

Berechnungsgrundlagen für Stahlanschlüsse mit der Komponentenmethode nach DIN ENV 1993-1-1:1992 / A2; 1998 (DIN 18800)

FRILO Software GmbH www.frilo.eu info@frilo.eu Stand: 19.03.2019

Berechnungsgrundlagen für Stahlanschlüsse mit der Komponentenmethode nach DIN ENV 1993-1-1:1992 / A2; 1998 (DIN 18800)

Diese Dokumentation beinhaltet die Berechnungsgrundlagen zur Komponentenmethode nach DIN ENV 1993-1-1:1992 / A2; 1998 (DIN 18800) in den Stahlprogrammen ST10 - Geschraubte Rahmenecke und ST14 - Geschweisste Rahmenecke.

Inhaltsverzeichnis

Einleitung	3
Komponenten in der Träger-Stützenverbindung	4
Komponenten in der Stirnplattenverbindung	5
Modell der T-Stummel	9
Komponente Stützensteg auf Schub (nur Träger-Stützenverbindung)	15
Komponente Stützensteg auf Druck (nur Träger-Stützenverbindung)	17
Komponente Trägerflansch und -steg auf Druck	18
Komponente Gurt auf Druck (nur bei Vouten in Träger-Stützenverbindung)	19
Komponente Stützensteg auf Zug (nur Träger-Stützenverbindung)	19
Komponente Stützenflansch auf Biegung (nur Träger-Stützenverbindung)	19
Komponente Stirnplatte auf Biegung	19
Komponente Trägersteg auf Zug	19
Nachweis der Schweißnähte	20
Nachweis der Querkrafttragfähigkeit	21
Rotationssteifigkeit	22
Die Steifigkeitskoeffizienten der einzelnen Komponenten	25
Klassifizierung nach der Tragfähigkeit	27
Literatur	27

Einleitung

Diese Beschreibung bezieht sich auf die Anwendung der Komponentenmethode im Nachweis von Träger-Stützenanschlüssen und biegesteifen Stirnplattenstößen nach DIN 18800. Grundlage ist das in DIN ENV 1993-1-1:1992 / A2; 1998 beschriebene Verfahren.

Mit der Komponentenmethode ist es möglich, neben der Momententragfähigkeit auch das Verformungsverhalten des Anschlusses zu ermitteln. Damit können nachgiebige Verbindungen berücksichtigt werden. Mittels Feder gehen deren Anschlusssteifigkeiten in die Systemberechnung ein und führen so über eine iterative Berechnung zu einer Gesamtoptimierung der Konstruktion.

Die Tragfähigkeit und Steifigkeit von Verbindungen wird durch Berechnung der Grundkomponenten eines Anschlusses bestimmt. Diese Grundkomponenten sind in Tabelle J.1 aufgeführt.

Einschränkungen bei der Anwendung in den Programmen:

- Normalkraft im angeschlossenen Träger nicht größer als 10% seiner plastischer Grenzkraft N_{pl,Rd}
- Stahlgüten S235, S275, S355 sowie S460 das Material muss ausreichende Duktilität besitzen
- Bauteile besitzen ausreichend dicke Stege mit d/t \leq 69 ϵ , d.h. Schubbeulen darf nicht relevant sein
- Schrauben können vorgespannt oder nicht-vorgespannt sein, im Verfahren werden immer nichtvorgespannte Schrauben angenommen
- Schraubenbild: vertikal zwei Schraubenreihen, die sich innerhalb des Anschlussquerschnittes, einschließlich ggf. vorhandener Aussteifungen mit Gurt befinden und jeweils höchstens eine Schraubenreihe oberhalb bzw. unterhalb der äußeren Gurte
- Aussteifungen vom Anschluss als Eckblech ohne Gurt werden nicht berücksichtigt
- Steifen sind durchgehend, Breite und Dicke entsprechen mindestens den Flanschen der angeschlossenen Bauteile
- Schweißnähte sind nur begrenzt duktil und sollten daher für die Momententragfähigkeit so dimensioniert werden, dass sie nicht bemessungsrelevant sind, d.h. eine andere Komponente zuerst versagt, bzw. das Fließen im Material der angeschlossenen Bauteile ausreichend früh vor dem Schweißnahtversagen erfolgt

Komponenten in der Träger-Stützenverbindung

allgemein:

- 1 FvWp Stützensteg auf Schub (J 3.5.1 in [2])
- 2 FcWc Stützensteg auf Druck (J 3.5.2 in [2])
- 3 FcFb Trägerflansch und -steg auf Druck (J 3.5.7 in [2])
- 4 FcWb Trägersteg auf Druck bei Vouten (Kap. 4 in [3])
- 5 FcFv Voutengurt auf Druck (Kap. 4 in [3])

und jeweils in den T-Stummeln :

- 6 FtWc Stützensteg auf Zug (J 3.5.3 in [2])
- 7 FtFc Stützenflansch auf Biegung (J 3.5.4 in [2])
- 8 FtEp Stirnplatte auf Biegung (J 3.5.5 in [2])
- 9 FtWb Trägersteg auf Zug (J 3.5.8 in [2])

Komponenten in der Stirnplattenverbindung

allgemein:

3 - FcFb Trägerflansch und -steg auf Druck (J 3.5.7 in [2])

und jeweils in den T-Stummeln :

- 8 FtEp Stirnplatte auf Biegung (J 3.5.5 in [2])
- 9 FtWb Trägersteg auf Zug (J 3.5.8 in [2])

Grenzmoment der Verbindung

Das plastische Grenzmoment ergibt sich aus der Summe der Grenzkräfte jeder einzelnen Schraubenreihe i mit deren Abstand zum Druckpunkt h_i :

$$Ma_{Rd} = \sum_{i} h_i \cdot Fti_{Rd}$$

i Nummer der Schraubenreihe

h_i Abstand Schraubenreihe i zum Druckpunkt

Fti_{Rd} wirksame Grenzzugkraft Schraubenreihe i aus der Zusammensetzung aller Komponenten

Als Druckpunkt wird die Mitte des äußersten gedrückten Flansches im Träger, einschließlich einer ggf. vorhandenen Voute angenommen.

Die wirksame Grenzzugkraft einer Schraubenreihe ergibt sich dabei aus einem schrittweisen Berechnungsverfahren. Angefangen wird mit der vom Druckpunkt weitest entfernten Schraubenreihe und der Bestimmung des Gleichgewichtes aller Komponenten unter Berücksichtigung dieser Reihe. In den nächsten Schritten wird jeweils eine weitere Schraubenreihe (die in Richtung Druckpunkt nachfolgende) hinzugenommen und die Grenzkraft aus dem Zusammenspiel dieser Schraubengruppe unter Berücksichtigung des Gleichgewichtes aller Komponenten erneut berechnet. Näher zum Druckpunkt liegende Schraubenreihen als die gerade hinzugenommene, bleiben im jeweiligen Berechnungsschritt unberücksichtigt.

Welche Schraubenreihe als im Zugbereich liegende herangezogen wird, kann mit dem Faktor f aus den Optionen zum Berechnungsverfahren gesteuert werden. Vorgabewert ist 0,5 und bedeutet, dass sich der Zugbereich auf die halbe Anschlusshöhe erstreckt. Schrauben außerhalb dieses Bereiches werden dann nur zur Querkraftübertragung herangezogen.

Effektive Tragfähigkeit Fti_{Rd} in der Träger-Stützenverbindung

Das Fti_{Rd} eines Berechnungsschrittes zur Schraubenreihe i ergibt sich aus der minimalen Grenzzugkraft der folgenden Bedingungen:

- 1. Ft_{Rd} der einzelnen Schraubenreihe (also als T-Stummel mit nur einer Schraubenreihe) durch Minimum aus
 - FtWcStützensteg auf ZugFtFcStützenflansch auf Biegung
 - FtEp Stirnplatte auf Biegung
 - FtWb Trägersteg auf Zug
- 2. Abminderung des Ft_{Rd} aus 1. so dass die Summe aller betrachteten Schraubenreihen einschließlich der Reihe i höchstens dem Minimum aus
 - FvWp Stützensteg auf Schub
 - FcWc Stützensteg auf Druck
 - FcFb Trägerflansch und -steg auf Druck, nur ohne Voute
 - FcWb Trägersteg auf Druck, nur bei Vouten,
 - FcFv Gurt auf Druck, nur bei Vouten

entspricht

- ist die Schraubenreihe i Teil eines mehrreihigen T-Stummels im Stützengurt, muss Ft_{Rd} aus 2. ggf. so abgemindert werden, dass für alle Gruppen von Schrauben im T-Stummel bis und einschließlich der Reihe i die Grenzkraft dieser Schraubengruppe als T-Stummel betrachtet nicht überschritten wird, Bedingung:
 - FtWc Stützensteg auf Zug dieser Gruppe
 - FtFc Stützenflansch auf Biegung dieser Gruppe
 - FtEp Stirnplatte auf Biegung der entsprechenden Gruppe plattenseitig
 - FtWb Trägersteg auf Zug der entsprechenden Gruppe plattenseitig
- ist die Schraubenreihe i Teil eines mehrreihigen T-Stummels in der Stirnplatte, muss Ft_{Rd} aus 3. ggf. durch Gruppierung der Schraubenreihen im T-Stummel analog Schritt 3 abgemindert werden, Bedingung:

FtWc	Stützensteg auf Zug der entsprechenden Gruppe stützenseitig
FtFc	Stützenflansch auf Biegung der entsprechenden Gruppe stützenseitig
FtEp	Stirnplatte auf Biegung dieser Gruppe
FtWb	Trägersteg auf Zug dieser Gruppe

- 5. ist Ft_{Rd} einer vorher berechneten Schraubenreihe j (also j < i) größer als $1,9 \cdot Bt_{Rd}$, so wird Ft_{Rd} der Schraubenreihe i durch $Fti_{Rd} \le Ftj_{Rd} \cdot h_j / h_j$ begrenzt, mit
 - hj Abstand Schraubenreihe j zum Druckpunkt
 - hi Abstand Schraubenreihe i zum Druckpunkt

Effektive Tragfähigkeit Fti_{Rd} in der Stirnplattenverbindung

Das Fti_{Rd} eines Berechnungsschrittes zur Schraubenreihe i ergibt sich aus der minimalen Grenzzugkraft der folgenden Bedingungen:

- 1. Ft_{Rd} der einzelnen Schraubenreihe (also als T-Stummel mit nur einer Schraubenreihe) durch Minimum aus
 - FtEp Stirnplatte auf Biegung
 - FtWb Trägersteg auf Zug
- 2. Abminderung des Ft_{Rd} aus 1. so dass die Summe aller betrachteten Schraubenreihen einschließlich der Reihe i höchstens dem Minimum aus
 - FcFb Trägerflansch und -steg auf Druck

entspricht

- ist die Schraubenreihe i Teil eines mehrreihigen T-Stummels in der Stirnplatte, muss Ft_{Rd} aus 2. ggf. durch Gruppierung der Schraubenreihen im T-Stummel analog Schritt 2 abgemindert werden, Bedingung:
 - FtEp Stirnplatte auf Biegung dieser Gruppe
 - FtWb Trägersteg auf Zug dieser Gruppe
- 4. ist Ft_{Rd} einer vorher berechneten Schraubenreihe j (also j < i) größer als $1,9 \cdot Bt_{Rd}$, so wird Ft_{Rd} der Schraubenreihe i durch $Fti_{Rd} \le Ftj_{Rd} \cdot h_i / h_i$ begrenzt, mit
 - hj Abstand Schraubenreihe j zum Druckpunkt
 - hi Abstand Schraubenreihe i zum Druckpunkt

 $Bt_{Rd} \qquad \mbox{Minimum aus Durchstanztragfähigkeit BpRd und Grenzzugkraft Ft_{Rd} der Schraube aus der Schraubenstatik \qquad \mbox{}$

Hinweis zu den Komponenten: die Streckgrenze f_y kann nach DIN 18800 A1 für Komponenten, die durch Fließen und nicht durch Instabilität versagen, um 10% erhöht werden.

Berechnung elastisch- elastisch

Erfolgt die Tragwerksberechnung nach dem Verfahren elastisch - elastisch, kann das Grenzmoment der Verbindung aus dem plastischen M_{aRd} abgeleitet werden:

 $Ma_{Rd,elastisch} = \frac{2}{3}Ma_{Rd,plastisch}$

Modell der T-Stummel

Die einzelnen Komponenten zur Übertragung der Zugkräfte im Anschluss

FtWc	Stützensteg auf Zug
FtFc	Stützenflansch auf Biegung
FtEp	Stirnplatte auf Biegung
FtWb	Trägersteg auf Zug

werden durch idealisierende, äquivalente T-Stummel unter Zugbeanspruchung modelliert, deren Versagensmechanismus durch Fließlinienmodelle beschrieben ist.

Ein T-Stummel besteht aus zugbeanspruchtem Steg und biegebeanspruchtem Gurt. In den Schraubenachsen wirkt Zug, der sich an den Außenrändern abstützt, die als starre Lager idealisiert werden.

Eine Besonderheit stellt die Schraubenreihe im nicht ausgesteiften Überstand der Stirnplatte dar. Hier wird ein T-Stummel angenommen, dessen zugbeanspruchter Steg nicht dem Trägersteg, sondern dem Gurt des Trägers entspricht. Er wird also um 90° gedreht angenommen.

Im T-Stummelmodell werden drei Versagensarten unterschieden:

Versagensart 1 : vollständiges Fließen der Gurte

durch Verwendung von Futterplatten kann die Grenzzugkraft Ft1Rd erhöht werden:

$$\mathsf{Ft1}_{\mathsf{Rd}} = \frac{4 \cdot \mathsf{Mpl1}_{\mathsf{Rd}} + 2 \cdot \mathsf{Mbp}_{\mathsf{Rd}}}{\mathsf{m}}$$

mit $Mbp_{Rd} = 0,25 \cdot \sum leff, 1 \cdot t_{bp}^2 \cdot 1, 1 \cdot fy_d$

und leff1 : wirksame Länge des T-Stummels für Versagensart 1

t_{bp} : Dicke Futterplatte

Die Futterplatte soll dabei die gesamte Breite des Stummelflansches überdecken und mindestens der gesamten wirksamen Länge für die betroffenen Schraubenreihen im T-Stummel entsprechen, mit einem Mindestüberstand von 2*d über die Endschrauben (d Nenndurchmesser der Schrauben).

Versagensart 2 : Schraubenversagen und Fließen der Gurte

Versagensart 3 : Schraubenversagen

 $Ft3_{Rd} = \sum Bt_{Rd}$ mit ΣBt_{Rd} : siehe Versagensart 2

Abmessungen im T-Stummel : n = e,min und $n \le 1,25*m$

Alternative Methode zur Berechnung Versagensart 1:

Durch genauere Erfassung des Fließlinienverlaufs im Lastverteilungsbereich der Schraubenköpfe kann die Tragfähigkeit der Versagensart 1 erhöht werden. Ein erweitertes Modell setzt die Schraubenkräfte unter der Unterlegscheibe und dem Schraubenkopf bzw. der Schraubenmutter gleichmäßig auf den Gurt verteilt statt konzentriert in der Schraubenachse an.

$$\mathsf{Ft1}_{\mathsf{Rd}} = \frac{(8 \cdot n - 2 \cdot ew) \cdot \mathsf{Mpl1}_{\mathsf{Rd}}}{2 \cdot m \cdot n - ew \cdot (m + n)}$$

= dw / 4

mit ew

dw

Durchmesser Unterlegscheibe bzw. Breite Schraubenkopf/-mutter, für Schrauben mit FK 4.6 und 5.6 nimmt das Programm wegen der fehlenden Unterlegscheibe die Breite des Schraubenkopfes an (Eckmaß)

bei Verwendung von Futterplatten bestimmt sich die Grenzzugkraft Ft1Rd aus:

$$Ft1_{Rd} = \frac{(8 \cdot n - 2 \cdot ew) \cdot Mpl1_{Rd} + 4 \cdot n \cdot Mbp_{Rd}}{2 \cdot m \cdot n - ew \cdot (m + n)}$$

$$Ft$$

$$f$$

$$0,5Ft+Q$$

$$0,5Ft+Q$$

$$f$$

$$f$$

$$f$$

$$f$$

$$f$$

$$f$$

Wirksame Längen leff der T-Stummel

Die wirksamen Längen im Ersatzmodell der T-Stummel entsprechen den Längen der Fließlinien zur jeweiligen Versagensart und können von den geometrischen Längen der Verbindung abweichen. Die Fließlinienlänge einer Schraube bestimmt sich durch deren Lage: randnah, neben einer Aussteifung, am Anfang/Ende einer Gruppe bzw. im inneren einer Gruppe.

Es wird zwischen kreisförmigen und nicht kreisförmigen Mustern der Fließlinien unterschieden.

l_{eff} der Versagensart 2 entspricht den nicht kreisförmigen, l_{eff} der Versagensart 1 entspricht der kleineren Länge aus kreisförmigen und nicht kreisförmigen Mustern. Effektive Längen von T-Stummeln mit mehreren Schraubenreihen setzen sich

kreisförmige Muster leff,cp

nicht kreisförmige Muster leff,nc

aus der Summe der Längen jeder Einzelreihe bezüglich deren Lage zusammen.

Beispiel-Fließmuster an nicht ausgesteifter Stütze:

Wirksame	längen	·
WirkSume	Lungen	'eff

Lage der		einzeln		Gruppe
Schrauben-	kreisförmig	nicht kreisförmig	kreisförmig	nicht kreisförmig
reihen	$I_{eff,cp}$	l _{eff,nc}	$I_{eff,cp}$	l _{eff,nc}
innere Schraubenreihe neben einer Steife	2·π·m	α∙m	π·m+p	0,5·p+α·m−(2·m+0,625·e)
andere innere Schraubenreihe	2·π·m	4·m+1,25·e	2·p	р
andere äußere Schraubenreihe	$\min\begin{bmatrix} 2 \cdot \pi \cdot m \\ \pi \cdot m + 2 \cdot e_1 \end{bmatrix}$	$\min\begin{bmatrix} 4 \cdot m + 1,25 \cdot e \\ 2 \cdot m + 0,625 \cdot e + e_1 \end{bmatrix}$	$\min\begin{bmatrix} \pi \cdot m + p \\ 2 \cdot e_1 + p \end{bmatrix}$	$\min\begin{bmatrix} 2 \cdot m + 0,625 \cdot e + 0,5 \cdot p \\ e_1 + 0,5 \cdot p \end{bmatrix}$
äußere Schraubenreihe neben einer Steife	$\min\begin{bmatrix} 2 \cdot \pi \cdot m \\ \pi \cdot m + 2 \cdot e_1 \end{bmatrix}$	$e_1 + \alpha \cdot m - (2 \cdot m + 0,625 \cdot e)$	-	-
Modus 1	$I_{eff,1} = I_{eff,nc}$ jedoch $I_{eff,1} \le I_{eff,cp}$		$\Sigma I_{eff,1} = \Sigma I_{eff,nc}$ jedoch $\Sigma I_{eff,1} \le \Sigma I_{eff,cp}$	
Modus 2	$I_{eff,2} = I_{eff,nc}$		$\Sigma I_{eff,2} = \Sigma I_{eff,nc}$	

Der Hilfswert α für T-Stummel im Bereich von Aussteifungen ergibt sich nach Bild J 27 in [2] mit den folgenden λ -Werten:

$$\lambda_1 = \frac{m}{m+e}$$
 und $\lambda_2 = \frac{m_2}{m+e}$

Bsp. T-Stummel in ausgesteifter Stütze Teil 1 Teil 2

Bsp. T-Stummel in ausgesteifter Stütze

Bsp.: T-Stummel in nicht ausgesteifter Stütze

Komponente Stützensteg auf Schub (nur Träger-Stützenverbindung)

Die Tragfähigkeit für Schubbeanspruchung im nicht ausgesteiften Stützensteg ergibt sich aus:

$$V_{wp,Rd} = \frac{0.9 \cdot A_{vc} \cdot 1.1 \cdot f_{vd}}{\sqrt{3}}$$

Avc : schubwirksame Fläche der Stütze

für geschweißte Profile

$$\mathsf{A}_{\mathsf{VC}} = \mathsf{t}_{\mathsf{gurt}} \cdot \left(\mathsf{h}_{\mathsf{gesamt}} - \mathsf{t}_{\mathsf{gurt},\mathsf{oben}} - \mathsf{t}_{\mathsf{gurt},\mathsf{unten}} \right)$$

 $F_{wp,Rd} = V_{wp,Rd} / \beta$ $\beta \qquad Üb$

Übertragungsparameter für Anschlussmoment (Schubeinfluss Stützenstegfeld) nach Tab. J 4 in [2]

für einseitig ausgeführte Anschlüsse ist β näherungsweise 1, der Parameter kann in den Berechnungsoptionen für andere Konfigurationen angepasst werden

Stegblechverstärkung

Eine Möglichkeit, die Schubtragfähigkeit zu erhöhen, ist die Anordnung eines einseitigen Stegbleches der Dicke t_s in der Stütze. Die Breite b_s sollte bis an die Eckausrundungen reichen und die Länge I_s so groß sein, dass die effektiven Breiten des Steges unter Druck und Zug überdeckt sind.

Die erforderlichen Abmessungen werden vom Programm vorgeschlagen. In der Eingabe kann gewählt werden, ob die Stegblechverstärkung nur bei Schnittkraftkombinationen mit Zug an der Riegeloberseite oder nur bei Zug an der Riegelunterseite bzw. immer für Wechselmomente vorgesehen wird, entsprechend passen sich die erf. Längen automatisch an.

Das Stegblech sollte rundherum mit einer Kehlnaht von $a_w \ge t_s / \sqrt{2}$ angeschweißt werden.

 A_{vc} erhöht sich um: $b_s \cdot min[t_s;s_{Stützensteg}]$

Die Stegblechverstärkung erhöht auch die Tragfähigkeit der Komponenten Stützensteg auf Zug und Stützensteg auf Druck.

Das Programm prüft das Stegblech auf geeignetes Zusammenwirken mit dem Stützensteg und gibt erforderlichenfalls die Kennwerte für Lochschweißungen oder Schrauben aus.

Wenn $b_s > 40 \cdot \varepsilon \cdot t_s$, mit $\varepsilon = \sqrt{235 / f_v}$, so gilt :

$$\max(e_1, e_2, p) \le 40 \cdot \epsilon \cdot t_s \text{ sowie } d_o \ge t_s$$

Sind jeweils im äußeren Druck- und Zugbereich der Stegblechverstärkung Rippen angeordnet, kann V_{wp,Rd} im Stützenfeld um V_{wp,Rd,add} erhöht werden.

$$\begin{split} V_{wp,Rd,add} &= \frac{4 \cdot M_{pl,fc,Rd}}{d_s} \quad und \\ V_{wp,Rd,add} &\leq \frac{2 \cdot M_{pl,fc,Rd} + 2 \cdot M_{pl,st,Rd}}{d_s} \end{split}$$

mit

ds	: Abstand Mittellinien der Rippen
M _{pl,fc,Rd}	: plastisches Grenzmoment eines Stützenflanschs
M _{pl,st,Rd}	: plastisches Grenzmoment einer Rippe

Diagonalsteife

Eine weitere Möglichkeit, die Schubtragfähigkeit im Stützensteg zu verbessern, bietet das Programm durch die Anordnung einer Diagonalsteife von links oben nach rechts unten, d.h. für die übliche Beanspruchung der Verbindung durch Druck unten und Zug oben.

Die aufnehmbare Grenzkraft $F_{cRd_diagonale}$ der Diagonalsteife ergibt sich aus:

- der Spannung in der Diagonalsteife
- dem Knicknachweis der Diagonalsteife
- dem Beulnachweis der freien Ränder der Diagonalsteife

Die Komponente wird dann durch den größeren Wert aus $F_{cRd_diagonale}$ und F_{wpRd} bestimmt.

Komponente Stützensteg auf Druck (nur Träger-Stützenverbindung)

Die Tragfähigkeit für nicht ausgesteiften Stützensteg auf Druck ergibt sich aus:

 $\mathsf{F}_{\mathsf{c},\mathsf{wc},\mathsf{Rd}} = \mathsf{k}_{\mathsf{wc}} \cdot \omega \cdot \mathsf{b}_{\mathsf{eff},\mathsf{c},\mathsf{wc}} \cdot \mathsf{t}_{\mathsf{wc}} \cdot \mathsf{1,1} \cdot \mathsf{f}_{\mathsf{yd}} \quad \text{und} \ \mathsf{F}_{\mathsf{c},\mathsf{wc},\mathsf{Rd}} \leq \rho \cdot \mathsf{k}_{\mathsf{wc}} \cdot \omega \cdot \mathsf{b}_{\mathsf{eff},\mathsf{c},\mathsf{wc}} \cdot \mathsf{t}_{\mathsf{wc}} \cdot \mathsf{f}_{\mathsf{yd}}$

 $b_{\text{eff,c,wc}}$: mitwirkende Breite Stützensteg auf Druck

ρ : Abminderungsfaktor für Plattenbeulen

ω : Abminderungsfaktor zur Berücksichtigung von Schub im Steg

- $k_{wc} \qquad : Abminderungsfaktor zur Berücksichtigung der Normalspannung im Steg$
- t_{wc} : Dicke Stützensteg, bei vorhandener Stegblechverstärkung erhöht sich der Wert zu 1,5 t_{wc} .

 $b_{eff,c,wc} = t_{Riegelgurt} + 2 \cdot \sqrt{2} \cdot a_{w,gurt} + 5 \cdot \left(t_{Stützengurt} + s\right) + s_{p}$

s : Ausrundung bei gewalzter Stütze,

 $\sqrt{2} \cdot a_{wc}$ bei geschweißter Stütze

 s_p : 45° Ausbreitung durch die Stirnplatte, mindestens $t_{\text{stirnplatte}}$ und bei ausreichendem Überstand bis zu 2 $t_{\text{stirnplatte}}$.

$$\begin{split} \rho = 1,0 & \text{für } \lambda_p \leq 0,673 \\ \rho = \left(\lambda_p - 0,22\right)/\lambda_p^2 & \text{für } \lambda_p > 0,673 \\ \lambda_p : \text{Plattenschlankheit} \\ \lambda_p = 0,932 \sqrt{\frac{b_{\text{eff,c,wc}} \cdot d_{\text{wc}} \cdot f_{\text{y}}}{E \cdot t_{\text{wc}}^2}} \end{split}$$

d_{wc}: Höhe Steg ohne Ausrundung bzw. Schweißnaht

für einen Übertragungsparameter $\beta = 1$ ergibt sich

$$\omega = \frac{1}{\sqrt{1 + 1.3 \cdot \left(b_{eff,c,wc} \cdot t_{wc} / A_{vc}\right)^2}}$$

Avc

: schubwirksame Fläche der Stütze wie in Komponente Stützensteg auf Schub

andere Übertragungsparameter ergeben ein ω entsprechend Tabelle J 5 in [2]

k_{wc} = 1 im Allgemeinen, bzw.

 $k_{wc} = 1,25 - 0,5 \cdot \sigma_{ed} / f_{v}$ wenn die Normalspannung σ_{ed} in der Stütze 0,5 f_{y} überschreitet

 σ_{ed} ist die Normalspannung im Stützensteg aus $M_y = M_{y,oben} - M_{y,rechts}$ und $N = N_{oben} - V_{z,rechts}$ im Schnittpunkt der Systemachsen

Hinweis: das rahmenknickähnliche Beulen im nicht ausgesteiften Stützensteg auf Druck sollte konstruktiv verhindert werden.

Stegsteifen

Die Tragfähigkeit der Komponente kann durch Rippen im Druckbereich des Stützenstegs verbessert werden. Sind entsprechende Rippen abgeordnet ergibt sich eine aufnehmbare Grenzkraft F_{cRd_Rippe} aus dem Spannungsnachweis in der Rippe.

Die Komponente wird dann durch den größeren Wert aus F_{cRd_Rippe} und $F_{c,wc,Rd}$ bestimmt.

Hinweis: Im System Knie-Eck mit Zuglasche und positiver Momentenbeanspruchung, also Druck oben, wird die Zuglasche vernachlässigt. Eine Aussteifung des Druckbereiches ergibt sich durch die Kopfplatte der Stütze. Ist keine Kopfplatte vorhanden, rechnet das Programm den Stegbereich als nicht ausgesteift.

Komponente Trägerflansch und -steg auf Druck

Die Tragfähigkeit für Trägerflansch und -steg auf Druck ergibt sich mit ausreichender Genauigkeit aus:

 $F_{c,fb,Rd} = M_{c,Rd} / (h_{Anschluss} - t_{Trägergurt})$

h_{Anschluss} : Höhe vom Anschluss im Anschnitt Stirnplatte (einschließlich Aussteifung)

M_{c,Rd} : Grenzmoment des Trägers unter Interaktion mit Querkraft

In Abhängigkeit der Schlankheit von Steg und Gurten wird der Trägerquerschnitt durch Querschnittsklassen analog Tab. 5.3.1 in [4] beschrieben. Besitzt der Trägerquerschnitt Aussteifungen mit Gurt, wird er vereinfachend durch die äußeren Gurte und der gesamten Steghöhe beschrieben.

$M_{c,Rd} = W_{pl} \cdot f_{yd}$	für Querschnittsklasse 1 und 2
$\mathbf{M}_{\mathrm{c,Rd}} = \mathbf{W}_{\mathrm{el}} \cdot \mathbf{f}_{\mathrm{yd}}$	für Querschnittsklasse 3
$\mathbf{M}_{\mathrm{c,Rd}} = \mathbf{W}_{\mathrm{eff}} \cdot \mathbf{f}_{\mathrm{yd}}$	für Querschnittsklasse 4
W_{eff}	: Widerstandsmoment des Querschnitts mit den wirksamen Querschnittsteilen unter Druck

Komponente Trägersteg auf Druck (nur bei Vouten in Träger-Stützenverbindung)

Im Anschluss gevouteter Träger wird statt der Komponente Trägersteg auf Druck die Komponente Trägersteg auf Druck am Voutenansatz, also der Stelle der Kraftumlenkung, untersucht. Deren Tragfähigkeit ergibt sich aus:

F _{c,wb,Rd}	$=\frac{b_{eff,c,wbl}}{\cdot}$	$\frac{t_{\text{Riegelsteg}} \cdot k_{\text{wb}} \cdot 1, 1 \cdot f_{\text{yd}}}{\tan \beta} \text{und } F_{\text{c,wb,Rd}} \leq \frac{\rho \cdot b_{\text{eff,c,wbl}} \cdot t_{\text{Riegelsteg}} \cdot k_{\text{wb}} \cdot f_{\text{yd}}}{\tan \beta}$
	b _{eff,c,wbl}	: mitwirkende Breite Riegelsteg auf Druck, analog $b_{eff,c,wc}$ bei Stützensteg auf Druck zu bestimmen
	k _{wb}	: Abminderungsfaktor zur Berücksichtigung der Normalspannung im Steg
	t _{Riegelsteg}	: Dicke Riegelsteg
	tan β	: Neigungswinkel der Voute
	ρ	: Abminderungsfaktor für Plattenbeulen, analog zu $ ho$ bei Stützensteg auf Druck

Stegsteifen

Die Tragfähigkeit der Komponente kann durch Rippen im Bereich des Trägerstegs verbessert werden. Sind entsprechende Rippen abgeordnet ergibt sich eine aufnehmbare Grenzkraft F_{cRd_Rippe} aus dem Spannungsnachweis in der Rippe.

Die Komponente wird dann durch den größeren Wert aus F_{cRd_Rippe} und $F_{c,wb,Rd}$ bestimmt.

Komponente Gurt auf Druck (nur bei Vouten in Träger-Stützenverbindung)

Im Anschluss gevouteter Träger wird statt der Komponente Trägerflansch auf Druck die Komponente Gurt auf Druck am Anschluss Vouten untersucht. Deren Tragfähigkeit ergibt sich aus:

 $F_{c,fv,Rd} = b_v \cdot t_{fv} \cdot f_{yd} \cdot cos\beta$

t_{fv}

: Dicke vom Voutengurt

cos β : Neigung Voute

b_{fv} : Breite Voutengurt

$$b_{iv} = 42 \cdot t_{fv} \cdot \sqrt{\frac{235}{f_y}}$$
 in N/mm²

Komponente Stützensteg auf Zug (nur Träger-Stützenverbindung)

Die Tragfähigkeit für nicht ausgesteiften Stützensteg auf Druck ergibt sich aus:

$$\mathbf{F}_{t,wc,Rd} = \boldsymbol{\omega} \cdot \mathbf{b}_{eff,t,wc} \cdot \mathbf{t}_{wc} \cdot \mathbf{1}, \mathbf{1} \cdot \mathbf{f}_{yd}$$

$b_{\text{eff},t,\text{wc}}$: mitwirkende Breite Stützensteg entspricht der wirksamen Länge des äquivalenten T- Stummel im Gurt (siehe Modell der T-Stummel)
ω	: Abminderungsfaktor zur Berücksichtigung von Schub im Steg, entspricht dem Abminderungsfaktor ω aus der Komponente Stützensteg auf Druck unter Ansatz von b _{eff,t,wc}
t _{wc}	: Dicke Stützensteg, bei vorhandener Stegblechverstärkung erhöht sich der Wert zu 1,5 t _{wc} wenn Schweißnahtdicken a _w \ge t _{steg} verwendet werden oder zu 1,4 t _{wc} bzw. 1,3 t _{wc} bei Schweißnahtdicken a _w \ge t _s / $\sqrt{2}$ je nach verwendeter Stahlgüte

Komponente Stützenflansch auf Biegung (nur Träger-Stützenverbindung)

Die Tragfähigkeit $F_{t,fc,Rd}$ vom Stützenflansch auf Biegung ergibt sich aus der Tragfähigkeit $F_{t,Rd}$ im Modell des äquivalenten T-Stummels (siehe Modell der T-Stummel).

Komponente Stirnplatte auf Biegung

Die Tragfähigkeit F_{t,ep,Rd} der Stirnplatte auf Biegung ergibt sich aus der Tragfähigkeit F_{t,Rd} im Modell des äquivalenten T-Stummels (siehe Modell der T-Stummel).

Komponente Trägersteg auf Zug

Die Zugtragfähigkeit im Trägersteg ergibt sich aus:

$$\mathbf{F}_{t,wb,Rd} = \mathbf{b}_{eff,t,wb} \cdot \mathbf{t}_{wb} \cdot \mathbf{1}, \mathbf{1} \cdot \mathbf{f}_{vd}$$

b_{eff,t,wb} : mitwirkende Breite Trägersteg, entspricht der wirksamen Länge des äquivalenten T-Stummel in der Stirnplatte (siehe Modell der T-Stummel)

t_{wb} : Dicke Trägersteg

Nachweis der Schweißnähte

Schweißnähte sind nur begrenzt duktil und sollten daher so dimensioniert werden, dass sie nicht bemessungsrelevant sind, d.h. eine der anderen Komponenten zuerst versagt.

In den Optionen zur Berechnung kann festgelegt werden, ob die Schweißnähte im Anschluss Riegel – Stirnplatte volltragfähig bemessen werden sollen, d.h. der Nachweis mit dem Grenzmoment M_{aRd} und der Grenzquerkraft V_{Rd} vom Anschluss erfolgt.

Soll das Verformungsverhalten der Verbindung bis zur vollen Rotationskapazität ausgenutzt werden, müssen die Schweißnähte das 1,4-fache M_{aRd} für unverschiebliche und das 1,7-fache M_{aRd} für verschiebliche Rahmen übertragen können. Diese Bedingung wird vom Programm nicht geprüft und muss ggf. bei der Eingabe berücksichtigt werden.

Der Schweißnahtnachweis im Anschluss Stirnplatte erfolgt entsprechend eingestellter Option entweder über die statischen Werte des Gesamtschweißnahtbildes als Nachweis der Vergleichsspannung oder über die Teilschnittgrößen am jeweiligen Gurt und am Steg.

Nachweis über die Teilschnittgrößen:

Der Steg übernimmt die gesamte Querkraft im Anschluss und wird im Bereich der effektiven T-Stummel-Länge mit dessen Zugkräften beansprucht. Das Programm führt an dieser Stelle einen Vergleichsspannungsnachweis.

Der Druckgurt im Anschluss wird mit der ermittelten Druckkraft aus der Berechnung des Grenzmomentes der Verbindung geführt.

Alle anderen Gurte werden nur konstruktiv nachgewiesen. Als erforderliche Schweißnahtdicke wird dabei die im Nachweis des Druckgurtes ermittelte Dicke angenommen. Sollen die Schweißnähte volltragfähig ausgebildet werden, setzt das Programm eine Mindestdicke für beide Kehlnähte zusammen aus der 1,1 -fachen Dicke des angeschlossenen Gurtes voraus.

Nachweis der Querkrafttragfähigkeit

Die Querkraft wird je nach eingestellter Berechnungsoption allein über die Schraubenreihen im Druckbereich (dieser wird durch den Faktor f bestimmt) oder zusätzlich auch über die zugbeanspruchten Schraubenreihen abgetragen.

Schrauben im Druckbereich müssen innerhalb des Anschlussquerschnittes bzw. im Bereich einer Eckaussteifung liegen.

Die Berechnung erfolgt nach DIN 18800 Teil 1 Abschnitt 8.2.1.

$$V_{a,Rd} = A \cdot \alpha_a \cdot f_{ub,d}$$
 Grenzabscherkraft

bei Interaktion mit Zug F_t und Abscheren V_a ergibt sich nach [3]:

$$aus\left(\frac{V_{a}}{V_{a,Rd}}\right) + \left(\frac{F_{t}}{1,4 \cdot F_{t,Rd}}\right) \le 1,0$$

die reduzierte Grenzabscherkraft $V_{a,Interaktion,Rd} = V_{a,Rd} \cdot \begin{pmatrix} 0,4/\\ 1,4 \end{pmatrix}$

 $V_{I,Rd} = t \cdot d_{sch} \cdot \alpha_I \cdot f_{v,d}$ Grenzlochleibungskraft

А	: maßgebender Abscherquerschnitt
α_{a}	: Abscherfaktor
f_{ubd}	: Bemessungswert Schraubenzugfestigkeit
F_t	: Zugkraft einer Schraube
F_{tRd}	: Grenzzugkraft
d_{sch}	: Schraubenschaftdurchmesser
t	: Blechdicke
αı	: Lochleibungsfaktor

Wird die Schubtragfähigkeit des angeschlossenen Trägers V_{wbRd} durch die Grenzquerkraft im Anschluss V_{aRd} überschritten, gibt das Programm eine Warnung aus, bricht aber nicht mit der Berechnung ab.

Soll die Schubtragfähigkeit vom Träger in die Berechnung einfließen, kann die entsprechende Option angewählt werden. Es erfolgt dann eine Begrenzung auf 50% der Riegelschubtragfähigkeit V_{wbRd}.

Einfluss des Faktors f für die Höhe des Zugbereiches:

Näher zur Druckzone liegende Schrauben können bei der Berechnung der Momententragfähigkeit vernachlässigt werden. Sie wirken dann mit ihrer vollen Grenzabscherkraft, so dass sich ggf. eine höhere Querkrafttragfähigkeit der Verbindung ergibt. Die Unterbewertung der Momententragfähigkeit ist im Allgemeinen gering und wird für Verbindungen, in denen mindestens 50% der Schrauben auf Zug wirken und sich die vernachlässigten Schrauben im Bereich des 0,4 –fachen Abstandes der äußersten gezogenen Schraube zum Druckpunkt befinden, mit 15% abgeschätzt.

Rotationssteifigkeit

Mit der Anfangssteifigkeit S_{j,ini} kann beurteilt werden, ob die Verbindung als starr, verformbar oder gelenkig charakterisiert werden kann.

Die Verbindung gilt als starr, wenn S_{j,ini} größer als die Grenzkurve 1ist. In diesem Fall hat die Verformung im Anschluss keinen Einfluss auf die Tragwerksberechnung.

Die Grenzkurven 1 und 2 werden durch die Steifigkeit des angeschlossenen Riegels bezogen auf dessen Länge ermittelt.

Abhängig von der möglichen Anschlussverdrehung ergeben sich Klassifikationen für seitlich unausgesteifte, d.h. verschiebliche und seitlich ausgesteifte Rahmen.

Anschlüsse in verschieblichen Rahmen		
gelenkig	$S_{j,ini} \leq 0.5 \cdot E \cdot I_b / L_b$	
verformbar	$0, 5 \cdot E \cdot I_{b} / L_{b} < S_{j,ini} < 25 \cdot E \cdot I_{b} / L_{b}$	
starr	$S_{j,ini} \ge 25 \cdot E \cdot I_b / L_b$	
Anschlüsse in u	unverschieblichen Rahmen	
gelenkig	$S_{j,ini} \leq 0.5 \cdot E \cdot I_b / L_b$	
verformbar	$0, 5 \cdot E \cdot I_{b} / L_{b} < S_{j,ini} < 8 \cdot E \cdot I_{b} / L_{b}$	
starr	$S_{j,ini} \ge 8 \cdot E \cdot I_b / L_b$	

Е	: E-Modul
I _b	: Trägheitsmoment eines Trägers
Lb	: Systemlänge eines Trägers

Seitlich unverschiebliche Rahmen müssen dabei das Kriterium $K_b / K_c \ge 0,1$ für jedes Stockwerk erfüllen.

K _b	: Mittelwert aus allen I_b / L_b aller Träger eines Geschosses
K _c	: Mittelwert aus allen I_{c} / L_{c} aller Stützen eines Geschosses
mit	
I _c	: Trägheitsmoment einer Stütze
L _c	: Geschosshöhe einer Stütze

Die Momenten- Rotationskurve der Verbindung ergibt sich entsprechend der Komponentenmethode als Zusammensetzung der einzelnen Kraft- Verformungskurven jeder im Anschluss beteiligten Komponente.

Beispiel einer nicht ausgesteiften Verbindung mit zwei Schraubenreihen

Die Wegfedern jeder einzelnen Komponente i werden durch deren Steifigkeitskoeffizienten k_i beschrieben.

Die Rotationssteifigkeit S_j ergibt sich aus :

$$S_{j} = \frac{E \cdot z^{2}}{\mu \cdot \sum_{i} \frac{1}{k_{i}}}$$

z

: Hebelarm,

bei nur einer Schraubenreihe im Zugbereich als Abstand dieser Reihe zum Druckpunkt im Anschluss

bei mehreren Schraubenreihen im Zugbereich als äquivalenter Hebelarm z_{eq}

- μ : Steifigkeitsverhältnis
- k_i : Steifigkeitskoeffizient einer Komponente

äquivalenter Hebelarm für alle Schraubenreihen im Zugbereich :

$$z_{eq} = \frac{\sum_{r} k_{eff,r} \cdot h_{r}^{2}}{\sum_{r} k_{eff,r} \cdot h_{r}} \quad \text{für alle Schraubenreihen r im Zugbereich}$$

$$k_{eff,r} \qquad : effektiver Steifigkeitskoeffizient der Schraubenreihe r$$

$$h_{r} \qquad : Abstand der Schraubenreihe r vom Druckpunkt im Anschluss$$

Steifigkeitsverhältnis µ

$$\mu = 1$$
 wenn $M_{jSd} \le \frac{2}{3} \cdot M_{jRd}$

und zur Berücksichtigung der nichtlinearen Verhaltens in der Anschlusscharakteristik

$$\mu = \left(1, 5 \cdot \mathsf{M}_{j, \mathsf{Sd}} / \mathsf{M}_{j, \mathsf{Rd}}\right)^{\Psi} \qquad \text{wenn } \frac{2}{3} \cdot \mathsf{M}_{j\mathsf{Rd}} < \mathsf{M}_{j\mathsf{Sd}} \le \mathsf{M}_{j\mathsf{Rd}}$$

mit ψ = 2,7 für geschraubte Verbindungen

Anfangssteifigkeit S_{j,ini}

 $S_{j,ini} = S_j$ mit dem Steifigkeitsverhältnis $\mu = 1$

vereinfachte bi-lineare Momenten- Rotationscharakteristik

Die **Rotationssteifigkeit S**_j darf zur linear-elastischen und elastisch-plastischen Berechnung aus einem vereinfachten Modell der Anschlusscharakteristik entnommen werden:

 $S_{jn} = S_{j,ini} / \eta$ mit $\eta = 2$ für geschraubte Stirnplatten

Die Steifigkeitskoeffizienten der einzelnen Komponenten

k1 Stützenstegfeld auf Schub (nur Träger-Stützenverbindung)

$$k_1 = \frac{0.38 \cdot A_{vc}}{\beta \cdot z_{eq}}$$

- z_{eq} Hebelarm
- Avc schubwirksame Fläche der Stütze, siehe entsprechende Komponente
- β Übertragungsparameter für Komponentenmethode nach J.2.3.3 (Schubeinfluss Stützenstegfeld) nach Tab.4 AnnexJ für Anschlussart

Ist das Stützenstegfeld durch eine Diagonalsteife verstärkt, wird der Steifigkeitskoeffizient k1 als unendlich groß angenommen.

k2 Stützensteg auf Druck (nur Träger-Stützenverbindung)

$$k_2 = \frac{0.7 \cdot b_{eff,c,wc} \cdot t_{wc}}{d_c}$$

b_{eff,c,wc} mitwirkende Breite Stützensteg auf Druck

 t_{wc} Dicke Stützensteg, bei vorhandener Stegblechverstärkung erhöht sich der Wert zu 1,5 t_{wc} .

d_c lichte Höhe Stützensteg

Ist der Stützensteg im Druckpunkt mit Rippen verstärkt, wird der Steifigkeitskoeffizient k2 als unendlich groß angenommen.

k3 Stützensteg auf Zug (nur Träger-Stützenverbindung)

$$k_3 = \frac{0, 7 \cdot b_{eff, t, wc} \cdot t_{wc}}{d_c}$$

- b_{eff,t,wc} kleinste wirksame Länge der äquivalenten T-Stummel für die beteiligten Schrauben im Zugbereich
- t_{wc} Dicke Stützensteg, bei vorhandener Stegblechverstärkung erhöht sich der Wert, siehe entsprechende Komponente
- d_c lichte Höhe Stützensteg

k4 Stützenflansch auf Biegung (für eine Schraubenreihe)

$$k_4 = \frac{0.85 \cdot l_{eff} \cdot t_{fc}^3}{m^3}$$

- I_{eff} kleinste wirksame Länge für diese Schraubenreihe im äquivalenten T-Stummel
- t_{fc} Dicke Stützenflansch
- m Abstand Schraube zum Steg, siehe Modell der T-Stummel

k5 Stirnplatte auf Biegung

 $k_5 = \frac{0.85 \cdot l_{eff} \cdot t_p^3}{m^3}$

- I_{eff} kleinste wirksame Länge für diese Schraubenreihe im äquivalenten T-Stummel
- t_p Dicke Stirnplatte
- m Abstand Schraube zum Steg, siehe Modell der T-Stummel, im überstehenden Teil der Stirnplatte m = m_x

k10 Schrauben auf Zug

$$k_{10} = \frac{1.6 \cdot A_s}{L_b}$$

A_s Spannungsquerschnitt der Schraube

L_b Dehnlänge der Schraube, entspricht der Klemmlänge zzgl. halber Kopf und Mutternhöhe

 k_{eff} Effektiver Steifigkeitskoeffizient einer Schraubenreihe

die Steifigkeitskoeffizienten k3, k4, k5 und k10 einer Schraubenreihe r lassen sich zusammenfassen:

$$k_{eff,r} = \frac{1}{\frac{1}{k_3} + \frac{1}{k_4} + \frac{1}{k_5} + \frac{1}{k_{10}}}$$

aus diesen ermittelt sich der äquivalente Steifigkeitskoeffizient aller zugbeanspruchten Schraubenreihen r:

$$k_{eq} = \frac{\displaystyle \sum_{r} k_{eff,r} \cdot h_{r}}{z_{eq}}$$

- z_{eq} äquivalenter Hebelarm für alle Schraubenreihen im Zugbereich, siehe Ausführungen zur Rotationssteifigkeit
- hr Abstand der Schraubenreihe r vom Druckpunkt im Anschluss

Klassifizierung nach der Tragfähigkeit

Die Verbindung kann in Abhängigkeit der Momentenwiderstände aus den angeschlossenen Bauteilen als volltragfähig, gelenkig oder teiltragfähig klassifiziert werden.

Eine Verbindung am Stützenkopf (Knieeck) gilt als volltragfähig, wenn

 $M_{jRd} \ge min \left[M_{b,pl,Rd}; M_{c,pl,Rd} \right]$ erfüllt ist.

Bei einer volltragfähigen Verbindung zwischen zwei Stockwerken (T-Eck) muss $M_{jRd} \ge \min \left[M_{b,pl,Rd}; 2 \cdot M_{c,pl,Rd} \right]$ eingehalten sein.

M_{b,pl,Rd} plastisches Grenzmoment im Träger

M_{c,pl,Rd} plastisches Grenzmoment der Stütze

Als gelenkig gilt die Verbindung, wenn deren Momentenwiderstand $M_{j,Rd}$ kleiner oder gleich ¼ des Momentenwiderstands für Volltragfähigkeit ist.

Alle anderen Verbindungen werden als teiltragfähig angesehen.

Hinweis: zur linear-elastischen Berechnung ist eine Klassifizierung der Verbindung nach ihrer Steifigkeit ausreichend

zur elastisch-plastischen Berechnung ist eine Klassifizierung nach Steifigkeit und auch nach Tragfähigkeit erforderlich

Literatur

- [1] DIN 18800, Fassung: November 1990.
- [2] DIN ENV 1993-1-1:1992 / A2; 1998
- [3] Stahlbau Kalender 2005; 7. Jahrgang; Ernst & Sohn, Berlin 2005.
- [4] DIN ENV 1993 Teil 1-1: EuroCode 3: Bemessung und Konstruktion von Stahlbauten, Teil 1-1: Allgemeine Bemessungsregeln, Bemessungsregeln für den Hochbau, Ausgabe April 1993