Lecture 13 Introduction to quasiconvex analysis

Didier Aussel

Univ. de Perpignan

Outline of lecture 13

- I- Introduction
- II- Normal approach
 - a- First definitions
 - b- Adjusted sublevel sets and normal operator
- III- Quasiconvex optimization
 - a- Optimality conditions
 - b- Convex constraint case
 - c- Nonconvex constraint case

Quasiconvexity

A function $f: X \to \mathbb{R} \cup \{+\infty\}$ is said to be *quasiconvex* on K if, for all $x, y \in K$ and all $t \in [0, 1]$,

$$f(tx + (1-t)y) \le \max\{f(x), f(y)\}.$$

Quasiconvexity

A function $f: X \to \mathbb{R} \cup \{+\infty\}$ is said to be *quasiconvex* on K if, for all $\lambda \in \mathbb{R}$, the sublevel set

$$S_{\lambda} = \{x \in X : f(x) \leq \lambda\} \text{ is convex.}$$

Quasiconvexity

A function $f: X \to \mathbb{R} \cup \{+\infty\}$ is said to be *quasiconvex* on K if, for all $\lambda \in \mathbb{R}$, the sublevel set

$$S_{\lambda} = \{x \in X : f(x) \leq \lambda\} \text{ is convex.}$$

A function $f: X \to \mathbb{R} \cup \{+\infty\}$ is said to be *semistrictly quasiconvex* on K if, f is quasiconvex and for any $x, y \in K$,

$$f(x) < f(y) \Rightarrow f(z) < f(y), \quad \forall z \in [x, y[.]]$$

I Introduction

• f differentiable

f is quasiconvex iff df is quasimonotone

iff
$$df(x)(y-x) > 0 \Rightarrow df(y)(y-x) \ge 0$$

f is quasiconvex iff ∂f is quasimonotone

iff
$$\exists x^* \in \partial f(x) : \langle x^*, y - x \rangle > 0$$

$$\Rightarrow \forall y^* \in \partial f(y), \langle y^*, y - x \rangle \ge 0$$

Why not a subdifferential for quasiconvex programming?

Why not a subdifferential for quasiconvex programming?

No (upper) semicontinuity of ∂f if f is not supposed to be Lipschitz

Why not a subdifferential for quasiconvex programming?

- No (upper) semicontinuity of ∂f if f is not supposed to be Lipschitz
- No sufficient optimality condition

$$\bar{x} \in S_{str}(\partial f, C) \Longrightarrow \bar{x} \in \arg\min_{C} f$$

II

Normal approach of quasiconvex analysis

II

Normal approach

a- First definitions

A first approach

Sublevel set:

$$S_{\lambda} = \{ x \in X : f(x) \le \lambda \}$$
$$S_{\lambda}^{>} = \{ x \in X : f(x) < \lambda \}$$

Normal operator:

Define $N_f(x): X \to 2^{X^*}$ by

$$N_f(x) = N(S_{f(x)}, x)$$

= $\{x^* \in X^* : \langle x^*, y - x \rangle \le 0, \ \forall y \in S_{f(x)} \}.$

With the corresponding definition for $N_f^>(x)$

But ...

- $N_f(x) = N(S_{f(x)}, x)$ has no upper-semicontinuity properties
- $\overline{\hspace{0.5cm}} N_f^>(x) = N(S_{f(x)}^>, x)$ has no quasimonotonicity properties

But ...

- $N_f(x) = N(S_{f(x)}, x)$ has no upper-semicontinuity properties
- $N_f^>(x) = N(S_{f(x)}^>, x)$ has no quasimonotonicity properties

Example

Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(a,b) = \begin{cases} |a| + |b|, & \text{if } |a| + |b| \le 1\\ 1, & \text{if } |a| + |b| > 1 \end{cases}.$$

Then f is quasiconvex. Consider $x = (10, 0), x^* = (1, 2), y = (0, 10)$ and $y^* = (2, 1)$.

We see that $x^* \in N^<(x)$ and $y^* \in N^<(y)$ (since |a| + |b| < 1 implies $(1,2) \cdot (a-10,b) \le 0$ and $(2,1) \cdot (a,b-10) \le 0$) while $\langle x^*,y-x\rangle > 0$ and $\langle y^*,y-x\rangle < 0$. Hence $N^<$ is not quasimonotone.

But ...

- $N_f(x) = N(S_{f(x)}, x)$ has no upper-semicontinuity properties
- $N_f^>(x) = N(S_{f(x)}^>, x)$ has no quasimonotonicity properties

These two operators are essentially adapted to the class of semistrictly quasiconvex functions. Indeed this case, for each $x \in$ dom $f \setminus \arg \min f$, the sets $S_{f(x)}$ and $S_{f(x)}^{<}$ have the same closure and $N_f(x) = N_f^{<}(x)$.

II

Normal approach

b- Adjusted sublevel sets and normal operator

Definition

Adjusted sublevel set

For any $x \in \text{dom } f$, we define

$$S_f^a(x) = S_{f(x)} \cap \overline{B}(S_{f(x)}^{<}, \rho_x)$$

where $\rho_x = dist(x, S_{f(x)}^{<})$, if $S_{f(x)}^{<} \neq \emptyset$.

Definition

Adjusted sublevel set

For any $x \in \text{dom } f$, we define

$$S_f^a(x) = S_{f(x)} \cap \overline{B}(S_{f(x)}^{<}, \rho_x)$$

where
$$\rho_x = dist(x, S_{f(x)}^{<})$$
, if $S_{f(x)}^{<} \neq \emptyset$.

 $lacksquare S_f^a(x)$ coincides with $S_{f(x)}$ if $\operatorname{cl}(S_{f(x)}^>) = S_{f(x)}$

e.g. f is semistrictly quasiconvex

Definition

Adjusted sublevel set

For any $x \in \text{dom } f$, we define

$$S_f^a(x) = S_{f(x)} \cap \overline{B}(S_{f(x)}^{<}, \rho_x)$$

where $\rho_x = dist(x, S_{f(x)}^{<})$, if $S_{f(x)}^{<} \neq \emptyset$.

 $lacksquare S_f^a(x)$ coincides with $S_{f(x)}$ if $\operatorname{cl}(S_{f(x)}^>) = S_{f(x)}$

Proposition 1 Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be any function, with domain dom f. Then

f is quasiconvex $\iff S_f^a(x)$ is convex, $\forall x \in \text{dom } f$.

Proof

Let us suppose that $S_f^a(u)$ is convex for every $u \in \text{dom } f$. We will show that for any $x \in \text{dom } f$, $S_{f(x)}$ is convex.

If $x \in \arg \min f$ then $S_{f(x)} = S_f^a(x)$ is convex by assumption.

Assume now that $x \notin \arg \min f$ and take $y, z \in S_{f(x)}$.

If both y and z belong to $\overline{B}\left(S_{f(x)}^{<},\rho_{x}\right)$, then $y,z\in S_{f}^{a}\left(x\right)$ thus $[y,z]\subseteq S_{f}^{a}\left(x\right)\subseteq S_{f(x)}$.

If both y and z do not belong to $\overline{B}\left(S_{f(x)}^{\leq}, \rho_x\right)$, then

$$f(x) = f(y) = f(z), \ \overline{S_{f(z)}^{\leq}} = \overline{S_{f(y)}^{\leq}} = \overline{S_{f(x)}^{\leq}}$$

and ρ_y, ρ_z are positive. If, say, $\rho_y \ge \rho_z$ then $y, z \in \overline{B}\left(\overline{S_{f(y)}^<}, \rho_y\right)$ thus

$$y, z \in S_f^a(y)$$
 and $[y, z] \subseteq S_f^a(y) \subseteq S_{f(y)} = S_{f(x)}$.

Proof

Finally, suppose that only one of y, z, say z, belongs to $\overline{B}(S_{f(x)}^{\leq}, \rho_x)$ while $y \notin \overline{B}(S_{f(x)}^{\leq}, \rho_x)$. Then

$$f(x) = f(y), \ \overline{S_{f(y)}^{\leq}} = \overline{S_{f(x)}^{\leq}} \text{ and } \rho_y > \rho_x$$

so we have $z \in \overline{B}\left(S_{f(x)}^{<}, \rho_{x}\right) \subseteq \overline{B}\left(\overline{S_{f(y)}^{<}}, \rho_{y}\right)$ and we deduce as before that $[y, z] \subseteq S_{f}^{a}(y) \subseteq S_{f(y)} = S_{f(x)}$.

The other implication is straightforward.

Adjusted normal operator

Adjusted sublevel set:

For any $x \in \text{dom } f$, we define

$$S_f^a(x) = S_{f(x)} \cap \overline{B}(S_{f(x)}^{<}, \rho_x)$$

where $\rho_x = dist(x, S_{f(x)}^{<})$, if $S_{f(x)}^{<} \neq \emptyset$.

Ajusted normal operator:

$$N_f^a(x) = \{x^* \in X^* : \langle x^*, y - x \rangle \le 0, \ \forall y \in S_f^a(x) \}$$

Example

Example

$$\overline{B}(S_{f(x)}^{<}, \rho_x)$$
 $S_f^a(x) = S_f(x) \cap \overline{B}(S_{f(x)}^{<}, \rho_x)$

Example

$$S_f^a(x) = S_f(x) \cap \overline{B}(S_{f(x)}^<, \rho_x)$$
 $N_f^a(x) = \{x^* \in X^* : \langle x^*, y - x \rangle \le 0, \quad \forall y \in S_f^a(x)\}$

Subdifferential vs normal operator

One can have

$$N_f^a(x) \subsetneq \operatorname{cone}(\partial f(x)) \quad \text{or} \quad \operatorname{cone}(\partial f(x)) \subsetneq N_f^a(x)$$

Proposition 2

f is quasiconvex and $x \in \text{dom } f$ If there exists $\delta > 0$ such that $0 \notin \partial^L f(B(x, \delta))$ then

$$[cone(\partial^L f(x)) \cup \partial^{\infty} f(x)] \subset N_f^a(x).$$

Basic properties of N_f^a

Nonemptyness:

Proposition 3 Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be lsc. Assume that rad. continuous on dom f or dom f is convex and $\text{int}S_{\lambda} \neq \emptyset$, $\forall \lambda > \inf_X f$. Then

- If f is quasiconvex, $N_f^a(x) \setminus \{0\} \neq \emptyset$, $\forall x \in \text{dom } f \setminus \arg \min f$.
- f quasiconvex

 \iff dom $N_f^a \setminus \{0\}$ dense in dom $f \setminus \arg \min f$.

Quasimonotonicity:

The normal operator N_f^a is always quasimonotone

Upper sign-continuity

• $T: X \to 2^{X^*}$ is said to be *upper sign-continuous* on K iff for any $x, y \in K$, one have :

$$\forall t \in]0,1[, \quad \inf_{x^* \in T(x_t)} \langle x^*, y - x \rangle \ge 0$$

$$\Longrightarrow \sup_{x^* \in T(x)} \langle x^*, y - x \rangle \ge 0$$

where $x_t = (1-t)x + ty$.

Upper sign-continuity

• $T: X \to 2^{X^*}$ is said to be *upper sign-continuous* on K iff for any $x, y \in K$, one have :

$$\forall t \in]0,1[, \quad \inf_{x^* \in T(x_t)} \langle x^*, y - x \rangle \ge 0$$

$$\Longrightarrow \sup_{x^* \in T(x)} \langle x^*, y - x \rangle \ge 0$$

where $x_t = (1-t)x + ty$.

upper semi-continuous

upper hemicontinuous

upper sign-continuous

locally upper sign continuity

Definition 5 Let $T: K \to 2^{X^*}$ be a set-valued map.

T est called locally upper sign-continuous on K if, for any $x \in K$ there exist a neigh. V_x of x and a upper sign-continuous set-valued map $\Phi_x(\cdot): V_x \to 2^{X^*}$ with nonempty convex w^* -compact values such that $\Phi_x(y) \subseteq T(y) \setminus \{0\}, \forall y \in V_x$

locally upper sign continuity

Definition 6 Let $T: K \to 2^{X^*}$ be a set-valued map.

T est called locally upper sign-continuous on K if, for any $x \in K$ there exist a neigh. V_x of x and a upper sign-continuous set-valued map $\Phi_x(\cdot): V_x \to 2^{X^*}$ with nonempty convex w^* -compact values such that $\Phi_x(y) \subseteq T(y) \setminus \{0\}, \forall y \in V_x$

Continuity of normal operator

Proposition 7

Let f be lsc quasiconvex function such that $int(S_{\lambda}) \neq \emptyset$, $\forall \lambda > \inf f$.

Then N_f is locally upper sign-continuous on dom $f \setminus \arg \min f$.

Proposition 8

If f is quasiconvex such that $int(S_{\lambda}) \neq \emptyset$, $\forall \lambda > \inf f$ and f is lsc at $x \in \text{dom } f \setminus \arg \min f$,

Then N_f^a is norm-to-w* cone-usc at x.

A multivalued map with conical valued $T: X \to 2^{X^*}$ is said to be cone-usc at $x \in \text{dom } T$ if there exists a neighbourhood U of x and a base C(u) of T(u), $u \in U$, such that $u \to C(u)$ is usc at x.

Integration of N_f^a

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ quasiconvex

Question: Is it possible to characterize the functions

 $g: X \to \mathbb{R} \cup \{+\infty\}$ quasiconvex such that $N_f^a = N_g^a$?

Integration of N_f^a

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ quasiconvex

Question: Is it possible to characterize the functions

$$g: X \to \mathbb{R} \cup \{+\infty\}$$
 quasiconvex such that $N_f^a = N_g^a$?

A first answer:

Let $C = \{g : X \to \mathbb{R} \cup \{+\infty\} \text{ cont. semistrictly quasiconvex }$ such that argmin f is included in a closed hyperplane $\}$

Then, for any $f, g \in \mathcal{C}$,

$$N_f^a = N_g^a \Leftrightarrow g \text{ is } N_f^a \setminus \{0\}\text{-pseudoconvex}$$
 $\Leftrightarrow \exists \, x^* \in N_f^a(x) \setminus \{0\} : \langle x^*, y - x \rangle \ge 0 \Rightarrow g(x) \le g(y).$

Integration of N_f^a

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ quasiconvex

Question: Is it possible to characterize the functions

 $g: X \to \overline{\mathbb{R} \cup \{+\infty\}}$ quasiconvex such that $N_f^a = N_g^a$?

General case: open question

III

Quasiconvex programming

a- Optimality conditions

Quasiconvex programming

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ and $K \subseteq \text{dom } f$ be a convex subset.

$$(P) \qquad \text{find } \bar{x} \in K \ : \ f(\bar{x}) = \inf_{x \in K} f(x)$$

Quasiconvex programming

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ and $K \subseteq \text{dom } f$ be a convex subset.

$$(P) \qquad \text{find } \bar{x} \in K : f(\bar{x}) = \inf_{x \in K} f(x)$$

Perfect case: f convex

 $f: X \to \mathbb{R} \cup \{+\infty\}$ a proper convex function

K a nonempty convex subset of X, $\bar{x} \in K + C.Q.$

Then

$$f(\bar{x}) = \inf_{x \in K} f(x) \iff \bar{x} \in S_{str}(\partial f, K)$$

Quasiconvex programming

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ and $K \subseteq \text{dom } f$ be a convex subset.

$$(P) \qquad \text{find } \bar{x} \in K : f(\bar{x}) = \inf_{x \in K} f(x)$$

Perfect case: f convex

 $f: X \to \mathbb{R} \cup \{+\infty\}$ a proper convex function

K a nonempty convex subset of X, $\bar{x} \in K + C.Q.$

Then

$$f(\bar{x}) = \inf_{x \in K} f(x) \iff \bar{x} \in S_{str}(\partial f, K)$$

What about f quasiconvex case?

$$\bar{x} \in S_{str}(\partial f(\bar{x}), K) \Longrightarrow \bar{x} \in \arg\min_{K} f$$

Sufficient optimality condition

Proposition 9

 $f: X \to \mathbb{R} \cup \{+\infty\}$ quasiconvex, radially cont. on dom f

 $C \subseteq X$ such that $conv(C) \subset dom f$.

Suppose that $C \subset int(\operatorname{dom} f)$.

Then
$$\bar{x} \in S(N_f^a \setminus \{0\}, C) \implies \forall x \in C, f(\bar{x}) \leq f(x)$$
.

where $\bar{x} \in S(N_f^a \setminus \{0\}, K)$ means that there exists $\bar{x}^* \in N_f^a(\bar{x}) \setminus \{0\}$ such that

$$\langle \bar{x}^*, c - x \rangle \ge 0, \quad \forall c \in C.$$

Lemma 10 Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a quasiconvex function, radially continuous on dom f. Then f is $N_f^a \setminus \{0\}$ -pseudoconvex on int(dom f), that is,

$$\exists x^* \in N_f^a(x) \setminus \{0\} : \langle x^*, y - x \rangle \ge 0 \Rightarrow f(y) \ge f(x).$$

Proof.

Let $x, y \in \operatorname{int}(\operatorname{dom} f)$. According to the quasiconvexity of $f, N_f^a(x) \setminus \{0\}$ is nonempty. Let us suppose that $\langle x^*, y - x \rangle \geq 0$ with $x^* \in N_f^a(x) \setminus \{0\}$. Let $d \in X$ be such that $\langle x^*, y_n - x \rangle > 0$ for any n, where $y_n = y + \frac{1}{n}d$ ($\in \operatorname{dom} f$ for n large enough). This implies that $y_n \not\in S_f^<(x)$ since $x^* \in N_f^a(x) \subset N_f^<(x)$.

It follows by the radial continuity of f that $f(y) \ge f(x)$.

Necessary and Sufficient conditions

Proposition 11 Let C be a closed convex subset of X, $\bar{x} \in C$ and $f: X \to \mathbb{R}$ be continuous semistrictly quasiconvex such that $\operatorname{int}(S_f^a(\bar{x})) \neq \emptyset$ and $f(\bar{x}) > \inf_X f$.

Then the following assertions are equivalent:

- i) $f(\bar{x}) = \min_C f$
- ii) $\bar{x} \in S_{str}(N_f^a \setminus \{0\}, C)$
- *iii*) $0 \in N_f^a(\bar{x}) \setminus \{0\} + NK(C, \bar{x}).$

Proposition 12 Let C be a closed convex subset of an Asplund space X and $f: X \to \mathbb{R}$ be a continuous quasiconvex function. Suppose that either f is sequentially normally sub-compact or C is sequentially normally compact.

If $\bar{x} \in C$ is such that

$$0 \notin \partial^L f(\bar{x})$$
 and $0 \notin \partial^{\infty} f(\bar{x}) \setminus \{0\} + NK(C, \bar{x})$

then the following assertions are equivalent:

i)
$$f(\bar{x}) = \min_C f$$

ii)
$$\bar{x} \in \partial^L f(\bar{x}) \setminus \{0\} + NK(C, \bar{x})$$

iii)
$$0 \in N_f^a(\bar{x}) \setminus \{0\} + NK(C, \bar{x})$$

III

Quasiconvex optimization

b- Convex constraint case

Quasiconvex optimization

b- Convex constraint case

(P) Find
$$\bar{x} \in C$$
 such that $f(\bar{x}) = \inf_{C} f$.

with C convex set.

Existence results with convex constraint set

Theorem 13 (Convex case)

```
f: X \to \mathbb{R} \cup \{+\infty\} \ quasiconvex \\ + continuous \ on \ dom \ (f) \\ + for \ any \ \lambda > \inf_X f, \ int(S_\lambda) \neq \emptyset. \\ + C \subseteq \operatorname{int}(\operatorname{dom} f) \ convex \ such \ that \ C \cap \overline{B}(0,n) \\ is \ weakly \ compact \ for \ some \ n \in \mathbb{N}. \\ + \ coercivity \ condition \\ \exists \ \rho > 0, \ \forall \ x \in C \setminus \overline{B}(0,\rho), \ \exists \ y \in C \ with \ \|y\| < \|x\| \\ such \ that \ \forall \ x^* \in N_f^a(x) \setminus \{0\}, \ \langle x^*, x - y \rangle > 0
```

Then there exists $\bar{x} \in C$ such that $\forall x \in C$, $f(x) \geq f(\bar{x})$.

Existence for Stampacchia V.I.

Theorem 14

C nonempty convex subset of X.

 $T: C \rightarrow 2^{X^*}$ quasimonotone

- + locally upper sign continuous on C
- + coercivity condition:

$$\exists \rho > 0, \ \forall x \in C \setminus \overline{B}(0,\rho), \ \exists y \in C \text{ with } ||y|| < ||x||$$
 such that $\forall x^* \in T(x), \langle x^*, x - y \rangle \geq 0$ and there exists $\rho' > \rho$ such that $C \cap \overline{B}(0,\rho')$ is weakly compact $(\neq \emptyset)$.

Then
$$S(T,C) \neq \emptyset$$
.

Proof If $\arg \min f \cap K \neq \emptyset$, we have nothing to prove.

Suppose that $\arg\min f\cap K=\emptyset$. Then N^a is quasimonotone and norm-to-w* cone-usc on K. Thus, all assumptions of Theorem 14 hold for the operator $N^a\setminus\{0\}$, so $S_{str}\left(N^a\setminus\{0\}\right)$, K is quasimonotone and norm-to-w* cone-usc on K. Thus, all assumptions of Theorem 14 hold for the operator $N^a\setminus\{0\}$, so $S_{str}\left(N^a\setminus\{0\}\right)$, K is quasimonotone and norm-to-w* cone-usc on K. It is quasimonotone and norm-to-w* cone-usc on K.

Proof If $\arg \min f \cap K \neq \emptyset$, we have nothing to prove.

Suppose that $\arg\min f\cap K=\emptyset$. Then N^a is quasimonotone and norm-to-w* cone-usc on K. Thus, all assumptions of Theorem 14 hold for the operator $N^a\setminus\{0\}$, so $S_{str}\left(N^a\setminus\{0\}\right)$, K is quasimonotone and norm-to-w* cone-usc on K. Thus, all assumptions of Theorem 14 hold for the operator $N^a\setminus\{0\}$, so $S_{str}\left(N^a\setminus\{0\}\right)$, K is quasimonotone and norm-to-w* cone-usc on K. It using the sufficient condition, we infer that f has a global minimum on K.

Corollary 15 Assumptions on f and K as in Theorem 13. Assume that there exists $n \in \mathbb{N}$ such that for all $x \in K$, ||x|| > n, there exists $y \in K$, ||y|| < ||x|| such that f(y) < f(x). Then there exists $x_0 \in K$ such that

$$\forall x \in K, \quad f(x) \ge f(x_0).$$

Proof. If f(y) < f(x) then for every $x^* \in N^a(x) \subseteq N^<(x)$, $\langle x^*, y - x \rangle \leq 0$. Hence, coercivity condition with $T = N^a$ holds. The corollary follows from Theorem 13.

III

Quasiconvex optimization

c- Nonconvex constraint case (an example)

Disjunctive programming

Let us consider the optimization problem:

min
$$f(x)$$

$$s.t. \begin{cases} h_i(x) \le 0 & i = 1, \dots, l \\ \min_{j \in J} g_j(x) \le 0 \end{cases}$$

where $f, h_i, g_j : X \to \mathbb{R}$ are quasiconvex J is a (possibly infinite) index set.

Disjunctive programming

Let us consider the optimization problem:

min
$$f(x)$$

$$s.t. \begin{cases} h_i(x) \le 0 & i = 1, ..., l \\ \min_{j \in J} g_j(x) \le 0 \end{cases}$$

where $f, h_i, g_j : X \to \mathbb{R}$ are quasiconvex J is a (possibly infinite) index set.

Example: $g: X \to \mathbb{R}$ is continuous concave and

min
$$f(x)$$

$$s.t. \begin{cases} h_i(x) \le 0 & i = 1, \dots, l, \\ g(x) \le 0 \end{cases}$$

Disjunctive programming

Let us consider the optimization problem:

min
$$f(x)$$

$$s.t. \begin{cases} h_i(x) \le 0 & i = 1, \dots, l \\ x \in \bigcup_{j \in J} C_j \end{cases}$$

where $f, h_i : X \to \mathbb{R}$ are quasiconvex C_j are convex subsets of X J is a (possibly infinite) index set.

A little bit of history

Balas 1974: first paper about disjunctive prog.Pure and mixed 0-1 linear programming

$$Min \quad Z = d.x + \sum_{k=1}^{m} c_k$$

$$s.t. \quad \bigvee_{j \in J_k} \begin{bmatrix} Y_{jk} \\ A^{jk}x \ge b^{jk} \\ c_k = \gamma_{jk} \end{bmatrix}, k \in K$$

$$0 \le x \le U, Y_{jk} \in \{0, 1\}$$

A little bit of history

Balas 1974: first paper about disjunctive prog.Pure and mixed 0-1 linear programming

$$Min \quad Z = d.x + \sum_{k=1}^{m} c_k$$

$$s.t. \quad \bigvee_{j \in J_k} \begin{bmatrix} Y_{jk} \\ A^{jk}x \ge b^{jk} \\ c_k = \gamma_{jk} \end{bmatrix}, k \in K$$

$$0 \le x \le U, Y_{jk} \in \{0, 1\}$$

puis Gugat, Grossmann, Borwein, Cornuejols-Lemaréchal,...

Duality for disjunctive prog.

For linear Disjunctive program (Balas):

Primal
$$\alpha = \inf c.x$$

$$s.t. \qquad \bigvee_{j \in J} \begin{bmatrix} A^j.x \ge b^j \\ x \ge 0 \end{bmatrix}$$

Duality for disjunctive prog.

For linear Disjunctive program (Balas):

 $Primal \qquad \alpha = inf \quad c.x$

s.t.
$$\bigvee_{j \in J} \begin{bmatrix} A^{j}.x \ge b^{j} \\ x \ge 0 \end{bmatrix}$$

$$Dual \qquad \beta = \sup w$$

$$s.t. \qquad \bigwedge_{j \in J} \begin{bmatrix} w - u^{j}b^{j} \le 0 \\ u^{j}.A^{j} \le c \\ u^{j} > 0 \end{bmatrix}$$

Duality theorem for linear disjunctive prog.

Set
$$P_j = \{x : A^j . x \ge b^j, \ x \ge 0\}, U_j = \{u^j : u^j . A^j \le c, \ u^j \ge 0\}.$$

Denote
$$J^* = \{j \in J : P_j \neq \emptyset\}$$
 and $J^{**} = \{j \in J : U_j \neq \emptyset\}$

Theorem 17 (*Balas 77*)

If (P) and (D) satisfy the following regularity assumption

$$J^* \neq \emptyset, \ J \setminus J^{**} \neq \emptyset \Longrightarrow J^* \setminus J^{**} \neq \emptyset,$$

Then

- either both problems are feasible, each has an optimal solution and $\alpha=\beta$
- or one is infeasible, the other one either is infeasible or has no finite optimum.

Duality theorem for linear disjunctive prog.

Set
$$P_j = \{x : A^j . x \ge b^j, \ x \ge 0\}, U_j = \{u^j : u^j . A^j \le c, \ u^j \ge 0\}.$$

Denote
$$J^* = \{j \in J : P_j \neq \emptyset\}$$
 and $J^{**} = \{j \in J : U_j \neq \emptyset\}$

Theorem 17 (*Balas 77*)

If (P) and (D) satisfy the following regularity assumption

$$J^* \neq \emptyset, \ J \setminus J^{**} \neq \emptyset \Longrightarrow J^* \setminus J^{**} \neq \emptyset,$$

Then

- either both problems are feasible, each has an optimal solution and $\alpha=\beta$
- or one is infeasible, the other one either is infeasible or has no finite optimum.
- Generalized by Borwein (JOTA 1980) to convex disjunctive program.

In the 90's: cutting plane methods (Balas-Ceria-Cornuejols, Math. Prog. 1993).

In the 90's: cutting plane methods (Balas-Ceria-Cornuejols, Math. Prog. 1993).

Aim: separate x from $\cup_j P_j$ or equivalently from $P = \overline{\text{conv}}(\cup_j P_j)$ Problem: need of representation of the convex hull of the union of polyhedral sets

In the 90's: cutting plane methods (Balas-Ceria-Cornuejols, Math. Prog. 1993).

Aim: separate x from $\bigcup_j P_j$ or equivalently from $P = \overline{\text{conv}}(\bigcup_j P_j)$

Problem: need of representation of the convex hull of the union of polyhedral sets

Solution: Lift-and-Project

- 1- representation \tilde{P} of the union of polyhedra P in a higher dim. space
- 2- projection back in the original space such that $proj \tilde{P} = P$

In the 90's: cutting plane methods (Balas-Ceria-Cornuejols, Math. Prog. 1993).

Aim: separate x from $\bigcup_j P_j$ or equivalently from $P = \overline{\text{conv}}(\bigcup_j P_j)$ Problem: need of representation of the convex hull of the union of polyhedral sets

Proposition 18 (Balas 1998)

If
$$P_j = \{x \in \mathbb{R}^n : A^j x \ge b^j\} \ne \emptyset$$
, $j = 1, p$ then

$$\tilde{P} = \{(x, (y^1, y_0^1), ..., (y^p, y_0^p)) \in \mathbb{R}^{n+(n+1)p} : x - \sum_{j=1}^p y^j = 0 \}$$

$$A^j y^j - y_0^j b^j \ge 0$$

$$y_0^j \ge 0$$

$$\sum_{j=1}^p y_0^j = 1$$

In the 90's: cutting plane methods (Balas-Ceria-Cornuejols, Math. Prog. 1993).

Aim: separate x from $\bigcup_j P_j$ or equivalently from $P = \overline{\text{conv}}(\bigcup_j P_j)$ Problem: need of representation of the convex hull of the union of polyhedral sets

- Grossmann review's on disjunctive prog. techniques (Opt. and Eng. 2002)
- Cornuejols-Lemaréchal (Math. Prog. 2006)

Let us consider the problem:

$$(P_C) \qquad \text{inf} \quad f(x) \\ \text{s.t.} \quad x \in C$$

where $f: X \to \mathbb{R} \cup \{+\infty\}$ is quasiconvex lower semicontinuous $C \subset \operatorname{int}(\operatorname{dom} f)$ is a locally finite union of closed convex sets,

$$C = \cup_{\alpha \in A}^{lf} C_{\alpha}.$$

Locally finite union

A subset C of X is said to be a locally finite union of closed sets if

there exists a (possibly infinite) family $\{C_{\alpha} : \alpha \in A\}$ of convex subsets of X such that

$$C = \cup_{\alpha \in A} C_{\alpha}$$

for any $x \in C$, there exist $\rho > 0$ and a finite subset A_x of A such that

$$B(x,\rho) \cap C = B(x,\rho) \cap [\cup_{\alpha \in A_x} C_\alpha]$$

and

$$\forall \alpha \in A_x, \quad x \in C_\alpha.$$

Notation:
$$C = \bigcup_{\alpha \in A}^{lf} C_{\alpha}$$

Local mapping

For any subset C of X, locally finite union of closed sets $C = \bigcup_{\alpha \in A}^{lf} C_{\alpha}$, a family $\mathcal{M} = \{(\rho_x, A_x) : x \in C\}$ with $\rho_x > 0$ and A_x satisfying

$$B(x, \rho_x) \cap C = B(x, \rho_x) \cap [\cup_{\alpha \in A_x} C_\alpha]$$

and

$$\forall \alpha \in A_x, \quad x \in C_\alpha.$$

is called a local mapping of C.

The following subset

$$C = \{x \in X : g(x) \le 0\}$$

is a locally finite union of convex sets, if

g is continuous concave and locally polyhedral

The following subset

$$C = \{x \in X : g(x) \le 0\}$$

is a locally finite union of convex sets, if

g is continuous concave and locally polyhedral

or

- $g(x) = \min_{j \in J} g_j(x)$ with each $g_i : X \to \mathbb{R}$ quasiconvex coercive and
- (H) $\forall x \in X, \ \exists \varepsilon > 0 \ \text{and} \ J_x \ \text{finite} \subset J \ \text{such that}$ $\{j \in J : g_j(u) = g(u)\} \subset J_x, \ \forall_j u \in B(x, \rho).$

Existence for lfuc

Theorem 19

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a quasiconvex function, continuous on dom f.

Assume that

- for every $\lambda > \inf_X f$, $int(S_{\lambda}) \neq \emptyset$ subset of C
- for any $\alpha \in A$, $C_{\alpha} \cap \overline{B}(0,n)$ is weakly compact for any $n \in \mathbb{N}$ and the following coercivity condition holds

there exist $\rho > 0$ such that $\forall x \in C_{\alpha} \setminus \overline{B}(0, \rho)$, $\exists y_x \in C_{\alpha} \cap B(0, ||x||)$ such that $f(y_x) < f(x)$.

If there exists a local mapping $\mathcal{M} = \{(\rho_x, A_x) : x \in C\}$ of C such that the set $\{x \in C : card(A_x) > 1\}$ is included in a weakly compact subset of C, then problem (P_C) admits a local solution.

Existence for disjunctive program

(DP)
$$\min_{s.t.} f(x)$$

$$\begin{cases}
h_i(x) \le 0 & i = 1, ..., l, \\
\min_{j \in J} g_j(x) \le 0
\end{cases}$$

Existence for disjunctive program

Theorem 22

Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a quasiconvex function, continuous on dom f.

Assume that

- (H) holds and for every $\lambda > \inf_X f$, $int(S_{\lambda}) \neq \emptyset$
- for any j, g_i is lsc quasiconvex and coercive
- for any i, h_i is lsc quasiconvex
- for any j and any $n \in \mathbb{N}$, the subset $S_0(g_j) \cap [\cap_i S_0(h_j)] \cap \overline{B}(0,n)$ is weakly compact

If there exists a local mapping $\mathcal{M} = \{(\rho_x, A_x) : x \in C\}$ of C such that the set $\{x \in C : card(A_x) > 1\}$ is included in a weakly compact subset of C, then problem (DP) admits a local solution.

References

- D. A. & N. Hadjisavvas, *On Quasimonotone Variational Inequalities*, JOTA **121** (2004), 445-450.
- D. Aussel & J. Ye, Quasiconvex programming on locally finite union of convex sets, JOTA, to appear (2008).
- D. Aussel & J. Ye, Quasiconvex programming with starshaped constraint region and application to quasiconvex MPEC, Optimization 55 (2006), 433-457.

Appendix 5 - Normally compactness

A subset C is said to be sequentially normally compact at $x \in C$ if for any sequence $(x_k)_k \subset C$ converging to x and any sequence $(x_k^*)_k, x_k^* \in N^F(C, x_k)$ weakly converging to 0, one has $||x_k^*|| \to 0$. Examples:

- X finite dimensional space
- C epi-Lipschitz at x
- C convex with nonempty interior

A function f is said to be sequentially normally subcompact at $x \in C$ if the sublevel set $\overline{S_{f(x)}}$ is sequentially normally compact at x. Examples:

- X finite dimensional space
- f is locally Lipschitz around x and $0 \notin \partial^L f(x)$
- f is quasiconvex with $int(S_{f(x)}) \neq \emptyset$

Appendix 2 - Limiting Normal Cone

Let C be any nonempty subset of X and $x \in C$. The limiting normal cone to C at x, denoted by $N^L(C,x)$ is defined by

$$N^{L}(C, x) = \limsup_{x' \to x} N^{F}(C, x')$$

where the Frèchet normal cone $N^F(C, x')$ is defined by

$$N^{F}(C, x') = \left\{ x^* \in X^* : \limsup_{u \to x', u \in C} \frac{\langle x^*, u - x' \rangle}{\|u - x'\|} \le 0 \right\}.$$

The limiting normal cone is closed (but in general non convex)

Appendix - Limiting subdifferential

One can define the *Limiting subdifferential* (in the sense of Mordukhovich), and its asymptotic associated form, of a function $f: X \to \mathbb{R} \cup \{+\infty\}$ by

$$\begin{array}{ll} \partial^L f(x) &= Limsup_{y \xrightarrow{f} x} \partial^F f(y) \\ &= \left\{ x^* \in X^* \,:\, (x^*, -1) \in N^L(\operatorname{epi} f, (x, f(x))) \right\} \end{array}$$

$$\partial^{\infty} f(x) = Limsup \underset{y \to x}{\lambda} \partial^{F} f(y)$$

$$= \left\{ x^{*} \in X^{*} : (x^{*}, 0) \in N^{L}(\operatorname{epi} f, (x, f(x))) \right\}.$$