environmental and biological atlas of the gulf of mexico 2016

gulf states marine fisheries commission number 268 october 2017

SEAMAP ENVIRONMENTAL AND BIOLOGICAL ATLAS OF THE GULF OF MEXICO, 2016

Edited by

Jeffrey K. Rester
Gulf States Marine Fisheries Commission

Manuscript Design and Layout

Ashley P. Lott
Gulf States Marine Fisheries Commission

GULF STATES MARINE FISHERIES COMMISSION OCTOBER 2017
 NUMBER 268

This project was supported in part by the National Oceanic and Atmospheric Administration, National Marine Fisheries Service, under State/Federal Project Number NA16NMFS4350111.

GULF STATES MARINE FISHERIES COMMISSION COMMISSIONERS

ALABAMA

Chris Blankenship
Alabama Department of Conservation
and Natural Resources
64 North Union Street
Montgomery, AL 36130-1901
Steve McMillan
P.O. Box 337

Bay Minette, AL 36507
Chris Nelson
Bon Secour Fisheries, Inc.
P.O. Box 60

Bon Secour, AL 36511

FLORIDA

Nick Wiley, Executive Director
FL Fish and Wildlife Conservation Commission 620 South Meridian Street
Tallahassee, FL 32399-1600
Representative Jay Trumbull
State of Florida House of Representatives
402 South Monroe Street
Tallahassee, FL 32399
TBA

LOUISIANA

Jack Montoucet, Secretary
LA Department of Wildlife and Fisheries
P.O. Box 98000

Baton Rouge, LA 70898-9000
Senator R.L. "Bret" Allain, II
600 Main Street, Suite 1
Franklin, LA 70538

John Roussel
1221 Plains Port Hudson Road
Zachary, LA 70791
MISSISSIPPI
Jamie Miller, Executive Director
Mississippi Department of Marine Resources
1141 Bayview Avenue
Biloxi, MS 39530
Senator Brice Wiggins
1501 Roswell Street
Pascagoula, MS 39581
Joe Gill, Jr.
Joe Gill Consulting, LLC
910 Desoto Street
Ocean Springs, MS 39566-0535

TEXAS

Carter Smith, Executive Director
Texas Parks and Wildlife Department 4200 Smith School Road
Austin, TX 78744
Troy B. Williamson, II
P.O. Box 967

Corpus Christi, TX 78403
Representative Wayne Faircloth
Texas House of Representatives
2121 Market Street, Suite 205
Galveston, TX 77550

STAFF

David M. Donaldson
Executive Director

Nancy K. Marcellus
Cheryl R. Noble
Steven J. VanderKooy
Jeffrey K. Rester
Gregory S. Bray

Joseph P. Ferrer, III
Douglas J. Snyder
Deanna L. Valentine
Donna B. Bellais
James R. Ballard

Lloyd W. Kirk
Debora K. McIntyre
Alyce A. Ryan
Angela R. Rabideau
Ashley P. Lott

SEAMAP SUBCOMMITTEE

Dr. Ted Switzer, Chairman
Florida Fish and Wildlife Conservation Commission
Florida Fish and Wildlife Research Institute

Mr. Brett Falterman
Louisiana Department of Wildlife and
Fisheries
Mrs. Jill Hendon
USM/Gulf Coast Research Laboratory
Dr. Fernando Martinez-Andrade
Texas Parks and Wildlife Department
\section*{Dr. John Froeschke}
Gulf of Mexico Fishery Management
Council National Marine Fisheries Service

Pascagoula Laboratory
Mr. John Mareska
Alabama Department of Conservation and
Natural Resources/ Marine Resources Division

Mr. Jeff Rester
SEAMAP Coordinator
Gulf States Marine Fisheries Commission

DATA COORDINATING WORK GROUP

Mr. Lloyd Kirk, Leader
Gulf States Marine Fisheries Commission

Mr. David Hanisko
National Marine Fisheries Service Pascagoula Laboratory

Mr. Charles Weber
National Marine Fisheries Service
Pascagoula Laboratory

Mr. John Anderson
USM/Gulf Coast Research Laboratory
Mr. Michael Murphy
Florida Fish and Wildlife
Conservation Commission
Florida Fish and Wildlife Research Institute

Mr. Michael Harden
Louisiana Department of Wildlife and
Fisheries

INTRODUCTION

The Southeast Area Monitoring and Assessment Program (SEAMAP) is a State/Federal/university program for the collection, management, and dissemination of fishery-independent data (information collected without direct reliance on statistics reported by commercial or recreational fishermen) in United States waters of the Gulf of Mexico (Eldridge 1988). A major SEAMAP objective is to provide a large, standardized database needed by management agencies, industry, and scientists to make sound management decisions and further develop fishery resources in a cost-efficient manner. To accomplish this goal, survey data must be disseminated in a useful format to SEAMAP participants, cooperators, and other interested organizations.

The SEAMAP Program began in March 1981 when the National Marine Fisheries Service (NMFS), Southeast Fisheries Science Center (SEFSC), presented a SEAMAP Strategic Plan (1981) to the Gulf States Marine Fisheries Commission (GSMFC). This strategic plan outlined the proposed program organization (goals, objectives, procedures, resource requirements, etc.). A SEAMAP Subcommittee was then formed within the existing framework of the GSMFC. The Subcommittee consists of one representative from each state fishery management agency [Florida Fish and Wildlife Conservation Commission (FWC); Alabama Department of Conservation and Natural Resources (ADCNR); Mississippi Department of Marine Resources (MDMR) represented by the University of Southern Mississippi, Gulf Coast Research Laboratory (USM/GCRL); Louisiana Department of Wildlife and Fisheries (LDWF); and Texas Parks and Wildlife Department (TPWD)], one from NMFS SEFSC and a non-voting member representing the Gulf of Mexico Fishery Management Council (GMFMC). The Subcommittee has organized and successfully coordinated numerous resource surveys from 1982 through 2015 (Table 1). The resultant data are published in atlases for the surveys in 1982 (Stuntz et al. 1985); 1983 (Thompson and Bane 1986a); 1984 (Thompson and Bane 1986b); 1985 (Thompson et al. 1988); 1986 (Sanders et al. 1990a); 1987 (Sanders et al. 1990b); 1988 (Sanders et al. 1991a); 1989 (Sanders et al. 1991b); 1990 (Sanders et al. 1992); 1991 (Donaldson et al. 1993); 1992 (Donaldson et al. 1994); 1993 (Donaldson et al. 1996); 1994 (Donaldson et al. 1997a); 1995 (Donaldson et al. 1997b); 1996 (Donaldson et al. 1998); 1997 (Rester et al. 1999); 1998 (Rester et al. 2000); 1999 (Rester et al. 2001); 2000 (Rester et al. 2002); 2001 (Rester et al. 2004); 2002 (Rester et al. 2008); 2003 (Rester et al. 2009); 2004 (Rester 2009); 2005 (Rester 2010); 2006 (Rester 2010); 2007 (Rester 2010); 2008 (Rester 2011); 2009 (Rester 2011); 2010 (Rester 2012); 2011 (Rester 2014); 2012 (Rester 2014), 2013 (Rester 2015), 2014 (Rester 2017), and 2015 (Rester 2017). Environmental assessment activities that occurred with each of the surveys can be found in Table 1. All data are available to researchers or interested individuals. Details about how to obtain SEAMAP data can be found in the Data Request section of this document.

In early 2016, the SEAMAP Subcommittee identified and began to plan the year's SEAMAP survey activities for the Gulf of Mexico. In keeping with the program goal of establishing a coordinated long-term resource database, it was decided to continue the same types of survey activities conducted in 1982 through 2015. Overall survey objectives in 1982 to 2016 were to assess the distribution and abundance of recreational and commercial organisms collected by plankton, video, bottom longlines, hook and line, and trawl gears, and document environmental factors that might affect their distribution and abundance. Data from plankton surveys are used for detection and assessment of fishery resources; in the determination of spawning seasons and areas; in investigations of early survival and recruitment mechanisms; and in estimation of the abundance of a stock based on its spawning production (Sherman et al. 1983). Assessment of the Texas Closure (Nichols 1982, 1984; Nichols and Poffenberger 1987) was the rationale for the
establishment of the trawl surveys and to establish a seasonal database to assess the abundance and distribution of the shrimp and groundfish stocks across the northern Gulf of Mexico. The Reef Fish Survey is designed to determine the relative abundance of reef fish populations and habitat using a video recording system (Russell, unpublished report).

A major purpose of SEAMAP is to provide resource survey data to State and Federal management agencies and universities participating in SEAMAP activities. This thirty-fifth in a series of SEAMAP environmental and biological atlases presents such data, in a summarized form, collected during the 2016 SEAMAP surveys.

MATERIALS AND METHODS

Methodology for the 2016 SEAMAP surveys is similar to that of the 1982 through 2015 surveys. Sampling was conducted within the U.S. Exclusive Economic Zone (EEZ) and state territorial waters. The NOAA Ship OREGON II collected plankton and environmental data during the Spring Plankton Survey from April 30 - May 30. Vessels that participated in collecting plankton and environmental data during the Fall Plankton Survey included the NOAA Ship PISCES (September 5-30), the Alabama vessel ALABAMA DISCOVERY (September 8), the Louisiana vessel R/V DEFENDER (September 15-20), and USM/GCRL vessel TOMMY MUNRO (September 12 and September 29).

Vessels that participated in the Summer Shrimp/Groundfish Survey and concurrently sampled plankton and environmental data included the USM/GCRL vessel TOMMY MUNRO (May 30 June 1), Florida using the TOMMY MUNRO (June 9 - July 1), Louisiana using the POINT SUR (June 7-9), and the NOAA Ship OREGON II (June 9 - July 19). The Alabama vessel ALABAMA DISCOVERY (June 24) did not sample plankton in conjunction with the summer survey.

The NOAA ship PISCES participated in the Reef Fish Survey from April 6 - May 31 while the SOUTHERN JOURNEY sampled from June 14 - September 8. Florida conducted seven reef fish cruises aboard the R/V GULF MARINER (5/18-5/20; 6/22-6/24; 6/27-6/30; 7/11-7/13; 7/19-7/21; 7/25-7/28; 8/2-8/4) and one day-trip (6/15) on the R/V NO FRILLS.

Vessels that participated in the Fall Shrimp/Groundfish Survey and collected environmental data included the NOAA Ships OREGON II (October 9 - November 19), the USM/GCRL vessel TOMMY MUNRO (October 3-4), and the Louisiana vessel PELICAN (October 25-26).

Alabama, Mississippi, Louisiana, and Texas conducted bottom longline sampling monthly from April to September as part of the Bottom Longline Survey.

Alabama, Louisiana, and Texas sampled reef fish over artificial reefs, oil and gas platforms, and natural habitat from April through October during the Vertical Line Survey.

PLANKTON SURVEYS

Since 1982, SEAMAP resource surveys have been conducted by the National Marine Fisheries Service in cooperation with the states of Florida, Alabama, Mississippi, Louisiana, and Texas. Plankton sampling is carried out during these surveys at predetermined SEAMAP stations arranged in a fixed, systematic grid pattern across the entire Gulf of Mexico. Most but not all SEAMAP stations (designated by a unique SEAMAP number) are located at $\sim 56 \mathrm{~km}$ or 112 -degree
intervals along this grid. Some SEAMAP stations are located at < 56 km intervals especially along the continental shelf edge, while others have been moved to avoid obstructions, navigational hazards, or shallow water. Most SEAMAP plankton samples are taken during either dedicated plankton or shrimp/bottomfish (trawl) surveys, but over the years additional samples were taken using SEAMAP gear and collection methods at locations other than designated SEAMAP stations and/or outside established SEAMAP surveys, e.g. during Louisiana seasonal trawl surveys, SEAMAP Squid/Butterfish survey; and other serendipitous or special projects.

The sampling gear and methodology used to collect SEAMAP plankton samples are similar to those recommended by Kramer et al. (1972), Smith and Richardson (1977) and Posgay and Marak (1980). A 61 cm bongo net fitted with $0.333(0.335)^{1} \mathrm{~mm}$ mesh netting is fished in an oblique tow path from a maximum depth of 200 m or to $2-5 \mathrm{~m}$ off the bottom at depths less than 200 m . A mechanical flowmeter is mounted off-center in the mouth of each bongo net to record the volume of water filtered. Volume filtered ranges from ~ 20 to $600 \mathrm{~m}^{3}$, but is typically 30 to $40 \mathrm{~m}^{3}$ at the shallowest stations and 300 to $400 \mathrm{~m}^{3}$ at the deepest stations. A single or double 2 x 1 m pipe frame neuston net fitted with $0.947(0.950)^{1} \mathrm{~mm}$ mesh netting is towed at the surface with the frame halfsubmerged for 10 minutes. Samples are taken upon arrival on station regardless of time of day. At each station either a bongo and/or neuston tow are made depending on the specific survey. Samples are routinely preserved in 5 to 10% formalin and later transferred after 48 hours to 95% ethanol for long-term storage. During some surveys, selected samples are preserved initially in 95\% ethanol and later transferred to fresh ethanol.

Initial processing of one bongo sample and one neuston sample from each SEAMAP station was accomplished at the Sea Fisheries Institute, Plankton Sorting and Identification Center (ZSIOP), in Szczecin, Poland, under a Joint Studies Agreement with NMFS. Wet plankton volumes of bongo net samples were measured by displacement to estimate net-caught zooplankton biomass (Smith and Richardson 1977). Fish eggs and larvae were removed from bongo net samples, and fish larvae only from neuston net samples. Fish eggs were not identified further, but larvae were identified to the lowest possible taxon (to family in most cases). Body length (either notochord or standard length) was measured.

Sorted ichthyoplankton specimens from ZSIOP were sent to the SEAMAP Archiving Center, managed in conjunction with the FWC, for long-term storage under museum conditions. Sorted ichthyoplankton samples from 1982 through 2015 are available for loan to researchers throughout the country. The alternate bongo and neuston samples from each station are retained at USM/GCRL as a backup for those samples transshipped to ZSIOP in case of loss or damage during transit. These backup unsorted plankton samples are curated and housed at the SEAMAP Invertebrate Plankton Archiving Center, managed in conjunction with USM/GCRL, and are available for use by researchers.

See the SEAMAP Operations Manual for a more detailed description of sampling methods and protocols. You can also refer to the vessel cruise reports for more specific information on the individual SEAMAP Plankton Surveys conducted during 2016.

ENVIRONMENTAL DATA

[^0]Standardized methodology was used although the actual parameters measured varied among vessels participating in each survey. These parameters were measured based on equipment availability. The following parameters were recorded:

Vessel: Vessel code for each vessel.
Station: Station identifiers varied by state and vessel.
Cruise: Cruise numbers varied by state and vessels.
Date: Month/Day/Year.
Time: Local time and time zone, recorded at the start of sampling.
Latitude/longitude: Recorded to seconds.
Barometric pressure: Recorded in millibars.
Wave height: Estimated visually in meters.
Wind speed and direction: Recorded in knots with direction recorded in compass degrees from which the wind was blowing.
Air temperature: Recorded in degrees Celsius.
Cloud cover: Estimated visually in percent cloud cover.
Secchi depth: Secchi depth in meters, estimated at each daylight station. Standard oceanographic $30-\mathrm{cm}$ white discs were lowered until no longer visible, and then raised until visible. If different depths were recorded, an average was used.
Water Color: Gross water color data were recorded.
The following parameters were measured at the surface, mid-depth, and bottom; for bottom depths greater than 200 m , samples were taken at surface, 100 m and 200 m :

Water temperature: Temperatures were measured by a hand-held thermometer or by in situ electronic sensors onboard ship. No attempt was made to intercalibrate the various instruments used on individual vessels although several vessels did sample together to calibrate other sampling gear. Some error can be expected.
Salinity: Salinity samples were collected by Niskin bottles and stored for laboratory analysis with a salinometer. Conductivity probes or refractometers were used on some vessels. Salinity samples were also measured with in situ electronic sensors.
Chlorophyll: Chlorophyll samples were collected and frozen for later laboratory analysis. The general procedure for shipboard collection of chlorophyll was to collect more than 9 liters of water from the surface. This was kept stirred by bubbling air through it while filtration was being done. Three samples, to each of which a $1 \mathrm{ml}, 1 \%(\mathrm{~W} / \mathrm{V})$, suspension of MgCO_{3} was added, of up to 3 liters of water from the 9 liter sample were filtered through GF/C filters. The three filters were placed individually in Petri dishes, wrapped in opaque material and frozen until analysis. Each of the three samples was analyzed separately in the laboratory.

Laboratory analyses for chlorophyll a and phaeophytin a (chlorophyll degradation product) were conducted by fluorometry and spectrophotometry. The general extraction procedures prior to measurement were similar. Samples analyzed by spectrophotometer included other chlorophyllous products, but these have not been included as data in this report. The methodology used is described in Strickland and Parsons (1972) and Jeffrey and Humphrey (1975). Some of the values have been deleted from the database because of analytical errors. In addition, chlorophyll samples data were also collected using a CTD. This method only obtains measures of chlorophyll a and is a measure of fluorescence.
Dissolved oxygen: Dissolved oxygen values were measured by electronic probes or by the Winkler titration method. No attempts were made to intercalibrate the methods. When
oxygen was measured in samples collected from a Niskin sampler, the oxygen bottles were allowed to overflow a minimum of 10 seconds to eliminate oxygen contamination. The tubing which delivered the water sample was inserted to the bottom of the bottle and withdrawn while the sample was still flowing. The oxygen bottles were sealed with a ground-glass stopper and analyzed onboard the vessels.
Turbidity: Turbidity values were measured by electronic probes when equipment was available.

TRAWL SURVEYS

Summer Shrimp/Groundfish Survey

In the fall of 2008, NMFS changed their method of selecting sampling sites. The states adopted this change beginning in 2010. Diurnal stratifications were dropped in the selection process, and geographic strata (which were mostly 2 to 3 statistical zone groupings) were changed to single statistical zones (Figure 1). Both station selection methods, the old and the new, are probability based designs. With probability sampling, each unit in the survey population has a known, positive probability of selection. This property of probability sampling avoids selection bias and enables one to use statistical theory to make valid inferences from the sample to the survey population. More specifically, the new method employs probability proportional to size sampling. In this type of sampling, a unit's selection probability is proportional to its size measure which in this case is geographical surface area. For example, if Unit A has twice the surface area of Unit B, then Unit A will have twice the probability of having a sample selected from it than B. The end result is that Unit A will have about twice the number of samples as B. Even though diurnal strata were dropped in the sampling site selection process, this information is not lost since samples can be poststratified. Following is an example of how sampling sites are now selected.

Bathymetry data were downloaded from the National Geophysical Data Center (NGDC) web site (Divins, D.L., and D. Metzger, NGDC Coastal Relief Model, http://www.ngdc.noaa.gov/mgg/coastal/coastal.html). Because of the magnitude of data, they were downloaded by single NMFS Shrimp Statistical Zones (Figure 1). The download process allows for the definition of a desired data block through user supplied latitude and longitude boundaries. Since the data definition process is controlled by latitude and longitude only, some undesired depths were included in downloads (i.e., for NMFS, depths less than five or greater than sixty fathoms). These records were deleted later through a Statistical Analysis System (SAS) program. Each bathymetric record represents a 3 arc-second element of data (≈ 0.05-by- 0.05 minutes of latitude and longitude); therefore, the number of data records was used as a measure of size for each respective statistical zone. The bathymetry data were then used as input to a SAS program which performed three functions; defined the sampling universe, determined the sampling proportions according to sizes of statistical zones, and randomly selected the sample sites according to the defined proportions.

Thirty minutes was selected as a tow time standard that was long enough to obtain a good sample, but short enough to maintain the efficiency of the surveys. Therefore all SEAMAP vessels now use a standard tow time of 30 minutes.

All Litopenaeus setiferus, Farfantepenaeus aztecus, and Farfantepenaeus duorarum were separated from the trawl catch at each station. Total count and weight by species were recorded for each station. A sample of up to 200 shrimp of each species from every trawl was sexed and measured to obtain length-frequency information. Estimated total numbers were derived from the total weights of those processed. Other species of fish and invertebrates were identified,
enumerated, and weighed. Weights and individual measurements on selected species, other than commercial shrimp, were also recorded.

Fall Shrimp/Groundfish Survey

The design of the Fall Survey was similar to the Summer Shrimp/Groundfish Survey. During the Fall Survey trawl stations were made with the standard 42-ft SEAMAP nets and covered NMFS shrimp statistical zones 2 through 21 (Figure 1). Catch rates on all the vessels sampling were treated in the same manner as the Summer Shrimp/Groundfish Survey, with the exception to shrimp catches, where only 20 shrimp of each species from every trawl were measured, although Louisiana measures a minimum of 50 shrimp.

REEF FISH SURVEY

The primary purpose of this survey is to assess relative abundance and compute population estimates of reef fish found on natural reef fish habitat in the Gulf of Mexico. For the NMFS portion of the Reef Fish Survey, a two-stage procedure was used to select sample sites. Sample blocks were first selected using stratified random sampling, with strata defined by region of the Gulf of Mexico and size. Reef sites within each block were then selected randomly from previously collected bathymetric data. Video gear was used to assess relative abundance and length frequencies and consisted of paired black-and-white Videre stereo cameras along with a color mpeg camera housed in cylindrical pressure housings. The camera array consisted of four housings positioned orthogonally and center mounted 51 cm above the bottom of the array. The camera array was baited with squid and was retrieved 40 minutes after deployment.

For the Florida portion of the survey, a survey of bottom habitat was conducted using side-scan sonar that covered a distance of 1 nm east and west of each randomly-selected sampling site. Sidescan sonar data were analyzed to determine the quantity of reef habitat and number of targets where gear could be set within each $0.1 \mathrm{~nm} \times 0.3 \mathrm{~nm}$ sampling unit. A target was defined as identified reef fish habitat with a minimum of 100 m spacing between targets. Within each survey, a random selection procedure was followed to select transects from all transects containing at least two targets. Sampling occurred at a minimum for the first selected transect followed by other transects (alternates) if time allowed. All cameras were separated from any other deployed gear by approximately 100 m . All camera arrays were freshly baited with Atlantic mackerel prior to deployment. The stationary video camera array was equipped with a pair of underwater camera units positioned at an angle of 180° from one another to maximize the total field of view. Each camera unit consisted of an underwater housing that contained computer hardware and connections to two video cameras each within underwater housings separated by 30 cm . The stationary video camera array was allowed to soak at the bottom for a minimum of thirty-five minutes to assure that twenty minutes of continuous video and stereo images were recorded.

Associated environmental data collected at each site usually includes profiles of salinity, temperature, and surface chlorophyll; and may include profiles of dissolved oxygen, light transmittance, and fluorescence. Additional environmental and meteorological observations taken on stations follow standard SEAMAP methodology.

BOTTOM LONGLINE SURVEY

Until 2014 each partner randomly selected stations off their coast independent of other states. There were discrepancies among the partners regarding number of stations sampled, the frequency
of sampling, the size of the sampling universe, and the depth strata targeted. In an effort to make the bottom longline data as useful as possible in federal and state stock assessments, the SEAMAP Subcommittee began an effort in 2014 to develop a standardized protocol for station selection procedures. This effort sought to better standardize the sampling effort among the partners and develop a more uniform design and resultant data set. At the March 2015 SEAMAP Subcommittee meeting, firm station selection protocols were established.

Sampling now occurs during three seasons Spring (April-May), Summer (June-July), and Fall (August-September). Sampling is conducted in waters defined by the $3-10 \mathrm{~m}$ depth contour. NMFS Statistical Zones (Figure 1) are used as guides to ensure effective distribution of sampling effort. Stations are proportionally allocated and randomly distributed within the $3-10 \mathrm{~m}$ depth contour in each statistical zone based on the proportion of those depths present. Since the 3-10m depth strata is smaller in some statistical zones relative to other statistical zones, each statistical zone is allocated at least two stations during each season in order to ensure adequate sampling coverage. Partners usually survey the stations that occur off their state boundaries for each season. When seasonal effort cannot be accomplished due to weather or mechanical problems the partners should decrease effort proportionally across their area. The Gulf States Marine Fisheries Commission selects all stations for all seasons and annually distributes them to the partners.

Given the limited number of samples that can be conducted during the Bottom Longline Survey, the large area of the statistical zones, and spatial autocorrelation of most fish species, station locations are buffered 4 nautical miles. Sampling effort by each partner must have a two week buffer between consecutive seasons. For example, if the last day of spring sampling was conducted on May 30th, summer sampling should not begin until June 15th.

The longline gear consisted of a 1.6 km (426 kg test monofilament) mainline with 100 gangions ($3.66 \mathrm{~m}, 332 \mathrm{~kg}$ test monofilament) containing \#15/0 circle hooks (0 offset) and baited with Atlantic mackerel, Scomber scombrus. The mainline was weighted down with a beginning, midpoint, and endpoint weight. Radar high-flyers with strobe bullet buoys were used to mark the longline locations. A hydraulic longline reel was used for setting and retrieving the mainline. The longline was fished for 1-hr and then retrieved.

VERTICAL LINE SURVEY

The Vertical Line Survey design was standardized in 2016. The SEAMAP Subcommittee decided to divide the Gulf offshore waters between 10 and 150 m into 150 x 150 m grid blocks. Unknown habitat, known natural reef (hard bottom), presumed reef either natural or artificial, oil/gas platforms, and artificial reefs were the five habitat classifications developed by the SEAMAP Subcommittee. Each 150x150m grid block is assigned a habitat classification based upon several different datasets used to develop the sampling universe. A grid block can be classified as more than one habitat type if it has more than one habitat located within it.

For the station selection process, the total amount of habitat within the three depth zones (10-20m, $20-40 \mathrm{~m}$, and $40-150 \mathrm{~m}$) is computed. The percentage of area covered by each depth zone determines the percentage of the total stations that will be sampled within each depth zone (i.e. if a depth zone contains 40% of the total area, 40% of the total stations will be assigned to that depth zone). The total area of each habitat classification is calculated within each depth stratum. The total of each habitat classification, excluding unknown habitat, is then used to calculate the percentage of habitats within the depth zone. This percentage is used to determine how many
stations are assigned to each habitat type within the depth zone. Stations are randomly selected based upon the habitat classification percentages within each depth zone.

All partners use three 22-foot backbones containing ten 18-inch gangions outfitted with either an $8 / 0,11 / 0$ or $15 / 0$ circle hook (each backbone has only one hook size), and terminating in a 10 pound lead weight. Three bandit reels deploy the gear simultaneously on or near a reef structure and, once locked in at depth, are allowed to fish for 5 minutes. All bandit reels then retrieve the lines simultaneously. Catch data are collected once the lines are onboard. Environmental data is collected upon completion of fishing at each station.

RESULTS

PLANKTON SURVEYS

Plankton stations for the Spring Plankton Survey are shown in Figure 2. Plankton stations for the Fall Plankton Survey are shown in Figure 3.

TRAWL SURVEYS

Summer Shrimp/Groundfish Survey

Shrimp and groundfish sampling was conducted from May through July from south Florida to Brownsville, Texas. Figure 4 shows station locations. The Summer Shrimp/Groundfish Survey consisted primarily of biological trawl data and concomitant environmental and plankton data. A species composition listing from the $42-\mathrm{ft}$ trawls is presented in Table 2, ranked in order of abundance, within the categories of finfish, crustaceans, and other invertebrates.

Fall Shrimp/Groundfish Survey

Shrimp and groundfish sampling was conducted from October through November from south Florida to Brownsville, Texas. Figure 5 shows the station locations. The Fall Shrimp/Groundfish Survey consisted of biological trawl data and concomitant environmental data. A species composition listing from the 42 - ft trawls is presented in Table 3, ranked in order of abundance, within the categories of finfish, crustaceans, and other invertebrates.

REAL-TIME DATA MANAGEMENT

The SEAMAP Subcommittee agreed it was imperative to the success of the SEAMAP Program to distribute data on a near real-time basis to the fishing industry and others interested in SEAMAP. Summarized data were distributed weekly to approximately 125 individuals during the Summer Shrimp/Groundfish Survey. The summarized data in the form of computer plots and data listings were sent to management agencies and industry members. These plots showed station locations, catches of Brown, Pink, and White Shrimp in lb/hr and count/lb, and total finfish catch in $\mathrm{lb} / \mathrm{hr}$.

REEF FISH SURVEY

Station locations are plotted in Figure 6. Video tapes from all sources were analyzed using NMFS standardized protocols.

BOTTOM LONGLINE SURVEY

Station locations for the Bottom Longline Survey are plotted in Figure 7. A species composition list is presented in Table 4. The species list is ranked in order of abundance.

VERTICAL LINE SURVEY

Station locations for the Vertical Line Survey are plotted in Figure 8. A species composition list, ranked in order of abundance, is presented in Table 5.

DISCUSSION

The quasisynoptic SEAMAP sampling program and the intended long-term nature of the sampling programs have been designed to provide the baseline data set needed for fishery management and conservation. In 1985, the SEAMAP long-term baseline data was disrupted by the loss of the Spring Plankton Survey. In 1986, the SEAMAP Subcommittee renewed its commitment for the collection of baseline plankton data. These ichthyoplankton samples are and will continue to be used by researchers studying taxonomy, age and growth, bioenergetics, and other life history aspects, as well as spawning biomass and recruitment. Information on species' relative distributions within the Gulf of Mexico can be analyzed with respect to environmental data to assess population abundance as a function of environmental change.

Similar analyses and investigations are being undertaken with Summer and Fall Shrimp/Groundfish Survey data. These data sets are being utilized in resource management decisions, and because of the program's ability to process data quickly, the capability exists to optimize some fisheries on a real-time basis. The long-term data set on all of the species collected, not just those of commercial and recreational importance, offers an opportunity to examine ecological relationships, with the eventual goal of developing management models that take into account the multi-species nature of most Gulf fisheries. The value of the SEAMAP program lies in its use for both immediate and long-range management goals.

Much use has already been made of SEAMAP data. For example, during the past SEAMAP surveys an area of very low dissolved bottom oxygen was found off Louisiana in the summers of 1982, 1985-2016. The presence of this phenomenon and some of the related conditions and biological effects were reported by Leming and Stuntz (1984) and Hanifen et al. (1995), and during such occurrences, SEAMAP has distributed special environmental bulletins and news releases to management agencies and the shrimp industry. In addition, SEAMAP data were used to assist in the identification of the minimum 1997 reduction in Red Snapper shrimp trawl bycatch mortality rate that would enable the Red Snapper fishery to still recover to the 20% spawning potential ratio (SPR) by the year 2019 (Goodyear 1997). This analysis was requested and supported by the Gulf of Mexico Fishery Management Council to address the issue of Red Snapper bycatch. SEAMAP data were also used by some coastal states to determine the status of shrimp stocks and their movements just as the shrimping seasons were to be opened and SEAMAP data were used to develop a guide to the grouper species of the western North Atlantic Ocean (Grace et al. 1994). The primary purpose of the guide is for species identification with projects that deploy underwater video camera systems.

Since SEAMAP’s inception in 1982, the goal of plankton activities in the Gulf of Mexico has been to collect data on the early life stages of fishes and invertebrates that will complement and enhance
the fishery-independent data gathered on the adult life-stage (Lyczkowski-Shultz and Brasher 1996). An annual larval index for Atlantic Bluefin Tuna and Skipjack Tuna is generated each year from the Spring Plankton Survey and is used by the International Commission for the Conservation of Atlantic Bluefin Tunas to estimate stock size (Scott et al. 1993). Larval indices generated from the Summer Shrimp/Groundfish and Fall Plankton Surveys have now become an integral part of the King Mackerel assessment in the Gulf (Gledhill and Lyczkowski-Shultz 2000). Larvae from SEAMAP collections have formed the basis for formal descriptions of larval development for fishes such as the snappers, Cobia, Tripletail, and Dolphin (Drass et al. 2000; Ditty and Shaw 1992; Ditty and Shaw 1993; Ditty et al. 1994). Data on distribution and relative abundance of larvae of all Gulf fishes captured during SEAMAP surveys have been summarized by Richards et al. 1984, Kelley et al. 1985, Kelley et al. 1990, and Kelley et al. 1993.

The SEAMAP data collected during the Summer Shrimp/Groundfish Survey continues to be used extensively for fishery management purposes. In 1981, the Gulf of Mexico Fishery Management Council's plan for shrimp was implemented (Center for Wetland Resources 1980), with one management measure calling for the temporary closure to shrimping in the EEZ off Texas. This closure complements the traditional closure of the Texas territorial sea, normally May 15 through early July of each year. The GMFMC determined that this type of closure would allow small Brown Shrimp to be protected from harvest, but would still allow the taking of larger Brown Shrimp by fishermen in deeper waters.

The National Marine Fisheries Service was charged with evaluating the effects of the Texas Closure and submitted a report to the GMFMC in January 2016. This report contained the results and an overview of the effect of the 2015 Texas Closure. After review of these data and other information, the GMFMC voted to continue the Texas Closure for 2016.

Data from all SEAMAP surveys have been used in the SouthEast Data, Assessment, and Review (SEDAR) process. SEDAR is a cooperative Fishery Management Council process initiated in 2002 to improve the quality and reliability of fishery stock assessments. SEDAR seeks improvements in the scientific quality of stock assessments and greater relevance of quantities information available to address existing and emerging fishery management issues. SEAMAP data have been used in stock assessments for Greater Amberjack, Almaco Jack, Lesser Amberjack, Snowy Grouper, Speckled Hind, King Mackerel, Red Snapper, Vermillion Snapper, Gray Triggerfish, Gag Grouper, Red Grouper, Mutton Snapper, Lane Snapper, Wenchman, Blacknose Shark, Atlantic Sharpnose Shark, Bonnethead Shark, Smoothhound Sharks, small coastal sharks, and Blacktip Shark.

DATA REQUESTS

It is the policy of the SEAMAP Subcommittee that all verified non-confidential SEAMAP data, collected specimens, and samples shall be available to all SEAMAP participants, other fishery researchers, and management organizations. This atlas presents, to those individuals interested in the data or specimens, a chance to review the data in a summary form.

Data and specimen requests from SEAMAP participants, cooperators and others will normally be handled on a first-come, first-served, and time-available basis. Because of personnel and funding limitations, however, certain priorities must be assigned to the data and specimen requests. These priorities are reviewed by the SEAMAP Subcommittee. For further information on SEAMAP data management, see the Southeast Area Monitoring and Assessment Program (SEAMAP) Management Plan: 2016-2020 (ASMFC 2017).

Data requests and inquiries, as well as requests for plankton samples, can be made by contacting Jeff Rester, the SEAMAP Coordinator, Gulf States Marine Fisheries Commission, 2404 Government Street, Ocean Springs, MS 39564; (228) 875-5912 or via e-mail at jrester@gsmfc.org.

LITERATURE CITED

Atlantic States Marine Fisheries Commission. 2017. SEAMAP Management Plan: 2016-2020. Washington, DC: ASMFC.

Center for Wetland Resources. 1980. Management plan and final environmental impact statement for the shrimp fishery of the Gulf of Mexico, United States waters. Louisiana State Univ., Baton Rouge, Louisiana. 185 p.

Ditty, J.G. and R.F. Shaw. 1992. Larval development, distribution, and ecology of cobia Rachycentron canadum (Family: Rachycentridae), in the northern Gulf of Mexico. Fishery Bulletin. Vol. 90:668-677.

Ditty, J.G. and R.F. Shaw. 1993. Larval development of tripletail, Lobotes surinamensis (Pisces: Lobotidae), and their spatial and temporal distribution in the northern Gulf of Mexico. Fishery Bulletin. Vol. 92:33-45.

Ditty, J.G., R.F. Shaw, C.B. Grimes, and J.S. Cope. 1994. Larval development, distribution, and abundance of common dolphin, Coryphaena hippurus, and pompano dolphin, C. equiselis (Family: Coryphaenidae), in the northern Gulf of Mexico. Fishery Bulletin. Vol. 94:275291.

Donaldson, D.M., N.J. Sanders, and P.A. Thompson. 1993. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1991. Gulf States Marine Fisheries Commission. No. 29. 321 p .

Donaldson, D.M., N.J. Sanders, and P.A. Thompson. 1994. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1992. Gulf States Marine Fisheries Commission. No. 30. 293 p .

Donaldson, D.M., N.J. Sanders, P.A. Thompson and R. Minkler. 1996. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1993. Gulf States Marine Fisheries Commission. No. 34. 284 p.

Donaldson, D.M., N.J. Sanders, P.A. Thompson and R. Minkler. 1997a. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1994. Gulf States Marine Fisheries Commission. No. 40. 277 p.

Donaldson, D.M., N.J. Sanders, P.A. Thompson and R. Minkler. 1997b. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1995. Gulf States Marine Fisheries Commission. No. 41. 280 p.

Donaldson, D.M., N.J. Sanders, P.A. Thompson and D. Hanisko. 1998. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1996. Gulf States Marine Fisheries Commission. No. 52. 263 p.

Drass, D.M., K.L. Bootes, J. Lyczkowski-Shultz, B.H. Comyns, G.J. Holt, C.M. Riley, and R.P. Phelps. 2000. Larval development of red snapper, Lutjanus campechanus, with comparisons to co-occurring snapper species. Fishery Bulletin. Vol. 98(3):507-527.

Eldridge, P.J. 1988. The Southeast Area Monitoring and Assessment Program (SEAMAP): A state-federal-university program for collection, management and dissemination of fisheryindependent data and information in the southeast United States. Mar. Fish. Rev. 50(2): 2939.

Gledhill, C.T. and J. Lyczkowski-Shultz. 2000. Indices of larval king mackerel, Scomberomorus cavalla, for use in population assessment in the Gulf of Mexico. Fishery Bulletin. Vol. 98(4):684-691.

Goodyear, C.P. 1997. An evaluation of the minimum reduction in the 1997 red snapper shrimp bycatch mortality rate consistent with the 2019 recovery target. GMFMC. 14 p. + appendix.

Grace, M., K.R. Rademacher and M. Russell. 1994. Pictorial guide to the groupers (Teleostei: Serrenidae) of the western North Atlantic. NOAA Tech. Report. NMFS 118. 46 p.

Hanifen, J.G., W.S. Perret, R.P. Allemand and T.L. Romaire. 1995. Potential impacts of hypoxia on fisheries: Louisiana=s fishery-independent data. In Proceedings of Gulf of Mexico Program=s Hypoxia Conference. November 1995, New Orleans, LA.

Jeffrey, S.W. and G.F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls $\underline{a}, \underline{b}, \underline{c}_{1}$ and $\underline{\mathrm{c}}_{2}$ in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzer Bpp. 167: 191-194.

Kelley, S., T. Potthoff, W.J. Richards, L. Ejsymont and J.V. Gartner. 1985. SEAMAP 1983 Ichthyoplankton. Larval distribution and abundance of Engraulididae, Carangidae, Clupeidae, Lutjanidae, Serranidae, Sciaenidae, Coryphaenidae, Istiophoridae, Xiphiidae and Scombridae in the Gulf of Mexico. NOAA Tech. Mem., NMFS-SEFC -167.

Kelley, S., J.V. Gartner, Jr., W.J. Richards and L. Ejsymont. 1990. SEAMAP 1984 \& 1985 Ichthyoplankton. Larval distribution and abundance of Carangidae, Clupeidae, Coryphaenidae, Engraulididae, Gobiidae, Istiophoridae, Lutjanidae, Scombridae, Serranidae, and Xiphiidae in the Gulf of Mexico. NOAA Tech. Mem., NMFS-SESC-317.

Kelley, S., J.V. Gartner, Jr., W.J. Richards and L. Ejsymont. 1993. SEAMAP 1986 Ichthyoplankton. Larval distribution and abundance of Engraulididae, Carangidae, Clupeidae, Gobiidae, Lutjanidae, Serranidae, Coryphaenidae, Istiophoridae and Scombridae in the Gulf of Mexico. NOAA Tech. Mem., NMFS-SESC-245.

Kramer, D., M.J. Kalin, E.G. Stevens, J.R. Thrailkill and J.R. Zweifel. 1972. Collecting and processing data on fish eggs and larvae in the California Current region. NOAA Technical Report. NMFS Circular 370. 38 p.

Leming, T.D. and W.E. Stuntz. 1984. Zones of coastal hypoxia revealed by satellite scanning have implications for strategic fishing. Nature. 310 (5973): 131-138.

Lyczkowski-Shultz, J. and R. Brasher. 1996. Ichthyoplankton data summaries from SEAMAP Summer Shrimp/Groundfish Surveys. Pages 27-42 in Uses of Fishery-Independent Data. General Session Proceedings, Gulf States Marine Fisheries Commission. No. 35.

Nichols, S. 1982. Impacts of the 1981 and 1982 Texas closure on brown shrimp yields. NOAA, NMFS-SEFC. 44 p.

Nichols, S. 1984. Impacts of the 1982 and 1983 closure of the Texas FCZ on brown shrimp yields. Report to the Gulf of Mexico Fishery Management Council.

Nichols, S. and J.R. Poffenberger. 1987. Analysis of alternative closures for improving brown shrimp yield in the Gulf of Mexico. Report to the Gulf of Mexico Fishery Management Council.

Posgay, J.A. and R.R. Marak. 1980. The MARMAP bongo zooplankton samplers. J. Northw. Atl. Fish. Sci. 1: 9-99.

Rester, J.K. 2009. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2004. Gulf States Marine Fisheries Commission. No. 173.

Rester, J.K. 2010. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2005. Gulf States Marine Fisheries Commission. No. 175.

Rester, J.K. 2010. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2006. Gulf States Marine Fisheries Commission. No. 179.

Rester, J.K. 2010. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2007. Gulf States Marine Fisheries Commission. No. 180.

Rester, J.K. 2011. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2008. Gulf States Marine Fisheries Commission. No. 191.

Rester, J.K. 2011. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2009. Gulf States Marine Fisheries Commission. No. 198.

Rester, J.K. 2012. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2010. Gulf States Marine Fisheries Commission. No. 206.

Rester, J.K. 2014. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2011. Gulf States Marine Fisheries Commission. No. 229.

Rester, J.K. 2014. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2012. Gulf States Marine Fisheries Commission. No. 237.

Rester, J.K. 2015. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2013. Gulf States Marine Fisheries Commission. No. 239.

Rester, J.K. 2017. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2014. Gulf States Marine Fisheries Commission. No. 262.

Rester, J.K. 2017. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2015. Gulf States Marine Fisheries Commission. No. 263.

Rester, J.K., N.J. Sanders, P.A. Thompson and D. Hanisko. 1999. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1997. Gulf States Marine Fisheries Commission. No. 63. 254 p .

Rester, J.K., N.J. Sanders, G. Pellegrin, Jr. and D. Hanisko. 2000. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1998. Gulf States Marine Fisheries Commission. No. 75. 243 p .

Rester, J.K., N.J. Sanders, G. Pellegrin, Jr. and D. Hanisko. 2001. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1999. Gulf States Marine Fisheries Commission. No. 82. 247 p .

Rester, J.K., N.J. Sanders, G. Pellegrin, Jr. and D. Hanisko. 2002. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2000. Gulf States Marine Fisheries Commission. No. 101. Available on CD-ROM only.

Rester, J.K., N.J. Sanders, G. Pellegrin, Jr., and D. Hanisko. 2004. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2001. Gulf States Marine Fisheries Commission. No. 118. Available on CD-ROM only.

Rester, J.K., N.J. Sanders, and G. Pellegrin, Jr. 2008. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2002. Gulf States Marine Fisheries Commission. No. 156.

Rester, J.K., N.J. Sanders, and G. Pellegrin, Jr. 2009. SEAMAP environmental and biological atlas of the Gulf of Mexico, 2003. Gulf States Marine Fisheries Commission. No. 172.

Richards, W.J., T. Potthoff, S. Kelley, M.F. McGowan, L. Ejsymont, J.H. Power and R.M. Olvera L. 1984. SEAMAP 1982 - Ichthyoplankton. Larval distribution and abundance of Engraulididae, Carangidae, Clupeidae, Lutjanidae, Serranidae, Sciaenidae, Coryphaenidae, Istiophoridae, Xiphiidae and Scombridae in the Gulf of Mexico. NOAA Tech. Mem., NMFS-SEFC-167.

Russell, G.M. Unpublished report. Reef fish assessment methodology for SEAMAP surveys of hardbottom areas. National Marine Fisheries Service. 25 p.

Sanders, N.J., P.A. Thompson and T. Van Devender. 1990a. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1986. Gulf States Marine Fisheries Commission. No. 20. 328 p.

Sanders, N.J., P.A. Thompson and D.M. Donaldson. 1990b. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1987. Gulf States Marine Fisheries Commission. No. 22. 337 p.

Sanders, N.J., D.M. Donaldson and P.A. Thompson. 1991a. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1988. Gulf States Marine Fisheries Commission. No. 23. 320 p .

Sanders, N.J., D.M. Donaldson and P.A. Thompson. 1991b. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1989. Gulf States Marine Fisheries Commission. No. 25. 318 p .

Sanders, N.J., D.M. Donaldson and P.A. Thompson. 1992. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1990. Gulf States Marine Fisheries Commission. No. 27. 311 p .

Scott, G.P., S.C. Turner, C.B. Grimes, W.J. Richards, and E.B. Brothers. 1993. Indices of larval bluefin tuna, Thunnus thynnus, abundance in the Gulf of Mexico: modeling variability in growth, mortality, and gear selectivity. Bulletin of Marine Science. Vol. 53(2):912-929.

Sherman, K., R. Lasker, W. Richards and A.W. Kendall, Jr. 1983. Ichthyoplankton and fish recruitment studies in large marine ecosystems. Mar. Fish. Rev. 45 (10, 11, 12): 1-25.

Smith, P.E. and S.L. Richardson, eds. 1977. Standard techniques for pelagic fish egg and larva surveys. FAO Fish. Tech. Paper 175. 100 p.

Southeast Area Monitoring and Assessment Program (SEAMAP) Strategic Plan. 1981. Report to the Gulf States Marine Fisheries Commission. 50 p.

Strickland, J.D.H. and T.R. Parsons. 1972. A practical handbook of seawater analysis. Ottawa: Fish. Res. Bd. Can. 310 p.

Stuntz, W.E., C.E. Bryan, K. Savastano, R.S. Waller and P.A. Thompson. 1985. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1982. Gulf States Marine Fisheries Commission. 145 p.

Thompson, P.A. and N. Bane. 1986a. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1983. Gulf States Marine Fisheries Commission. No. 13. 179 p.

Thompson, P.A. and N. Bane. 1986b. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1984. Gulf States Marine Fisheries Commission. No. 15. 171 p.

Thompson, P.A., T. Van Devender and N.J. Sanders, Jr. 1988. SEAMAP environmental and biological atlas of the Gulf of Mexico, 1985. Gulf States Marine Fisheries Commission. No. 17. 338 p.

Table 1. List of SEAMAP survey activities from 1982 to 2016.

SEAMAP SURVEY ACTIVITIES						
	WINTER	SPRING	SPRING	SUMMER		FALL
YEAR	SHRIMP/GROUNDFISH	PLANKTON	SHRIMP/GROUNDFISH	SHRIMP/GROUNDFISH	BUTTERFISH	PLANKTON
1982	--	APRIL-MAY	--	JUNE-JULY	--	--
1983	--	APRIL-MAY	--	JUNE-JULY	--	--
1984	--	APRIL-MAY	--	JUNE-JULY	--	AUGUST
1985	--	--	--	JUNE-JULY	JULY-AUGUST	SEPTEMBER
1986	--	APRIL-MAY	--	JUNE-JULY	MAY-JUNE	SEPTEMBER
1987	--	APRIL-MAY	--	JUNE-JULY	--	SEPTEMBER
1988	--	MARCH-MAY	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
1989	--	APRIL-MAY	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
1990	--	APRIL-MAY	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
1991	--	APRIL-MAY	--	JUNE-JULY	--	AUGUST-SEPTEMBER
1992	--	APRIL-MAY	--	JUNE-JULY	--	AUGUST-OCTOBER
1993	--	APRIL-MAY	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
1994	--	APRIL-MAY	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
1995	--	APRIL-JUNE	--	JUNE-JULY	--	SEPTEMBER
1996	--	APRIL-JUNE	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
1997	--	APRIL-JUNE	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
1998	--	APRIL-JUNE	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
1999	--	APRIL-MAY	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
2000	--	APRIL-MAY	--	JUNE-JULY	--	SEPTEMBER-OCTOBER
2001	--	APRIL-MAY	--	JUNE-JULY	--	AUGUST-OCTOBER
2002	--	APRIL-MAY	--	JUNE-JULY	--	AUGUST-OCTOBER
2003	--	MAY	--	JUNE-JULY	--	AUGUST-OCTOBER
2004	--	APRIL-JUNE	--	JUNE-JULY	--	SEPTEMBER
2005	--	APRIL-MAY	--	JUNE-AUGUST	--	--
2006	--	APRIL-MAY	--	JUNE-JULY	--	AUGUST-SEPTEMBER
2007	--	MARCH-JUNE	--	JUNE-AUGUST	--	AUGUST-SEPTEMBER
2008	--	APRIL-JUNE	APRIL	JUNE-AUGUST	--	SEPTEMBER
2009	JANUARY-FEBRUARY	APRIL-JUNE	MARCH	JUNE-JULY	--	AUGUST-SEPTEMBER
2010	FEBRUARY	APRIL-MAY	APRIL	JUNE-AUGUST	--	AUGUST-SEPTEMBER
2011	FEBRUARY	MAY	--	JUNE-JULY	--	AUGUST-SEPTEMBER
2012	--	APRIL-MAY	--	MAY-JULY	--	AUGUST-SEPTEMBER
2013	--	MAY	--	JUNE-JULY	--	AUGUST-SEPTEMBER
2014	--	MAY	--	JUNE-JULY	--	AUGUST-SEPTEMBER
2015	--	MAY	--	MAY-JULY	--	AUGUST-SEPTEMBER
2016	--	APRIL-MAY	--	MAY-JULY	--	SEPTEMBER

			EAMAP SURVEY AC		
	FALL	WINTER	BOTTOM	VERTICAL	REEF
YEAR	SHRIMP/GROUNDFISH	PLANKTON	LONGLINE	LINE	FISH
1982	--	--	--		--
1983	--	DECEMBER	--		--
1984	--	DECEMBER	--		--
1985	SEPTEMBER-DECEMBER	--	--		--
1986	OCTOBER-DECEMBER	--	--		--
1987	SEPTEMBER-DECEMBER	--	--		--
1988	OCTOBER-DECEMBER	--	--		--
1989	OCTOBER-DECEMBER	--	--		--
1990	OCTOBER-DECEMBER	--	--		--
1991	SEPTEMBER-DECEMBER	--	--		--
1992	OCTOBER-DECEMBER	--	--		MAY-JUNE
1993	OCTOBER-DECEMBER	JANUARY-FEBRUARY	--		MAY-JULY, SEPT., NOV.
1994	OCTOBER-NOVEMBER	--	--		MAY-JULY, AUG.-OCT., DEC.
1995	OCTOBER-DECEMBER	--	--		JAN., JUNE-AUG., DEC.
1996	OCTOBER-DECEMBER	DECEMBER	--		JULY, AUGUST, NOVEMBER
1997	OCTOBER-DECEMBER	--	--		JUNE, JULY, AUG., NOV.
1998	OCTOBER-NOVEMBER	--	--		MAY, JULY, AUGUST
1999	OCTOBER-NOVEMBER	--	--		JAN., AUG., OCT., DEC.
2000	OCTOBER-DECEMBER	--	--		OCTOBER, NOVEMBER
2001	OCTOBER-DECEMBER	--	--		MAY, JUNE, OCTOBER
2002	OCTOBER-DECEMBER	--	--		FEBRUARY-MAY, OCTOBER
2003	OCTOBER-DECEMBER	--	--		OCTOBER-NOVEMBER
2004	OCTOBER-DECEMBER	JANUARY	--		FEBRUARY-MARCH
2005	OCTOBER-NOVEMBER	--	--		FEBRUARY-JULY, OCTOBER
2006	OCTOBER-DECEMBER	--	--		FEBRUARY-AUGUST
2007	OCTOBER-DECEMBER	--	--		FEBRUARY-MAY
2008	SEPTEMBER-NOVEMBER	FEBRUARY-MARCH	MARCH-OCTOBER		FEBRUARY-AUGUST
2009	SEPTEMBER-NOVEMBER	FEBRUARY-MARCH	MARCH-OCTOBER		APRIL-AUGUST
2010	SEPTEMBER-NOVEMBER	FEBRUARY-MARCH	MARCH-OCTOBER	APRIL-DECEMBER	MARCH-SEPTEMBER
2011	OCTOBER-NOVEMBER	--	MARCH-OCTOBER	MAY-DECEMBER	APRIL-JULY
2012	OCTOBER-NOVEMBER	JANUARY-FEBRUARY	MARCH-OCTOBER	MARCH-OCTOBER	JANUARY-AUGUST
2013	OCTOBER-DECEMBER	FEBRUARY	MARCH-OCTOBER	FEBRUARY-OCTOBER	FEBRUARY-OCTOBER
2014	OCTOBER-NOVEMBER	--	MARCH-OCTOBER	MAY-OCTOBER	MAY-SEPTEMBER
2015	OCTOBER-NOVEMBER	MARCH-APRIL	APRIL-OCTOBER	MAY-OCTOBER	MAY-OCTOBER
2016	OCTOBER-NOVEMBER	--	APRIL-SEPTEMBER	APRIL-OCTOBER	APRIL-SEPTEMBER

Table 2. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Upeneus parvus	Dwarf Goatish	934	34.6	67	19.1
Larimus fasciatus	Banded Drum	855	39.9	38	10.8
Harengula jaguana	Scaled Herring	826	43.1	39	11.1
Anchoa hepsetus	Broad-striped Anchovy	817	14	36	10.3
Lutjanus campechanus	Red Snapper	793	240.2	125	35.6
Trachurus lathami	Rough Scad	791	21	57	16.2
Prionotus stearnsi	Shortwing Searobin	780	9.8	58	16.5
Trichopsetta ventralis	Sash Flounder	760	16.2	50	14.2
Rhomboplites aurorubens	Vermilion Snapper	735	62.9	71	20.2
Etrumeus teres	Atlantic Red Herring	691	4.9	6	1.7
Trachinocephalus myops	Bluntnose Lizardfish	648	36.8	70	19.9
Anchoa lyolepis	Dusky Anchovy	627	8.5	11	3.1
Bellator militaris	Horned Searobin	605	5.9	44	12.5
Centropristis ocyurus		602	22.9	53	15.1
Lepophidium brevibarbe	Blackedge Cusk-eel	539	16.1	49	14
Synodus macrostigmus		519	36.4	82	23.4
Prionotus paralatus	Mexican Searobin	487	10	35	10
Porichthys plectrodon	Atlantic Midshipman	469	10.6	81	23.1
Sphoeroides spengleri	Bandtail Puffer	431	15.4	69	19.7
Diplectrum bivittatum	Dwarf Sand Perch	428	9.9	40	11.4
Stephanolepis hispida		425	26.6	66	18.8
Decapterus punctatus	Round Scad	420	5.9	21	6
Equetus lanceolatus	Jackknife Fish	417	39.1	73	20.8
Lepophidium jeannae	Mottled Cusk-eel	398	20.2	19	5.4
Haemulon plumierii	White Grunt	389	57.5	23	6.6
Acanthostracion quadricornis	Scrawled Cowfish	381	65.3	91	25.9
Bothus robinsi	Twospot Flounder	358	9.5	71	20.2
Scorpaena brasiliensis	Barbfish	348	27.3	51	14.5
Aluterus schoepfii	Orange Filefish	321	184.4	53	15.1
Pterois volitans	Lion Fish	313	61.3	53	15.1
Anchoa mitchilli	Bay Anchovy	309	0.5	8	2.3

Table 2. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Etropus crossotus	Fringed Flounder	307	4.8	43	12.3
Sphoeroides dorsalis	Marbled Puffer	295	7.6	62	17.7
Synodus poeyi	Offshore Lizardfish	284	2.6	79	22.5
Lagocephalus laevigatus	Smooth Puffer	278	7.8	53	15.1
Prionotus roseus	Bluespotted Searobin	258	5.7	49	14
Serranus phoebe	Tattler	250	8.8	32	9.1
Eucinostomus	Mojarras	233	7.2	3	0.9
Ophidion holbrookii	Bank Cusk-eel	226	20.8	30	8.5
Sphoeroides parvus	Least Puffer	222	1.6	36	10.3
Citharichthys spilopterus	Bay Whiff	202	2.4	40	11.4
Prionotus scitulus	Leopard Searobin	201	5.5	22	6.3
Orthopristis chrysoptera		201	21.4	17	4.8
Serranus notospilus	Saddle Bass	201	1.1	22	6.3
Urophycis floridana		200	12.1	34	9.7
Scorpaena agassizii	Longfin Scorpionfish	198	3.7	16	4.6
Cyclopsetta chittendeni	Mexican Flounder	183	16.7	53	15.1
Ogcocephalus declivirostris	Slantbrow Batfish	170	3.3	34	9.7
Engraulis eurystole	Camiguana Anchovy	165	1.4	2	0.6
Saurida normani	Shortjaw Lizardfish	155	10.1	15	4.3
Chaetodon ocellatus	Spotfin Butterflyfish	155	12.5	55	15.7
Etropus cyclosquamus	Shelf Flounder	129	1.4	3	0.9
Bollmannia communis	Ragged Goby	122	0.5	18	5.1
Opisthonema oglinum	Atlantic Thread Herring	119	12.3	19	5.4
Lutjanus griseus	Gray Snapper	119	53.5	36	10.3
Synodus intermedius	Sand Diver	116	8	35	10
Prionotus ophryas	Bandtail Searobin	113	6.4	40	11.4
Symphurus diomedeanus		111	3	38	10.8
Calamus arctifrons	Grass Porgy	111	10.9	11	3.1
Ariopsis felis	Hardhead Catish	103	19.9	9	2.6
Eucinostomus harengulus	Tidewater Mojarra	94	5.5	18	5.1
Microgobius thalassiunus		175	0.5	2	0.5

Table 2. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Symphurus civitatium		93	1.7	16	4.6
Etropus		87	1	10	2.8
Symphurus plagiusa	Blackcheek Tonguefish	87	1.9	17	4.8
Monacanthus ciliatus	Fringed Filefish	87	1.8	35	10
Prionotus alatus	Spiny Searobin	86	3.1	22	6.3
Calamus nodosus	Knobbed Porgy	82	19.3	22	6.3
Stellifer lanceolatus	Star Drum	82	1.6	8	2.3
Haemulon striatum	Striped Grunt	81	2.3	5	1.4
Nicholsina usta	Emerald Parrotish	79	6.6	24	6.8
Kathetostoma albigutta	Lancer Stargazer	77	2.6	27	7.7
Etropus microstomus	Smallmouth Flounder	77	0.8	3	0.9
Rhynchoconger flavus		76	4.4	16	4.6
Neomerinthe hemingwayi	Spinycheek Scorpionfish	75	3.7	8	2.3
Epinephelus morio	Red Grouper	75	47.9	35	10
Prionotus martis	Barred Searobin	68	3.4	13	3.7
Gymnothorax saxicola	Honeycomb Moray	67	7.1	38	10.8
Cyclopsetta fimbriata	Spotfin Flounder	67	7.3	40	11.4
Prionotus tribulus	Bighead Searobin	66	2.9	14	4
Halieutichthys aculeatus	Pancake Battish	65	0.6	31	8.8
Antennarius radiosus	Big-eyed Frogfish	63	0.5	25	7.1
Pagrus pagrus	Red Porgy	58	11.1	21	6
Pterois	Lion Fishes	57	13.8	14	4
Mullus auratus	Red Goattish	56	2.3	23	6.6
Citharichthys macrops	Spotted Whiff	56	2	25	7.1
Prionotus rubio	Blackfin Searobin	55	9.8	22	6.3
Urophycis cirrata	Gulf Hake	54	1.5	14	4
Brevoortia patronus	Gulf Menhaden	54	2.8	6	1.7
Centropristis striata	Black Sea Bass	53	8.5	8	2.3
Calamus leucosteus	Whitebone Porgy	51	18.8	4	1.1
Menticirrhus americanus	Jewsharp Drummer	49	5.9	12	3.4
Balistes capriscus	Gray Triggerfish	48	22.8	30	8.5

| Table 2. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

| Table 2. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- |

| Table 2. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Table 2. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Table 2. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Table 2. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Table 2. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 2. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Sicyonia dorsalis	Lesser Rock Shrimp	1966	6.2	49	14
Rimapenaeus constrictus		1920	6.4	20	5.7
Portunus gibbesii	Iridescent Swimming Crab	1888	9.1	86	24.5
Squilla chydaea		1676	9.1	69	19.7
Solenocera vioscai	Humpback Shrimp	1542	6.6	44	12.5
Litopenaeus setiferus	Northern White Shrimp	1130	38.1	56	16
Parapenaeus politus	Deep-water Rose Shrimp	1093	2	24	6.8
Xiphopenaeus kroyeri	Atlantic Seabob	692	4.9	4	1.1
Chirostylus spinifer		607	0.3	1	0.3
Solenocera atlantidis	Dwarf Humpback Shrimp	570	0.9	30	8.5
Metapenaeopsis goodei	Caribbean Velvet Shrimp	477	1	33	9.4
Anasimus latus	Stilt Spider Crab	406	1.8	65	18.5
Portunus spinimanus	Blotched Swimming Crab	250	8.3	57	16.2
Calappa sulcata	Yellow Box Crab	245	26.6	54	15.4
Raninoides louisianensis	Gulf Frog Crab	168	1.3	41	11.7
Callinectes sapidus	Blue Crab	159	24.7	56	16
Stenorhynchus seticornis	Yellowline Arrow Crab	147	0.3	65	18.5
Scyllarus chacei	Chace Slipper Lobster	129	0.4	38	10.8
Ovalipes floridanus	Florida Lady Crab	115	1.2	21	6
Munida pusilla		114	0.1	1	0.3
Sicyonia typica	Kinglet Rock Shrimp	94	1.4	7	2
Iliacantha liodactylus		87	0.4	26	7.4
Pseudorhombila quadridentata	Flecked Squareback Crab	85	0.7	19	5.4
Scyllarides nodifer	Ridged Slipper Lobster	83	19.2	27	7.7
Leiolambrus nitidus	White Elbow Crab	76	0.2	37	10.5
Portunus ordwayi		71	0.5	14	4
Speocarcinus lobatus	Gulf Squareback Crab	49	0.2	14	4
Paguristes sericeus	Blue-eye Hermit	42	0.1	25	7.1
Cryptodromiopsis antillensis	Decorator Crab	42	0.2	31	8.8
Euphrosynoplax clausa	Craggy Bathyal Crab	38	0.4	16	4.6
Platylambrus granulata	Bladetooth Elbow Crab	35	0.1	26	7.4

Table 2. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Hepatus epheliticus	Calico Box Crab	29	1	13	3.7
Dardanus insignis	Red Brocade Hermit	29	0.1	14	4
Myropsis quinquespinosa	Fivespine Purse Crab	28	0.1	12	3.4
Mithrax hispidus	Coral Clinging Crab	27	0.1	17	4.8
Mithrax		26	0	10	2.8
Dardanus fucosus	Bareye Hermit	21	0	9	2.6
Persephona crinita	Pink Purse Crab	19	0	9	2.6
Petrolisthes galathinus	Banded Porcelain Crab	19	6	5	1.4
Calappa flammea	Flame Box Crab	19	4.8	12	3.4
Sicyonia burkenroadi	Spiny Rock Shrimp	18	0	8	2.3
Mesopenaeus tropicalis	Salmon Shrimp	17	0	3	0.9
Pilumnus sayi	Spineback Hairy Crab	16	0.1	11	3.1
Gibbesia neglecta		15	0.1	4	1.1
Stenocionops furcatus	Furcate Spider Crab	15	0.3	14	4
Libinia emarginata	Portly Spider Crab	14	1.1	8	2.3
Collodes robustus		14	0	5	1.4
Podochela sidneyi	Shortinger Neck Crab	14	0	9	2.6
Libinia dubia	Longnose Spider Crab	13	0	5	1.4
Paguristes triangulatus		12	0	5	1.4
Petrochirus diogenes	Giant Hermit	12	0.3	8	2.3
Pseudomedaeus agassizii	Rough Rubble Crab	12	0.1	7	2
Pagurus bullisi		11	0	5	1.4
Xanthidae	Mud Crabs	11	0	5	1.4
Plesionika longicauda		10	0	4	1.1
Porcellana sayana	Spotted Porcelain Crab	9	0	3	0.9
Squilla rugosa		9	0	5	1.4
Leiolambrus granulosus		8	0	5	1.4
Macrocoeloma trispinosum	Spongy Decorator Crab	8	0.1	7	2
Portunus sayi	Sargassum Swimming Crab	8	0	3	0.9
Mithrax pleuracanthus	Shaggy Clinging Crab	8	0	7	2
Plesionika		7	0	1	0.3

| Table 2. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Table 2. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Table 2. Species composition list (continued) | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

| Table 2. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 2. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Tagelus		1	0.1	1	0.3
Pitar		1	0	1	0.3
Melongenidae		1	0.2	1	0.3
Nemocardium transversum	Transverse Micro-cockle	1	0	1	0.3
Musculus lateralis	Lateral Mussel	1	0	1	0.3
Cerithium atratum	Dark Cerith	1	0	1	0.3
Anadara notabilis	Eared Ark	1	0	1	0.3
Octopus burryi	Brownstripe Octopus	1	0	1	0.3
Abra		1	0	1	0.3
Distorsio constricta mcgintyi		1	0	1	0.3
Pleurobranchaea		1	0	1	0.3
Conus daucus	Carrot Cone	1	0	1	0.3
Turridae		1	0	1	0.3
Cypraea cinera		1	0	1	0.3
Papyridea		1	0	1	0.3
Aequipecten		1	0	1	0.3
Aequipecten glyptus	Red-ribbed Scallop	1	0	1	0.3
Pleuroploca gigantea	Horse Conch	1	0.1	1	0.3
Fasciolaria tulipa	True Tulip	1	0	1	0.3
Argopecten		1	0	1	0.3
Aplysia juliana		1	0	1	0.3
Cancellaria reticulata		1	0	1	0.3
Cypraea cervus	Atlantic Deer Cowrie	1	0	1	0.3
Latirus infundibulum	Brown-line Latirus	1	0	1	0.3

Table 3. 2016 Fall Shrimp/Groundfish Survey species composition list, 198 trawl stations, for those vessels that used a 42-ft trawl. Species with a total weight of less than $0.0227 \mathrm{~kg}(0.05 \mathrm{lb})$ are indicated on the table as 0.0 kg .					
				NUMBER OF	
				TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Finfishes					
Micropogonias undulatus	Atlantic Croaker	85638	3497.2	120	60.6
Chloroscombrus chrysurus	Atlantic Bumper	25029	646.1	98	49.5
Stenotomus caprinus	Longspine Porgy	8001	317.7	90	45.5
Peprilus burti	Gulf Butterfish	4576	255.6	95	48
Syacium papillosum	Dusky Flounder	4416	210.8	66	33.3
Prionotus longispinosus	Bigeye Searobin	3730	88.6	105	53
Leiostomus xanthurus	Spot	3114	249.3	73	36.9
Anchoa hepsetus	Broad-striped Anchovy	2733	40.8	44	22.2
Cynoscion nothus	Silver Seatrout	2547	151.9	78	39.4
Syacium gunteri	Shoal Flounder	2003	35.7	59	29.8
Lutjanus campechanus	Red Snapper	1952	192.1	100	50.5
Centropristis philadelphicus	Rock Sea Bass	1942	70.3	97	49
Serranus atrobranchus	Blackear Bass	1832	21.6	55	27.8
Synodus foetens	Inshore Lizardfish	1749	194.4	142	71.7
Lagodon rhomboides	Pinfish	1526	100.4	81	40.9
Trichiurus lepturus	Atlantic Cutlassfish	1391	74.7	51	25.8
Scorpaena calcarata	Smoothhead Scorpionfish	1377	24.1	42	21.2
Bellator militaris	Horned Searobin	1203	20.6	27	13.6
Pristipomoides aquilonaris	Wenchman	1149	69.7	59	29.8
Trachurus lathami	Rough Scad	1037	64.8	36	18.2
Larimus fasciatus	Banded Drum	1022	68.3	38	19.2
Prionotus stearnsi	Shortwing Searobin	933	11.7	29	14.6
Trichopsetta ventralis	Sash Flounder	853	17.6	36	18.2
Cynoscion arenarius	Sand Seatrout	795	67.3	65	32.8
Upeneus parvus	Dwarf Goatfish	756	28.6	46	23.2
Diplectrum formosum	Sand Perch	737	56.5	63	31.8
Ariopsis felis	Hardhead Catfish	663	122.6	41	20.7

Table 3. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Haemulon aurolineatum	Tomtate	635	55.2	38	19.2
Trachinocephalus myops	Bluntnose Lizardfish	619	47.3	47	23.7
Decapterus punctatus	Round Scad	618	12.7	22	11.1
Rhomboplites aurorubens	Vermilion Snapper	556	68.7	22	11.1
Cyclopsetta chittendeni	Mexican Flounder	543	41	58	29.3
Selene setapinnis	Atlantic Moonfish	532	26.4	75	37.9
Peprilus paru	Harvestish	517	21.7	27	13.6
Harengula jaguana	Scaled Herring	517	24	40	20.2
Lutjanus synagris	Lane Snapper	513	61.6	48	24.2
Prionotus roseus	Bluespotted Searobin	506	21.5	40	20.2
Sphoeroides dorsalis	Marbled Puffer	463	16.9	41	20.7
Chaetodipterus faber	Atlantic Spadefish	463	35.5	61	30.8
Synodus macrostigmus		438	33.6	35	17.7
Halieutichthys		405	2.9	69	34.8
Caranx crysos	Blue Runner	397	19.8	51	25.8
Sphoeroides parvus	Least Puffer	394	2.7	38	19.2
Etropus cyclosquamus	Shelf Flounder	384	5.6	16	8.1
Stellifer lanceolatus	Star Drum	382	5.9	12	6.1
Saurida brasiliensis	Largescale Lizardfish	360	1.1	33	16.7
Synodus poeyi	Offshore Lizardfish	353	3.1	42	21.2
Diplectrum bivittatum	Dwarf Sand Perch	338	6.8	24	12.1
Lepophidium jeannae	Mottled Cusk-eel	320	17	14	7.1
Prionotus scitulus	Leopard Searobin	311	10.4	23	11.6
Eucinostomus gula	Silver Jenny	294	7.5	38	19.2
Bothus robinsi	Twospot Flounder	254	5.9	41	20.7
Opisthonema oglinum	Atlantic Thread Herring	253	15	32	16.2
Pterois volitans	Lion Fish	238	43.3	22	11.1
Citharichthys spilopterus	Bay Whiff	226	3.7	40	20.2
Monacanthus ciliatus	Fringed Filefish	225	2.6	25	12.6
Calamus proridens	Littlehead Porgy	223	44.4	15	7.6
Scorpaena brasiliensis	Barbfish	216	17.3	27	13.6

Table 3. Species composition list (continued)				

Table 3. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Anchoa mitchilli	Bay Anchovy	45	0	1	0.5
Synodus	Lizard Fishes	42	0.9	4	2
Selar crumenophthalmus	Bigeye Scad	42	1.7	11	5.6
Calamus leucosteus	Whitebone Porgy	41	13	6	3
Chaetodon sedentarius	Reef Butterflyfish	40	1.7	7	3.5
Brotula barbata	Bearded Brotula	40	2.2	17	8.6
Ophidion josephi	Crested Cusk-eel	39	1.7	10	5.1
Synodus synodus	Red Lizardfish	38	0.5	3	1.5
Haemulon plumierii	White Grunt	35	9.5	4	2
Mullus auratus	Red Goatish	35	2	10	5.1
Menticirrhus americanus	Jewsharp Drummer	32	5.7	13	6.6
Scorpaena agassizii	Longfin Scorpionfish	32	0.7	5	2.5
Ariomma regulus	Spotted Driftrish	31	1.6	8	4
Aluterus heudelotii		30	5.2	7	3.5
Gymnothorax saxicola	Honeycomb Moray	30	3.6	16	8.1
Prionotus alatus	Spiny Searobin	29	0.9	8	4
Ogcocephalus parvus	Roughback Battish	28	0.3	14	7.1
Bellator brachychir	Shortfin Searobin	28	0.1	8	4
Haemulon striatum	Striped Grunt	28	1	3	1.5
Saurida normani	Shortjaw Lizardfish	27	2.7	4	2
Xyrichtys novacula	Pearly Razorfish	27	1.5	9	4.5
Brevoortia patronus	Gulf Menhaden	25	2.9	11	5.6
Prionotus tribulus	Bighead Searobin	25	2.3	9	4.5
Nicholsina usta	Emerald Parrotish	24	1.9	6	3
Bathyanthias mexicanus	Yellowtail Bass	24	0.2	7	3.5
Symphurus civitatium		23	0.5	9	4.5
Pagrus pagrus	Red Porgy	23	5.1	6	3
Neobythites gilli		21	0.1	4	2
Synodus intermedius	Sand Diver	21	2.1	9	4.5
Engyophrys senta	Spiny Flounder	21	0.1	9	4.5
Caulolatilus intermedius	Anchor Tilefish	20	1.6	8	4

| Table 3. Species composition list (continued) | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Table 3. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 3. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Acanthostracion polygonius	Honeycomb Cowfish	3	2.4	1	0.5
Echiophis intertinctus	Spotted Spoon-nose Eel	3	0.5	2	1
Pseudupeneus maculatus	Spotted Goattish	3	0.2	2	1
Mycteroperca phenax	Scamp	3	2.5	2	1
Pontinus longispinis	Longspine Scorpionfish	3	0	1	0.5
Trachinotus carolinus	Florida Pompano	3	0.9	3	1.5
Rachycentron canadum	Cobia	2	1.1	2	1
Paralichthys albigutta	Gulf Flounder	2	0.8	2	1
Echiophis punctifer	Snapper Eel	2	0.7	2	1
Lonchopisthus micrognathus	Swordtail Jawfish	2	0	2	1
Calamus bajonado	Jolthead Porgy	2	3.2	1	0.5
Lachnolaimus maximus	Hogfish	2	0.4	1	0.5
Ocyurus chrysurus	Yellowtail Snapper	2	0.5	1	0.5
Gobiesox strumosus	Skilletfish	2	0	2	1
Hypleurochilus		2	0	1	0.5
Sphoeroides nephelus	Southern Puffer	2	0.4	1	0.5
Eucinostomus argenteus	Spotfin Mojarra	2	0.1	2	1
Echeneis	Sharksuckers	2	2.2	1	0.5
Symphurus plagiusa	Blackcheek Tonguefish	2	0	2	1
Carcharhinus acronotus	Blacknose Shark	2	4.5	1	0.5
Calamus pennatula	Pluma	2	0.6	1	0.5
Sparisoma atomarium	Greenblotch Parrotish	2	0	1	0.5
Diodon holocanthus	Balloonfish	2	0.4	1	0.5
Conodon nobilis	Barred Grunt	2	0.7	2	1
Dasyatis say	Bluntnose Stingray	2	1.3	2	1
Lophiodes reticulatus	Reticulate Goosefish	2	0.1	2	1
Hoplunnis diomediana	Blacktail Pike-conger	2	0	2	1
Halichoeres bathyphilus	Greenband Wrasse	1	0	1	0.5
Chilomycterus antennatus	Bridled Burrish	1	0.2	1	0.5
Phaeoptyx pigmentaria	Dusky Cardinalfish	1	0	1	0.5
Antennarius striatus	Striated Frogfish	1	0	1	0.5

Table 3. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Sargocentron poco		1	0	1	0.5
Holocentrus adscensionis	Squirrelfish	1	0.4	1	0.5
Chromis insolatus		1	0	1	0.5
Muraena retifera	Reticulate Moray	1	0	1	0.5
Dasyatis americana	Southern Stingray	1	1.7	1	0.5
Neoepinnula americanus		1	0	1	0.5
Parablennius marmoreus	Seaweed Blenny	1	0	1	0.5
Aluterus monoceros	Unicorn Filefish	1	0.2	1	0.5
Sciaenops ocellatus	Red Drum	1	10	1	0.5
Hoplunnis		1	0	1	0.5
Halichoeres poeyi	Blackear Wrasse	1	0	1	0.5
Bregmaceros		1	0	1	0.5
Raja eglanteria	Clearnose Skate	1	1	1	0.5
Epigonus		1	0	1	0.5
Engyophrys		1	0	1	0.5
Pomatomus saltatrix	Bluefish	1	0.3	1	0.5
Gymnothorax kolpos	Blacktail Moray	1	0.6	1	0.5
Sphyraena borealis	Northern Sennet	1	0.1	1	0.5
Elops saurus	Ladyfish	1	0.6	1	0.5
Uraspis secunda	Cottonmouth Jack	1	0.1	1	0.5
Rhinoptera bonasus	Cownose Ray	1	2	1	0.5
Squatina dumeril	Atlantic Angel Shark	1	0.3	1	0.5
Ariomma bondi	Silver-rag	1	0	1	0.5
Canthigaster jamestyleri		1	0	1	0.5
Oligoplites saurus	Leatherjack	1	0	1	0.5
Paralepididae	Barracudinas	1	0	1	0.5
Narcine brasiliensis	Lesser Electric Ray	1	0.6	1	0.5
Opistognathus lonchurus	Moustache Jawfish	1	0	1	0.5
Peprilus paru	Harvestfish	1	0.1	1	0.5
Rhynchoconger		1	0.1	1	0.5
Physiculus fulvus	Hakeling	1	0	1	0.5

Table 3. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Lophius americanus	Goosefish	1	0.1	1	0.5
Trinectes maculatus	Hogchoker	1	0	1	0.5
Hemanthias aureorubens	Streamer Bass	1	0	1	0.5
Myliobatis freminvillii	Bullnose Ray	1	0.3	1	0.5
Crustaceans					
Farfantepenaeus aztecus	Brown Shrimp	7437	193.9	112	56.6
Portunus spinicarpus	Longspine Swimming Crab	3049	19.1	78	39.4
Callinectes similis	Lesser Blue Crab	2659	49.6	81	40.9
Sicyonia brevirostris	Brown Rock Shrimp	2165	34.6	54	27.3
Squilla empusa	Mantis Shrimp	1071	13.3	52	26.3
Litopenaeus setiferus	Northern White Shrimp	907	26.7	41	20.7
Solenocera vioscai	Humpback Shrimp	747	4.1	20	10.1
Farfantepenaeus duorarum	Northern Pink Shrimp	665	18.8	32	16.2
Portunus gibbesii	Iridescent Swimming Crab	414	8.4	49	24.7
Munida		203	0.1	4	2
Anasimus latus	Stilt Spider Crab	191	1.2	31	15.7
Squilla chydaea		169	1.1	32	16.2
Solenocera atlantidis	Dwarf Humpback Shrimp	160	0.2	13	6.6
Portunus spinimanus	Blotched Swimming Crab	155	6.2	42	21.2
Raninoides louisianensis	Gulf Frog Crab	138	1	31	15.7
Sicyonia dorsalis	Lesser Rock Shrimp	133	0.5	9	4.5
Metapenaeopsis goodei	Caribbean Velvet Shrimp	131	0.2	13	6.6
Portunus ordwayi		125	0.8	19	9.6
Parapenaeus politus	Deep-water Rose Shrimp	105	0.2	11	5.6
Stenorhynchus seticornis	Yellowline Arrow Crab	103	0.3	37	18.7
Calappa sulcata	Yellow Box Crab	102	19.5	34	17.2
Rimapenaeus similis	Roughback Shrimp	70	0.2	22	11.1
Sicyonia typica	Kinglet Rock Shrimp	39	0.2	2	1
Callinectes sapidus	Blue Crab	37	5.5	21	10.6

| Table 3. Species composition list (continued) | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Table 3. Species composition list (continued) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | |

Table 3. Species composition list (continued)					
				NUMBER OF	
		TOTAL NUMBER	TOTAL WEIGHT	TOWS WHERE	\% FREQUENCY
GENUS/SPECIES	COMMON NAME	CAUGHT	CAUGHT (KG)	CAUGHT	OCCURRENCE
Pagurus pollicaris	Flatclaw Hermit	1	0	1	0.5
Podochela sidneyi	Shortfinger Neck Crab	1	0	1	0.5
Isopoda	Isopods	1	0	1	0.5
Cyclozodion angustum	Nodose Box Crab	1	0	1	0.5
Glyptoxanthus erosus	Eroded Mud Crab	1	0	1	0.5
Danielum ixbauchac		1	0	1	0.5
Scyllarides delfosi	Three-spot Slipper Lobster	1	0	1	0.5
Paguristes hummi		1	0	1	0.5
Others					
Amusium papyraceum	Paper Scallop	5409	75.1	48	24.2
Doryteuthis plei	Arrow Squid	1686	22.9	64	32.3
Doryteuthis pealeii	Longfin Inshore Squid	514	16.1	56	28.3
Pitar cordatus	Corded Pitar	403	8.4	26	13.1
Lolliguncula brevis	Atlantic Brief Squid	312	2.6	20	10.1
Anadara baughmani	Skewed Ark	234	3.8	13	6.6
Polystira tellea	Delicate Giant-turris	138	1.2	17	8.6
Lirophora clenchi		99	1.3	10	5.1
Laevicardium laevigatum	Eggcockle	71	1.6	3	1.5
Austraeolis		37	12.4	1	0.5
Octopus vulgaris	Common Octopus	36	3.8	23	11.6
Nudibranchia	Nudibranchs	33	0.5	3	1.5
Polystira albida	White Giant-turris	29	0.3	9	4.5
Argopecten gibbus	Atlantic Calico Scallop	28	0.2	8	4
Sconsia striata	Royal Bonnet	27	0.5	8	4
Gastropoda	Gastropods	24	0.4	7	3.5
Distorsio clathrata	Atlantic Distorsio	19	0.2	7	3.5
Laevicardium mortoni	Yellow Eggcockle	16	0.4	9	4.5
Conus austini		15	0.2	4	2
Arcinella cornuta	Florida Spiny Jewelbox	11	0	1	0.5

| Table 3. Species composition list (continued) | | | |
| :--- | :--- | :--- | ---: | :--- | ---: | :--- |

| Table 4. 2016 Bottom Longline Survey species composition list. Species with no weight recorded were too large to measure. | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | |

Table 4. 2016 Bottom Longline Survey species composition list. Species with no weight recorded were too large to measure.				
		TOTAL	TOTAL	
GENUS/SPECIES	NUMBER	NUMBER	TOTAL	
Dasyatis centroura	COMMON NAME	CAUGHT	WEIGHED	WEIGHT

Table 5. 2016 Vertical Line Survey species composition list. Species with no weight recorded were too large to measure.				
		TOTAL	TOTAL	
		NUMBER	NUMBER	TOTAL
GENUS/SPECIES	COMMON NAME	CAUGHT	WEIGHED	WEIGHT
Finfishes				
Lutjanus campechanus	Red Snapper	804	797	1277.81
Balistes capriscus	Gray Triggerfish	19	19	31.99
Pagrus pagrus	Red Porgy	18	18	17.84
Cynoscion arenarius	Sand Seatrout	12	12	4.14
Pristipomoides aquilonaris	Wenchman	10	10	1.58
Ariopsis felis	Hardhead Catish	8	6	1.36
Sciaenops ocellatus	Red Drum	7	7	34.64
Rhomboplites aurorubens	Vermilion Snapper	7	7	3.53
Carcharhinus brevipinna	Spinner Shark	5	0	
Lutjanus synagris	Lane Snapper	4	4	3.57
Rhizoprionodon terraenovae	Atlantic Sharpnose Shark	3	3	4.74
Caranx crysos	Blue Runner	3	1	1.04
Bagre marinus	Gaftopsail Catfish	3	2	1.74
Seriola rivoliana	Almaco Jack	2	2	1.38
Cynoscion nebulosus	Spotted Seatrout	2	2	1.03
Mycteroperca phenax	Scamp	2	2	4.08
Pomatomus saltatrix	Bluefish	1	0	
Seriola fasciata	Lesser Amberjack	1	1	1.3
Seriola dumerili	Greater Amberjack	1	1	4.36
Lutjanus griseus	Gray Snapper	1	1	0.79
Sphyraena guachancho	Guaguanche	1	1	0.32

Figure 1. Statistical zones for shrimp in the Gulf of Mexico.

Figure 2. Locations of plankton and environmental stations during the 2016 Spring Plankton Survey.

Figure 3. Locations of stations during the 2016 Fall Plankton Survey.

Figure 4. Locations of stations during the 2016 Summer Shrimp/Groundfish Survey.

Figure 5. Locations of stations during the 2016 Fall Shrimp/Groundfish Survey.

Figure 6. Locations of stations during the 2016 Reef Fish Survey.

Figure 7. Locations of stations during the 2016 Bottom Longline Survey.

Figure 8. Locations of stations during the 2016 Vertical Line Survey.

[^0]: ${ }^{1}$ Mesh size change in database does not represent an actual change in gear but only a change in the accuracy at which plankton mesh aperture size can be measured by the manufacturer.

