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vexity

ction f : X — IR U {400} is said to begquasiconvexon K
all z, y € K and allt € [0, 1],

(tz + (1 —t)y) < max{f(x), f(y)}.



A function f : X — IR U {+oc} is said to beguasiconvexon K
If, for all A € IR, the sublevel set

Sy={x € X : f(x) < \}is convex.
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A function f : X — IR U {+oc} is said to beguasiconvexon K
If, for all A € IR, the sublevel set

Sy={x € X : f(x) < \}is convex.

A function f : X — IR U{+oc} is said to besemistrictly
guasiconvexn K if, f Is quasiconvex and for any.y € K,

flz) < fly) = f(2) < fly), Vzelz,y|
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Introduction




f differentiable
f Is quasiconvex iftlf Is guasimonotone

iff df (z)(y —z) > 0=df(y)(y —z) >0
f 1s quasiconvex IfP) f is quasimonotone

iff 3x* € 0f(x) : (z*,y—x) >0
= Vy* €9f(y), (¥,y—x) >0
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Why not a subdifferential for quasiconvex programming?
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Why not a subdifferential for quasiconvex programming?

No (upper) semicontinuity o f If f Is not
supposed to be Lipschitz
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Why not a subdifferential for quasiconvex programming?

No (upper) semicontinuity o f If f Is not
supposed to be Lipschitz

No sufficient optimality condition

T € Sy (0f,C) => T € arg mcinf

— p.6/48



ormal approach of quasiconvex
NEWAIES



Normal approach

a- First definitions



Sublevel set:

Sx={re X : f(x) <)}
Sy ={xre X : f(x) <A}
Normal operator:

DefineN,(z) : X — 2% by

Ni(z) = N(Sj@), )
— {g;* =2 G (:z:*,y — x> <0, Vye Sf(a:)}'

With the corresponding definition fa¥; ()

—p.9/48



Ny(x) = N(Syw), z) has no upper-semicontinuity properties

N7 (z) = N(S5,, ) has no quasimonotonicity properties

—p.10/48



Ny(x) = N(Syw), z) has no upper-semicontinuity properties

N7 (z) = N(S5,, ) has no quasimonotonicity properties

Definef : R? — R by

al + [bl, if Ja]+ [b] <1
f(a,b>_{

1, if |a|+ (b >1

Thenf is quasiconvex. Consider= (10,0), z* = (1,2), y = (0,10) andy™ = (2, 1).

We see that* € N<(x) andy* € N< (y) (since|a| + |b| < 1 implies(1,2) - (a — 10,b) < 0 and
(2,1) - (a,b — 10) < 0) while (x*,y — ) > 0and(y*,y — ) < 0. HenceN < is not

guasimonotone.

—p.10/48



Ny(x) = N(Syw), z) has no upper-semicontinuity properties

N7 (z) = N(S5,, ) has no quasimonotonicity properties

These two operators are essentially adapted to the classnuf s
strictly quasiconvex functions. Indeed this case, for eache

domf \ argmin f, the setsSy) and 57, have the same closure
andNy(x) = N7 (z).

—p.10/48



1
Normal approach

b- Adjusted sublevel sets

and
normal operator



ad sublevel set

r € domf, we define

S#(x) = St@) N B(Sfy), po)

» = dist(z, S5,), if S5,y # 0.



Definition

Adjusted sublevel set

For anyx € domf, we define
S§(x) = Syta) N B(S7iay: )
wherep, = dist(z, S3,,), if S5,y # 0.

m S¢(x) coincides withSy, if cl (Sf(g;)) = St

e.g. f is semistrictly quasiconvex

—p.12/48



Definition

Adjusted sublevel set

For anyx € domf, we define
S§(x) = Syta) N B(S7iay: )
wherep, = dist(z, S3,,), if S5,y # 0.
u S%(x) coincides withSy(,) if €l (S7,)) = St

Proposition 1 Letf: X — IR U {+oc} be any function, with
domaindom f. Then

f is quasiconvex«- S%(xr) is convex Vx € domf.

—p.12/48



Let us suppose thﬁjﬁ (u) is convex for every, € domf. We will show that for anyr € domf,
S ¢ () IS CONVEX.

If z € argmin f thenS¢ ) = Sjﬁ (z) is convex by assumption.

Assume now that ¢ argmin f and takey, z € Sy ().

If both  andz belong toB (Sf(w),pw), theny, z € S% (z) thusly, z] C 5% (x) C Sy(y)-

If both y andz do not belong taB (Sf<($) : pa;) , then

f@) = fly) =), Sy, =S5, = Sie

andp,, p- are positive. If, sayp, > p, theny,z € B (ij(y),py) thus

Y,z € S7 (y) and[y, 2] € S (y) € S¢(y) = St(a)-

—p.13/48



Finally, suppose that only one 9f z, sayz, belongs toﬁ(Sf(x),px) while y ¢ E(S?(x),px). Then

f(x) — f(y)7 Sf<(y) — Sf<(x) aﬂdpy > Pz

n < n <
so we have: € B (Sf(m),Pm) C B (Sf(y),py) and we deduce as before that
[y,2] € 5% (v) C Sf(y) = St (a):

The other implication is straightforwars.

—p.14/48



Adjusted sublevel set:

For anyx € domf, we define
S§(x) = S5y N B(S7a p2)

wherep, = dist(z, S3,), if 57, # 0.

Ajusted normal operator:

Ni(x) ={z" € X* : (",y —x) <0, Vy € S%(x)}

—p.15/48
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Subdifferential vs normal operator

One can have

N¢(r) & conddf(z)) or conddf(z)) & Nf(w)

Proposition 2
f 1s quasiconvex angd € dom f
If there exist® > 0 such thatd) € 0 f(B(x,¢)) then

con&d” f(z)) U™ f(x)] C N§(x).

—p.17/48



Basic properties of V¢

Nonemptyness:
Proposition 3 Letf : X — IR U {400} be Isc. Assume that rad.

continuous ordomf or dom f is convex andntS, # 0,
VA > infx f. Then

«If fis quasiconvexN¢(x)\ {0} # 0, Yz € domf \ argmin f.
«f quasiconvex

<= domN¢ \ {0} dense idomf \ argmin f.

Quasimonotonicity:

The normal operataiv¢ Is always quasimonotone

—p.18/48



Upper sign-continuity

o7 : X — 2% is said to baupper sign-continuousn K iff for any
x,y € K, one have :

Vit elo,1], inf (", y—2x)>0

x* €T ()

— sup (2", y—x) =0
z*eT (x)

wherez, = (1 — t)z + ty.
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e 7 : X — 2% is said to baupper sign-continuousn K iff for any
x,y € K, one have :

vVt el0,1], inf (z*,y—x) >0

x* €T () i

— sup (2", y—x) =0
z*eT (x)

wherex;, = (1 — t)x + ty.

upper semi-continuous

4

upper hemicontinuous

4

upper sign-continuous p.10s



5 LetT : K — 2% be a set-valued map.

T est calledocally upper sign-continuousn K If, foranyx € K
there exist a neighV/, of x and a upper sign-continuous set-valued
map®,(-) : V, — 2% with nonempty convex*-compact values
such thatd,.(y) C T'(y) \ {0}, Vy € V;

— p.20/48



locally upper sign continuity

Definition 6 LetT : K — 2X" be a set-valued map.

T" est callediocally upper sign-continuousn K If, foranyx € K
there exist a neighl/, of x and a upper sign-continuous set-valued
map®,(-) : V, — 2% with nonempty convex*-compact values
such that®,(y) C T'(y) \ {0}, Vy € Vi,

Continuity of normal operator

Proposition 7
Let f be Isc quasiconvex function such that(S)) # 0, VA > inf f.

ThenN; is locally upper sign-continuous afom f \ arg min f.

—p.20/48



8
If fis quasiconvex such thatt(S)) # 0,V A > inf f

and f is Isc atx € domf \ arg min f,
ThenNJ% IS norm-to-wW cone-usc at.

A multivalued map with conical valued : X — 2% is said to be

cone-usatx € domT if there exists a neighbourhodd of + and a

baseC' (u) of T'(u), u € U, such thatt — C (u) is usc atz.

—p.21/48



Integration of ¢

Let f : X — IR U {+00} quasiconvex

Question:ls it possible to characterize the functions
g : X — IR U {+oo} quasiconvex such tha&{y = N?
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Let f : X — IR U {+00} quasiconvex

Is it possible to characterize the functions
g : X — IR U {+oo} quasiconvex such tha&{y = N?

LetC = {g: X — R U {+o0} cont. semistrictly quasiconvex
such that argmirf is included in a closed hyperplahe

Then, for anyf, g € C,

N¢ = N <« gis N7\ {0}-pseudoconvex
< Ja* € Np(z) \ {0} : (z",y —2) 2 0= g(z) < g(y).

— p.22/48



Integration of ¢

Let f : X — IR U {+00} quasiconvex

Question:ls it possible to characterize the functions
g : X — IR U {+oo} quasiconvex such tha&{y = N?

General caseopen question

—p.22/48



Quasiconvex programming

a- Optimality conditions



vex programming

— IR U {+00} and K C domf be a convex subset.

(P)  findz e K : f(z) = inf f(2)

reK



Quasiconvex programming

Let f: X — IRU {+00} andK C domf be a convex subset.

(P) findz € K : f(z) = inf f(x)

reK

Perfect casef convex

f: X — IRU {+00} a proper convex function
K a nonempty convex subset &f, z € K + C.Q.
Then

f(@) = inf f(z) <= Z€Su(0f K)

reK

—p.24/48



Quasiconvex programming

Let f: X — IRU {+00} andK C domf be a convex subset.

(P) findz € K : f(z) = inf f(x)

reK

Perfect casef convex

f: X — IRU {+00} a proper convex function
K a nonempty convex subset &f, z € K + C.Q.

Then
f(z) = inf f(x) <= =z € 94 (0f, K)

reK

What aboutf quasiconvex case?

T € S (0f(Z), K) ==& € argm[%nf

—p.24/48



Sufficient optimality condition

Proposition 9
f: X — IRU {400} quasiconvex, radially cont. omom f

C' C X such thatconv(C') C domf.
Suppose that’ C int(domf).

Thenz € S(N¢\ {0},C) = Vel f(7)< f(z).

wherez € S(N¢ \ {0}, K) means that there exists € N¢(z) \ {0} such
that
(x%,c—x) > 0, Veed.

—p.25/48



10 Letf : X — IR U {+o0} be a quasiconvex function,
radially continuous ordomf. Thenf is N¢ \ {0}-pseudoconvex on
int(dom f), that is,

Jz* € Nf(z)\ {0} : (z",y—2) 2 0= f(y) > f(z).

Letz, y € int(domf). According to the quasiconvexity d¢f, N¢ (z) \ {0} is nonempty.
Let us suppose thatc™, y — x) > 0 with z* € N¢(z) \ {0}. Letd € X be such that

(x*,yn — x) > 0for anyn, wherey,, = y + %d (e domf for n large enough).

This implies thaty, ¢ S7 (x) sincez™ € N¢(z) C N7 ().

It follows by the radial continuity off that f(y) > f(z).

— p.26/48



Necessary and Sufficient conditions

Proposition 11 LetC be a closed convex subsetfr € C' and
f : X — IR be continuous semistrictly quasiconvex such that

int(S¢(z)) # 0 and f(Z) > infx f.
Then the following assertions are equivalent:
) f(Z) = ming f
i) T e S, (N7 \1{0},C)
i) 0€ N¢(z)\{0} + NK(C,z).

—p.27/48



12 LetC be a closed convex subset of an Asplund
spaceX and f : X — IR be a continuous guasiconvex function.
Suppose that eithef is sequentially normally sub-compact @ris
sequentially normally compact.

If x € C'Is such that

0Z0"f(z) and 0&0>f(z)\ {0} +NK(C,z)

then the following assertions are equivalent:
) f(Z) = ming f
i) zeolf(z)\{0} + NK(C,z)
i) 0€ N#x)\ {0} + NK(C,T)

— p.28/48



Quasiconvex optimization

b- Convex constraint case



Quasiconvex optimization

b- Convex constraint case

(P) Findz € C such thatf(z) = i%f f.

with C' convex set.

—p.29/48



13 (Convex case)

f: X — IRU{+o0} quasiconvex

+ continuous ordom( f)

+for any A\ > infyx f, int(S)) # 0.

+ C C int(domf) convex such thaf' N B(0,n)

IS weakly compact for somec IN.

+ coercivity condition
dp >0, Vo€ C\ B(0,p), Iy € Cwith||ly|| < ||z|
such thatvz* € N¢(z) \ {0}, (z*,2 —y) >0

Then there exists € C' such thatvz € C, f(z) > f(Z).

—p.30/48



14
C nonempty convex subset¥f

T : C — 2% quasimonotone
+ |locally upper sign continuous oY

+ coercivity condition:
dp >0, Vo e C\ B(0,p), Iy € Cwith||y|| < |z
such thatvz* € T'(z), (", 2z —y) > 0
and there existg’ > p such thatC' N B(0, p') is weakly
compact £ ().
Then S(T,C) # 0.

—p.31/48



If arg min f N K # (), we have nothing to prove.
Suppose thairg min f N K = (. ThenN ¢ is quasimonotone and norm-totwone-usc orkK . Thus,
all assumptions of Theorem 14 hold for the operattt \ {0}, s0Sstr (N® \ {0}, K) # (. Finally,

using the sufficient condition, we infer thathas a global minimum ok

—p.32/48



If arg min f N K # (), we have nothing to prove.
Suppose thairg min f N K = (. ThenN ¢ is quasimonotone and norm-totwone-usc orkK . Thus,
all assumptions of Theorem 14 hold for the operattt \ {0}, s0Sstr (N® \ {0}, K) # (. Finally,

using the sufficient condition, we infer thathas a global minimum ok

15 Assumptions o and K as in Theorem 13. Assume that
there exists: € IN such that for allx € K, ||x| > n, there existy € K,
ly|| < [|=|| such thatf (y) < f (x). Then there existgy € K such that

Ve e K, f[f(z)= f(zo)

If f(y) < f(x) then for everyz* € N%(z) C N< (z), (z*,y — x) < 0. Hence, coercivity

condition withT = N holds. The corollary follows from Theorem 13.

—p.32/48



11
Quasiconvex optimization

c- Nonconvex constraint case
(an example)

—p.33/48



Let us consider the optimization problem:

min f(x)

v

s.t. X

\ min,ecy g;(x) <0

wheref, h;,g; : X — IR are quasiconvex
J Is a (possibly infinite) index set.

— p.34/48



Let us consider the optimization problem:

min f(x)

’
s.t. X

\ min,ecy g;(x) <0

wheref, h;,g; : X — IR are quasiconvex
J Is a (possibly infinite) index set.

g : X — IR Is continuous concave and

min  f(x)

(

hz(:c)g() iZl,...,l,
g(x) <0

s.t. <

N

— p.34/48



Let us consider the optimization problem:

min f(x)

v

s.t. X

| T € UjEJCj

wheref, h; : X — IR are quasiconvex
C'; are convex subsets of
J Is a (possibly infinite) index set.

— p.34/48



Balas 1974: first paper about disjunctive prog.

Pure and mixed O-1 linear programming

Min Z=dx+>,_, ck

s.1.

Yk

Ck — Vjk

ke K

OSZCSU,ijE{O,l}

— p.35/48



Balas 1974: first paper about disjunctive prog.
Pure and mixed O-1 linear programming

Min Z=dx+>,_, ck
Yik
S.t. \/jEJk Alky > pF | ke K

Ck — Vjk

OSZCSU,ijE{O,l}

puis Gugat, Grossmann, Borwein, Cornuejols-Lemarechal,.

— p.35/48



r disjunctive prog.

ear Disjunctive program (Balas):

Primal a=1inf cx
Alx >V

s.t. \V
jeJ - 2 0




Duality for disjunctive prog.

For linear Disjunctive program (Balas):

Primal

Dual

a=1inf cx

S.1.

Vies

0 =sup w

s.t.

Njes

Al.x >V
x>0

w—wb <0
u . Al < ¢

u >0

—p.36/48



SetP; ={z: Alx>V, x>0} U; ={uv :u. A7 <c¢, ) >0}
DenoteJ* ={j € J: P; #0}andJ** = {j € J: U; # 0}

17 (Balas 77)
If (P) and (D) satisfy the followingegularity assumption

Then
- either both problems are feasible, each has an optimaltEwiand

a=p0
- or one is infeasible, the other one either is infeasible as ho finite
optimum.

—Pp.37/48



SetP; ={z: Alx>V, x>0} U; ={uv :u. A7 <c¢, ) >0}
DenoteJ* ={j € J: P; #0}andJ** = {j € J: U; # 0}

17 (Balas 77)
If (P) and (D) satisfy the followingegularity assumption

Then
- either both problems are feasible, each has an optimaltEwiand

a=p0
- or one is infeasible, the other one either is infeasible as ho finite
optimum.

Generalized by Borwein (JOTA 1980) to convex disjunctivegoam.

—Pp.37/48



tional aspects

» 90’s: cutting plane methods (Balas-Ceria-Corngejdath.
993).



In the 90’s: cutting plane methods (Balas-Ceria-Corngejdath.
Prog. 1993).
separate: from U, P; or equivalently fromP = con\ U, P;)
need of representation of the convex hull of the union of
polyhedral sets

—p.38/48



In the 90’s: cutting plane methods (Balas-Ceria-Corngejdath.
Prog. 1993).
separate: from U, P; or equivalently fromP = con\ U, P;)
need of representation of the convex hull of the union of
polyhedral sets
Lift-and-Project
1- representatiod® of the union of polyhedrd in a higher
dim. space

2- projection back in the original space such thatj P = P

—p.38/48



In the 90’s: cutting plane methods (Balas-Ceria-Corngejdath.
Prog. 1993).
separate: from U, P; or equivalently fromP = con\ U, P;)
need of representation of the convex hull of the union of
polyhedral sets

18 (Balas 1998)
If P,={zeR": Az >} #0,j=1,p then

~ )

P={(z,(y",95), - (0" 10)) € RPTHDP g — 570 47 =0
Aty — b >0
v >0

p J _
j=1% =1,

—p.38/48



In the 90’s: cutting plane methods (Balas-Ceria-Corngejdath.
Prog. 1993).
separate: from U, P; or equivalently fromP = con\ U, P;)
need of representation of the convex hull of the union of
polyhedral sets
Grossmann review’s on disjunctive prog. techniques (Omd. a
Eng. 2002)

Cornuejols-Lemaréchal (Math. Prog. 2006)

—p.38/48



Let us consider the problem:

inf f(x)

(Pc)
st. re€(’

wheref : X — IR U {+00} Iis quasiconvex lower semicontinuous
C' C int(domf) is a locally finite union of closed convex sets,

C — UlafEACa

—p.39/48



A subsetC' of X is said to be docally finite union of closed seik

there exists a (possibly infinite) familyC,, : o € A} of convex subsets
of X such that

C = UQEACQ

foranyx € C, there exisp > 0 and a finite subset, of A such that
B(z,p) NC = B(x, p) N [Uaea, Co

and
Vae A,, xe€C,.

S
C = UozEA

Co

— p.40/48



For any subset’ of X, locally finite union of closed sets
C =UY_,C,, afamilyM = {(p,, A,) : © € C'} with p, > 0 and

acA

A, satisfying
B(ZC, px) NC = B(ZC, px) A [UQEA;EC@]

and
Vae A,, xe¢€dC,.

IS called a local mapping af'.

—p.41/48



The following subset

C={xeX : g(x) <0}
IS a locally finite union of convex sets, if

g Is continuous concave and locally polyhedral

—p.42/48



The following subset

C={xeX : g(x) <0}

IS a locally finite union of convex sets, if

g Is continuous concave and locally polyhedral
or

g(x) = min,c; g;(x) with eachg; : X — IR quasiconvex
coercive and
(H) Ve € X, de > 0and.J, finite C J such that

vedgi(u) =gu)} CJy, Yue Blz,p).

—p.42/48



19
Letf : X — IR U {+o0} be a quasiconvex function, continuousdom f.
Assume that
o for every\ > infx f, int(Sy) # 0
subset of”
o foranya ¢ A, C, N B(0,n) is weakly compact for any ¢ IN
and the following coercivity condition holds

there exist > 0 such thatvz € C,, \ B(0, p),
Yy, € Ca N B(0, [|z|) such thatf (y,) < f(z).

If there exists a local mapping! = {(p, A.) : © € C'} of C' such that the
set{x € C' : card(A,) > 1} isincluded in a weakly compact subset4f
then problem P-) admits a local solution.

—p.43/48



2 for disjunctive program

min f(x)
(DP) . hi(z) <0 i=1,...,1,
s.t.
min,e j g;(z) <0



22

Letf : X — IR U {+o0} be a quasiconvex function, continuousdom f.
Assume that

e (H) holds and for evenh > infx f, int(Sy) # ()

e for anyj, g, Is Isc quasiconvex and coercive

e for anyz, h; is Isc quasiconvex

e for any; and anyn € IN, the subset

So(g;) N [NiSo(h;)] N B(0,n) is weakly compact

If there exists a local mappingd! = {(p:, A.) : * € C} of C' such that the
set{x € C' : card(A,) > 1} isincluded in a weakly compact subset4f
then problem( D P) admits a local solution.

— p.44/48



D. A. & N. HadjisavvasOn Quasimonotone Variational Inequalities
JOTA 121(2004), 445-450.

D. Aussel & J. YeQuasiconvex programming on locally finite union
of convex setsIOTA, to appear (2008).

D. Aussel & J. YeQuasiconvex programming with starshaped
constraint region and application to quasiconvex MBEC
Optimization 55 (2006), 433-457.

— p.45/48



A subsetC' is said to besequentially normally compaeat x € C' If
for any sequenceér, ), C C converging to x and any sequence
(7)r, 1 € N*(C, x) weakly converging to 0, one hds;|| — 0.

X finite dimensional space
C' epi-Lipschitz atr

C' convex with nonempty interior

A function f is said to besequentially normally subcompaait
z € C If the sublevel seb,) Is sequentially normally compact at

X finite dimensional space
f is locally Lipschitz aroune: and0 ¢ o f(x)
f is quasiconvex withint (S s (,y) # 0

— p.46/48



Let C' be any nonempty subset &f andx € C. The
limiting normal coneo C' atz, denoted byV(C, z) is defined by

N*(C,z) = limsup N*(C, 2)

' —x

where the Frechet normal cog (C, z') is defined by

* !
NF(C,:B’):{x*EX* . limsup (@' u = 2 §O}.

u—x’, ucC H’LL _ IIH

The limiting normal cone is closed (but in general non copvex

—p.47/48



One can define thieimiting subdifferentialin the sense of
Mordukhovich), and its asymptotic associated form, of actiom
f: X — RU{+o0} by

0"f(z) = Limsup ; 9" f(y)

y—x

= {2* € X* : (z*,—1) € NL(epif, (=, f(x)))}

0° f(x) = Limsup . O f(y)

Yy—x

AN\,0
= {z* € X* : (2*,0) € NE(epif, (z, f(x)))} .

— p.48/48
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