s • 2 k _ 1 + s • 2 / c _ 1 (mod 2fe) 

E F n (mod 2 f c ) . 

Case -: Of course, we are tacitly assuming 2fc~3 * 3s - n > 0. We use the 
subtraction formula 

*2*-3.3a.-n« <-D n + 1 - ( V - 3 . 3 3 - A - V"3.3a^n-l) 

E (1 - s • 2 7 c " 2 )F n - s • 2k-~LFn_l (mod 2 k ) 

E Fn - s • 2 k _ 1 - s • 2 k _ 1 (mod 2 k ) 

E F n (mod 2 * ) . 

Lemma 7: I f n = 3 (mod 6) and fc > 6, t h e n , 
f „ + 2*-.3 E Fn + 2 k " 1 (mod 2fe) . 

Proof: By Lemma 1, w r i t e 

F2k-i+ o 3 = 2k~2 • u and F 2 *-f .. 3_ x = 1 - 2k~3 • z;, 

where w, f E 1 (mod 4 ) . Then, by t h e a d d i t i o n f o r m u l a and Lemma 5 , 

F x 0 k - ^ o = F T • 2k~2u + F „ ( 2 f e - 2 w + 1 - 2k~3v) 
n+ 2 • 5 n -1 w v 

E 2k'2u + 2k~lu + Fn - 2k~2V (mod 2k) 
E 2 k ~ 2 + 2 k " 1 + Fn - 2k~2 (mod 2k) 

E 2 k _ 1 4- F n (mod 2 k ) „ 

Proof of the Main Theorem 

We proceed by induction on k > 5. The result is easily checked for k = 5, 
so assume k > 5 and the Theorem holds for /c. 
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First, if b = 4, 6, 10, 12, 14, 18, 20, 22, 26, 28, 30 (mod 32), then it is 
clear that y(2fc+1, b) = 0 since z;(25, 2?) = 0. 

Case 1: b E 3 (mod 4). Then y(2k, Z?) = 1, so choose n such that Fn E b 
(mod 2k) . Since 2? is odd, we have n E 1, 2 (mod 3). Now either Fn E b (mod 
2^ + 1) or Fn E 2? + 2fe (mod 2k + 1) . In the latter case, Lemma 3 gives 

Fn + 2k-1 -3=Fn+2k (mod 2/c + 1 ) ~ E 2? + 2k + 2fe (mod 2k + l) 

E Z> (mod 2fe + 1 ) . 

Therefore, V(2k+1, b) > 1 when 2? = 3 (mod 4). 

Case 2: 2? E 1 (mod 4). Then (2k, 2?) = 3, so choose 

0 < n1 < n2 < n3 < 2k~l • 3, 

with Fn. E b (mod 2 ) for all i . Then, as above, for each i , either 

Fn. E b (mod 2k + 1) or ^. + 2*-i.3
 E * (mod 2^ + 1 ) . 

So, y(2k + 1, 2?) > 3 when b E 1 (mod 4). 

Case 3: b E 0 (mod 8). Then ^(2fe, 2?) = 2, so let 

0 < m < n < 2k~1 -3 

be such that Fm E Fn E b (mod 2fc). Note that as Fm E Fn E 0 (mod 4), we have 
m E n E 0 (mod 6), so Lemma 4 applies. In particular, 

^ + 2*-2-3 E Fm (mod 2 " ) ' 
from which it follows that m < 2k~2 • 3 and n = m + 2k~2 • 3. 

If Fm E 2? (mod 2 ^ + 1 ) , then by Lemma 3, 

^OT+2*-i.3 E
 b ( m o d 2 ? C + 1 ) ' 

so v(2k+l, b) > 2. Otherwise, we must have 

Fm E b + 2k (mod 2f c + 1). 

But then by Lemma 4, 

Fn = F
m+2k'2 .3EFm + 2k ( m o d 2 * + 1 ) = & (mod 2 * + 1 ) , 

and a l s o , 
^ + 2 , - i . 3 E Fn E b (mod 2* + l ) . 

We conclude that v(2k+l, b) > 2 when b•= 0 (mod 8). 

C a s e 4 : 2? E 2 (mod 3 2 ) . Assume t h a t z ; (2* , 2?) = 8 . L e t Fn E b (mod 2k) , 
w i t h n < 2 / c _ 1 • 3 . Then Fn E 2 (mod 4 ) , so t h a t n = 3 (mod 6 ) . Now e i t h e r 

Fn E b (mod 2k + l) o r F n E 2? + 2^ (mod 2k + l) . 

In the latter case, by Lemma 7 we have 
Fn + 2^3.3 = ̂  + 2* = 6 (mod 2k + l). 

Thus, there is at least one index 0 < m < 2k • 3 such that Fm E b (mod 2f e + 1). 
But now, by Lemma 6, 

F2*-Z-3s±m = Fm = b (mod 2^ + 1) f o r S = 4, 5, 6, 7. 
Since these eight solutions all occur in one period of Fn (mod 2 ^ + 1 ) , we con-
clude that v(2k+1, b) > 8. 

Conclusion: We have established inequalities in each case of the Theorem. 
The proof follows from a straightforward computation, using the fact that Fn 
has shortest period of length 2k • 3 modulo 2* + 1, and the obvious identity: 
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]T v(2k+1, b) = 2k • 3. 
b(mod 2k+l) 

Using the main Theorem of [2], we are now able to describe the distribution 
of Fn (mod 2k • 5J'). Indeed, 

Theorem: For Fn (mod 2fe • 5J) with k > 5 and j > 0, we have 

y(2k • 5J', fc) = 

1, 
2 , 
3 , 
8, 
0 , 

i f b = 3 (mod 4 ) , 
i f 2? E 0 (mod 8 ) , 
i f b E 1 (mod 4 ) , 
i f 2? E 2 (mod 32) , 
f o r a l l o t h e r r e s i 
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1. Introduction 

The main purpose of this paper is to show the equivalence between the Gol-
den Number and the Fibonacci Number line-sequential vector spaces. The conven-
tions are the same as those adopted in our previous paper [6] . 

2. The Golden Number Line-Sequences 

We shall consider the following special irrational number line-sequences: 

(2.1) F1>A = Flt 0 + AFQt x, 

(2.2) F1>B = Fly0 + BFQ>L, 
where (see [6], (4.5) and (4.6): 

(2.3) A = (1 + 51/2)/2, 

(2.4) B = (1 - 51/2)/2, 

(2.5) AB = -1, A + B = 1. 

We shall refer to A and B as the large and the small Golden Ratios, respec-
tively, and shall in general simply refer to these and their powers collec-
tively as Golden Numbers. 

Likewise, the ratio between the neighboring Fibonacci Numbers un+i/un will 
be called the large Fibonacci Ratio. Here, "large" means that the suffices 
n + 1 > n, without inference to the values of the u1 s or their ratio. Its 
negative reciprocal will be referred to as the small Fibonacci ratio. 

The line-sequences (2.1) and (2.2) are found to be: 

(2.6) FUA: ..., A ~ 3 , A ~ 2 , A ~ l , 1, A 1 , A 2 , A 3 , ...; 
(2.7) FKB: ..., S"3, B~2, B~l, 1, Bl, B1, B3, ... . 

These are none other than a pair of divergent and convergent geometrical pro-
gressions of Golden Numbers. Henceforth, we shall refer to these two line-
sequences simply as the Golden Pair. Correspondingly, the pair F^ 0 and ^o, 1 
will be referred to as the Fibonacci Pair. 

A number of mathematical curios now begin to reveal their origin in this 
light. 

a. On inspection of the line-sequences (2.6) and (2.7), it is obvious that 
Binetfs formula can be obtained independently from the Golden Pair 
without following through the conventional algebraic derivation [7]. 
This is done in (4.9) below. Furthermore, as is well known, the large 
Fibonacci Ratio approaches the large Golden Ratio as a limit (see [7], 
p. 53); that is, 

(2.8) lim un+i/un = A. 
b. For an arbitrary line-sequence, it has been suggested (see [2] and [3]) 

that the same limit as (2.8) also exists between a neighboring pair, 

216 [Aug. 



THE GOLDEN-FIBONACCI EQUIVALENCE 

and examples are given for F1? 4 and i7 ,̂ i- This obviously cannot be 
true in general, as is evidenced by the counterexample of (2.7). 

3. The Golden-Fibonacci Space 

By (2.8) of [6] and (2.5) above, it is obvious that both terms in the 
Golden Pair Fls A and Fls B are orthogonal. Hence, they form a pair of basis 
vectors which, like the Fibonacci Pair Fls 0 an(l ^o 1' spans the same 2-dimen-
sional line-sequential vector space. Vectorally, therefore, the Golden Pair 
and the Fibonacci Pair are equivalent. Any line-sequence in this vector space 
can be expressed in terms of either of these two sets of basis vectors. In 
particular, the Lucas line-sequence can be expressed simply as 

(3.1) F2)1 = FltA + Fl>B. 

(4 

(4 

(4 

1) 

2) 

3) 

b 

4. Some Basic Properties of the Golden Pair 

Now we shall investigate some of the basic properties of the Golden Pair. 

a. We note that the Golden Pair are not unit vectors; hence, they are an 
orthogonal but not an orthonormal pair. Their lengths are, respec-
tively, 

L l f A = (2 + A)112 = 1.90211. . ., 
Ll, s = (2 + 5 ) 1 / 2 = 1-17557. . ., 

which are again in the ratio of 

L \ , AILI, B = A-

We shall investigate the linear properties of the Golden Pair. We 
define the following column vectors and 2 x 2 matrices: 

(4.4) F 1, 0 
?0,1 

1 
G F 1, B 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

M A M~ • 1 = 

where 

M~lM = MM -1 _ = I, 

I = 

= U - BY 

Then, we have 

MF = G, 

M~lG = F, 

where the second element of (4.9) is just Binet's formula, as we have 
mentioned in Section 2a; and the transformation M is no more than a 
rotation followed by a dilation, or vice versa. 

Also we have, for the lengths of the Golden Pair, the following 
linear transformation: 
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"3 2 

2 3 

~A 

_B_ 
= 

Ll, A 

r 2 
> 1, B-

c. The geometrical interpretation of the foregoing results is simple. Let 
Fit 0 an(i ^0,1 ^e t n e t w o unit vectors along the x- and z/-axes, respec-
tively. Then the Golden Pair F± A and Fi B and the Lucas vector ^2,1 
can be easily constructed as shown in Figure 1. 

It is seen from the diagram that the angle of rotation from i77]̂  Q to 
Fiy B is simply 

(4.11) tan_15 = -31.72° . 

Also see p. 164 of [4] or (1.6) of [1]. 

Figure 1 

Geometrical Interpretation of the Fibonacci Pair and the Golden Pair 

Furthermore, it is clear from (2.8) that the direction of F^ A is 
that of an asymptote toward which the Fibonacci vectors approach hyper-
bolically as the limit; while the vector F^ B lies in the direction of 
the other asymptote, perpendicular to the former, and alternately 
toward both directions of which the Fibonacci vectors recede as the 
limits. The Fibonacci vectors approach their limits in three different 
directions (see Figure 2). 
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Figure 2 

U, V are the symmetry axes; F\,A anc* ^1,5 a r e t n e asymptotes. 
(Drawing is not to scale.) 

Up to now, the investigation on the properties of the Fibonacci hyperbolas 
has been based on the ray-sequence instead of the line-sequence; thus, infor-
mation about the negative branch of the line-sequence has been left out [5]. 
When the same procedure is applied to the entire line-sequence, a complete 
picture emerges. For instance, on a branch of the hyperbola 

(4.12) x2 + xy - y1 ~ 1 = 0 

lie the following set of Fibonacci points: 

(4.13) ((1, 0)): 

..., (5, -3), (2, -1), (1, 0), (1, 1), (2, 3), (5, 8) ...; 

and on a branch of the complementary hyperbola 

(4.14) x2 + xy - y2 + 1 = 0 
lie the complementary set of Fibonacci points 

(4.15) ((0, 1)): 

..., (-8, 5), (-3, 2), (-1, 1), (0, 1), (1, 2), (3, 5) ... . 

The two sets ((1, 0)) and ((0, 1)) make up all the neighboring pairs in the 
line-sequence. The remaining two branches are occupied by the sets ((-1, 0)) 
and ((0, -1)) of the negative Fibonacci line-sequence, as shown in Figure 2. 
This analysis also reveals that the parity axes (see [6], Fig. 1) correspond to 
the symmetry axes U and 7, rather than X and Y. 
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ARMSTRONG NUMBERS: 153 = l 3 + 5 3 + 3 3 

Gordon L. Miller and Mary T. Whalen 
University of Wisconsin, Stevens Point, WI 54481 

(Submitted October 1990) 

A number N is an Armstrong number of order n (n being the number of digits) 
if 

abed. . . = an + bn + en + dn .+ . . . = # . 

The number 15 3 is an Armstrong number of order 3 because 

l3 + 53 + 33 = 1 + 125 + 27 = 153. 

Likewise, 54748 is an Armstrong number of order 5 because 

55 + 45 + 75 + 45 + 85 = 3125 + 1024 + 16807 + 1024 + 32768 = 54748. 

More generally, an n-digit number in base b is said to be a base b Armstrong 
number of order n if it equals the sum of the nth powers of its base b digits. 
In all bases, we disregard the trivial cases where n - 1. 

A literature search revealed very little about Armstrong numbers. This set 
of numbers is occasionally mentioned in the literature as a number-theoretic 
problem for computer solution (see Spencer [1]). Only third- and fourth-order 
Armstrong numbers in base ten were noted. The library search did not disclose 
the identity of Armstrong or any circumstances relating to the discovery of 
this special set of numbers. Some authors have used the term Perfect Digital 
Invariant to describe these same numbers. 

We wrote a computer program to find all decimal Armstrong numbers of orders 
1 through 9 simply by testing each integer for the desired property. Table 1 
lists the results. It is interesting to note that there are no decimal second-
order Armstrong numbers. For orders 3 through 9, there are either three or 
four Armstrong numbers with one exception: 548,834 is the only Armstrong number 
of order 6. 

Table 1 

Decimal Armstrong Numbers Less than One Billion 

153 
370 
371 
407 
1634 
8208 
9474 
54748 
92727 
93084 
548834 

1741725 
4210818 
9800817 
9926315 
24678050 
24678051 
88593477 
146511208 
472335975 
534494836 
912985153 

Is the set of Armstrong numbers in any base infinite? Consider the number 
N of n digits in base b. Then N > bn~l. The Armstrong sum, AS, < n(b - l)n . 

Since 

N bn~l _ 1 / b \n 
Is ~ nib - l)n " bn\b - 1/ ' 
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and this tends to infinity as n increases, N > AS for all sufficiently large 
values of n. Therefore, there are only finitely many Armstrong numbers in any 
base. 

As an example, suppose we have a three-digit number in base two; that is, b 
is 2 and n is 3. Then N > 22 = 4 and AS < 3(1)2 = 3. Therefore, it is not 
possible to have an Armstrong number in base two with three or more digits. 
The highest numbers that need to be tested to be sure of having all base-two 
Armstrong numbers would be the two-digit numbers. Excluding the trivial case 
of one-digit numbers, the only numbers that need to be tested are 10 two and 
11 two » neither of which is an Armstrong number, since l2 + 02 does not equal 
lOtwo and l 2 + I2 does not equal lltwo • Therefore, there are no Armstrong 
numbers in base two. 

Similarly, in base three: If n = 8, we have N > 37 = 2187 and AS < 8(2)8 = 
2048. Therefore, it is impossible to have a base-three Armstrong number of 
more than seven digits. One need only check the base-three numbers up to and 
including those of seven digits to be assured of having all Armstrong numbers 
in base three. It can be shown, in like manner, that n = 13 is sufficient to 
obtain all the Armstrong numbers in base four. Table 2 lists all the Armstrong 
numbers in bases three and four. 

Table 2 

All Armstrong Numbers in Base Three and Base Four 

Base 3 4 

12 
22 
122 

130 
131 
203 
223 
313 
332 
1103 
3303 

The maximum number of digits that must be checked in any base grows rapidly 
as the base increases, and it becomes cumbersome to test all integers up to the 
theoretical maximum for the Armstrong property. Table 3 lists the bases from 
two to twenty and the maximum number of digits of the integers that would need 
to be checked to find all Armstrong numbers in that base. 

Table 3 

Maximum Number of Digits that Must Be Checked in Each Base 
To Obtain All Armstrong Numbers 

Base 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Maximum Digits 

2 
7 
13 
20 
28 
35 
43 
52 
60 
69 

Base 

12 
13 
14 
15 
16 
17 
18 
19 
20 

Max imum Digits 

78 
87 
97 
106 
116 
126 
136 
146 
156 
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Our computer program for bases five through nine searched all the numbers 
from one to one billion. The results are reported in Table 4. Note that in 
base five there are no Armstrong numbers with. 5, 7, 85 10, 11, or 12 digits. 
There is a 13-digit Armstrong number and the computer search was terminated 
before 14-digit base-five numerals since such a number is greater than one 
billion. 

Table 4 

Armstrong Numbers in Bases 5 through 9, Less than One Billion 

Base 5 6 7 8 9 

23 
33 
103 
433 
2124 
2403 
3134 

124030 
124031 
242423 

434434444 
143204434402 

243 
514 

14340 
14341 
14432 
23520 
23521 
44405 
435152 
5435254 
12222215 

555435035 

13 
34 
44 
63 

250 
251 
305 
505 

12205 
12252 
13350 
13351 
15124 
36034 
205145 
1424553 
1433554 
3126542 
4355653 
6515652 

125543055 
161340144 
254603255 
336133614 
542662326 
565264226 

13210651042 
13213642035 
13261421245 
23662020022 

24 
64 
134 
205 
463 
660 
661 

40663 
42710 
42711 
60007 
62047 

636703 
3352072 
3352272 
3451473 
4217603 
7755336 
16450603 
63717005 

233173324 
3115653067 
4577203604 

45 
55 
150 
151 
570 
571 
2446 
12036 
12336 
14462 

2225764 
6275850 
6275851 
12742452 

356614800 
356614801 
1033366170 
1033366171 
1455770342 

Other interesting observations from Table 4: In the range tested, there are 
more base-seven Armstrong numbers than there are for any other base; there are 
more base-eight Armstrong numbers than there are base-ten Armstrong numbers; in 
bases six, seven, and eight, there are no four-digit Armstrong numbers. 

Armstrong numbers provide intriguing mathematical recreation. Elementary. 
students could be asked to find Armstrong numbers in base two, base eight, or 
any other nondecimal base. This activity would provide practice in the opera-
tions of addition and multiplication in these bases, and lead to a better 
understanding of nondecimal numbers. High school students could be challenged 
to write computer programs which would output Armstrong numbers in any base. 
This latter activity affords an excellent opportunity to discuss program 
efficiency, since students will likely find that their programs, though 
logically correct, will not go beyond numbers with only a few digits before 
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becoming overwhelmed by time-consuming calculations. The rate at which the 
computing time grows as a function of the number of digits, which is an 
important characteristic of a computer algorithm, can be introduced here. 

Reference 
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WARING'S FORMULA, THE BINOMIAL FORMULA, 
AND GENERALIZED FIBONACCI MATRICES 

Piero Filipponi 
Fondazione Ugo Bordoni, Rome, Italy 00142 

(Submitted October 1990) 

1. Introduction 

Fibonacci matrices are square matrices the entries of the successive powers 
of which are related to Fibonacci numbers: the most celebrated among them is 
the 2-by-2 ^-matrix [1], 

In previous papers (e.g., see [3] and [6]) properties of the generalized 
Fibonacci Q-matrix, denoted by M and defined as 

(1.1) M = 
m 1' 
1 0 (m a positive integer), 

have been used to evaluate infinite sums involving the generalised Fibonacci 
(Un) and Lucas (Vn) numbers 
(1.2) Un = mUn.l + Un_2, (U0 = 0, Ul = 1), 

(1.3) Vn = mVn.l + Fn_2, (70 = 2, Vl = m) . 

Note that when m = 1, M is the ^-matrix of [1] so that Un and Vn are the tradi-
tional Fibonacci and Lucas numbers. 

The aim of this paper is to show how, using M, M , and some other matrices 
related to M, we can evaluate a variety of finite sums involving Un and/or Vn. 
The underlying idea consists in using 2-by-2 commuting Fibonacci matrices (say, 
A and B) so that the matrix analogues of the binomial formula 

(1.4) (A +B)n = J2 (n.)AjBn-J 

and of the Waring formula ( e . g . , see [ 2 ] , formula (1 .2 ) ) 

\ni L 

(1.5) An + Bn = X (-DJ—zr~'(n ~ 3)(ABY (A + B)n~2J (n > 0 ) , 

where the symbol L'J denotes the greatest integer function, remain valid. The 
Fibonacci-type identities are then established by equating the corresponding 
entries of the matrices on the right-hand side (rhs) and left-hand side (lhs) 
of (1.4) and (1.5). Most of the identities worked out in this paper as exam-
ples of the use of this technique are believed to be new. 

Throughout this paper, boldface letters always denote matrices; for 
example, I denotes the 2-by-2 identity matrix. 

2. Definitions 

First, we recall that the numbers Un and Vn can be expressed in closed form 
by means of the Binet forms 

(2.1) Un = (an - 3n)/A 
and 
(2.2) Vn = an + 3n, 

Work carried out in the framework of the agreement between the Italian PT Administration and 
the Fondazione "Ugo Bordoni." 
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where 

/A = JrrP- + 4 
( 2 . 3 ) <>a = (/?? + A)/2 

(8 = Ow - A ) / 2 . 

Observe that 

(2.4) */„_! + t/n+1 = Vn; 

identity (2.4) will be widely used throughout the algebraic manipulations with-
out specific reference. 

Then, we recall that (e.g., see [6]) 

( 2 . 5 ) Mn = 
Un+l Un 

Vn
 Un-l. 

(n > 0) 

and 

( 2 . 6 ) M~l = M - ml 

From formula (2.32) of [6], it is readily seen that 

Un - 1 ~ Un 
(2.7) (M"1) l\n M~ (- ir (n > 0) . -Un Un+l_ 

Finally, let us define the following 2-by-2 matrices. 

(2.8) H = R(l) = M + AT1 2M - ml, 

(VnI (n even) , 
(2.9) M n + M~n = R(n) = < 

([/„// (n odd). 

Using formulas (2.24)-(2.27) in [6] and taking into account that the eigenvalues 
of H are A^ = A and A2 = -A, after some simple manipulations we obtain 

(AnJ (n even) 
(2.10) Hn = I 

{^~lH (n odd) 
and 
(2.11) H'n = Hn/A2n. 

Since the matrices (2.5)-(2.11) are polynomials in M, they commute so that 
they can replace A and B in (1.4) and (1.5) above and can be used to obtain 
Fibonacci-type identities, as will be shown in sections 3 and 4. 

3. Use of the Binomial Formula 

In this section we give some examples of the use of the matrices defined in 
section 2 in connection with (1.4). 

Example 1: Using (2.6), we can write 

(3.1) Mn = (M~l + ml)n = JT (n.)M-J (mI)n-J = mn ]T (n.)(mM) ~J'. 

Equating the upper right-hand entries of the matrices on the lhs and rhs of 
(3.1), by (2.5) and (2.7), we can write 

1 W ?„GX-^ • -«>" J-0 
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whence , r e c a l l i n g t h a t UQ = 0 , 

« - i / m , i\7 (-2Un/mn (n even), 
{•){--) l 

J = 1 ( 0 (n odd) <"» £GX-i)'<o 
Example 2: Using (2.8) and (2.6) and omitting the intermediate steps, we can 
write 

m \ / 2\J\ Hn= (2M- ml)n = ( - ^ ) n E Q ) ( - | ) ^ J ' -
J : 

Us ing r e a s o n i n g s i m i l a r t o t h e p r e c e d i n g [ c f . ( 2 . 5 ) and ( 2 . 1 0 ) ] we o b t a i n 

( 3 . 3 ) V (n)(-^)JU, - i ° , ( " e v e n ) , 
J A 1 w A m ' J \-2A"-1/m'1 (nodd). 

Example 3: From ( 2 . 9 ) , we have 

whence, after some manipulations, we can write 

(k- 2)/2 

(fe/ 2 ) I + " .^ | f c G ) R ( n ( / C " 2J')} ^ eVen)' 
Kfc(n) =^ J" = °  x (k- D/2/fe. 

£ (̂ )R(n(fc - 2j)) (fc odd). 
j = o J 

Equating the upper-left entries of the matrices on the lhs and rhs of (3.4) and 
taking (2.9) and (2.10) into account, we obtain 

(k-2)/2 
(3.5) Z (JK(,_2J-) = t ™ (k/2) (fe a n d n even), 

j = o v 

(k- 2)/2 
\j)vn(k-2j) (3.6) "E^^^fc-W) = ̂ > ~ (k/2) <k even> n o d d ) ' 

(fc- D/2 
(3.7) £ wH(k-2j) = ̂ n (fe odd, n even) 

(k-D/2,,, 

(3.8) £ uH(k-2j) = ̂ A (A: and n ° dd)e 

J = 0 J 

Example 4: From (2.6), let us write 

(3.9) mnI = (M- M ' x ) n = (-l)n |](?!)(-l)J'M^'-n 

(*-2)/2 
(J2)(-l)n/2J + £ ^Q)(-DJ'^(^ - 2j) (n even), 

~Z (^)(-l)J'[^n_2j' " M"^"2^] (rc odd). 
7 = n W / 

I (w -D/2 

£ 
J = 0 Equating the upper-left entries of the matrices on the lhs and rhs of (3.9) and 

taking (2.9), (2.5), and (2.7) into account, yields 
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l(n-l)/2J.„. . (mn ~ L 7 2 ) ( - 1 ) n / 2 (n 6Ven) 

(3.io) z r.){-iyvn.2j =\ Vn/2/ 

j = o w / (m* 
(n odd) 

Example 5: Now let us consider the matrix 

and recall [see (2.10)] that 

(AnMn (n even), 

(3.11) HMn = [from (2.5) and (2.8)] 

(3.12) (HM) HnMn = 
{An-1HMn {n odd). 

From (2.8) we have HM = M2 + I so that we can write 

(3.13) (HM)n = (M2 +/) n = Z(^)^2j'. 

Equating the upper-right entries of the matrices on the lhs and rhs of (3.13) 
and taking (3.12), (2.5), and (3.11) into account gives 

(n e v e n ) , n /r7X (A"Z/„ (n even) 

i = o v / ( A " - 1 ^ (W o d d ) . 
(3.14) 

Moreover, from (2.11) and (2.7), after some manipulations it can be seen 
that 

(3.15) (HMn)~l = H~lM-n = (~1)W 

A" 

^«-l 

^ 

^ 

-7, n+ 1 

From ( 3 . 1 1 ) and ( 3 . 1 5 ) , e q u a t i n g t h e u p p e r - l e f t e n t r i e s of t h e m a t r i c e s on t h e 
l h s and r h s of t h e m a t r i x e q u a t i o n {HMn)~^HMn = I , y i e l d s 

( 3 . 1 6 ) Vl - Vn^Vn + 1 = A 2 ( - l ) * . 

Finally, from (3.11) and (2.7) let us write 

(3.17) H = {-If 
Vn ' 

Vn-l. 

Jn-l 

U. n + l-

If we equate the entries of H and those of the matrix product on the rhs of 
(3.17), by (2.8) we can write 

(3.18) Un-iVn+1 - UnVn = m(-l)n (upper-left entry), 

(3.19) Un + 1Vn - UnVn+1 = 2(-l)* (upper-right entry). 

From (3.18) and (3.19), the following identities involving Pell numbers (Pn , 
i.e., Un with m = 2) and Pell-Lucas numbers (Qn, i.e., Vn with m = 2) [5] can 
be immediately established: 

(Qn + l&n-l + Pn) = Qn(Pn + Pn + 0 
( 3 . 2 0 ) < 

(Pn(Qn + l ~ G„) = Pn+lQn ' Pn-lQn + l' 

4. Use of the Waring. Formula 

In this section we give a few examples of use of the matrices defined in 
section 2 in connection with (1.5). Some simple congruencial properties of the 
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numbers Un and Vn are then established on the basis of the identity obtained in 
the f i r s t of the given examples. 
Example 6: By (1.5) and (2.8) we can wr i t e 

[n/2\ . _ • 

(4.1) R{n) = Mn+ M~n= Yl ( - D J - ^ — n • J ) H n - 2 J (n > 0 ) . 
j = o n J X J 7 

By equating the upper-left entries on the lhs and rhs of (4.1) and taking (2.9) 
and (2.10) into account, we obtain a rather curious formula valid [see (1.5)] 
for ft > 0, namely 

in/2j . - (Vn (ft even), 

(4.2) Z ( - D J ^ H n ^ ( A 2 ) W 2 J " J'M 
J'=O J\ J ' (̂  ( n o d d ) e 

The curiousness of (4.2) lies in the fact that analogous formulas (e.g., see 
[4] formulas (1.6) and (1.7)) give separately all numbers Un and Vn (indepen-
dently of the parity of ri) . 
Example 7: By (4.1) let us write 

(4.3) Mln + I = Mn(Mn + M~n) =MnR(n) 

[n/2\ 

X ("DJ'^7(n '• QYn^n-^ (n > 0) 
j=0 n- Q\ Q 

and observe [see (2.5), (2.8), and (2.10)] that the upper-left entry X\\ of 
MnHn~2J is 

yn+1An"i-^^ (n odd). 

Equating the upper-left entries of the matrices on the lhs and rhs of (4.3) and 
taking (2.5) and (4.4) into account gives an identity the lhs of which is the 
same as that of (4.2), while its rhs equals ^2n+l + 1 divided by either Un+\ (n 
even) or Fn+1 (n odd). Comparing these identities with (4.2) yields 

!

Un + iVn (n even) , 

UnVn + l (ft odd). 

Observe that (4.5) also holds for ft = 0. 

Example 8: Let us replace A by inM and B by I in (1.5) and take into account 
that, from (1.1), (1.2), and (2.5), we have 

(4.6) mM + I = M2. 

Equating the upper-right entries of the matrices on the lhs and rhs of the so-
obtained matrix identity yields 

(4.7) £ J (-DJ'^T7(n ~- J)mjUZn_3j = mnUn (n > 0). 

Observe that using the matrix identity QnM)n = (M2 - I)n [directly derived from 
(4.6)] in connection with (1.4) gives an alternative expression for the rhs of 
(4.7), namely, 

(4.8) (-1)" it(-Djr.)u2j = mnUn. 
j = o w ' 
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4.1 Some Congruencial P roper t i e s of Un and Vn 

Some congruencial properties of Un and Vn can be derived easily from (4.2). 
If p > 2 is a prime, then from (4.2) we can write 

( 4 . 9 ) Up = A P - I + p Y: \-iy-^(v ~.j)^-1-^' 

whence, noting that the sum on the rhs of (4.9) is divisible by p and recalling 
that A2 = m2 + 4, we obtain the congruence 
(4.10) Up = (m2 + 4)(P-D/2 (mod p ) . 

Equivalently, we can state that Up = 0 (mod p) if m2 + 4 E 0 (mod p) while £/p = 
1 (or -1) (mod p) if w2 + 4 is (is not) a quadratic residue modulo p. 

For n an arbitrary positive odd integer, let us rewrite (4.2) as 

(4.11) Un = (-i)<»-i>/2 - ^ - ( ^ + ;j/2) + ̂ V u i - ^ / " - jV̂ i-z,-
" n + l\(n - l)/2/ A-< n - j \ 3 J 

= n(-l)^-1)/2 + £ Vl)J'-^--(n " ̂ A""1-^' (n odd). 
7 = 0 ^ d \ 0 I 

From (4.11), the congruence 

(4.12) Un E n(-l)("~1)/2 (mod w2 + 4) (n odd) 

is immediately obtained. Using the same procedure, for n even we get 

(4.13) Vn E 2(-l)"/2 (mod m2 + 4) (n even). 

5. Conclusions and Further Examples 

In this paper it has been shown that a large number of Fibonacci-type iden-
tities can be established by using matrices related to M in connection with the 
binomial formula and the Waring formula. We do believe that matrices other 
than those defined in section 2 can be employed to obtain further identities. 

On the other hand, we wish to point out that the technique discussed in 
section 2 can also be used profitably in connection with other formulas. For 
example, consider the matrix equation 

(5.1) An +Bn = (A+B) £ (-l)i-lAn-JBJ'1, 
i= l 

which is valid if AB = BA and n is odd, and the matrix equation 
n 

(5.2) Y. ^ = (An + l - I) (A - J ) " 1 , 

which is valid if all eigenvalues of A are different from 1. 
If we replace A by M and B by M - 1 in (5.1), we can write 

R(n) = Mn + M'n = (M + M~l) J2 ("D j-lMn~2J + l 

j= l 

(w-D/2 
(-l)("-D/2j + J2 (-DJ'~lR(n - 2j + 1) 

J = 1 
= //Z (-l)̂ '-1M̂ -̂ '+1 = // 

and, by (2.9), 

(5.3) J*(w) = (-1)(?2-1)/2// +// * £ V D ^ ' - ^ - ^ + I J (W odd) 
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E q u a t i n g t h e u p p e r - l e f t e n t r i e s of t h e m a t r i c e s on t h e I h s and r h s of ( 5 . 3 ) and 
taking (2.9) and (2.8) i n to account y i e l d s 

( n - D / 2 
-2-3-mUn = ( - l ) ( * - 1 ) / 2 m + m £ (-DJ'-lVn.2j+l, 

whence 
( n - l ) / 2 

( 5 . 4 ) Z ( - l ) J _ 1 ^ - 2 i + l = ^n " ( - l ) ( n " 1 ) / 2 (n o d d ) . 

Of course, the lhs of (5.4) is an alternating sum of alternate Vk. Since 

vk = uk.x + uk+l9 

the sum obviously telescopes so that (5.4) has a more direct derivation. 
If we replace A by HM in (5.2) and take (2.8) and (3.12) into account, for 

n odd we can write 
n 

(5.5) J2 (™)J = (Hn + lMn + l - I)(HM - I)"1 = (Hn + lMn + l - I)M~2 

J" = (kn + lMn + l - I)M~2. 

Again, by (3.12) and (2.8), the lhs of (5.5) can be rewritten as 

n . (w-l)/2 (n-l)/2 
(5.6) YL (HM)J = T* A2HMZJ +HMZJ + 1) = ]T A2^'(M2^+2 + 2M2i). 

j" = o i = o j = o 
E q u a t i n g t h e u p p e r - l e f t e n t r i e s of t h e m a t r i c e s on t h e r h s of ( 5 . 6 ) and ( 5 . 5 ) 
and u s i n g ( 2 . 7 ) y i e l d s 

( n - l ) / 2 
( 5 . 7 ) £ A2^([/2 j- + 3 + 2U2j + l) = A* + 1£/n - 1 (n o d d ) . 

J = 0 
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First Wall [8] and subsequently a number of others (see, e.g., [1]? [3], 
and [4]) have examined the properties of the Fibonacci sequence modulo m. The 
Tribonacci sequence modulo m was considered and a number of properties were 
derived in [6]. Chang [2] briefly examined higher-order sequences modulo m. 
Vince [5] considered the period of repetition of a general linear recurrence. 

In this paper we list several basic results which follow when some of 
Vincefs results are applied to the special case of the Tetranacci sequence. We 
then establish a number of additional properties. We also investigate in 
detail the relationship of the period of the Tetranacci sequence modulo m to 
the factorization of the minimum polynomial of the T-matrix defined in [7] and 
given below in (2). 

We consider the sequence {Mn} reduced modulo m , taking least nonnegative 
residues, where 

(1) 1. Mn = Mn.l + Mn_2 + Mn_3 + Mn_4 (w > 4), M0 = Ml = 0, M2 = M3 

Definitions: The length of the period of {Mn} (mod m), designated him), is the 
number of terms in one period of the sequence {Mn} (mod m) . A simply periodic 
sequence is periodic and repeats by returning to its initial values. 

We list several results found in [7] which will be required in the develop-
ment of this paper. 

(2) 

where 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(a) Tn 

Nn = Mn^ 

Sn = Mn. 

(b) \T\ 

Mn + 1 
Mn 

Mn-1 

Nn + 2 

N„ 

"S'n + 2 
Sn + 1 
Sn 

N„ •l Sn-

M„ 
Mn-1 
Mn-1 J 

+ M + Mn_2 

+ M„.z. 

= -1, where 

n- 3' 

\T\ is the determinant of T. 

( c ) 

Mn+3 Mn+2 Mn+1 Mn 
Mn+2 Mn+l Mn M n _ ! 
Mn+l Mn « „ _ ! Mn_2 

Mn « „ - i Af„_2 Mn.3 

= (~l)n. 

(d) Mn+p = Mn+iMp_i+2 + Mn+i_lNp.i+2 + Mn+i_2Sp-i+2 + Mn+i.3Mp.i+l. 

(e) '£Mi = \(Mn + 2 + 2Mn + « „ _ ! - 1 ) . 
i = 0 J 

( f ) E M2i + 1 - \{2M2n + 2 + M2n - tf2n_i - 2 ) . 
i= 0 

Table 1 gives values of h(m) for selected values of m. 
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Table 1 

m 

him) 

2 

5 

3 

26 

4 

10 

5 

312 

6 

130 

7 

342 

8 

20 

9 

78 

10 

1560 

1 1 

120 

13 

84 

15 

312 

16 

40 

17 

4912 

19 

6858 

27 

234 

100 

1560 

Results in [5] may be applied to the Tetranacci sequence to yield the fol-
lowing theorem. 

Theorem 1: The sequence {Mn} (mod m) satisfies the following: 

(a) The sequence {Mn} (mod m) is simply periodic. 

(b) If m has prime factorization m = p^p^1 .-. pts > then 

h(m) = LCM[fe(pfi), Hvl1), -.., Hp*')]. 
(c) If h(p2) * h{p)9 then fc(p*) = pt_ 1^(p)-

(d) If n > 0 is least such that M n + 1 = Mn = Mn_x = 0 (mod m) , and if 

^t + 1 M+ Mt-i E 0 (mod m), then t = kn for some integer k. 

If we examine the terms of {Mn} (mod 5), we see that for s = 78 we have 

Ms-i = Ms = Afa + 1 = 0 (mod 5), 

but Ms_2 t 1 (mod 5). Hence., s is not the length of the period of {Mn} (mod 
5). However, the occurrence of "triple zeros," 0, 0, 0, in {Mn} (mod 5) and, 
in general, the occurrence of triple zeros in the sequence (mod m), is signifi-
cant in determining, among other properties, the period structure. The follow-
ing lemma states some of the results related to this phenomenon. 

Lemma 1: If s > 0 is least such that 

Ms _ ]_ = Ms E Ms +1 = 0 (mod m) , 

then the following congruences are valid: 

(a) M*_2 E Ms
8
+2 E 1 (mod m) , 

(b) Mjs-l E Mjs E Mjs + l E 0 (mod m) f o r a l l j > 0 . 

Proof: To p r o v e ( a ) , we u s e (6) t o o b t a i n 

(-D£ 

= I 

« s + 3 
Ms + Z 
Ms + i 
Ms 

£+2Wf-

Ms + 2 Ms + 1 
« s + l Ms 
Ms M s _! 
« 8 - l « e - 2 

2 - A # + 2 (mo 

Ms 
« e - l 
^ s - 2 
« s - 3 

d m) . 

Ms+2 0 
0 
0 
0 
M, 

0 
0 
Ms - 2 

Therefore, ̂ + 2
 E ±1 (mod m) or M^+ J E 1 (mod m) and the proof is complete. 

In (b) , we prove only that Mjs = 0 (mod m) . The other parts follow simi-
larly. The proof is by induction on J. If J = 1, the result is clear. If we 
assume that Mjs E 0 (mod m), we have, by (7) with i = 1, 

Mu + l)s = Mj8 + s = %,+ A + l + MjsNs+l + Mjs.lSs + l + MJs.2Ms = 0 (mod m) , 

and the induction is complete. 
The next theorem provides identities which involve a rather curious shift 

of a factor of the subscript of an appropriate Mn to a power of that Mn when 
the modulus is changed from m to m2-. 
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Theorem 2: Let h = h(jri) and let k be a positive integer, then the following 
identities hold. 

(10) (a) Mkh_2 = M\_2 (mod m2), 

( I D (b) Mkh_1 = ^ f e r X - i (mod m2)' 
(12) (c) Mkh = l<M\'_\Mh (mod m2), 

(13) (d) Mfe, + 1 = kMlJzMh + l (mod m 2 ) . 

We prove (10); the other parts follow similarly. The proof is by induc-
tion on L If k = 1, the conclusion is immediate. If we assume that 

Mkh-2 B Mh-2 <m o d m^> 
then, by (7) with i = 2 and the induction hypothesis, 

% + l)fc-2 = %/z-2) + /z = % A + % , - A + Mkh-zSh + ^ - 3 ^ - 1 

r = [M^-iiM^ + Mh.3) + M^.2Mh.2 +Mh-l{Mkh.1 +Mkh.3)] 

(mod **) ) = [/^^(/^ - ̂  - ̂ _ 2 ) + Mt+2 + %-l(^/z+l " ̂  - %!-!)] 

since 77? divides Mh+i, Mh, Mh_i and, by Lemma 1(b), m divides Mkh+i, Mkh, Mkh-i. 
This completes the proof. 

A related property is the following: 

Lemma 2: If p is prime and j = h{pt) is the length of the period of {Mn} (mod 
p£), then 

MP_2 E 1 (mod pt + l). 

Proof: Since M/-2 = 1 (mod P*)>
 Mj-Z = 1" (mod P) > a n d t n u s ^/-2 E 1 (mod P) f o r 

all s. Consequently, we have 

(M/_2 - 1) = {M._2 - l)(Mf_l + Afflf + ... + ̂ ..2 + 1) 

= [0 (mod p*)][(l + 1 + ... + 1) (mod p)} 

= [0 (mod p*)][0 (mod p)] 

E 0 (mod p t + 1 ) . 

The occurrence in {Mn} (mod 777) of the quadruple 1, 0, 0, 0 is the signal 
that the end of the period has been reached and that repetition has begun. If 
the term immediately in front of the three zeros is Afs-2, where Ms-2 £ 1 (mod 
m), there are only a limited number of possibilities for the value of Ms-2 
since, by Lemma 1, we always have Ms_2 = 1 (mod m) . This implies that as an 
element of the finite group, Zw, the order of Ms-2 is 2, 4, or 8. We now 
examine in detail the possibilities resulting from this implication. 

Theorem 3: If s is least such that 

M8_l E Ms E Ms + l E 0 (mod TTZ) and Afs_2 £ l (mod w ) > 

then one of the following holds: 

(a) If the order of Ms_2 = 2, then M2s-2 = M,?_2 E 1 (mod 77?) and 7z(777) = 2s. 
An example is {Mn} (mod 31), where 5 = 30,784 and 72(31) = 61,568. 

(b) If the order of Afs _ 2 = 4, then M^s.2 E Af^_2 = 1 (mod m) and him) = 4s. 
An example is {Mn} (mod 5), where s = 78 and /z(5) = 312. 

(c) If the order of Ms_2 = 8, then Af8s-2 E ^f-2 E
 1 (mod #0 a n d h{m) = 8s. 

An example is {Mn} (mod 89), where s = 1165 and 7z(89) = 9320. 
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Proof: The p r o o f f o l l o w s f r o m T h e o r e m 2 a n d f r o m t h e f a c t t h a t , i f a E b (mod 
m2-) , t h e n a = b (mod m) . 

The f o l l o w i n g t h e o r e m g i v e s f u r t h e r r e l a t e d r e s u l t s . 

Theorem 4: I f s i s l e a s t s u c h t h a t 

Ms.l = Ms = Ms+l = 0 (mod w ) , 

t h e n o n e o f t h e f o l l o w i n g h o l d s : 

( a ) I f h(m) = 2 s , t h e n f o r a n y r , Mr + Mr + S = 0 (mod 777). 

( b ) I f h(m) = 4 s , t h e n f o r a n y P , Mr + Mr + S + Mr + 2s + Mr + 3s = 0 (mod 77?) . 

( c ) I f h(m) = 8 s , t h e n f o r a n y T, Mr + Mr + S + Mr + 2s + ° • • 

Proof: We p r o v e ( b ) ; t h e o t h e r p a r t s f o l l o w s i m i l a r l y . 
w i t h i = 1 , we h a v e 

+ Mr + 7s E 0 (mod 77?) . 

By r e p e a t e d u s e o f ( 7 ) 

Mr + Mr + S + Mr + 2s + Mr + 3s 

= Mr + (Mr + lMs + l 4- M ^ s + 1 + M 2 . _ 1 5 a + 1 + Mr-2MS) 

+ (Mr+lM2s+l + MrN2s + l + Mr.lS2s+l + M P _ 2 M 2 s ) 

+ (Mr + lM3s+l + M r f 3 s + 1 + Mr.lS3s + l + Mr.2M3s) 

E M r ( l + Ms.2 + M2s-2 + M3s-2) (mod 777) 

E M r ( l + M s _ 2 + Af*_2 + M | _ 2 ) (mod 777) 

E 0 (mod 777) 

s i n c e M^_2 - 1 E 0 (mod m) a n d Ms_2 - 1 £ 0 (mod m ) . 

Remark: The p r e c e d i n g p r o o f s h o w s t h a t u n d e r t h e h y p o t h e s e s o f ( b ) , 

M„ E M P M S _ 2 ( m o d w ) 5 

Mr+ 28 E Mr^2s-2 E ^ s - 2 (mod 777), 

Mr + 3s E MrM3s.2 E MPAfjL2 (mod 777), 

whenever Ms + 1 E Ms = Ms_x = 0 (mod m) . 

From these congruences we conclude that whenever triple zeros, 0, 0, 0, 
appear in the interior of the period rather than at the end, the triple zeros 
divide the period into what we might call subper-iods of equal length where the 
terms in each successive subperiod are a fixed multiple of the corresponding 
terms in the first subperiod; that is, the terms which precede the first set of 
triple zeros. 

For example, in the sequence {Mn} (mod 5), we have 0, 0, 0 as the terms with 
subscripts 77, 78, 79; 155, 156, 157; 233, 234, 235; 311, 312, 313. If we call 
the first 78 (length of the subperiod) terms A, then the second 78 terms are 
obtained as 3 times A9 the third 78 as 32 E 4 (mod 5) times A, and the fourth 
as 33 E 2 (mod 5) times A. Further, we have 34 = 1 (mod 5) and the length of 
the period is 4x78 = 312. 

Theorem 5: For p > 2, h(p) is even. 

Proof: Let h = h(p) and use (6) to obtain 

{-Dh = 

Mh+3 
Mh+2 
Mh+\ 

Mh + 2 
Mh+1 
Mh 

Mh + i 
Mh 

Mh-l 

Mh 

Mh-i 
Mh-2 

Ml M h-l Mh-? M, h-3 

Mh+3 
Mh+2 
0 
0 

Mh+2 
0 
0 
0 

0 0 
0 0 
0 Mh_2 

Mh-2 Mh-3 
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= Ml-2MLl =K+2 =Mh + 2 = 1 (modp) . 
Therefore , (-l)h E 1 (mod p) and h i s even. 
Theorem 6: If p > 2 and s i s l e a s t such t h a t 

Ms.1 = Ms E M s + 1 E 0 (mod p), 

but Ms_2 £ 1 (mod p) , then one of the following holds: 

(a) If hip) = 2s, then s is even. 
(b) If hip) = 4s, then s is even. 
(e) If hip) = 8s, then s is odd. 

Proof: We prove (c); the other parts follow similarly. If hip) = 8s, then by 
Theorem 3(c), Ms

8
+2 = 1 (mod p ) , which implies that M^+2 = (-1) (mod p) . But, 

from the proof of Theorem 4, M ^ 2 = (-l)s (modp) also. Hence, (-1) = (-l)s 

(mod p) and s is odd. 

We now examine further the relationship of p to hip). The minimum polyno-
mial of the matrix T, 

fix) = x4 - x3 - x2 - x - 1, 
and its factorization over Zp determine what this relationship is. We begin by 
stating a theorem that follows from more general results in [5] . 

Theorem 7: If 
f(x) = x>+ - x3 - x2 - x - I = g\l{x)glHx)gl"{x)g^{x) 

is the factorization into irreducible factors of fix) over Zp, then 

(a) hip) \psLCK[ti(pmi - l)/(p - 1)], where s satisfies ps > max a^ > p5"1, 
77?-£. is the degree of g^(x), and t^ is the multiplicative order of 
bi(-l)mi in Zp9 hi being the constant term of g^(x). 

(b) If tl\{pmi - l)/(p - 1) for some integer r, then t?+l\h(p). 

We now apply Theorem 7 to the cases that arise from possible factorizations 
of fix). 

Case 1. f(x) is irreducible. In this case we have w^ = 4, a2 = 1? s = 0, 
tx = 2, P = 2. 

Hence, 7z(p) 12(p3 + p 2 + p + 1) and 8|/z(p). An example is p = 5, where /z(5) 
= 312, which divides 2(53 + 52 + 5 + 1) = 312 and is divisible by 8. 

Case 2. /(#) has a single linear factor. 

We then have mi = 1, m2 = 3, ax = a2 = 1> s = 0; t^, £2|p - 1, 

/z(p)|LCM[t1, t2(p2 + p + 1)] 
and 

ti\hip) and if tf|p2 + p + 1, then t^+1\hip). 

An example is p = 3, where 

fix) = (x - l)0r3 - x + 1) 

and hi3) = 26, tx = 1, t2 = 2, p = 0. Then 26|2(32 + 3 + 1 ) and 2|26. 

Case 3. fix) has exactly two distinct linear factors. 

We then have mi = m2 = 1, ̂ 3 = 2, ctj = a2 - a3 = 1, s = 0; tx, t2, t3|p - 1, 
hip)\p2 - 1 and if t\\p + 1 for some integer r, then t^+l\hip) . 

An example is p = 29, where 

/(#) = ix - 7)ix - 15)ix2 - 8x + 2), 
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and 7z(29) = 280, t l = 7, t 2 = 28, t3 = 4, LCM[7, 28, 4 - 3 0 ] = 840, which i s d i -
v i s i b l e by 280. Also, 7, 28, and 4 a l l d iv ide 280 and are the h ighes t such 
powers. 

and 

Case 4. f(x) has exactly four distinct linear factors. 

We then have mx = m2 = m3 = mh = 1; ax = a2 = a3 = a4 = 1, s 

h(p) |LCM[tl5 t2, t3, ti+J 

0, 

ti \p - 1 for t = 1, 2, 3, 4. 

An example is p = 137, where 7z(137) = 136 and 

f(x) = {x - 40) (x - 52) (a; - 58) (a: - 125). 

All the ^ = 136, so /z(137)|l36 and all t i 1136 as well. 

Case 5. /(^) has a repeated linear factor and two other distinct linear 
factors. 

and 

Then W]_ = m2 = m^ = 15 ai = a2 = 1, a3 

7z(p) |LCM[tl5 t2, t3] 

tJ^Cp). 

2, s 1, 

In looking for an example of this case, we consider the discriminant of 
f(x) = -563, a prime. Therefore, this case can occur only for p = 563. It 
does, in fact, occur when p = 563, /z(563) = 316,406, and we have 

f(x) = (x - 107)(x - 116)(x + 111)2. 

Then t l = t2 = t3 = 562 and /z(563) | 563 * 562 = 316,406. This is the only case, 
of course, where f(x) has a repeated root. 

Case 6. f(x) has two distinct quadratic factors. 

Then mi - m2 = 2; cq = a2 = a3 = a^ = 1, s = 0, 

h(p) |LCM[t!(p + 1), t2(p 4-1)] 
and 

t£ + 1|Mp) if tr.\p + 1. 
Our example in this case is p = 13, where h(l3) - 84 and 

f(x) = (xz + kx - 3)(x2 - 5x - 4). 

Then tx = t2 = 6, with r = 0, /z(13)|84, and 6184. 

These six are the only possible cases because all other factorizations of 
f(x) can be shown to be untenable. 

Table 2 gives additional examples. 

Table 2 

7 
11 
17 
41 
43 
47 
67 
73 

j 109 

Hp) 
342 = 7 3 - 1 
120 = (114 - 1)/122 

4,912 = 1 7 3 - 1 
240 = (412 - i ) / 7 

162,800 = (434 - i)/21 
103,822 = 4 7 3 - 1 
100,254 = (673 - i ) / 2 

2,664 = (733 - i)/2 
2,614,040 = (1094 - 1)754 

Roots of f(x) 
in ZP 

5 
none 
6 

3, 33 
none 
21 
5 

39, 66 
none 

Factorization of f(x) over ZF 

(x - 5)(#3 + kx2 + 5x + 3) 
irreducible 

(x - 6) (a;3 + 5:r2 + 12a: + 3) 
(x - 3)(x - 33)U2 - 6x + 12) 

irreducible 
(x - 21)(x3 + 20x2 - 4 X + 9) 

(x - 5)(a;3 + 4x2 + 19a? + 27) 
(a? - 39) {x - 66)(a:2 + 31^ - 23) 

irreducible 
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F i n a l l y , we s t a t e a t h e o r e m which g i v e s a number of c o n g r u e n c e s i n v o l v i n g 
sums . 

Theorem 8: I f h = h(jri), t h e n t h e f o l l o w i n g c o n g r u e n c e s h o l d : 

h h 
( a ) £ Mi = 0 (mod m), ( e ) £ M3£ + l E ° ( m o d "0 > 

£=0 £= 0 
fe fe- 1 

(b) S M2£ + l = 0 (mod m ) , ( f ) £ M3i + 2 E 0 (mod TW) , 
£ =0 £= 0 

& (fe-2)/2 
( c ) L ^2£ E 0 (mod w ) , (g) XI M2£ E 0 (mod m ) , 

£ = 0 £ = 0 

fe (h-2)/2 
(d) X > 3 i

 E 0 (mod w ) , (h) £ M2 i + 1 E 0 (mod TTZ) . 
£= o i= o 

Proof: The p r o o f s f o l l o w e a s i l y from a p p r o p r i a t e f o r m u l a s which a r e d e r i v e d i n 
[ 7 ] , two of which have b e e n l i s t e d e a r l i e r . By (8) we have 

h 1 
£ M^ = ^ ( % + 2 + 2M^ + Mh.l - 1) E 0 (mod m) , 

and by (9) and Lemma 1 ( b ) , we have 
h i 

E % £ + l = ^ ( 2 M 2 ^ + 2 + M2h - M2h.l - 2) E 0 (mod TTZ). 
£ = 0 J 

The other congruences may be proved similarly. 
A number of additional congruences involving sums of terms of {Mn} may be 

derived, but no attempt is made at providing an exhaustive list. 
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1. Motivation 

Genocchi 'polynomials of the first order, Gn(x), are defined [3] by 

(i.i) tanix)% --^et* 

as an extension of Genocchi numbers Gn defined in [1]. 
Following a suggestion by the referee of [3], I show briefly how G2n+i(%) 

(ft > 1) may be generated by x2- - x = x (x - 1). Such a possibility is to be 
expected since by (2.2) x = 0 and x = 1 are zeros of G2n+i(x). For example, 

(1.2) £13(x) = 13[^12 - 6x11 + 55#9 - 396x7 + 1683x5 - 3410x3 + 2073x] 
= 13[(x2 - X)s - 15(x2 - x ) 5 + 135(x2 - x ) 4 - 736(x2 - x) 3 

+ 2073(x2 - x ) 2 - 2073(x2 - x)]. 

It is the main purpose of this article to establish an algorithm for deriv-
ing a result like (1.2). Equations (3.6) and (3.7) are in fact the recurrence 
relations sought for G^n+i^)* the Genocchi polynomials of odd order. Simi-
larly, we obtain (3.11), a recurrence relation for G2n 0*0 of even order. Our 
treatment, which was excluded from [3] because of the already considerable 
length of that paper, follows that given in [8] for Euler polynomials En(x). 

The theory expounded here does not generalize to G„ (x), the Genocchi poly-
nomials of order k [3]. An examination of the G^\x) listed in [3] will readily 
reveal why this is so. 

Another purpose of this article is to answer a question raised at the 1990 
International Fibonacci Conference at Wake Forest University, U.S.A. 

2. Some Genocchi Formulas 

Properties of Gn(x) required to obtain the recurrence relations include [3] 

(2.1) ^£p- = nff„_!(*), n > 1, 
and 

(2.2) G2n(\) = G2n.+ l(0) = G2n+1(l) = 0 , n > 1. 

It is to be noted that 

(2.3) Gn(x) = nEn_l(x), 
from which we have Genocchirs theorem ([1], [3], [4]) 

(2.4) Gln = 2ft#2n_1(0) 

for Genocchi numbers Gn = Gn(0) given in [1], [3], and\ [4] (see [2] also). 
However, #2n-l(0) are not Euler numbers, but numbers related to Euler num-

bers ([3], [5]). Information on Euler polynomials and Bernoulli polynomials 
may be found, for example, in [5]. Other material of interest relating these 
polynomials to angular momentum traces occurs in [6], [7], and [8]. 

1992] 239 



GENERATION OF GENOCCHI POLYNOMIALS OF FIRST ORDER BY RECURRENCE RELATIONS 

3 . T h e G e n o c c h i G e n e r a t i o n 

Us ing i n d u c t i o n [8] a s employed i n [6] f o r B e r n o u l l i p o l y n o m i a l s , we can 
show t h a t 

( 3 . 1 ) G2n + l(x) = Yn(u), 

where 

(3.2) „ - * * - * ( § = 2x >)• 
With the help of (2.1), (2.2), (3.1), and (3.2), from which 

( i)2 - *» + >• 
we can derive, after a few steps, the differential equation 

(3.3) (4w + 1)——rr^- + 2 ^ = 2n(2n + l)Yn.l{u). du2- du 

Now let 

(3.4) G2n + 1(x) = Yn(u) = Y^A^1 = (2n + 1) £C-u* 

and 

(3.5) 

i= o i=o 

G2n.l(x) = yn-!(w) = S BiU
l = (2n - 1) E Z ^ 

i=0 i= 0 

so that, by (2.3), the C^ and D^ axe the same as for E2n(x) in [8]. 
Calculation in (3.3) - (3.5) yields (cf. [8]) 

(3.6) (2n - l)An = (2n + l)S„-i 
and 
(3.7) i(^ + l ) ^ + i + 2i(2i - 1 ) ^ = 2n(2n + l)Bi-l, 
for l < i < n - l , n>2. 

Solving (3.6) and (3.7) for n = 1, 2, 3, ... gives the constants Ai and 5^ 
in the expansions (3.4) and (3.5). Table 1 supplies an appreviated list of 
these. 

From (2.2) and (3.1), it follows that, for n > 1, 
I 

(3.8) Yn(u) = G2n + i(x) = 0 when x = 0, I, I.e., u = 0. 
Thus, Yn(u), n > 1, has no constant term, i.e., ^40 = 0. Likewise, BQ = 0. 

Consequently, the recurrence relations (3.6) and (3.7) generate G2n + i(x) = 
Yn(u)., where GY{x) = Y0(u) = 1 = u°. 

Table 1 
Coefficients A^ of G2n + i (̂ ) = Yn(u) 

1 
2 
3 
4 
5 

1 

3 
-5 
21 

-133 
1705 

2 

5 
-21 
133 

-1705 

3 

7 
-54 
605 

4 

9 
110 

5 

11 

Note that in (3.7) when i = 1, n > 2 (BQ = 0), we obtain 
(3.9) -4i. 
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In Table 2 of [8], we observe the apparently unnoticed fact that the ele-
ments in column 2 for the Euler polynomials E2n(x) are the Genocchi numbers GL+, 
G§, GQ, GIQ, . .., while those in column 1 are the negatives of these Genocchi 
numbers„ 

Why is this so? 
For each n > 2, 

(3.10) Gln = 2nE2n_l(0) from (2.4), 

d -E2n (x) 
dx ^ | x = 0 

d ( n 

(2x - l)—\ £ ^ W 
du i^o 

by (2.1), (2.3), 

^=0 from [8], equation (32) 
u= 0 

Because of (3.9) and (3.10), the elements in the first and second columns 
of our Table 1 will be appropriate multiples of Genocchi numbers, namely, 

(2n + l)G2n = -^i for each n > 2. 

Coming now to generators of G2n(x) we have, from (2.1), 

1 dG2n+\(x) 
(3.11) G2n(x) In + 1 dx 

_ 2x - 1 dln (u) 

In + 1 du 
= {2x - l)Zn_1(w): 

by (3.1), (3.2), 

dly, (U) 
(3.12) (2w + DZ^^u) = y 

du 
i.e., the Zn_i(u) can be derived from the known Yn(u). 

For example, 
Gs(x) = 3(2x - l)(u2 - 2u + 1) = (2x - l)Z2(u) 

with 
dl3}U) = l4~Ou - 3u2 + u 3 ) = 7[3(1 - 2u + u2)] = lZ2(u) 

du du 
on using our Table 1. From this table for Zn_]_(u), a corresponding table for 
An-i(u) could be constructed. 

4. A Question Answered 

Consider x2 - x - 1 = u - 1 by (3.2). This is the well-known algebraic 
expression for the Fibonacci recurrence, Fn + 2 - Fn+i - Fn = 0, whose zeros are 
(1 + v5)/2 and its negative reciprocal. 

Next, from [1] or (1.1), 

(G5(x) = 5u(u - 1) 
(4*1; \Gs(x) = 3(2x - l)(u - I)2 = 3(u - D 2 f^, 

i.e., the term u - 1 in G$(x) is squared in G§(x). 
At my address on Genocchi polynomials to the Fourth International Confer-

ence on Fibonacci Numbers and Their Applications held at Wake Forest University 
in Winston-Salem, North Carolina, U.S.A. (see [3]), I was asked: "Is there any 
pattern in the Gn(x) for other (positive) powers of u - 1?" 
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Assume that, for some N, the Genocchi polynomial GN(x) contains a factor 
(u - l)k. Then, by (2.1), GN-i(x) contains a factor (u - l)k~l. 

There are two cases to be investigated, namely, 

I. N = In and II. N = In + 1. 
Recall that, by virtue of (2.2), 

!

2x - 1 = -j- is always a factor of G2n (x) , 

x(x - 1) = u is always a factor of G2n+i{^). 

Case I. Suppose 

(a) G2n(x) = n|*(w - l)m 

(3) G2n-l(*) = (2w - l)u(u - l)*"1, 

the numbers n = 2n/2 and 2n - 1 being necessary coefficients (see [3]). Now 
dG2w(#) 

(Y) 

(6) 

tfe n{2(u - l)m + (4w + Drc(w - l)7""1} 
W(W - 1 ) 7 7 7 " 1 { ( 2 + 477?)u + 777 - 2 } 

2n£2„ -1 (x) 
2n(2n - l)w(w - I)777 '1 

For (a) and (3) to be valid, we must have (y) = (&) > 
(2 + 4T?7)̂  + 777 - 2 = (4n - 2)u, 

whence 

<*•» ft:'-
Case II. Secondly, suppose 

from (a) 

by (2.1) 

by (3). 

Equating these produces 

(a') 

(3') 

Then, 

(yf) 

(6') 

du , G2n (x) 

dG2n+l(x) 
dx 

dx (u - l)P~\ 

2n + l){%(u - 1)P + up(u - DP'1^} from (a') 

&r (2w + l)(w - I)?"1 |^{w - I + up] 

(2n + 1)£2*0*0 

= (2n 4 l)n ̂ (w - l)?"1 
by (2.1) 

by (3'). 

1, which must be discarded because Solving (y') and (6') leads to p = n 
p and n were assumed to be positive. 

Cases I and II demonstrate that, by (4.2), the only occurrence of powers of 
u - 1 is that in G5(x) and G$(x) given in (4.1). 

Our answer to the question is thus: No! 
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In this paper we show that, when a binary tree is in a certain critical 
balance, there emerge the Golden Ratio and the Fibonacci numbers. 

The paper consists of two sections. In the first section we find some ele-
mentary balance properties of optimal binary trees with variously weighted 
leaves. In the second section, a basic inequality implied by the optimality of 
trees is in turn used to define what we mean by "balanced" for a binary tree 
with leaves all weighted 1. The Fibonacci tree is then shown to be a highest 
balanced tree. 

1. Balance Properties of Optimal Binary Trees 

Consider a binary tree that has n leaves (terminal nodes) with weights or 
probabilities p. > 0, p-, + • • • + pn = 1, assigned to leaves. It has, then, 
n - 1 internal nodes, where an internal node is a node that has two children. 
We define the weight of an internal node as the sum of all leaf weights of the 
subtree rooted at this node. Therefore, recursively, the weight of an internal 
node is the sum of the weights of its children. Clearly the root has weight 1. 

A node is said to be at level k if the length of the path from the root to 
this node is k. The root is, hence, at level 0. Let %i be the level of the 
leaf weighted p.. Then the average path length is defined by 

L = 2>;V 
In this section we shall be concerned with a binary tree that is optimal in the 
sense that it has the minimum average path length for the given leaf weights. 

The well-known Huffman algorithm [3] finds an optimal tree called the 
Huffman tree. The algorithm can be stated in the following recursion form: 
First, find the two least weights, say x and y, in the list p., p2, ..., p , and 
replace these two by 2 (= x + y) . Then construct a Huffman tree for the new 
list of n - 1 weights, and then split, in this tree, a leaf of weight z into 
its children of weights x and y. Note, however, that not every optimal tree is 
a Huffman tree. 

The original motivation for minimizing average path length was to minimize 
expected search time to leaves. Suppose that one person thinks of z E {1, ..., 
n} and you attempt, knowing Prob{-s = £} = p^ , to determine what it is by asking 
questions that can be answered "yes" or "no." Then you may use a binary tree 
with leaves 1, ..., n of weights p^ , ..., pn as follows. You ask the first 
question at the root: "Does z belong to the left subtree of the root?" If the 
answer to this question is yes [no], then you go to the left [right] child of 
the root, say a, where you ask the second question: "Does z belong to the left 
subtree of a?" If the answer to this question is yes [no], then you go to the 
left [right] child of a , ... . The average number of questions required to 
find z is given by the average path length of the tree. 

Lemma 1: If z^-i and wk are weights of nodes at levels k - 1, A: in an optimal 
tree, then z^-1 - wk* 

Proof: If the node of weight Wk exists in the subtree rooted at the node of 
weight k^-1' then the assertion is obviously true. If not, consider exchanging 
the subtrees rooted at these nodes. Denote by L and Lr the average path 
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lengths of the trees before and after the exchange, respectively. Then we have 
Lf - L = wk_i - wk , because leaves with total weight Wk_i have path length one 
longer under Lf, and leaves with total weight Wk have path length one longer 
under L. Since the tree before the exchange is optimal, we have L < L', hence 
wk.l > wk. • 

We say that wk_i, wki wk + i is a weight sequence in a binary tree if Wk is 
the weight of an internal node at level k, ^k-l i-s t n e weight of its parent, 
and Wk+i is the weight of one of its children. Also, let wk and Wk+\ be the 
weights of the "brothers" of those nodes-with weights Wk, Wk + i> respectively. 

Theorem 1: If i^-l* wk, Wk+i is a weight sequence in an optimal tree, then 

wk-l * wk + wk + l° 
Proof: By Lemma 1, we have Wk > Wk + i. Hence, 

^k-i = uk + wk > wk + wk+l. D 

This inequality was implicit in [4] for Huffman trees and was explicitly 
stated in [1]. It was shown in [1] that it also holds in a weight-balanced 
tree if the node with weight Wk + i is internal or if the sequence of leaf 
weights forms a valley, i.e., 

p1 > • - - > p.. < . • . < pn for some j, 1 < j < n. 

Theorem 2: If z^-1' wk» wk+l is a weight sequence in an optimal tree, then 

wk/wk-i < 2/3. 

Proof: From Theorem 1, we have 

wk_l > wk + wk+l 

wk-l - wk + wk+l. 

Putting p = Wk/wk-i and q = wk+i/wk , these inequalities, divided by W^-i, can 
be written as 

1 > v + pq 
(2) 

1 > p + p(l - q)9 

which, added together, gives p < 2/3. • 

From this theorem, if the node with weight Wk is also internal, we have 

1/3 < wk/wk-l < 2/3. 

Otherwise, wk/wk-i can be arbitrarily small. These bounds 1/3 and 2/3 can be 
attained as seen from the Huffman tree for the leaf weights: 

3-m-l9 3-m-l9 3-m-lf 3-m^ 3-m? _ ^ 3 - 2 5 3 ~ 2 s 3-^ 3-1^ 

The set of points (p, q) , 0 < p < 1, 0 < q < 1, satisfying (2) above forms 
the region ABCDO in Figure 1. The figure may aid one to graphically understand 
the balance properties stated in the following. Here \p is the Golden Section 
point of the unit interval: 

* = (1/5 - D/2, 1 - * = *2. 

Now let us say that a is ^-balanced for 1/2 < a < 1 if a e [1 - a, a]. The 
next theorem states that a lack of ^-balance involving siblings at one level is 
immediately restored at the next lower level. 

Theorem 3: If Wk-i, Wk, Wk + i is a weight sequence in an optimal tree and if 
Wk/wk.-i > I)J, then 
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( a ) M]t+i/Wit i s ^ - b a l a n c e d , 

(b) (wk/wk-i) + (wk+l/wk) < 2ip. 

Proof: From t h e f i r s t i n e q u a l i t y of ( 2 ) , we have 

q < l/p - 1 < 1 / * - 1 = i|/, 

and from t h e s e c o n d , 

q > 2 - l/p > 2 - 1/jf) = 1 - j\>. 

Therefore, q is ip-balanced. For (b) use p + q = p + l/p - 1 obtained from (2). 
The function p + l/p - 1 is monotonically decreasing for p < 1; hence, p + q is 
less than xp + 1 /xp - 1 = 2$ by the assumption p > i|>. Q 

(3) 

Notice that (1) is equivalent to the following "uncle > nephew" condition: 

^k ~ wk+l> 

wk > wk+l. 
Hence, the worse the balance of p (approaching 2/3), the better the balance of 
q (approaching 1/2). And the critical point for turning back to a better 
balance may be defined by the number 

a* = inf { a : p > a = > l - a < ^ < a } . 

Theorem 4: a* = ty. 

Proof: To determine the critical point, we set q = p - a* and assume the equal-
ity q = l/p - 1, i.e., a* = 1/a* - 1. • 

What about the upper bound on wk? Is there a bound in terms of kl Letting 
Fn+l = Fn

 + Fn-l (n - 1)» ^o = 0> ^1 = 1J be the Fibonacci numbers, we have 

Theorem 5: If wQ, ..., wk> wk + l are the weights on a path from the root in an 
optimal tree, then wk < 2/Fk+3. 
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Proof: By Theorem 2 , we have 

wk-l > (3/2)wk = {Fh/F3)wk. 

Using the bas ic s u b a d d i t i v i t y r e l a t i o n of Theorem 1, we have, r e c u r s i v e l y , 
wk.2 > wk.l + wk > {Fh/F3)wk + wk = (F5/F3)wk, 

^k-3 * wk-2 + ^k-1 * ^blF^wk + (Fk/F3)wk = (F6/F3)wk, 

1 = w0 > wx + w2 > (Fk + 2/F3)wk +• (Fk+1/F3)wk = (Fk+3/F3)wk9 

completing the proof. Q 

The bound 2/Fk+3 can also be attained. This is seen from one Huffman tree 
(there may be many) for the leaf weights that are the following divided by Fk+3 
(see Figure 2): 

Fl9 F2, F29 F3, Fh, . .., Fk, Fk+i. 

The internal node at level i has weight 

wi = Fk+3_i/Fk+3, 0 < i < k. 

We have Wk/wk„i = F3/F^ = 2/3, and all the inequalities in the proof of Theorem 
5 become equalities, and wk = 2/Fk+3, Furthermore, we see that 

wilwi-l = Fk+3- JFk + h-i 
approaches ip for each i when k becomes large. This Huffman tree is a tree 
where the restoration of the ijj-balance is occurring "most" frequently, because, 
from the well-known identity Fn_i - i\>Fn = (-^)n , the ratio Fn-i/Fn becomes lar-
ger or smaller than ip, alternately. 

Figure 2 

2. Fibonacci Tree as a Highest Balanced Tree 

In the binary tree we consider here in this section, the weight of a node 
is defined as the number of leaves of the subtree rooted at the node. Hence, 
the leaf weights are all one, the weight of the root is just the total number 
of leaves. 

When can we say that a binary tree is generally "balanced"? One natural 
definition may come from the inequality of Theorem 1. Since this relation is 
equivalent to (3) given in the previous section, let us say that a binary tree 
is balanced if it satisfies the following condition. 
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Balance Condition: The weight of every node is greater than or equal to the 
weight of each of its two "nephews" (if they exist). 

A binary tree in this weight model is thus balanced if and only if the two 
subtrees at the children of the root are balanced and the weights of the chil-
dren of the root are larger than or equal to the weights of their nephews. 
Also, this condition need only be checked for the child of the root with 
smaller weight. 

There are other balance conditions that can be enforced in constructing 
trees, some applicable from the top down. The \-weight-balancing described in 
[2] is such a method. Given 1/2 < A < 1, to construct a binary tree with n 
leaves by A-weight-balancing, we find the integer m such that 

m - (1 - A) < Xn < m + A, 

let m and n - m be the weights of the children of the root (i.e., the number of 
leaves assigned to each subtree), and proceed similarly to construct the two 
subtrees. The partition mi (n - m) of n is a discrete version of the cut 
A : (1 - A) of the unit interval. Notice that the A-weight-balancing can be 
considered as a method to build a binary tree having a self-similar structure. 
We will show that the tree with n leaves built by this method is a balanced 
tree for every n if and only if 1/2 < \ < ty. First, we review a few things 
about the Fibonacci trees (see [2]). 

The Fibonacci tree of order k, denoted by Tk, is a binary tree that has Fk 

leaves, and is constructed as follows: Ti and T2 are simply the roots only, and 
for k > 3 the left subtree of T^ is ̂ - 1 and the right subtree is Tk_2. Let u s 

denote by T(n) the tree with n leaves constructed by ^-weight-balancing. We 
may call T(n) "the extended Fibonacci tree," for it has been shown in Theorem 5 
of [2] that 

T{Fk) = Tk. 

We also have 

Theorem 5 [2] : If n = Fk + r, where 0 < r < Fk.i9 then the height of T(n) is 
k - 2. [From Fk ~ (l//5)*"fc, we have k - 2 ~ (log n)/(-log \j>) . ] 

Theorem 6: If the tree with n leaves constructed by A-weight-balancing is a 
balanced tree for every n, then we have A < ij;. 

Proof: Suppose A = i(i + e, e > 0 . Let /??]_ and n - mi be the weights of the chil-
dren of the root, and let m2 and mi - m2 be the weights of the children of the 
node with weight mi. The balancing rule implies Xn < mi + X and Xmi < m2 + X. 
Although the node with weight m2 is a nephew of the node with weight n - /??]_, we 
have m2 greater than n - mi, if n is taken large, as shown below: 

m2 ~ in - mi) > Xmi - A - n + mi 
> X(Xn - A) - A - n + (An - A) 
= e(/5 + e)n - (A2 + 2A), 

where we used A = i> + e and \p = (/5 - l)/2. • 

Approximately speaking, the above proof is like this: The bipartition of n 
by the ratio A : (1 - A) makes children with weights Xn and (1 - \)n. And the 
partition of Xn by the same ratio produces the node with weight A(An), which is 
a nephew of the node of weight (1 - \) n. The balance condition requires 
A(An) < (1 - A)n; hence, A2 < 1 - A, and we have A < ̂ . 

Next, we show 

Theorem 7: The tree with n leaves constructed by IJJ-weight-balancing is a bal-
anced tree. 
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Proof: We prove by induct ion on n t ha t T{n) i s balanced. T r i v i a l l y , T(2) i s a 
balanced t r e e . Let us r ep resen t n (> 3) in the following form: 

n = Fk 4- p , 0 < v < Fk_1. 

Then k > 4. Let /??]_ and n - mi be the weights of the children of the root, so 
that mi - (1 - ijj) < tyn < mi + I(J. AS noted in [2], 

/?7l = Fk_i + s, where s = [ipr - ip - (-^)k] and 0 < s < Fk-2. 
(Txl = the least integer > x) 

Furthermore, let m2 and m\ - 77?2 be the weights of the children of the node with 
weight mi, then, similarly, we have 

m2 = Fk_z + \tys - * - (-^)k~l]> 

The left and right subtrees of T(n) are T(mi) and T(n - mi) 9 which are balanced 
by the induction hypothesis. Since, clearly, 777̂  > n - mi and ̂  - ml " m 2 ' w e 

only need to show n - mi > m2 or n > mi + m2» 

mi + m2 = (Ffc.i + s) + {Fk_2 + F*s - * - (-ifi)̂ "1!) 
= Ffe + \s + *s - IJJ - H|O k _ 1 l 
< i ^ + [(1 + lfi)(l(jP - i(; - (-!(;)fe + 1) - * - (-*)/c_1l 
= Fk + [P + (if;2 + I(J - l)(p - 1 + (-*)k-1)l 
= Fk + p 
= n, 

completing the proof. Q 

Remark: If we use the rule 

"m - 1/2 < ipn < m + 1/2" 

instead of the rule 

"m - (1 - IJJ) < ipn < m + *,l! 

it will construct an unbalanced tree, when n = 95 for example. If we use the 
rule 

"m < ^n < m + 1," 

the tree built will not become T8 when n = FQ, for example. 

Now what can we say about the height of a balanced tree? 

Lemma 2: Denote by nh the minimum number of leaves that a balanced tree of 
height h can have. Then we have nh = Fh + 2. 

Proof: Induction on h. It is immediate that TLQ = 1 = F2 and n^ = 2 = F3. Con-
sider a balanced tree of height In > 2 with nh leaves. Let a, a1 be the weights 
of the children of the root. We may assume that the subtree rooted at the node 
with weight a has height h - 1. We may further assume that, letting b be the 
weight of a child of the node with weight a, the subtree rooted at the node 
with weight b has height In - 2. Since any subtree of a balanced tree is itself 
a balanced tree, we have 

a > nh_i, b > nh.2. 

By the induction hypothesis, we have 

nh-l = Fh + l> nh-2 = Fh-
Hence, 

a > Fh+l, b > Fh. 
The balance condition implies 

a' > b. 
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C o n s e q u e n t l y , we have 

nh = a + ar > Fh + l + Fh = Fh + 2. 

On the other hand, consider the Fibonacci tree T^ + 2' This is a balanced tree 
by Theorem 7, and has height h by Theorem 5, and has Fh + 2 leaves. Hence, from 
the minimality of nh9 we have 

nh < Fh + 1 . 

In conclusion, we have n-^ = Fh + 2* This completes the proof. • 

Theorem 8: In the class of all the balanced trees with n leaves, the extended 
Fibonacci tree T(n) is a highest one. 

Proof: Let n = Fk + r, 0 < v < ̂ -l» and let ^ De t n e height of an arbitrary 
balanced tree with n leaves. From Lemma 2, we have n > Fh+2l hence, 

Fh+2 < Fk + v < Fk + Fk.Y = Fk+l. 

This implies h + 2<korh<k-2. However, k - 2 is the height of T(n) by 
Theorem 5. D 
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1. Introduction 

Let a\, a2, #3, CLi+9 a5? and a6 denote the hexagon of elements immediately 
surrounding any given element a0 in Pascal's triangle. 

Since the first paper by Hoggatt & Hansell [8] showing that a\a^a^ = a2a^a^ 
and hence that H^=1a^ = k2- for some integer k, a number of papers examining the 
properties of these arrays and their generalizations have appeared. Among the 
more surprising of these is the GCD Star of David theorem that 

(al5 a3, a5) = (a2, ah, a6) 

conjectured by Gould [4] and proved and/or generalized by Hillman & Hoggatt [5] 
and [6], Strauss [11], Singmaster [10], Hitotumatu & Sato [7], Ando & Sato [1], 
[2], and [3], and Long & Ando [9]. In the last listed paper, it was shown that 

(a]_, ££35 ..., &17) = (#2> ^45 =«., #18) 

where the a , 1 < i, < 18, are the eighteen adjacent binomial coefficients in 
the regular hexagon of coefficients centered on any particular coefficient \^j 
and that 

(bl9 b3, ..., bxl) = £°  (b2, bh, ..., bl2) 
where the b , 1 < i < 12, are the twelve adjacent binomial coefficients in the 
regular hexagon of coefficients centered at (") with £ = l i f r o r n - r = s i s 
even, £ = 2 if r and s are odd and r E 3 (mod 4) or s = 3 (mod 4), and £ = 4 if 
v = s = 1 (mod 4). Moreover, it was conjectured that 

{a 1, a 3, ..., a2m- 1 ) = (a2, ai+, . . . , a2m) 

if the a^, 1 < i < 2m , are the coefficients in a regular hexagon of binomial 
coefficients with edges along the rows and main diagonals of Pascal's triangle 
and with an even number of coefficients per edge. For such regular hexagons 
but with an odd number of coefficients per edge it was conjectured that 

(aj_, #3, ..., #2m-l) = ^ * (a29 ^-4' •••» a2.m) 

where £ is a "simple" rational number depending on m, n, and P. In the present 
paper, we show that the regularity condition on the hexagons with an even num-
ber of coefficients per side is not necessary. In fact, we now conjecture that 
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the equal gcd property holds for convex hexagons of adjacent entries along the 
rows and main diagonals of Pascal's triangle provided there are 2u, 2v, 2w, 2u, 
2v, and 2w coefficients on the consecutive sides. Being unable to prove the 
conjecture in general, we here prove it for the case u = 3, V = 2, and W = 1. 

2. Some Preliminaries 

Throughout the paper small Latin letters will always denote integers. Let 
v + s = n as above, set A = (p) and, for simplicity, set 

n + In + k\ 
n 7. in + n + K\ 

Let p be a prime. For any rational number a, there exists a unique integer 
v = v(a) such that a = pva/b where (a, p) = (b, p) = 1. If v{n) = e, then 
pe\\n; i.e., pe\n and pe + lj(n. Moreover, it is clear that 

(1) v(l) = 0, 
(2) y(a3) = v(a) + y(3), 
(3) y(a/3) = y(a) - y(B), 
(4) t;(a ± 3) > min(y(a), u(3)) Va, 3, 
(5) y(a ± 3) = min(z;(a), y(3)) if y(a) * tf(3). 

F i n a l l y , If m = /771/??2. . .w^, t h e n 
( 6 ) (/??!, /?z2, . . . , m k ) = f l p m i n C v C ^ ! ) , . . . , y("zk)) -

3. The Main Result 

Now consider the eighteen binomial coefficients forming a hexagon centered 
at A as indicated in Figure 1. Let 

Si = {&]_, ££3, . . . , CL17S, S2 = \Q>2> a^9 . . . , Q>\QS i 

gcd 5X = ( a 2 , a 3 , . . . , a 1 7 ) , gcd Sz = ( a 2 , a 4 , . . . , a 1 8 ) . 

Then, u s i n g t h e n o t a t i o n (h, k) a b o v e , 

ax a2 a3 ah a 5 a 6 
® © ® ® ® @ 

fli 0 dn 
i t i « « © @ @ • ® 7 

a 1 6 a 9 

a 1 5 . • • • • # a 1 0 
a l i + a 1 3 a 1 2 a n 

F i g u r e 1 

we can list the elements of Si and S2 as in Table 1. 
It is clear from the table that the product of the elements in 5]_ is equal 

to the product of those in Sz and it is not difficult to show by counter exam-
ple that 1cm Si = 1cm S2 is not always true. In particular, if A = (̂ M* 

lcm Si = 23 • 32 • 5 • 7 • 11 • 13 and lcm S2 = 2 2 • 32 • 5 • 7 • 11 • 13, 

so lcm Si * lcm 52. However, the result shown in the Theorem below does hold. 
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T a b l e 1 

Sl = Sl(n, P ) S2 = S2(n, r) 

( - 4 , 

( - 2 , 

( 0 , 

( 2 , 

( 4 , 

( 3 , 

( 1 , 

( - 1 , 

( - 3 , 

3) = 

3) -

2) -

0) -

- 2 ) -

- 3 ) -

- 3 ) -

- 1 ) = 

1) = 

r(r - l ) ( r - 2) (p - 3) 
n(s + l ) ( s + 2 ) ( 

(s 

(n 
( s 

(n 
(r 

(r 

(r 

s ( . 

r(r - 1 ) ( p + 
+ l ) ( s + 2 ) ( s 

+ l ) ( n + 2) 
+ D C s + 2)A 

+ l ) ( w + 2) 
+ l ) ( p + 2 ) H 

s ( s - 1 ) ( n + 
+ 1 ) ( P + 2 ) ( p 

s ( s - DCs -
+ 1 ) ( P + 2 ) ( p 

3 - D C s - 2) , 
n(n - l ) ( r + 1 ) " 

™. A 
n(n - 1) 
r(r - l ) ( r - 2) 

s -I 

1) 
+ 

n< + 

2) 
+ 

- 3 ) ' 

3 ) ' 1 

n + 
3 ) ( r 

3)A 

2) 
+ 4) 

n{n - \){s + 1) 

C-4, 

( - 3 , 

( - D 

( 1 , 

( 3 , 

( 4 , 

( 2 , 

( 0 , 

( - 2 , 

2) = 

3) = 

3) = 

1) = 

-D = 

- 3 ) = 

- 3 ) = 

- 2 ) = 

0) = 

r(r - 1 ) ( p - 2 ) ( p 3) 
n ( n - l)(s + D C s + 2) 

p ( r - D ( r - 2) 
Cs + DCs + 2)Cs + 3) 

p ( n + l)(n + 2) 
(s + D C s + 2 ) ( 

(n + l){n + 2) 
3X 

4 (p + i ) ( s + D 

s(rz + l ) ( n + 2) 
(p + \){r + 2 ) ( p + 3) 

s{s - D C s - 2 ) ( n + 1) 
(p + l ) ( r + 2 ) ( p + 3 ) ( P + 4 ) ' 

s ( s - D C s - 2) 
w(r + l ) ( r + 2) 

^Cs - 1 ) , 
n ( n - D 

r ( r - D 
ft(7-Z - D 

and Si and S2 as above, Theorem: For any n > 7, r > 4, s > 4, with p + s 
gcd 5X = gcd 52-

Proof: Let p be any prime and, for convenience, set v((a, b)) = v(a, b) . 
set 

vi = yi^P) = m i n iv(a, b)}, i = 1, 2. 
(a, b)e Si 

Also, 

Clearly, we must show that V>i = V2 for all p. In fact, we show that both assump-
tions V>i < V>2 and V2 < V i lead to contradictions, so the desired equality must 
hold. Actually, the proof is not elegant. Since we can use neither symmetry 
nor rotation arguments, it is necessary to consider individually the nine cases 
where we successively let Vi = V (a^) , a^ £ 5 ]_, and show each time that the 
assumption V>i < V2 leads to a contradiction. It is also necessary to consider 
individually the nine cases where V2 = v{a^), ai £ S2, and show each time that 
the assumption V2 < Vi leads to a contradiction. In fact, since all these argu-
ments are very similar, we only prove case 1, where we take Vi = i?(-4, 3) < V2. 

For (a, b) e Si9 let u((a, b)) = u(a, b) = v(a, b) - v(A) and let u^ = v± -
v(A) for each i. With this notation, it is clear that the assumption Vi < v2 
is equivalent to U]_ < u2. First, assume that p is odd. The assumption Ui < u2 
implies that U]_ < u(a^) for all ai e S2» Therefore, in particular, 

Ui < u(-4, 2) and Ui < u(-3, 3); 

that is, 

(7) 

and 

(8) 

V{T 
JI(S 

r(r 

-
+ 

-

D(r 
D(s 

D(r 

-
+ 

-

2 ) ( r 
2) (8 

2 ) ( r 

-
+ 

-

3) 
3) 

3) 
n(s + l)(s + 2)(s + 3) 

< v 

< V 

r(r - l)(r - 2)Q - 3) 
n(n - l)(s + l)(s + 2) 

p(p - 1)(P - 2) 
(s + l)(s + 2)(s + 3) 

But, using (5), (7), and (8) clearly implies that 

(9) v(s + 3) > v(n - 1) = v(v - 4) > 0 
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and 

(10) v(n) > v(r - 3) = v(s + 3) > 0, 

whence it follows that p\n, p\(s + 3), and p\(r - 3) since r + s = n. But now, 
since p is odd, 

(11) p\(n - l)(r - 1)(P - 2)(s + l)(s + 2) 

and it follows that 

U Z j ^l Z' U ; %*(« - 1)/ \n(s + l)(s + 2)(s + 3) 

contrary to the assumption that u^ < u^* since (-2, 0) 6 S^• 
Now assume that p = 2. Then all of the above up to, but not including 

(11), still holds and we may conclude that n is even and r and s axe odd. Thus, 
2\r{r - 2)(r + 2)s(s + 2) (n + 1). Also, y(s + 3) > 0 in (10); hence v(n) > 2. 
But this implies that V{n + 2) = 1 since every second even integer is divisible 
by only 21 and no higher power. If v(n) < V(r - 1), then v(r - 1) > 2 and 

i „f_i ^ = ? 7 y(^ + D(rc + 2) \ /2»(r - l)(r - 2)(y - 3) 
UK l ' J ; \(s + l)(s + 2)(s + 3)/ " \n(s + l)(s + 2) (s + 3) 

contrary to the assumption that U\ < u^ since u{-l, 3) G 52. Therefore, again 
using (5), z;(n) > y(r - 1) = y(s + 1). If v(n) < v(r + 1), then 

7vM n - ;;^W + 1 ) ( n + 2)^i < AV^V ~ 1 ) ( P " 2 ) ( P " 3 )^ - 7v 
w ( 1 ' 1} " V\(r + l)(s + 1)J - H^(s + DCs + 2)(s + 3) J " U l 

since y(n + 2) = 1 < v(s + 1) from above. Since this is again a contradiction, 
it follows that v(n) > v(r -F 1) = v(s - 1) by (5). But then 

u(? -^ = rP{s " 1 ) ( S " 2)^ = ;;^(P - D O " - 2)(r - 3)\ = U U ' J ; *V(r + l)(r + 2)) V\n(s + 1) (s + 2) (s + 3)/ x 

by (10), and this again contradicts the assumption U\ < u^ since u(2> -3) £ 5£• 
Since similar arguments lead to contradictions in all the remaining seven-

teen cases, we conclude that v^ - V>2 for all p and hence that gcd S\ = gcd S2 
as claimed. 

We note that this argument, as in the preceding paper [9], depends on the 
fact that we have only a very finite number of cases to consider. The general 
argument for hexagons of arbitrary size will have to be much different and much 
more sophisticated. 
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1. In t roduct ion 

Consider the nonhomogeneous recurrence relation 
k 

(1.1) Gn = Gn.x + Gn_2 + £ u.nJ 
J'=0 

with 
£ 0 = i ; G\ = i -

In [1], Asveld expressed Gn in terms of Fibonacci numbers Fn and T?n-\ and in 
the parameters ctQ, oq, . .., a^ . He proved that 

(1.2) Gn = (1 - Gf)Fn + (-ff1(p)+ G^)Fn_x + G(
n
p), 

where G„ is a particular solution of (1.1). 
In this paper, we generalize this result in two ways: First, we generalize 

Asveld?s result by taking the second-order recurrence relation as 
k 

Tn = PTn-l + QTn-2 + £ $jnJ 

with 
T0 = a; Tl = b. 

Second, we prove similar results for the third-order and the Pth-order recur-
rence relations; cf. also [6]. 

In Section 2, we prove the results for the generalized second-order recur-
rence relation. In Section 3, we prove the theorem for the third-order recur-
rence relation. In Section 4, we mention the results for the rth-order recur-
rence relation. 

2. Generalized Second-Order Relation 

Let the second-order nonhomogeneous recurrence relation be given by 
k 

( 2 . 1 ) Tn = PTn^ + QTn-2 + Z ^ n ' 
w i t h 

T0 = a; Tx = b. 

Let the homogeneous relation corresponding to (2.1) be written as 

(2.2) Sn = PSn.l + QSn_2 

with the same initial conditions as for Tn, viz., 

SQ - a; Si = b. 

Whenever necessary, we denote the sequence Sn with the initial conditions 
S0 = a, Si = b as Sn (a, b ) . It is well known that the solution of (2.2) is 
given by 
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(2.3) Sn(a, b) = — L _ [ ( a p _ b)(an _ a n } „ a ( a n + l _ an+l)] 

where 04 and a2 are distinct roots of the characteristic equation of (2.2); see 
[5]. 

Note that 

(2.4) 04 + a2 = P; a]_a2 = ~S-

Also, 

(2.5) 5,(1, 0) = ^ l_ [P(a? - a") - (a* + 1 - a*+1)], 

(2.6) Sn(0, 1) = _ _ ^ _ [ a « - a n ] , 

and 

(2.7) 5n(l, 1) = — ^ — [ ( P - l)(an _ a p _ (an + l _ a*+l)]. 

Theorem 2.1: The solution of (2.1) is given by 

Tn = Sn(a, b) - Sn(l, 0)T<P) - Sn(0, l ) ^ p ) + T^p), 

where 5n(a, i), Sn(l, 0) , and Sn(0, 1) are given by (2.3) s (2.5), and (2.6), 
respectively, and T^ is a particular solution of (2.1). 

Proof: The solution of (2.1) is given by 

where T^} is the solution of (2.2) and T^ is a particular solution of (2.1). 
Now 

(2.8) Tn = erf + erf + T̂ >, 

where 
T0 = a; T1 = b. 

Therefore, 

cx + c2 = a - T0 , 
/ (P) C]_a]_ + c2a2 = b - Ti . 

Solving (2.9) simultaneously, we get 
(a - ^ p ) ) a 2 - i + T<p) (a - T<p)) (P - a x ) - £ + T ^ 

^ = . - . . m 
1 a 2 - cq a 2 - 04 

a, (T ( P ) - a ) + aP - b - PT^ + T\P) 

( 2 . 1 0 ) c x = — U L 

a 2 - 04 
Similarly, , . , , ( , 

( 2 . 1 1 ) <?2 = 
^ a 2 - 04 

Thus , by u s i n g ( 2 . 1 0 ) and ( 2 . 1 1 ) i n ( 2 . 8 ) , we have 

Tn = —^—[(aP - b - PT™ + 2 f » ) ( a » - a") 
(a - T^J)rf + i - a^ + i ) ] + T; 

{ [ ( a P - 2?) ( a* - a") - a ( a ? + 1 - a? + 1)] 
a 2 - 04 1 z 1 z 

- [Prf - ap - (a?+1 - a£ + 1 ) ]T< p ) 

[ - (a^ - a * ) ] ^ + T^\ 
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By u s i n g ( 2 . 3 ) , ( 2 . 5 ) , and ( 2 . 6 ) we f i n a l l y o b t a i n 

( 2 . 1 2 ) Tn = Sn{a, b) - 5 n ( l , 0)T(
Q

P) - Sn(09 1)T[P) + T?\ 

Remarks: 
(1) Note that, if a = 1, b = 1, P = 1, Q = 1, (2.12) reduces to Asveldfs 

result given by (1.2). Here we use the fact that 

5n(l, 0) = -F„_! + F„ « Fn_z, Sn(0, 1) = F„.lt 5n(l,l) = Fn . 

(2) To get a complete solution of (2.1), let the particular solution Tn be 
given by 

i= 0 
Then, from (2.1) we get 

k k k k 
E A^ - P Z^iin - I)1 - Q ̂ ^ . ( n - 2)* - £ fin* = 0 

i = 0 i= 0 i = 0 i = 0 
or 

E ^ " E f E^i(!)(-D""£(^ + Ql^^n1) - 2 M i a 0 . 
i = 0 i = 0 \ £ = 0 V X / / / i = 0 

For each i (0 < i < /c) , we have 

(2-13) ^ - t.yimAm - 3, = 0 
/?? = i 

where, for m > i , 

Yim = ("Di-ir-Hp + Qim-1). 

From the recurrence relation (2.13), A^, ..., AQ can be computed where A^ is a 
linear combination of ^ , ..., $^ • To get a more explicit solution as in 
Asveld [1], we put 

Ai = - X X ^ . , 
j = t 

where d^ are as defined below. Then we get the following solution for (2.12): 
k 

Tn= Sn(a, b) + 5 n ( l , 0)AO + Sn(0, 1) \l
k - £ fy*jW> 

j = 0 
where £ £ j j 

A° = E % a 0 j > 4 = E Sj X X j > ^nd r . (n) = £ a^n1. 
j-=0 j = 0 i=0 i=0 

Note that 
1 J' 

^ = p + «' a ii = P + e - i* a n d aij = - E ^ m ^ , j > * . 
m= i + l 

(3) If a = 2, b = 1, P = 1, and Q = I, the sequence Sn(a, b) reduces to the 
Lucas sequence Lw. Then (2.12) reduces to 

T = L n 
_ m(P)F , rrpiV) _ m(Ph p , rp (?) 

n -1 0 ^ ^ 0 1 ' n-\ n ' 

(4) We are grateful to the referee for pointing out references [6], [7], 
and [8]. It should be noted that our results are more general than those in 
[6]. One can also prove results similar to those in [6] and [7] without much 
difficulty. 
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3. Third-Order Recurrence Relation 

Let the third-order recurrence relation be given by 
k 

(3.1) Tn = VlTn.l + P2Tn_2 + P3Tn_3 + Y,^*3-
J = 0 

Let the homogeneous relation corresponding to (3.1) be written as 

(3.2) Sn = PxSn^ + P2Sn„2 + P35n_3. 

Denote the sequence Sn by S\, 5^, S%, when 

(3.3) 50 = 0, Sl = 1, S2 = P1? 

(3.4) 50 = 1, Sx = 0, £ 2 = P2, and 

(3.5) 50 = 0, 5X = 05 S2 = P3, 

respectively. 
Denote the sequence Tn with initial conditions the same as (3.3), (3.4), 

and (3.5) by T\, T%, T^, respectively. If 04, a2, a3 are distinct roots of the 
characteristic equation corresponding to (3.2), then 

Oy, c-^a™ + c2a2 + ^3a3 
with 

(3.6) CLI + a2 + a3 = P]_; a,]_a2 + ot2a3 + ct]_a3 

Using standard methods, we obtain 

-P2; axa2a3 = P3 . 

1 5I = i .[ an+l ( 
n A 1 -

9 2 

where 

Sl = 

A = 

a 9 ) a n + l 

vn + l (ui a?) a 

(a3 

2 
3 

a-^) + a 3
 + i (a2 - 04) ] , 

n + 1 (a? af) + a^ + 1 (a | 

1 1 

04 a 2 

1 I 

a3 = (a3 - a 2 ) (a 3 

a l 

a f ) ] 9 

a l ) ( a 2 " a l ) 5 s e e [̂ 1 

By making use of (3.6), we easily get 

si -P\Sn + Sn + i> Sn - P35'n_1, 

For the sake of convenience, let T* be denoted by Tn in what follows. 

Theorem 3.1: Tn is given in terms of S\ by 

Tn = -P^fs\_2 + (P^f > - T^)Sl^ + (1 - T™)Sl + T^\ 

Proof: Let T^ be the solution of (3.2) and T^v) be a particular solution of 
(3.1) 

(3.7) 

where 

(3.8) 

with " 

Then 
m _ rpW , UP) 
1 n 1n ± n 

T™ = a^l + c^\ + c^\ 
i n i t i a l conditions 

0, Tl = 1, T2 
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Using these initial conditions, we have 

°l + °2 + c3 = ~^0 ' 

C-,a-, + coa2 + C3a3 = 1 ~ 21 5 

O -I (1 -I I O r\ Ut r\ "T" O Q CX Q xT •] J. Q « 

Solving these equations simultaneously, we get 

'1 ^[-^Pa2a3 - (1 - T[p))(a2 + a3) + (P1 - T^)) 

A rp(P) 
4 'o 

(1 - T[p))(Pl - ax) + Pl - T (P) 

Similarly, 

and 

.^T^- (l-Tf)(Pl - a 2 ) + P l -T™ 

4 f - (l-Tf)(Pl-a3)+Pl -T™ 3 A 

Hence, substituting for <?]_, £2>
 c3 in (3.8) and simplifying we get 

i(h) n(Phnln-ll {-P3T}fJ[an
1-HoL3 ~ a2) - a^_1(a3 - o^) + a^_ 1(a2 - c^)] 

-Px (1 - T(
1

P))[arz(a3 - a2) - a£(a3 - o^) + a*(a2 - c^)] 

+ (1 - T[p))[a7l+1(^3 ~ a2) - a^ + 1 (a 3 - c^) + c^ + 1 (a 2 - c^)] 

+ (P2 - ^2
P ) )[ai(a3 - a2) - a^(a3 - ax) + a3(a2 - a^JJ/A 

= ~P3T0P)Sn-2 ~ P l ^ " 2 l P ) ) ^ - i + (2 ~ ^ P ) ) ^ + (Px " ^ f H 1 - ! ' 

On further simplification, (3.7) reduces to 

(3.9) Tn = -P3^p)Sl_2 + ( P ^ - T^Sl^ + (1 - Tjp))5l + T<p), 

which is the required result. 

Remarks: 
(1) If P1 = 1, P2 = 1, P3 = 0, and T0 = 0, Tx = 1, (3.1) and (3.2) reduce 

to the second-order relations (2.1) and (2.2) with P = Q = 1 and a = 0, b = I. 
With the above values of P^, P2, an<^ ̂3» ̂ n given by (3.9) reduces to 

Tn = ^ 1 P ) - y f ) ^ - l + (1 - ̂ ^ + TnP)-
We verify whether this equation reduces to (2.13) with a - 0, Z? = 1. Now 

m(P) _ m(P) _ m m (h) m , m (h) 
21 12 1l 21 11 ^ 12 ' 

since Tn = T^h) + TJfK Also, 

Tx = T2 = 1 and ^ } = T[h) + T^}. 

Therefore, 
mCP) _ m(P) _ 
1 I 12 ~ 

since TQ = 0. Thus, 

rpKV) 

(3.10) ^ = - ^ 5 ^ ! + (1 - ̂ (P))5l + 2*P>. 

Note that here S* = 5„(0, 1). Now 

Sn(l, 0) = 5„_!(0, 1). 
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Hence, (3.10) reduces to 
Tn = - 5 n ( l , 0)T<P) + (1 - T[p))Sn(0, 1) + T™, 

which i s i d e n t i c a l with ( 2 . 1 2 ) . 
(2) On s imi l a r l i n e s , we can prove the fol lowing: 

2* = P 3 ( l - T<p))£l_2 + {P{lf + P2 - Tf)Sl^ - 2f>Si + T^; 
Tl = -PzTfsl_2 + ( P ^ + P 3 - T^)Sl_x - T^S\ + T$\ 

(3) As in Remark (2) of Section 2, taking 

rnP) = E V * and A, = - X X ^ . , 
i = 0 j = ^ 

a-• as defined below, the sequences T^ can be expressed as 

Tn = M^-2 + <-*!*£+ * M - 1 + U + * M ~ E ^ («> > 
j = 0 where 

/c k i k i 

*£ = E e3-a0j., \\ = E Bj E «ij ' ^ = E ej E 2 ^ . , 
j = 0 j = 0 i = 0 j = 0 i = 0 

3 3 
rjin) = £ a y " 1 . a i j = - E «ima*y «/>•£» 

t = 0 m= i+I 
and 

6ira = Q c - i y - M P ! + p^™-* + p 3 3 r a - ^ ] . 

(4) Similar r e s u l t s as above can be obtained for T% and T%. 

4. The r t h - O r d e r Recur rence Relation 

Let 
k 

(4.1) Tn = VY?n-Y + P2Tn_2 + . . . + P r - i T n _ P + 1 + P P ^ - r + £ ft^, r > 3, 
j-o 

be the Pth-order recurrence relation with three sets of initial conditions as 

(4.2) Tm = 0, for 0 < m < r ~ 3S Tr_z = 1, Tr.l = pl> 

(4.3) Tm = 0, for 0 < m< v - 1, T0 = 1, T ^ = P2, 

(4.4) Tm = 0, for 0 < m < r - 2, TP_! = P3. 

The homogeneous part of (4.1) is the generalized rth-order Fibonacci sequence. 
Let it be denoted by Sn so that 

Sn = P ^ . ! + P2Sn_2 + ... + PPSn.r. 
We take the same initial conditions as in (4.2)-(4.4). Following the same method 
as in Section 3, we can prove the following results: 

771 _ _P »rv(p)ci + (P r( p ) + ... + p r(p ) - T(p) ~)Sl 

1n /ri0 bn-2 + ^r-21! + + ^Vr-2 r-H «-l 

+ (i + Pr-3^P) + ••• + P ^ ^ - T%)sl + . . . 

2* = pp(i - rf)5i_2 + (Pr_22f> + ... + P ^ + P2 - 2 ^ ) 5 ^ 

j_ (-p m(P) 4. . . . 4. p 77 (?) _ 77(P) \ ql 4. ... 
4. /p 77 (P) _ rp(p)\ Cl _ rp(p)al 4. /7i(P). and 
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m3 - _p m(P)ql I r-n mil?) , , p rrXV) _i_ p _ ^(p) \ q l 

+ (Pr.3T[P) + . . . + P ^ ^ g - T^_\)Sl
n + . . . 

+ ( P ^ - T^)S\ . - T\P)S\ , + Tip). v 1 1 2 y n + r-k 1 n + r - 3 rc 

Here we denote Sn with i n i t i a l conditions (4.2) by S\ and Tn with i n i t i a l con-
ditions (4.2), (4.3), (4.4) by ̂ , T%, T%, respectively. 

Remarks: 
(1) For r = 3, T* reduces to the result of Theorem 3.1. 

(2) As in Remark (2) of Section 2, taking 
k k 

i = 0 j = i 

the sequence Tn can be expressed as follows: 

T\ = PPXg5l.2 - (Pp.2Xl + .-. + P,Xl^ - X r 1 ^ - ! 

+ (1 " Pr.3Al " . . . - PxA-3 + A - 2 ) 4 + • • • 

+ (-P.xl + A^)5^ k + XlSl + o - T Q^rAn), 
K Ik ky n + r-h n + r-6 *—•* 3 J v y 

J = 0 
k k 3 

- o = E^-a^., \ \ = X Bj Ea^-aS £ = 1, 2, . . . , r - 1; 
j = 0 j = 0 i = 0 

J . «/ 
^•(n) = J2a{jn\ aid = - E 6imamj > J > ^ 

^ = ° m = i + 1 

™y-Dm-i[pl + P22W-^ + . . . + P ^ P ^ - ^ ] . 

where 

and 

(3) Similarly, we can write the values of T„ and T%. 

(4) In [3], Asveld derived expressions for the family of differential equa-
tions corresponding to (1.1). 

It is natural to ask whether such results can be proved for the rth -order 
recurrence relation. This is the subject of our next paper. 
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Introduction 

For a rather striking geometrical property of the Fibonacci sequence 

f0 = fl = 1 and fn
 = fn-l + fn-2 (n = 2, 3, . . . ) , 

consider the lattice points defined by FQ = (0, 0) and 

K = Cf„-1> fn). K = (/n-1. 0), Yn = (0, /„) (H = 1, 2, 3, . . . ) • 

Then, as we shall prove: for each n > 1, the polygonal path 

F0FlFz..*Fln+l 

splits the rectangle 

F§X2n+lF2n+\Y2n+l 

into two regions of equal area. Figure 1 illustrates this area-splitting prop-

y 
erty for n = 0, 1, 2. 

Figure 1 

In view of the above, it seems only natural to ask if there exist other 
types of area-splitting paths, and how they may be characterized. To give some 
answers, it will be convenient to introduce the following notation and termi-
nology. 

We henceforth assume that every point with zero subscript is the origin. 
In particular, P0 = (0, 0) and each point Pn = (xn, yn) has projections Xn = 
(xn, 0) and Yn = (0, yn) on the axis. We shall also assume that a polygonal 
path has distinct vertices (that is, Pn * Pm for n * m). 
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A polygonal path P§P}P<2_. . . will be called nondecTeasing if the abscissas 
and the ordinates of its vertices PQ , P]_, P2-> ••• are each nondecreasing se-
quences. An avea-biseating fc-path (k > 2) is a nondecreasing path P Q P ] ^ . . . 
that satisfies 

(1) Area{P0PlP2...Pnk+1Xnk+l} = Area{PQP1Pz...Pnk+lInk+1} 

for each integer n > 0. 
An area-bisecting fc-path is an area-bisecting Nk-path for each natural num-

ber N. The converse, however, is false. In Figure 2, any area-bisecting 4-
path beginning with PQPJ_P'2P3^\P5 cannot be an area-bisecting 2-path because 
area{J1P1P2P3J3} is not equal to area{Y1P1P2PsY3}. 

P (2, 3) 
^3f ' 

(1,1) 
£ — * P 2 (2, 1) 

J(o,o) 
Figure 2 

?P5 (9, 5) 

P4 (9, 3) 

To characterize the situation when (1) holds, consider any segment Pm Pm+i 
of the path P0PlPz... (Fig. 3). Since 

xm i/rr 
(2a) 2 * area{XmPmPrn + \Xm + i} = xm+\ym+i - x

myn 

and 

(2b) 2 - a r e a { I m P m P m + 1 I r a + 1 } 

xm + 1 Z/w + 1 

^ 7 7 7 ^ 7 7 ? 

xm + 1 /̂m + 1 

^ + 1 

2/r; 

A 

1/̂  
Fm 

^ ^ ^ 1 , 2 
^ + 1 

. : ^ 

Figure 3 

we see that (1) holds for each n > 0 if and only if the determinantal equation 

(3) 
xl Hi 

X2 Z/2 

X 2 2/2 

x 3 ^3 ^nk + 1 llnk+ I 
= 0 

holds for each n > 1. This can be summarized as follows. 
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Theorem 1: A nondecreasing path PQPlP2. . . is an area-bisecting /c-path if and 
only if 

(4) 
xnk+l ynk+l 
xnk+2 ynk+2 

for each n > 0. 

+ 
^nfc + 2 ynk + 2 

xnk + 3 ynk+3 + 
X (n + l)k y^n + Dk 

X(n + l)k + l y(n + l)k + l 
= 0 

Remark: P Q P ] ^ . . . i-s a n area-bisecting /c-path if and only if its reflection 
about the line y = x is an area-bisecting /c-path. 

To confirm that the Fibonacci path FQFIF2* •• is area-bisecting, set P0 = F0 

and let Pn be the point Fn = (/„_i, fn) for each n > 1. For k = 2, condition 
(4) reduces to 

fin ~ 1 fin - 1 

fin-I fin 
+ 

fin - 1 fin 

fin fln+l 
= 0 

for each n > 1. This is clearly true since fi = fi-\ + /i-2 f° r each i > 2. 
Verification that FQFIF2.„ e i-s a n area-bisecting 2-path can also be obtained by 
letting a = $ = l = /c-l and setting S]_ = /Q an<^ s2 = /l i-n t n e following. 

Corollary 1.1: Let 5n = (sn , sn + i) for the positive sequence 

(5) s1$ s2, and sn = Bsn_]_ + asn_2 (n > 3) . 

Then SQSIS2. « . is an area-bisecting /c-path if and only if: 

(i) /c is even and a = 1 for nondecreasing {sn : n > 1} 

(ii) 'iSo [which is equivalent to SQSIS2... being embedded in the 
straight line y = (s2/Si)x] * 

Proof: First, observe that s| = s-^s^ yields 

Sn = (̂ S? + ^S,)So ~ $S
2

S3 + a S | = S1S 

and (by induction) 

(6) 

2°  4 

"n+1 (n > 1), 

Since this is equavalent to 

$n+l Si 
(7) in > 1): 

Sn Si 

sl = sls3 i s ecluivalent t o SQS1S2*** being contained in the line y = (s^/s^x 
Conditions (i) and (ii) each ensure that SQSIS2... is nondecreasing 

over, by (4), this path is an area-bisecting /c-path if and only if 

\s(n+l)k-l s(n + l)k | | s(n + l)k s(n+l)k + l 

s(n + l)k s(n + l)k + l 
(8) + 

sn/c+l snk + l 

\snk+l snk+3 

for each n > 0. Now observe that for each m > 2, 

D(n+l)k + l h(n + l)k+l 

More-

0 

(9) SmSm + l = -a(s sl) 
follows from sm + 2 = &sm+i + asm and sm+i = gs;7? + asm_i. Therefore, using (9) 
in successively recasting each determinant in (8) beginning with the rightmost 
determinant, we find that (8) is equivalent to 

(10) (1 - a + a2- - -.. + (^)k-l)(snk+lsnk+3 - 8%k+z) = 0 

for each n > 0. In particular, (10) holds for all n > 0 if and only if 
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k- I 
]T (-a)* = 0 or si 

t= o 
For real values of a, it is easily verified that 

k- l 
^ (-a)^ = 0 if and only if k is even and a = 1. 

t = 0 

Matrix-Generated Paths 

Since the Fibonacci numbers can be generated by powers of the matrix 

fn-1 fn-l 

Jn - 1 In 
C = 

0 

1 

1 

1 _ 
v i a Cn = 

\ 
for each n > 2 J, 

t h e c o n s e c u t i v e v e r t i c e s {Fn = (fn-\, fn) '• n = 1, 2 , . . . } of t h e F i b o n a c c i p a t h 
a r e g i v e n p r e c i s e l y by t h e s u c c e s s i v e rows 

^FZn-l = (fln~l> fln-0 a n d F In = (fln~l> fin)} 

of (C2)n: 

C2n : 

1 1 

1 2 

fzn-2 fin-I 

fin-I f2n 
(n > 1), 

Thus, the Fibonacci path FQFIF2» » • is generated by 1 1 
1 2 

A path PQPIPZ- • • i s said to be matrix-generated by I Xl yi 

in the following sense: 

if 

xl yl 

x2 y 2 

x2n-l Uln-l 

x2n V2n 
for each n > 1. 

Example 1: 

(i) If Sn = (s„, sn+i) for (sx, s2) = (!' 2) a n d s^ =
 sn-l + 2s^-2> t h e 

area-bisecting path 5Q5 1 52-«* (contained in the line y = 2#) cannot be matrix-
generated since the first row of 

1 2 1 10 

2 4 

is not 53 = (4, 8). Note, however, that 

10 20 ̂  
pL 2 
|_2 4 

whose consecutive vertices are the successive rows of 

generates an area-bisecting path 
"l 2] 
2 4 

(ii) The area-bisecting path P0^1^2-'- cannot be matrix-generated when 
Fn = (fn-l> fn-l) f° r t n e Fibonacci sequence beginning with / _ ]_ = 0 , or when 
Pn = (£n, &n + i) for the Lucas sequence beginning with (l\, £2) = (1» 3) and £n 

= £n_x + ln-2 (n > 3 ) . 

(iii) The path in Figure 4 cannot be matrix-generated because 

xi yi 

x ^ y 2 

0 

b 

is nonsingular, whereas points P0, Pn , Pn + i are collinear if and only if 

is singular. Indeed, P0, ^z >
 Pn + 1 a r e collinear if and only if 

x2 y2 
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Cn + 1 ^n + 1 

h y\ 

Figure 4 

ab(a - 1) * 0 

(iv) Suppose (Fig. 5) a nonsingular matrix U generates an area-bisecting 
path P Q P 1 P 2 . . . . Then for 6 > 0, the successive rows of {QUn : n > 1} also pro-
duce an area-bisecting path QQQIQ2* . • , where Qn = QPn for each n > 1. However, 
for 6 * 1, the path QQQIQ2> • • cannot be matrix generated since 0/7̂  = (6/7)" for 
all n > \ requires that U be singular. 

(59,89) 

Figure 5 
Qn = ®Fn = (6/n-i, 6 / n ) ; 9(6 - 1) * 0 

Under what conditions on the entries of a 2 * 2 real, nonnegative matrix U 
will the successive rows of Un generate the consecutive vertices of an area-

bisecting /c-path? By definition, the path Po^l^2-

and only if 

is generated by xz y2 
if 
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X2n-l y^n-l 

X2n Vln 

Thi s i s e q u i v a l e n t t o 

(11) 
XZn + l Vln + I 

X2n + 2 ^2n+2 

x i y'i 

x2 y2 

x i yi 

x
2 y 2 

f o r each n > 1. 

C2n-1 # 2 n - l 

Thus, PQPIP2... is generated by 

(12a) 

(12b) 

a b 
c d 

"2n 

c l Hi 

y2n 
f o r a l l n > 1. 

i f and o n l y i f f o r a l l n > 1: 

X2n + l CLX2n-l + ^X2n 

OX2n-l + (^X2n 

y2n+l = ay2n~l + hV In 

°2n + 2 ~~ ̂ 2 n - l ' UMJ2n ^2n + 2 = ^ Z n - l + ^ 2 « 

and ( s i n c e p a t h v e r t i c e s a r e assumed t o be d i s t i n c t ) 

(12c) (xn+k, yn+k) * (xn> yJ f o r k > o-
Note that (12c) requires that (a, £>) * (0, 1) and that (e, d) t i(a9b), (0,1)}. 

Theorem 2: The path PQPIP2... generated by a real, nonnegative matrix 

a b 

e d 

i s n o n d e c r e a s i n g i f and o n l y i f 

(13) a < e < a2 + be and b < d < ab + bd. 

A n o n d e c r e a s i n g [ / - g e n e r a t e d p a t h i s an a r e a - b i s e c t i n g fc-path i f and o n l y i f : 

( i ) \U\ = 0 

U 

or 

(14) ( i i ) (1 - a) £ M * = 0 f o r fe = 2m. 
t= l 

Proof: S ince 

U2 = 
a2 + be ab + bd 

ae + cd bo + d2 

t h e c o n d i t i o n s i n (13) a r e n e c e s s a r y f o r t h e [ / - g e n e r a t e d p a t h t o be n o n d e c r e a s -
i n g . To s e e t h a t t h e y a r e a l s o s u f f i c i e n t , l e t Pn = (xn, yn) f o r n > 0 . Then 
(13) y i e l d s x2 > Xi > 0 and y2 > y1 > ° - From (12a) and ( 1 2 b ) , we a l s o o b t a i n 

x2n + 2 ~ x2n + l = (e ~ a)x2n-l + (d - b)x2n> 0 
and 

x2n+l ~ x2n = ^x2n-l + (h ' ^ x 2 n 

= a(ax2n-o> + bx2n~z) + (b - l)(ex2n.^ + dx2n-2) 

= {a2 + be - e)x2n.o) + {ab + bd - d)x2n-2 

> 0 . 

Thus , x2n + 2 > x2n + i > x2n f o r a l l n > 0 . A s i m i l a r a rgument e s t a b l i s h e s 
t h a t y2n + 2 > y2n + i > y2n f o r a l l n > 0 . 

For t h e n o n d e c r e a s i n g / / - g e n e r a t e d p a t h , (12a) y i e l d s 

°2n 

X 

y2n 

2n + l y2n + l 

°2n y2n 

ax 2n •1 + hx2n ay2n-\ + ^ 2n 

C2n-l yin-l 

X2n y2n 
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f o r a l l n > 1. Thus , 

(15) 
Z2n-\ Vln-l 

°2n 
and 

J2n yin 
CZn+l Vzn + l 

= -a\U\ 

f o r a l l n > 1. We now u s e (15) t o s i m p l i f y ( 4 ) . For k = 2ms c o n d i t i o n (4) r e -
duces t o 

(1 - a)\u\nm • £ \U\ 
t= I 

0 f o r a l l n > 0 . 

T h i s i s e q u i v a l e n t t o ( 1 4 ) . For k = 2m + 1, c o n d i t i o n (4) r e d u c e s t o 

(16a) \u\nk/2 • | ( 1 - a ) £ IZ/I* + | ^ | m + 1 l = 0 (n even) 

(16b) |£/|n(fc + D/2 . ( ( 1 - a) f ] 1^/^ - a } = 0 (n odd). 

Conditions (16a) and (16b) can hold for all n > 0 only if \U\ = 0. Indeed, 
\U\ * 0 ensures that a > 0 and that |[/|w+1 = -a < 0. But then, by equating the 
formulas for a in (16a) and (16b), we obtain the contradiction 

a = \u\la or \u\ = a2 > 0. 

Coronary 2.1: Let Sn = (s„, sn+i) for the positive sequence 

Sl, s2, a n d sn = $sn-l + asn_2 (ft ̂  3) [given as (5) above]. 

Then S'QS']^-• • is a matrix-generated, area-bisecting k-path if and only if: 

(17a) (i) k is even and 3 = s 2 ^ s 1 = a = l (for s \ * s1s3) 
in which case 

(17b) 

o r 

(18a) 

(18b) 

"In-I "In 
S2n S2n + l 

1 

3n + l 
(n > 1 ) ; 

(ii) s\ + s2
 = s3 a n d s2 * sl ( f o r s2 = s l s 3 ) ? 

i n which c a s e 

"2n-l ?2n 
S2n S2n + l 

S2\2n-2 

s2 S 3 
(n > 1) , 

Proof: An i n d u c t i v e a r g u m e n t , b e g i n n i n g w i t h 

0 a 
[S2 S3] = t s l s 2 ] 

and 

[ s 3 S i J = [ s 2 s 3 ] 

1 3 

0 a 

1 3 

establishes that 

[s„ sn+1] = [sx s2] 
0 a 

1 3 

[S] 

n-l 

0 a 

1 3 

(n > 2). 
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In p a r t i c u l a r , 

ls2n-l s2nl = l> i S 2 ] 

[s2n sZn+1] = [sl s2] 

can be recast in matrix form as 

r 

0 a 

1 3 

0 a 

1 3 

Zn-2 

In-I 
[S2 S3] 

0 a 

1 3 

2n-2 

s2n-l s2n 

s2n s2n + l 

51 S2 

52 S3 

0 a 

1 3 

2n-2 Sl S2 

L s2 s3 

a a 

& &2- + a 

n-l 

for all ft > 2. Therefore, SQSiS2... is -generated if and only if 

(19) 
sl s2 

s2 s3 

sl s2 

s2 s3 J + a 

n-l 

for all ft > 1. 

(i) Assume that s2 * 3^3. If SQSIS2. . . is a matrix-generated, area-bisecting 
path, then (Corollary 1.1) k is even and a = 1. Setting ft = 2 in (19) and pre-
multiplying by 

Sl s2 l"1 

s2 s 3 

we obtain 

s l s2 I I a 

L s2 s3 J 

Since a = 1, we see that 

Si s2 j j 1 

s2 s3 

+ a 

S2 and (17a) holds. Conversely, (17a) yields 

+ 1 

and therefore (19). Since (17a) ensures that (13) and (14) hold (since a = S]_ 
= 1), the path SQSIS2... is also area-bisecting. 

(ii) Assume that s2 = S1S3. Then (Corollary 1.1) the straight-line path SQSIS2 
... is area-bisecting. Moreover, by (11), the path SQSIS2... is generated by 

sl s2 
S2 S3 

if and only if 

s2n + l s2n + 2 \ sl s2 s2n~l s2n 
s2n + 2 s2n + 3 J \_ s2 s3 J L S2n s2n + l 

for all ft > 1. Since s2 = s1s3 is equivalent to (7), conditions (12a), (12b) 
reduce to 
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(20a) s2n + l = sls2n-i + s2s2n9 

(20b) s2n + 2 = S ! S 2 n + s2s2n + l , 

(20c) s2n+3 = s 2 s 2 n + s3s2n+l, 

(20d) s n + 1 * s n , 

for all n > 1. From (20a) and (20d), we obtain the necessary condition (18a) 
for SQSIS2... to be matrix generated. The condition s^ + s| = s, in (18a) is 
also sufficient since, in the presence of (7), conditions (20a)-(20c) are equi-
valent for each fixed n0 > 1, and condition (20c) holds for n0 if and only if 
condit ion (20a) holds for TZQ + 1 „ Since (18a) satisfies (20a) for YIQ == 1, it 
follows that (20a)-(20c) hold for all n > n0 = 1. This ensures that (12a)-
(12c) hold f or all Yi ̂  13 which means that S^S-^S2<, * . is generated by 

sl s2 
SZ S 3 

Finally, condition (18a) also ensures that 

12 

s2 

s2 

s3 

*1 

s2 

s2 

s3 

and (by induction) that (18b) holds. 

Example 2: A nondecreasing path generated by matrix U that satisfies (1 - a) \l/\ 
= 0 is an area-bisecting 2/l/-path for each natural number N. Since (14) holds 
for \u\ = -1 when m is even, all nonnegative real matrices 

b 

(bo - l)/a 
(a * 0) and 

0 

lib 

b 

d 
(d > b > 1) 

having determinantal value -1 that satisfy (12a)-(12c) and (13) also generate 
area-bisecting 4/l/-paths for each natural number N. Thus, 

3 1 

7 2 
9 

3 2 

4 7 /3 j 
, and 

0 

1/2 

2 

3 

generate area-bisecting 4 -paths (n > 1) that (Theorem 2) are not area-bisecting 
2-paths, 

Remarks: For the -generated path PQP\P2* 0 2 
[1/2 3_ 

and Lk = Area{Yk.lPk-lPkYk} f o r each k > 1. Then 

l e t i?* = A r e a U ^ ^ . ^ ^ } 

fL, 
ft, 

>k/2 

fc odd 

k even , {Lk - ( - 1 ) ' 
and P0P1P2. . . i s an a r e a - b i s e c t i n g k-path i f and o n l y i f /!/ = 4 

6 - S p l i t t i n g k - p a t h s 

(/V > 1), 

The notion of area-bisecting fc-paths can be extended in several ways, the 
two most natural extensions being those given below as Definitions A and B. A 
nondecreasing path is a 6-splitting (6 > 0) fe-path if: 
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Definition A: A r e a { J 1 P 1 P 2 . . -Pnk+lXnk+l^ = 5 * A r e a { J 1 P 1 P 2 - • -Pnk + l^nk + l } f o r a 1 1 

n > 1; 

Definition B: ATea{P0PlPz. . .Pnk+lXnk + i} = 6 • A r e a { P 0 P 1 P 2 - • -Pnfc+i^nfc+i} f o r a 1 1 

n > 1. 

Although these definitions are equivalent (to the area-bisecting property) when 
6 = 1 , they yield different results for 6*1. Beyond generalizing our results, 
motivation for investigating 6-splitting fc-paths also comes from the following. 

Example 3: Find an expression for f(x) such that p = {(x9 f(x)): x > 0} is an 
increasing path characterized by 

Area {3^} = 6 • Area{i^} 

for each point (x, f(x)) e p. (See Fig. 6.) 
P 

f(x)l 

(0,0) 
+~ X 

Figure 6 

Our area requirement is equivalent to determining f(x) such that 
fix) 

This can be recast as 

(21) (l +-|) fXf(t)dt = xf(x). 

Differentiating (21) with respect to x and rearranging terms, we obtain 
fix) = J_ 
f(x) 6x' 

Thus, for arbitrary positive constant C, 
(22) f{x) = Cxl/6. 

For 6 = 1, we obtain the area-bisecting linear paths f(x) = Cx. Equation 
(22) also provides some means for constructing approximate 6-splitting fc-paths. 
Let A(a, b) denote the shaded region in Figure 7. Then the trapezoidal areas 
Ra = XaPaPbXb and La = YaPaPbYb satisfy 

(23) |Area{Pa} - 6» Area{La}| = (1 + 6)A(a, b). 
To approximate a 6-splitting fe-path, sum (23) over J consecutive points (j = 
nk + 1 for Def. A; j = nfe + 2 for Def. B), and obtain 

(24) Area {&M 6 • Area {&«} < (1 + 6) £ A ( a i 5 bt). 
i= l 
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(0,0) xa Xb 

Figure 7 

By way of illustrations consider f(x) - x2- for the case where 6 = 1/2. A 
straightforward computation yields A(a, b) = (b - a)3/6 for consecutive points 
pi = {xi> x\^ with %i + i - Xi = b - a. Since krea{RX{) = Area{LxJ + (b - a)3/6 
for each such sector5 

A r e a \%RXi\ = "2 s A r e a \ X*L*i\ + f2 e 

For j such consecutive points, the error E(j, a, b) = j{b - a)3/12 in construct-
ing a 1/2-splitting fc-path can be made less than e by choosing the points on 
y = x1 such that tf^ + i - x^ < (12e/j)1/3 for each £ = 1, 2, ..., j - 1. 

1992] 273 



THE TRIANGLE OF SMALLEST PERIMETER WHICH CIRCUMSCRIBES 
A SEMICIRCLE 

Duane W. DeTemple 
Washington State University, Pullman, WA 99164-3113 

(Submitted December 1991) 

Let ABC be an isosceles triangle which circumscribes a semicircle of radius 
1, with the diameter of the semicircle contained in the base BC of the 
triangle. Such triangles may be parameterized by the base angle G shown in the 
figure, where D is the circle fs center and E is the point of tangency on side 
AB. Our objective is to determine the circumscribing isosceles triangle of 
smallest perimeter. A 

Since DE = 1, we see that the perimeter p of ABC is given by 
p = 2{AE + EB + BD) = 2(tan 9 + cot 9 + esc 9). 

The derivative is 

p' = 2(sec29 - csc29 - esc 9 cot 9), 

which can be easily rewritten in the form 

p' = 2(1 - cos 9 - cos29)(l + cos 9)/cos29 sin29. 

It is now evident that p' = 0 has just one solution in 0 < 9 < TT/2, namely, at 
the point where cos 9 = l/G; here G = ( /I + l)/2 denotes the Golden Ratio. 
Using the relation G2 = G + 1, we then have 

sin29 = 1 - cos29 = 1 - l/G2 = l/G, 
from which it follows that esc 9 = G1^2 and cot 9 = G~1^2. The perimeter pmin of 
the optimally circumscribed triangle is then 

Pmin = HGl/2 + £~1/2 + G1'2) - 2£!/2(2 + l/G). 
Since 2 + 1 /G = 2 + (G - 1) = G + 1 = G2, we see that the minimal perimeter is 
2£5/2 . 

The triangle shown in the figure is in fact the circumscribing triangle of 
minimal length. The relevant dimensions are: 

Pmin = 26r5/2 = 6.66, 9 = arccos(l/£) = 51.8° , 

AE = BD = G112 , BE = G~112 , AC = G3/2 , AD = G. 

The unexpected appearance of the Golden Ratio makes this minimization prob-
lem of special interest. It would also be of interest to know of other 
problems which give rise to the "Golden Right Triangle," whose three sides are 
in the proportion l:Gl^2:G. 
AMS Classificaiton number: 26A06. 
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ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited by 
Stanley Rabinowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to 
Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 
USA. Correspondence may also be sent to the problem editor by electronic 
mail to 72717.3515@ compuserve.com on Internet. All correspondence will be 
acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be 
received within six months of publication of the problem. Solutions typed in 
the format used below will be given preference. Proposers of problems should 
normally include solutions. 

Dedication. This yearfs column is dedicated to Dr. A. P. Hillman in recogni-
tion of his 27 years of devoted service as editor of the Elementary Problems 
Section. Devotees of this column are invited to thank Abe by dedicating their 
next proposed problem to Dr. Hillman. 

BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

Fn+2 = Fn + l +FnsFQ:=05Fl = ll 

Ln + 2 = Ln + l + Ln> L0 = 2* Ll = l o 

Also5 a = (1 + /5) /2 , B = (1 - /5)/2, Fn = (an - 3n)/ /55 and Ln = an + 3n . 

PROBLEMS PROPOSED IN THIS ISSUE 

B-718 Proposed by Herta T. Freitag, Roanoke, VA 

Prove that [(Fn + Ln)a+ (Pn_i + Ln_1)]/2 is a power of the golden ra t io s a. 

B-719 Proposed by Herta T. Freitag, Roanoke, VA 

Dedicated to Dr . A. P . Hillman 

Let Pn be the nth Pell number (defined by PQ = Os P]_= 1, and P n + 2 = 2Pn+1+Pn 
for n > 0 ) . Let a be an odd integer. Show how to factor Pn

2
+a+Pn

2 into a product 
of Pell numbers. 

How should this problem be modified if a is even? 

B-720 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Dedicated to Dr . A. P . Hillman 

Find a closed form expression for 

Sn
 = £ FhFk h + k=2n 

where the sum is taken over all pairs of positive integers (7z, k) such that 
In + k = In and h < k. 
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B - 7 2 1 Proposed by Russell Jay Hendel, Dowling College, Oakdale, NY 

D e d i c a t e d t o D r . A . P . Hil lman 

B r i t t a n y i s g o i n g t o a s c e n d an 772 s t e p s t a i r c a s e . At any t ime she i s j u s t 
a s l i k e l y t o s t r i d e up one s t e p a s two s t e p s . For a p o s i t i v e i n t e g e r k9 f i n d 
t h e p r o b a b i l i t y t h a t she a s c e n d s t h e whole s t a i r c a s e i n k s t r i d e s . 

B-722 Proposed by H.-J. Seiffert, Berlin, Germany 

D e d i c a t e d t o D r . A . P . Hil lman 

Def ine t h e F i b o n a c c i p o l y n o m i a l s by 

F0(x) = 0 , Fi(x) = 1, Fn (x) = xFn_1(x) + Fn_2(x), for n > 2 . 

Show t h a t f o r a l l n o n n e g a t i v e i n t e g e r s ft, 
dx TT 

L 0 (xz + l)Fln+l (2x) 4ft + 2 

B - 7 2 3 Proposed by Bruce Dearden & Jerry Metzger, 
University of North Dakota, Grand Forks, ND 

(a) Show that for ft = 2 (mod 4), 
Fn + l(Fn + Fn ~ D d i v i d e s F»(Fn^ + Fn+l) - 1 . 

(b) What i s t h e a n a l o g of (a ) f o r ft E 0 (mod 4 ) ? 

S O L U T I O N S 

A C o n g r u e n c e fo r L^n 

B-694 Proposed by Sahib Singh, Clarion U. of Pennsylvania, Clarion, PA 

Prove t h a t L^ E 7 (mod 40) f o r ft > 2 . 

Solution 1 by Lawrence Somer, Washington, DC 

It is well known (see, for example, formula 17c of [1]) that 

L2m = Ll~ 2 ( - 1 ) m -
Letting m = 2n~l gives 

for ft > 2. For the case ft = 2, we have 

Suppose that L2„ = 7 (mod 40) for some ft > 2. Then 

L2n+i = L^n - 2 = 72 - 2 E 7 (mod 40) 
and the result is true for ft + 1. 

The result now follows for all ft > 2 by mathematical induction. 

Reference 

1. S. Vajda. Fibonacci & Lucas Numbers^, and the Golden Section. Ellis Harwood 
Ltd., West Sussex, England, 1989. 
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Solution 2 by Russell Jay Hendel (paraphrased) , Dow ling College, Oakdale, NY 

Writing down the Lucas sequence modulo 40, we obtain 

2, 1, 3, 4, 7, 11, 18, 295 7S 36, 3, 39, 2, 1, ... 

and we thus see that the sequence repeats every 12 terms. That is, 

La E Lb (mod 40) if a = b (mod 12), 
Modulo 12, the sequence 2n for n > 2 proceeds 4, 8, 4, 8, 4, 8, ..., so 

2n = 4 or 8 (mod 12) for w > 2. 

Thus, 

L^n = L^ or Lg (mod 40) for n > 2. 

But L^ = 7 and £3 = 47 are both congruent to 7 modulo 40. Hence, 

L2n = 7 (mod 40) for n > 2* 

fens 0/ t/ze solvers submitted any generalizations to this problem. The -prob-
lem cries out for a Fibonacci analog. Many such are possibles for example: 

F2n = 21 (mod 42) for n > 3. 

The editor will normally be pleased to publish any related results or general-
izations readers find for problems published in this section. 

Also solved by Charles Ashbacher, A. R, Boyd, Scott H. Brown, Paul S. 
Bruckman, Herta T. Freitag, Ray Melham, loan Sadoveanu, Bob Prielipp, and 
the proposer, 

Pell Relations 

6-895 Proposed by Russell Euler, Northwest Missouri State U., Maryville, MO 

Define the sequences {Pn} and {Qn} by 
P0 = 0, Px = 1, Pn + 2 = 2Pn+1 + Pn for n > 0 

and 
QQ - 1, Gx - 1, Qn + 2 = 2Qn + l + Qn for n > 0. 

Find a simple formula express ing Qn in terms of Pn . 

Solution 1 by Hans Kappus, Rodersdorf, Switzerland 

Let 
p = 1 + /2 and 4 = 1 - / 2 

be the roots of the characteristic equation t2 - It - 1 = 0 so that the Binet 
form for the elements of the sequences are given by 

pn - qn pn + qn 
Pn " —g=~ and Qn - — Y ~ . 

Squaring the second relation, subtracting twice the square of the first rela-
tion, and observing that pq = -1 yields 

Ql - 2Pn2 = (-1)" . 

From the initial conditions and the recurrence, we see that Qn > 0 for all n. 
Hence, the desired formula is 

1992] 

2n = hp2 + (-1)*. 
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This was the formula expected by the editor, Eendel3 however, found perhaps a 
simpler formula which we now present. 

Solution 2 by Russell Jay Hendel, Dowling College, Oakdale, NY 

For n > 0 , we have 

Qn = {Pn/l} 

where {x} d e n o t e s t h e i n t e g e r n e a r e s t t o x. 

Proof: Us ing t h e B i n e t forms a s found i n S o l u t i o n 1, we f i n d 

\Qn - P n / 2 | = \qn\ = | ( 1 - /2)n\ < \ 

for n > 1, from which the result follows. The formula may also be written as 

for n > 0, Pn^2 + \ 

where [x\ denotes the greatest integer not exceeding x. This formula follows 
also as a particular case of Problem B-680. 

Beasley found the formula Qn = (1 + Jl)n - PnJl. 

In Lucas* seminal paper of 1878 [1]3 he investigated two similar recurrences 
{Un} and {Vn} defined by 

Un+2 = PUn + i - QUn, Vn + 1 = PVn + l - QVn, 

U0 = 0, Ul = 1, 70 = 2, Vl = P. 

Lucas showed (page 199) that the two sequences are related by 

Vl - LUl = kQn 

where A = P1 - 4$. 

Many readers interpreted the problem differently. Instead of expressing Qn in 
terms of Pn for a given n3 they showed how to relate the sequence {Qn} in terms 
of the sequence {Pn}. The following solution uses this interpretation. 

Solution 3 by Glenn Bookhout, N. Carolina Wesleyan Col., Rocky Mount, NC 

Define the sequence {Tn} by T0 = 1, Tx = 0S and 

for n > 0. Then, clearly, Qn = Pn + Tn for all n. But T2 = 1. Thus Tn = Pn.l 
for n > 0. Hence the desired formula is Qn Pn + Pn-1'' 

Another such formula found by several of our solvers was Qn = Pn+i - Pn- Popoi 
gave Pn = (Qn + g„_1)/2. The numbers Pn and Qn are known as Pell numbers (om 
the first and second kind) and the relation Qn= Pn + Pn-\ is well known. Sado-
veanu generalized the problem to two sequences {Pn} and {Qn} defined by 

PQ = 0 , Pi = 1, Pn+2 ~ aPn+l + bPn 
and 

Q0 = 1, Qx = 1, Qn + 2 = aQn + l + bQn 

where a and b are arbitrary constants. In this case, a simple induction argu-
ment shows that the two sequences are related by the formula 

Qn = Pn + bPn.l, for n > 0. 
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R e f e r e n c e 

1. Edouard L u c a s . " T h e o r i e des f o n c t i o n s numer iques s implement p e r i o d i q u e s . " 
American Journal of Mathematics 1 ( 1 8 7 8 ) : 1 8 4 - 2 4 0 , 2 8 9 - 3 2 1 . 

Also solved by Charles Ashhacher, Paul S. Bruckman, Chris Clark & H. K. 
Krishnapriyan, Herta T. Freitag, Pentti Haukkanen, Joe Howard, Carl Libis, 
Ray Melham, Blago] S. Popov. Bob Prielipp, loan Sadoveanu, H.-J. Seiffert, 
Lawrence Somer, and the proposer (two solutions). 

A N o n p r i m i t i v e P y t h a g o r e a n T r i p l e 

B-696 Proposed by Herta T. Freitag, Roanoke, VA 

L e t ( a , b, Q) be a P y t h a g o r e a n t r i p l e w i t h t h e h y p o t e n u s e c - 5 F 2 n + 3 and 
a = L2n+Z + 4 ( - l ) » + 1 . 

( a ) De t e rmine b. 
(b) For what v a l u e s of n , i f a n y , i s t h e t r i p l e p r i m i t i v e ? [The e l e m e n t s 

of a p r i m i t i v e t r i p l e have no common f a c t o r . ] 

Solution to part (a) by Paul S. Bruckman, Edmonds, WA 

From t h e we l l -known f o r m u l a s ( I d e n t i t i e s 5 and 23 i n [ 1 ] ) , 

5Fa = La_! + La + l and L2a - 2 ( - l ) a = 5Fa, 

we s e e t h a t c = L2n + L± "*~ £ J
2 n + 2» Hence , 

c + a = L2n + h + L2n + 3 + L2n + 2 ~ 4 ( - l ) n + 2 

= 2(L2n + h - 2 ( - l ) * + 2 ) = 10F n
2

+ 2 . 

c - a = L2n + k - L2n + 3 + L2n + 2 - 4 ( - l ) n + 1 
A l s o . 

lj2n + h " h2n+?> **" L2n + 2 

= 2(L2n + 2 - 2(-l)"+1) = 10F*+l. 
Then, 

bz = c2 - a1 = (c + a)(c - a) = 102F^2+2Fn2+1, 
so b = 10^+1i^ + 2. 

Reference 

1. S. Vajda. Fibonacci & Lucas Numbers^ and the Golden Section. Ellis Harwood 
Ltd., West Sussex, England, 1989. 

Several solvers found the equivalent formula 

b = 2(L2n+3 + (-l)n) = 2a + 10(-l)n. 

Beasley found b = 5(F2n+3 - Fn). 

Solution to part (b) by Brian D. Beasley, Presbyterian College, Clinton, SC 

From c = 5F2n + 3 and 2? = 10Fn+lFn + 2 , it is clear that 5\c and 5\b. Thus, 
5z\(c2 - fe2) or 52|a2, which implies that 5 |a. Therefore, the triple is never 
primitive. 

To show that a Pythagorean triple is primitive,, it is sufficient to show that 
no two elements have a common factor. Most solvers showed that 5|a using con-
gruences or by finding explicit representations for a. Bruckman showed that 

a = 5(L2n + 3 - 2Fn + iFn + 2) . 

1992] 279 



ELEMENTARY PROBLEMS AND SOLUTIONS 

Somev showed that 

a 5(Fn + 2 - Fn+0 • 

Also solved by Charles Ashhacher, Brian D , Beasley, Paul S. Bruckman, 
Russell Jay Hendel, Nicola Lisi, Bob Prielipp, H.-J. Seiffert, Lawrence Somer, 
and the proposer. 

A Sum of Q u o t i e n t s 

B-697 Proposed by Richard Andre-Jeannin, Sfax, Tunisia 

Find a c l o s e d form f o r t h e sum 

n nk-\ 

71 k-1 WkWk + l 

where Wn * 0 f o r a l l n and Wn = pwn-\ - qwn-2 f ° r ^ - 2 , w i t h p and q n o n z e r o 
c o n s t a n t s . 

Solution by A. P . Hillman, Albuquerque, NM 

Let {un} be t h e s e q u e n c e d e f i n e d by 

pun„i - qun..2> w i t h UQ = 0 and U\ = 1. 
Let 

D„ = 
wn + i 

^n + l 

un + 2 

un pun - qun_i 

wn+l Pwn + l ~ °lwn 

Subtracting p times the first column of this last determinant from the second 
column shows that Dn = qDn_i. Repeated application of this formula yields 

Since 
Dn = qnD0. 

D0 = 
0 

wx 

1 

w2 

-wl9 

we find that 

unwn+2 - ^n+l^n+1 = -?"^1 o r 

n nk-l 
Thus, 

^n + 1 
wn + l wn+2 Wn+lWn+2 

JfrJ
l ukwk + i 

\wl wz) \w2 " w3) ' " \ wn wn + i) 'w1 WiWn+i 

Strictly speakingj the answer un/wiWn+i is not in closed form since it involves 
the term un which is defined via a recurrence. However3 we can give a closed 
form expression for un by the well-known Binet formula: 

un = 
xn - yn 

x - y 

where x and y are the roots of the characteristic equation t2 - pt + q = 0. 

Other equivalent formulas were found by some solvers. For example_, Sadoveanu 
found 
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b^, 
1 

q(Wi - XWQ) 

ry* nr* Yl \ X 

wl wn+l 
a n d S„ q(wl - yw0) 

jTl + l' 

°n + l 
Kappus found 

S„ = 
wn + l 

^0 

where d = w^ - w^w2J providing that d * 0. Also assuming d * 0,, Popov found 

S„ = qd 
W2 ^n+2 

°n + l 

which generalizes the formula that Lucas found in 1878 for the special case in 
which d = 1 (see page 196 of 111 or page 18 of [2]). 

References 

1. Edouard Lucas. "Theorie des fonctions numeriques simplement periodiques." 
American Journal of Mathematics 1 (1878):184-2405 289-321. 

2. Edouard Lucas. The Theory of Simply Periodic Numerical Functions. The Fibo-
nacci Association, 1969. 

Also solved by Paul S. Bruckman, Russell Jay Hendel, Hans Kappus, Blagoj S. 
Popov, loan Sadoveanu, and the proposer. 

Late solution to B-684 by Nicola Lisi. 
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PROBLEMS PROPOSED IN T H I S ISSUE 

H-469 Proposed by H.-J. Seiffert, Berlin, Germany 

Define the Fibonacci polynomials by 

FQ(x) = 0, Fx(x) = 1, Fn(x) = xFn_l(x) + Fn_2{x) 9 for n > 2. 

Show that for all positive integers n and all positive reals x, 

^ ^ ,-> n r\ c 

(a) xL + 4 In- 2 cos In 
^ - l W 2»- 1 fcV .2 + 4 c o s 2 

1 
kn 

In 1 

(b) 
1 

F2n (x) 
X(X2 + b)2nyl (~Dk + n 

4n k- o x2 _j_ ̂  cos^ feir* 
In 

H-470 Proposed by Paul S. Bruckman, Edmonds, WA 

(1) 

Consider the polynomial 
r - i 

Gr(z) = zv - ]T aks 

k=0 

r - l - k , r > 1, the a^'s complex. 

Consider the v distinct sequences (U^ j)n=0 satisfying the common recurrence 
relation: 

(2) Gr(E)(U^)
j) = 0, j = 1, 2, .. . , r; n = 05 1, ... . 

The sequences are specified by the initial values: 

(3) V W = &n + j,r> n = 0, 1, ..., V - 1, J = 1, 2, ..., P. 

Form t h e r*r m a t r i x U^ , d e f i n e d a s f o l l o w s : 
nM jAr) Tr(r) 
un + r-l,l un + r-l,2 ' ' ' un + r-l, : 

' Un+r-2,. 
(4) -,(**) 

j(r) (r) un + r-2,l un + r-2,2 

Un + ltl 
rr(r) 
un,l 

rr(r) Ur) 
Un+l,2 • • • un + l, 
Jn,2 . . . U, M 

n, v 

((Un + r-i, j ) ) 
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Therefore, 

(5) ,(r) 

a0 

1 

0 

0 

0 

CL\ 

0 

1 

0 

0 

a 2 • 
0 . 

0 . 

0 . 

0 . 

. . ar-2 

. . 0 

. . 0 

... 0 

. . 1 

ar-i 
0 

0 

0 

0 

(r). (A) Find the characteristic polynomial p (z) of i/1 ; 

(B) Prove that (u[r))n U(
n
r\ n = 1, 2, .. 

T(r) (C) Let there be P sequences (Ent j ) n = 0 satisfying the common recurrence in 
(2)s but the arbitrary initial values. Form the rx r matrix 

Prove that 

(£,W)n-l#pO #iP)
s n = 1, 2, ... . 

SOLUTIONS 

Woops 

H-451 Proposed by T. V. Padmakumar, Trivandrum, South India 
(Vol. 29, no. 1, February 1991) 

If p is a prime and x and a are positive integers, show 

Editorial Note: Many readers pointed out that this problem was published in an 
earlier issue of this Quarterly as B-643. Also, this result readily follows 
from B-666. In spite of this, we offer one more solution. 

Solution by Guo-Gang Gao, University of Montreal, Montreal, Canada 

Lemma 1: Let z be a positive integer. If z + 1 f. 0 (mod p), then 

(p ! i) E °  (™od P> • 

Proof: If z + 1 £ 0 (mod p) , then only one of 2, 2 - 1, . . . , s - p + 2 must be 
divisible by p, by the pigeonhole principle. Hence, (pt i) always contains a 
factor of p because p is a prime, and the lemma follows. Q 

Lemma 2: Let z be a positive integer. Then, for 1 < k < p - I, 

( " ; _ \ - ' ) . o ( - p ) . p - k 
Proof: Since zp - k 
0 < p - k < p5 thus 

(p - fe) = (s - D p - l, zp 

(zp - k - 1)1 

1 > (z - 1), and 

(*p - fc - 1\ 
V p - fe / (sp - k - 1 - p + k)\(p - k)\ 

always contains a factor of 79. i.p-. thp 1 pm™^ foil owe. n 
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we have 

Lemma 3: Let z be a positive integer. Then 

( p P - ~ i ) s i (m o d p ) -

Proof: (a) If 2 = 1, it is trivial; (b) let 3 > 1, then by repetitively apply-
ing Lemma 2, and 

(?) • (" » V (2 : 1) 

(7-7) = (?-\2) <-?> +(;p-"2
2) <-?> 

= (7_-2
3) cod?) +(;p.-3

3) M P ) 

= (SP0-
 P) (mod p) 

= 1 (mod p). 

We now come to the proof of the statement. By repetitively applying 

(?) - (" l 1 ) + {%: ! ) • 
/ # + ap\ /# \ (x + (a - l ) p \ / # \ , a \ ^ / # + A 
i P ) - ( p ) : 1 P ) ' ( p ) + , . ( ? - i , P ^ - 1 ) 

J = l t = ( J - l ) p XP i 7 

For any fixed j (1 < J < a), # + i can be one of p consecutive integers, 
x + (j - l)p, . . . , x + jp - 1. Of these p consecutive integers, there always 
exists only one x + i such that x + i + 1 E 0 (mod p) , by the pigeonhole prin-
ciple. Therefore9 by Lemmas 1 and 3, for any fixed j, 

i-(j-l)p ^ 
that is, 

r ; a p ) - ( p ) = «<-?>. 
completing the proof. D 

AZso solved by K. Atanassov , P . Bruckman, P. Filipponi, R. Hendel, J. 
Kostal, Y. H. H. Kwong, B. Prielipp, H.-J. Seiffert, and the proposer. 

Divide and Conquer 

H-452 Proposed by Don Redmond, Southern Illinois U., Carbondale, IL 
(Vol. 29, no. 2, May 1991) 

Let pr(m) denote the mth r - g o n a l number (777/2) {2 + ( r - 2) (777 - 1 ) } . Char-
a c t e r i z e the values of v and 77? such tha t 
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k= l 

Solution by C. Georghiou, University of Patras, Patras, Greece 

Let Sr(m): = ^ p (jn) . Then i t i s easy to see t ha t 
k= 1 P 

ST(m) = ^ ^ 1}[(r - 2) {2m + 1) - 3(r - 4)]. 

Now, since p (1) = 1 and 5P(1) = 1, the given property is trivially true for all 
p and 777 = 1. So, we are interested in the case m > \ (and, of course, p > 1) . 
Then the given property is true only if 

p = 2 and m = 1 mod 2 or P = 3 and m E 1 mod 3. 

Indeed, we have 

Sz(m)/p2(m) = (/??+ l)/2 and S3(m)/p3(m) = (m + 2)13. 
It remains to show that 7pT(m)\Sr(jri) for p > 3 (and 777 > 1) . We have 

(m + 1) [ (p - 2)777 - (P - 5) ] 
Sr (m) /p (777) 

3[(P - 2)777 - (p - 4); 

Since 3 must divide either factor of the numerator, we have the following three 
possibilities: (i) 777 = 3n - 1; (ii) 777 = 3n + 1; (iii) P = 3s - 1 and 777 = 3n. 

In Case (i), we get 

Sr (w) /pr (m) = n + n/[ (3P - 6)n - (2P - 6) ], 

and since 0 < n/[(3p - 6)n - (2P -6)] < 1 for n > 0 and p > 3 we conclude that 
p (3n - l)J£r(3n - 1) for any p > 3 and any n > 0. 

In Case (ii), we get 

Sr (m) /pr (777) = n + [(2P - 3)n + 2]/[(3r - 6)w + 2], 

and it is easy to see that the second term lies (strictly) between 0 and 1 for 
p > 3 and n > 0. 

Finally, in Case (iii), we get 

Sr(m)/pr(m) = n + [3s - 2)n - (s - 2)]/[(9s - 9)n - (3s - 5)], 

and again the second term i s p o s i t i v e and l e s s than un i ty for any n > 0 and 
s > 1, 

Also solved or partially solved by P. Bruckman, N. Jensen, S. Rabinowitz, 
and the proposer. 

Sum Formulae! 

H-453 Proposed by James E. Desmond, Pensacola Jr. College, Pensacola, FL 
(Vol. 29, no. 2, May 1991) 

Show tha t for p o s i t i v e i n t ege r s 777 and n, 

L ( 2 m + l)n
 = V ( - l ) ( n + 1 ) ( m - J ' ) L 2 n - + (- l )m(n + D 

and 
Fr, m 

n J = 1 
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Solution by Stanley Rahinowitz, Westford, MA 

Lemma: 
n 

S(n, a, b, r) = J2rtJ'Faj + b " 
j'= i 

Proof: Let 

G(x, n) = ]T x3' = x\x 11 )-

(-l)ar»+2Fan+b -r« + 1Fa{n+l)b- {-l)av2Fb + vFa + l 

(-l)ar2-rLa+ 1 

Now 

Thus, 

vJF . , = W 1 £aj + b L 
/aaj + b _ ga j + ftx ^ ^ 

V /5 / / 
( P a a ) j - _ ( r g a ) j 

/5 /5 

S(n, a, b, r) = — £( ra a , n) - -= G (r$a
9 n) 

/5 /5 

ro r 
p n a a n _ ]_' 

P3 a
/p n 3 a n - 1 

/5 V vaa - 1 / /5 V r3 a - 1 

/5 L Wa a - 1 / V r3a - 1 /J 
r f"aa+fc(r3a - 1) (rnaan - 1) - 3a+z?Oaa - 1) {vn$an - 1)1 
75 L (raa - l)(r3a - 1) J 

- p(aa + 2?3a - aa3a + Z}) + aa+b - $a + b v 

7! 

V 

p2(a3)a - p(aa+ 3a) + 1 

[p n + 1 ( a 3 ) a (aan+b - $an + b) _ rn(aa(n + l)+b _ ga(n + l) + 2>)-| 

- p(a3)a(afc- 3&) + (aa + h - &a+b) 

(a3)aP2~p(aa+ 3a) + 1 

rn + L (-iyFan + b - r «^ ( n + 1) + b - p ( - l ) a ^ + Fa+l 

( - l ) a r z - pLa+ 1 

m (~Var^Fan + b -rn + lFa(n+1)+b-(-iyr%+i>Fa + b 

(~l)ap2 - vLa + 1 

which was to be proved. 

Using this lemma, we have 
m 
E(- i ) ( n + 1 ) ( m - J ' ) ^ (2 i -D 

= . ( - l ) ( n + l ) m 5 ( m j 2 « , - n , ( - l ) n + 1 ) 

- (_!)(* + 1). (-D(n+1)(W + 2 ) F2rm.n - ( - l ) (n + lXm + l) F2 n ( m + 1 ) . n -F_n + ( - l ) " + lfw 

*n(2m-l) + (-1)n^(2w + l) 
2+(-l)*L2n 

where we have used the fact that F_„ = (~l)n+lFn. 
Thus, it remains to prove that our answer, 

(1) £ (-l)(«+l>0n- d)F . = LniZm ~l) + (-1)n^(2^+ 1) 
J-l 2 + (-l)«L2n 
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i s e q u i v a l e n t t o t h e p r o p o s e r ' s answer of F2rm/LnB Cross m u l t i p l y i n g , we s e e 
t h a t t h i s would be e q u i v a l e n t t o showing t h a t 

(2) Fn{2m-1)K + ( - D n ^ ( 2 m + 1) = 2F2 m n + (-l)nF2mnL2n. 
Apply ing t h e we l l -known i d e n t i t y , 

LxJ-Jy £x+y ^ \ LJ £x-y 
to equation (2), we find that all the terms drop out; hence* equation (2) is 
true. Thus5 our answer (1) is equivalent to the proposer's answer. 

In the same manner, we can prove a similar lemma for the Lucas numbers: 
n 

T(n9 a, b, r) = £ r^Laj+b 
j= i 

= abG(raa
s n) + $bG(r$a

5 n) 

= abraa( — — ) + 8hr&a(—— ) 

' a+h(r»**» - 1\ + h(r»&™ - IX 
V r a a - 1 / \ r 3 a ™ 1 / 

[ a a ^ ( p 3 a - l ) ( A a " " l ) + $a+b(raa - l ) ( r n B a n - 1)' 
( r a a - l ) ( p 3 a - 1) 

~rn + l /gaaa(n+l)+b + aaga(n + l) + £\ _. p n / a a ( n + l) + Z? + ga(n + l) + foy 

- p ( a a + b 3 a + a a 3 a + k ) + (aa+b + $a+b) 
r 2 ( a 3 ) a - p ( a a + 3 a ) + 1 

prc + 1 ( a 3 ) a ( a a n + fe + 3 a n + ^) - p?Vaa(n + l) + & + ga(n + l) + fc\ 

( a $ ) a p 2 - r(aa + 3 a ) + 1 

( - l ) a p 2 - 2>La+ 1 

Us ing t h i s r e s u l t , we have 
m 
E (-D(n + 1)(B,-^i2nJ 
J" 1 

= (-i)(« + l)T(m, 2w, 0, (-l)n + 1) 

-(_1)(n + l)(n + 2) L 2 ^ _ (.!)(»+!)(«+ 1) L2n(m + 1) _ L Q + ( _ 1 ) n + li2n 
(_X)(n + l)m 

2- (-l)n+1L 2n 

L2m„ + (-l)"L2n(m+1) - 2(-l)(" + 1>'» + (-1)(" + 1)C"+ 1) Lzn 

2 + (-DnL2n 

To show that our answer is equivalent to the proposer's, we must show that 

£(2ffH 

or, equivalently, 

m+l)n ( n + 1 ) ^ n + (-l)^2n(m+l) " 2(-l)(* + 1 ^ + (-l)(n+l>0-H) Lln 

^ 2 + (-l)nL2„ 
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2Ln(2m+1) - 2 ( - l ) m ( " + l>Ln + (-l)nL2nLn(2m+1) - {-lY^ + »^LnLln 

= LnL2mn + (-DnLnL2n{m + l) - 2(-l)^n + ^Ln + ( - l ) ( " + l ) C « + l ) Z , n L 2 n . 

Aga in , t h i s f a l l s ou t by a p p l y i n g t h e we l l -known i d e n t i t y , 
LxLy = Lx + y + ( _ 1 ) Lx-y 

Also solved by P. Bruckman, N. Jensen, B. Prielipp, H.-J. Seiffert, and the 
proposer. 

Editorial Note: Several readers have pointed out t ha t H-462 was published 
e a r l i e r as H-449. 
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