The use of Non-Saccharomyces yeasts in winemaking

5 April 2022

1 © 2021 Chr. Hansen. All rights reserved.

AGENDA

- What is the yeast landscape beyond Saccharomyces cerevisiae?
- How Non-Saccharomyces have a positive organoleptic impact
- 3. How Non-Saccharomyces can be a crucial tool against spoilage
- 4. How when and why to apply Non-Saccharomyces yeast

VINIFLORA® YEAST RANGE FOR 2022

	Wine Style	Alcohol Tolerance	Species	Optimal Temperature	Inoculation Rate	Fermentation Speed	SO ₂ Tolerance	Key Characteristics
	Non Saccharomyces Yeasts							
FROOTZEN™	Sauvignon Blanc, Pinot Gris, Chardonnay, Riesling & Pinot Noir	6% v/v	Pichia kluyveri	15-25°C	100ppm	1	45ppm	High level of volatile thiols Direct inoculation Frozen Product Oxygen scavenging
PRELUDE™	Pinot Noir, Bordeaux varieties, Grenache, Rosé, Barrel matured whites	9% v/v	Torulaspora delbreuckii	10-25°C	200ppm	\checkmark	30ppm	Produces polysaccharides for texture Caramel / pastries flavour note Perfect for pre-fermentation maceration
CONCERTO™	Light to medium weight reds including Mediterranean styles & Pinot Noir	10% v/v	Lachancea thermotolerans	15-25°C	200ppm	1	30ppm	Lower pH naturally (lactic acid production) Produces polysaccharides for mouthfeel Fruit lift from ethyl lactate Inhibition of Kloeckera & acetic acid bacteria
OCTAVE™	Rosé, Pinot Gris, Chardonnay, Riesling	11% v/v	Lachancea thermotolerans	13-25oC	200ppm	~	30ppm	Inhibition of spontaneous MLF Colour vibrancy in Rosé Lower pH naturally (lactic acid production) Lifted stone fruit character
Saccharomyces Yeasts								
MERIT	Traditional red varieties	17% v/v	Saccharomyces cerevisiae	15-30°C	200ppm	$\checkmark\checkmark$	90ppm	Resistance to high alcohol Red & black fruit flavour Spicy notes
JAZZ™	Traditional red varieties	17% v/v	Saccharomyces cerevisiae	10-30°C	200ppm	~ ~ ~	90ppm	Fruit lift without being confected Elegant structure Velvety complex tannins
	Blend of Saccharomyces and Non Saccharomyces Yeasts							
MELODY™	Chardonnay Pinot Noir Grenache	17% v/v	Saccharomyces cerevisiae (60%) Lachancea thermotolerans (20%) Torulaspora delbreuckii (20%)	15-28°C	200ppm	$\checkmark\checkmark$	30ppm	Increases aromatic complexity Rounded mouthfeel

What is the yeast landscape beyond Saccharomyces?

YEAST ECOLOGY IN WINE

- > The ecology of micro-organisms during winemaking is very complex. The following genera of yeast can be found:
- Brettanomyces / Dekkera
- Candida
- Cryptococcus
- Debaromyces
- Hanseniaspora / Kloeckera
- Hansenula
- Lachancea
- Torulaspora

- Saccharomycodes
- Schizosaccharomyces
- Zygosaccharomyces
- Metschnikowia
- Pichia

CHR, HANSEN

Improving food & health

Alcoholic fermentation is always completed by Saccharomyces (generally *Saccharomyces cerevisiae*)

MICROBIAL ECOLOGY, POPULATION DYNAMICS *'WILD-FERMENT' CHARDONNAY, KUMEU RIVER WINERY - NZ*

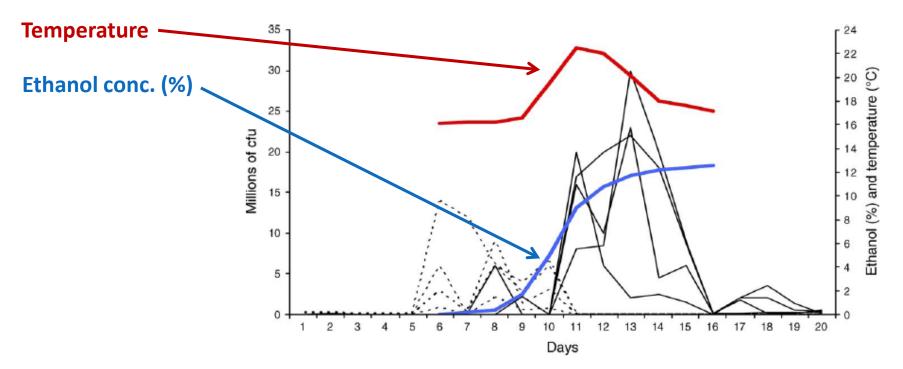


FIG. 1. The change in yeast community composition, temperature, and ethanol concentration during a traditional wine ferment. Shown is the change in population size (colony forming units, cfu) of the non-*Saccharomyces* yeasts (thin black dashed lines) and *S. cerevisiae* (thin black solid lines) in four separate barrels over 20 days of ferment. Also shown is the average change in temperature (heavy red line) and ethanol levels estimated from the change in specific gravity (heavy blue line) for these four barrels over days 6–16 of the ferment.

Source: Goddard MR. 2008. Ecology 89: 2077-2082

MICROBIAL ECOLOGY, POPULATION DYNAMICS *'WILD-FERMENT' CHARDONNAY, KUMEU RIVER WINERY - NZ*

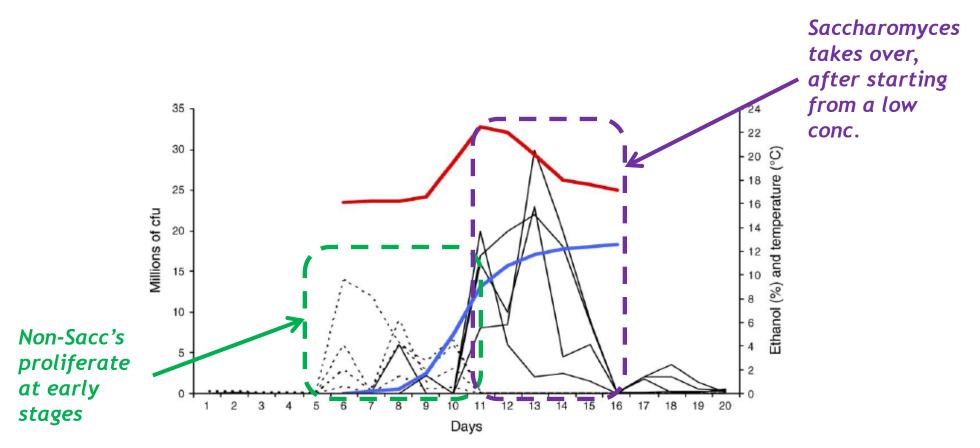
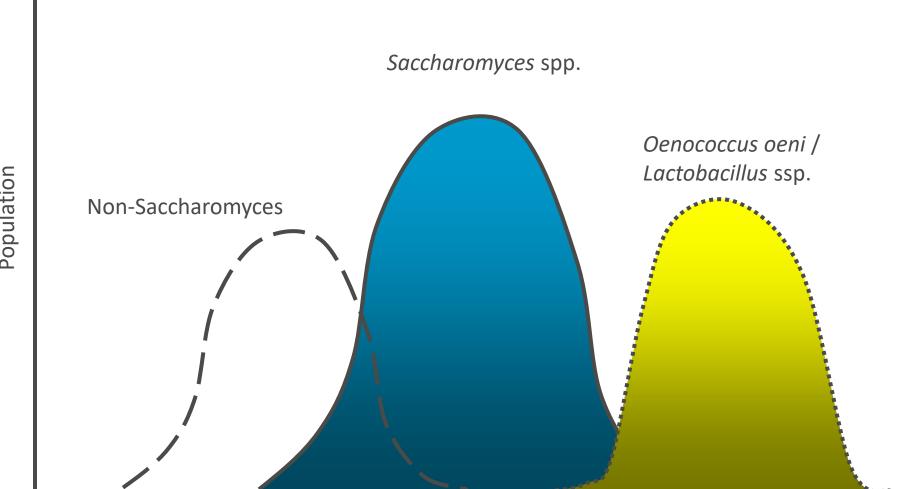
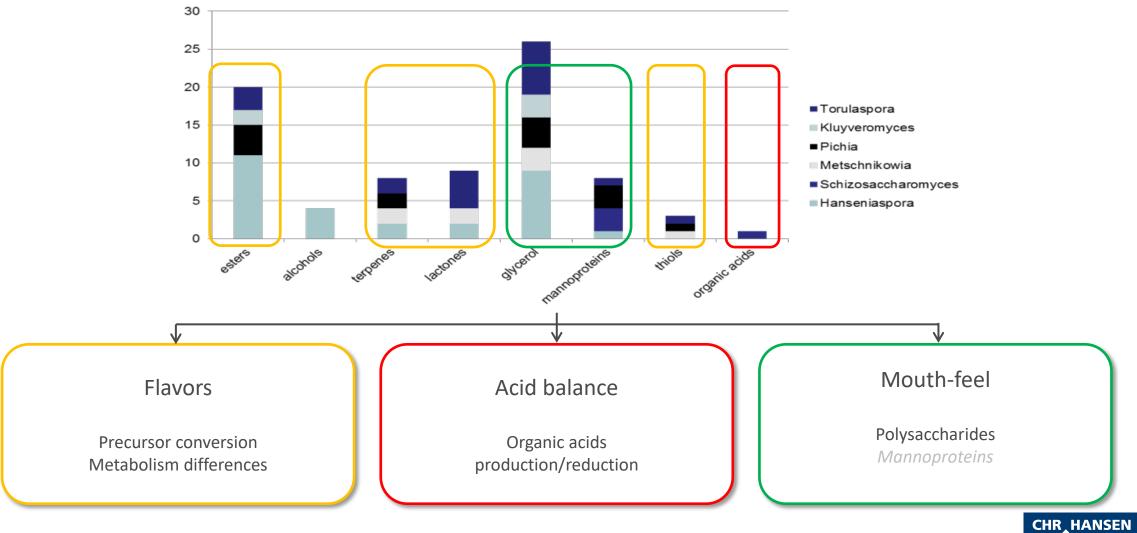



FIG. 1. The change in yeast community composition, temperature, and ethanol concentration during a traditional wine ferment. Shown is the change in population size (colony forming units, cfu) of the non-*Saccharomyces* yeasts (thin black dashed lines) and *S. cerevisiae* (thin black solid lines) in four separate barrels over 20 days of ferment. Also shown is the average change in temperature (heavy red line) and ethanol levels estimated from the change in specific gravity (heavy blue line) for these four barrels over days 6–16 of the ferment.

Source: Goddard MR. 2008. Ecology 89: 2077-2082

MICROBIAL ECOLOGY, POPULATION DYNAMICS SIMPLIFIED GRAPHICAL REPRESENTATION OF NATURAL PROGRESSION

How Non-Saccharomyces have a positive organoleptic impact



POSSIBLE IMPACTS ON A WINE FROM NON-SACCHAROMYCES YEAST SPECIES

LITERATURE SEARCH FOCUSED ON THE FOLLOWING TOPICS

Improving food & health

VINIFLORA® YEAST RANGE FOR 2022

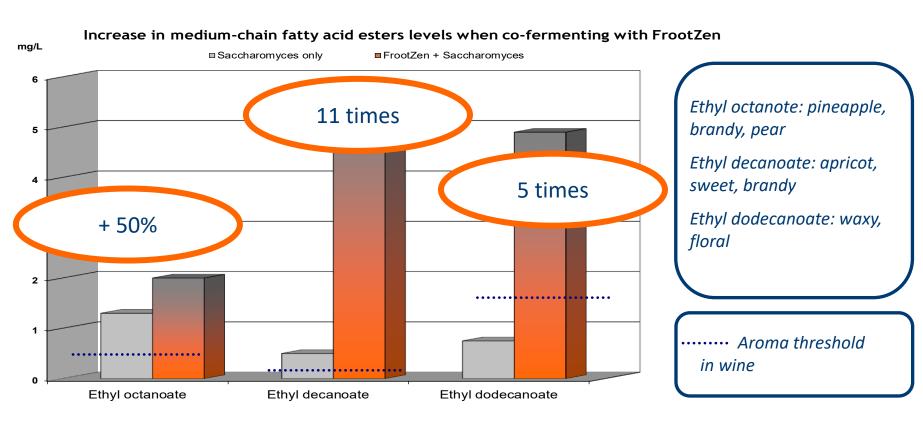
	Wine Style	Alcohol Tolerance	Species	Optimal Temperature	Inoculation Rate	Fermentation Speed	SO₂ Tolerance	Key Characteristics
	Non Saccharomyces Yeasts							
FROOTZEN™	Sauvignon Blanc, Pinot Gris, Chardonnay, Riesling & Pinot Noir	6% v/v	Pichia kluyveri	15-25°C	100ppm	1	45ppm	High level of volatile thiols Direct inoculation Frozen Product Oxygen scavenging
PRELUDE™	Pinot Noir, Bordeaux varieties, Grenache, Rosé, Barrel matured whites	9% v/v	Torulaspora delbreuckii	10-25°C	200ppm	1	30ppm	Produces polysaccharides for texture Caramel / pastries flavour note Perfect for pre-fermentation maceration
CONCERTO™	Light to medium weight reds including Mediterranean styles & Pinot Noir	10% v/v	Lachancea thermotolerans	15-25°C	200ppm	1	30ppm	Lower pH naturally (lactic acid production) Produces polysaccharides for mouthfeel Fruit lift from ethyl lactate Inhibition of Kloeckera & acetic acid bacteria
	Rosé, Pinot Gris, Chardonnay, Riesling	11% v/v	Lachancea thermotolerans	13-25oC	200ppm	\checkmark	30ppm	
Saccharomyces Yeasts								
MERIT	Traditional red varieties	17% v/v	Saccharomyces cerevisiae	15-30°C	200ppm	√ √	90ppm	Resistance to high alcohol Red & black fruit flavour Spicy notes
JAZZ™	Traditional red varieties	17% v/v	Saccharomyces cerevisiae	10-30°C	200ppm	~ ~ ~	90ppm	Fruit lift without being confected Elegant structure Velvety complex tannins
	Blend of Saccharomyces and Non Saccharomyces Yeasts							
MELODY™	Chardonnay Pinot Noir Grenache	17% v/v	Saccharomyces cerevisiae (60%) Lachancea thermotolerans (20%) Torulaspora delbreuckii (20%)	15-28°C	200ppm	√ √	30ppm	Increases aromatic complexity Rounded mouthfeel

VINIFLORA[®] FROOTZEN™ VOLATILE THIOLS

Effect of inocultion point of FrootZen on 3MH & 3MHA

QA23 (Control)
FrootZen + QA23 (co-inoculated)
FrootZen + QA23 (48hr delay, sequential inoc)

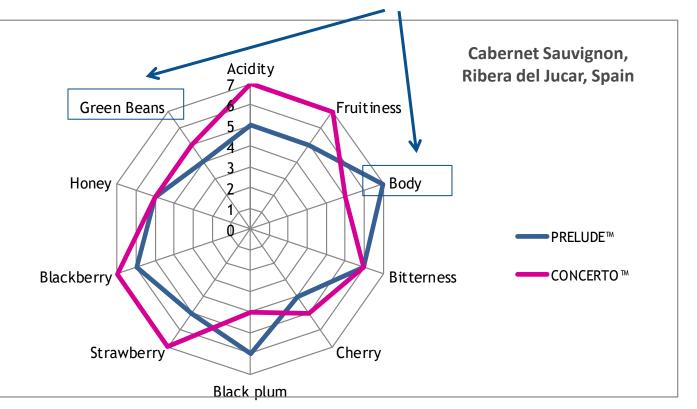
3-mercaptohexan-1-ol: passionfruit, citrus, grapefruit


3-mercaptohexyl acetate: Broom/boxtree, passionfruit

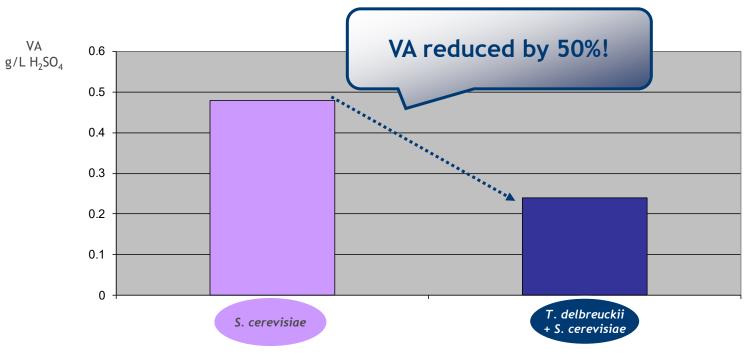
VINIFLORA[®] FROOTZEN[™] ETHYL ESTERS

Long chain esters are known to give a 'fruity' character, wine-like with a longer life span. They also provide part of the 'complexity' found in 'wild ferment' wines*

*Varela et. al. Australian Journal of Grape and Wine Research 15, 3, 2009, pp. 238-248



VINIFLORA® PRELUDE™ EFFECT ON PALATE WEIGHT AND GREEN FLAVORS


PRELUDE[™] is effective for increasing body/palateweight, as well as masking 'green' characters

The production of polysaccharides by T. delbreuckii has been extensively published. For an example see Comitini, F., et al., Selected non-Saccharomyces CHR_HANSEN wine yeasts in controlled multistarter f..., Food Microbiology (2010)

VINIFLORA® PRELUDE™ ACETIC ACID REDUCTION

Wine made from high sugar Semillon must, Bordeaux, France 2009 ISVV Bordeaux

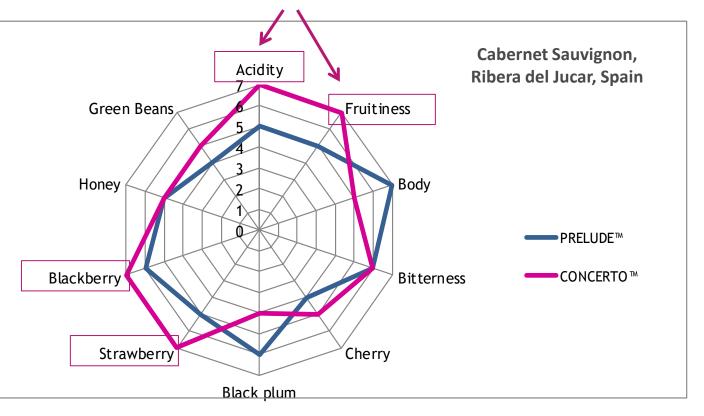
VINIFLORA® YEAST RANGE FOR 2022

	Wine Style	Alcohol Tolerance	Species	Optimal Temperature	Inoculation Rate	Fermentation Speed	SO ₂ Tolerance	Key Characteristics
			Non Saccharom	iyces Yeasts				
FROOTZEN™	Sauvignon Blanc, Pinot Gris, Chardonnay, Riesling & Pinot Noir	6% v/v	Pichia kluyveri	15-25°C	100ppm	1	45ppm	High level of volatile thiols Direct inoculation Frozen Product Oxygen scavenging
PRELUDE™	Pinot Noir, Bordeaux varieties, Grenache, Rosé, Barrel matured whites	9% v/v	Torulaspora delbreuckii	10-25°C	200ppm	\checkmark	30ppm	Produces polysaccharides for texture Caramel / pastries flavour note Perfect for pre-fermentation maceration
CONCERTO™	Light to medium weight reds including Mediterranean styles & Pinot Noir	10% v/v	Lachancea thermotolerans	15-25°C	200ppm	~	30ppm	Lower pH naturally (lactic acid production) Produces polysaccharides for mouthfeel Fruit lift from ethyl lactate Inhibition of Kloeckera & acetic acid bacteria
OCTAVE™	Rosé, Pinot Gris, Chardonnay, Riesling	11% v/v	Lachancea thermotolerans	13-25oC	200ppm	~	30ppm	Inhibition of spontaneous MLF Colour vibrancy in Rosé Lower pH naturally (lactic acid production) Lifted stone fruit character
MERIT	Traditional red varieties	17% v/v	Saccharomyces cerevisiae	15-30°C	200ppm	$\sqrt{\sqrt{1-1}}$	90ppm	Resistance to high alcohol Red & black fruit flavour Spicy notes
JAZZ™	Traditional red varieties	17% v/v	Saccharomyces cerevisiae	10-30°C	200ppm	111	90ppm	Fruit lift without being confected Elegant structure Velvety complex tannins
	Blend of Saccharomyces and Non Saccharomyces Yeasts							
MELODY™	Chardonnay Pinot Noir Grenache	17% v/v	Saccharomyces cerevisiae (60%) Lachancea thermotolerans (20%) Torulaspora delbreuckii (20%)	15-28°C	200ppm	√ √	30ppm	Increases aromatic complexity Rounded mouthfeel

Two Lachancea thermotolerans for two different applications

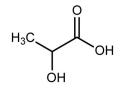
Viniflora[®] OCTAVE for whites and rosé

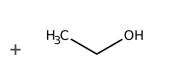
Viniflora[®] CONCERTO[™] for reds

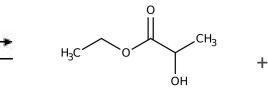


VINIFLORA® CONCERTO™ *EFFECT ON FRUIT WEIGHT AND ACIDITY*

CONCERTO™ is effective for lifting berry-fruit characters and bringing freshness/acidity




NON-SACCHAROMYCES AND EFFECTS ON FLAVOR ETHYL ESTERS

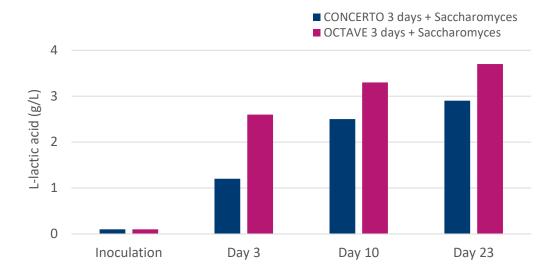

Study carried out at Centre du Rosé (Provence - France)

	Descriptor	Sacch. control	L. thermotolerans A 3d + Sacch.	L. thermotolerans B 3d + Sacch.
Total acetates	Flowery and fruity	52,8	57,9	46,1
Total acids	Cheesy	190,35	189,8	171,05
Total linear ethyl esters	Fruity	1,04	0,7	1,02
Total alcohols	Fusel and green	315,54	354,6	314,02
Ethyl lactate1	Cream, fruity (strawberry, coconut)	5,87	9,31	78,89
γ-Butyrolactone	Peach	1,35	3,62	3,98

¹ Odour threshold: 154 mg/L

Ethanol

Ethyl lactate


H_O_H

INCREASE ACIDITY WITH NATURAL LACTIC ACID

LACTIC ACID IN NON-SULFITED ROSÉ WINE

Compared to Viniflora[®] CONCERTO, OCTAVE is more efficient in releasing L-lactic acid

VINIFLORA® OCTAVE ENABLES A SULFITE REDUCTION

Values from vinification of rosé wine, Languedoc, 2019


Microorganisms	Final wine pH	% sulfites as molecular
Control Saccharomyces	3.52	1.9
CONCERTO 3 days + Saccharomyces	3.45	2.2
OCTAVE 3 days + Saccharomyces	3.35	2.8

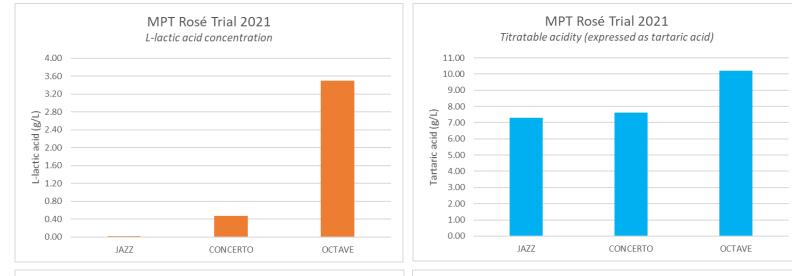
TARTARIC ACID IS COMMONLY USED TO INCREASE ACIDITY, BUT WITH NATURAL LACTIC ACID, LESS TARTARIC ACID IS NEEDED

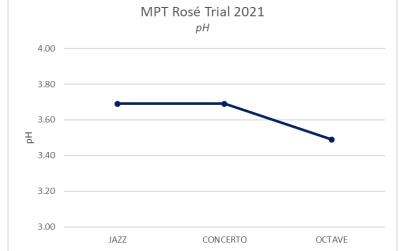
TARTARIC ACID

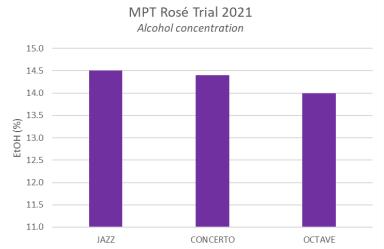
- Added in high quantity (up to 400 g/hL)
- Price is unstable and financial unpredictable, e.g. in 2018, the price was € 8/kg equal to € 1.2-3.0/hL
- Leads to dryness on the palate
- Can be lost by (late) precipitation in the bottle

LACTIC ACID BY VINIFLORA® OCTAVE

- Produced naturally during pre-fermentation
- Constant cost in use
- Pleasant taste with mild and round acidity
- Very stable acid

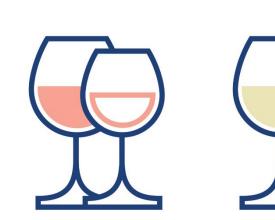

VINIFLORA® OCTAVE ENABLES TO REPLACE 150 G/HL OF TARTARIC ACID


Tartaric acid	H ₂ SO ₄	Equivalent lactic acid
150 g/hL (20 meq)	+1.0 g/l	180 g/hl
250 g/hL (33 meq)	+1.6 g/l	300 g/hl



LACHANCEA THERMOTOLERANS COMPARISON CONCERTO AND OCTAVE IN ROSÉ FROM SYRAH

Field trial from Australia, Grampians Region 2021. Shiraz (saignée)



22

Two Lachancea thermotolerans for different applications

Rosé wine

OCTAVE

OCTAVE

Red wine

CONCERTO

OCTAVE

in special cases

Mind the risk of difficult malo Blending recommended

Sparking wine

CONCERTO

Traditional method

OCTAVE

Charmat method Blending recommended

Fortified wine/Late harvest

CONCERTO OCTAVE

How Non-Saccharomyces can be a crucial tool against spoilage

WHAT IS BIOLOGICAL PROTECTION?

"Bioprotection is a current concept, so its definition is still under discussion. However, it can be considered the active or passive use of some microorganisms to preserve foods and beverages and to exclude other spoilage microorganisms, thus avoiding the production of off-flavors, sensory alterations, or even the formation of toxic molecules"

Non-Saccharomyces as Biotools to Control the Production of Off-Flavors in Wines, Morata et al, *Molecules* 2021, *26*(15), 4571

> The vast majority of biological protection applications incorporate the use of Non-Saccharomyces yeast species

ACTIVE VS. PASSIVE....

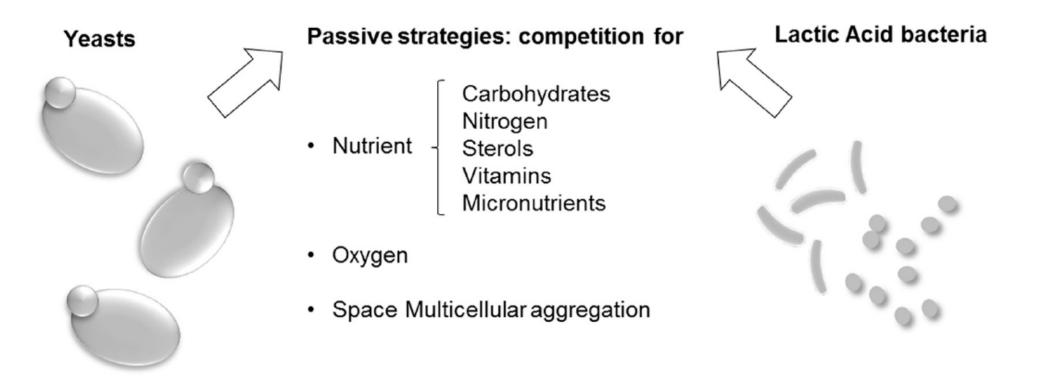
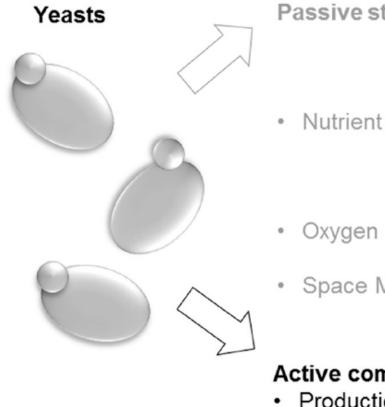
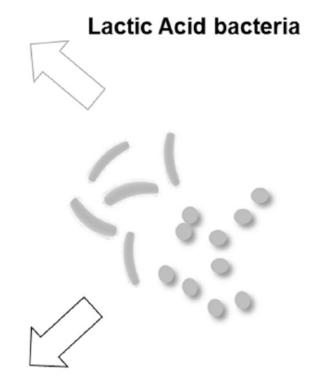



Table taken from: Di Gianvito *et al*. Bioprotection strategies in winemaking. International Journal of Food Microbiology, Volume 364, 2022

ACTIVE VS. PASSIVE....

Passive strategies: competition for

Carbohydrates Nitrogen Sterols


Vitamins **Micronutrients**

Oxygen

Space Multicellular aggregation

Active competition strategies

- Production of antimicrobial compounds
- Cell-to-cell contact

For more on this topic check out: Hu et al. The effects of cell-cell contact

between Pichiakluyveri and Saccharomyces cerevisiae on amino acids and volatiles in mixed culture alcoholic fermentations. Food Microbiology COR HABSEN 22 Improving food & health

Table taken from: Di Gianvito *et al*. Bioprotection strategies in winemaking. International Journal of Food Microbiology, Volume 364, 2022

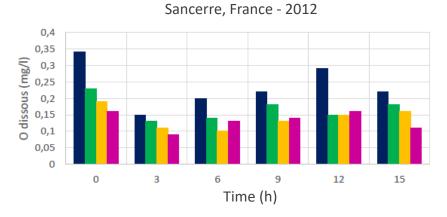
27 © 2021 Chr. Hansen. All rights reserved.

PASSIVE BIOLOGICAL PROTECTION EXAMPLE – TORULASPORA DELBREUCKII AT LOW TEMPERATURES

> PRELUDE™ (Torulaspora delbreuckii) is very well suited to being used during pre-fermentation maceration due to its ability to dominate must, even at low temperatures

Implantation and development of different N.Sac yeast at 12°C then 5°C vs. 30°C

Population (CFU/ml) for Prelude[™] which is represented in orange, has the best growth among the different strains and blends assessed.

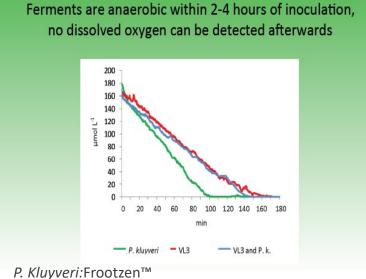


PASSIVE BIOLOGICAL PROTECTION EXAMPLE – PICHIA KLUYVERI AND OXYGEN CONSUMPTION

> FROOTZEN[™] (*Pichia kluyveri*) has been shown to rapidly take up oxygen in grape must

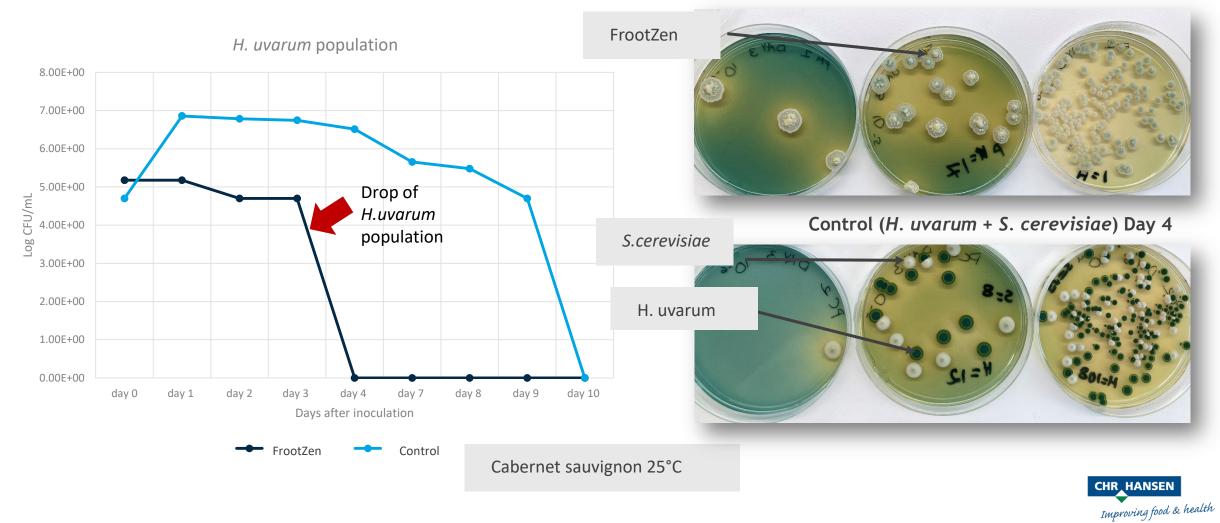
Helps to avoid oxidation of juice

thereby reducing browning.

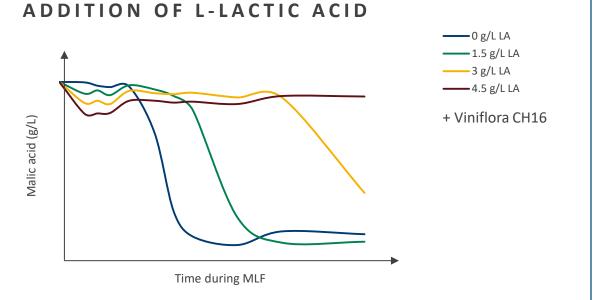

Dissolved oxygen (mg/L) vs. Time (hrs) in Sauvignon blanc juice

Control Prelude FrootZen FrootZen sans SO2

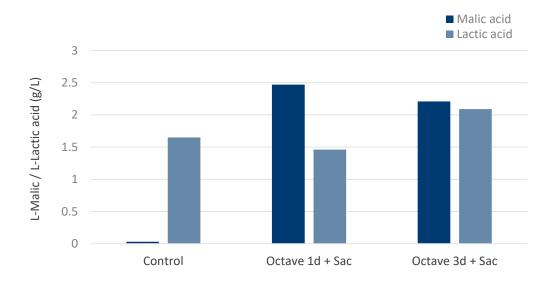
>


End of fermentation

*P. Kluyveri:*Frootzen[®] VL3:*S.cerevisiae*



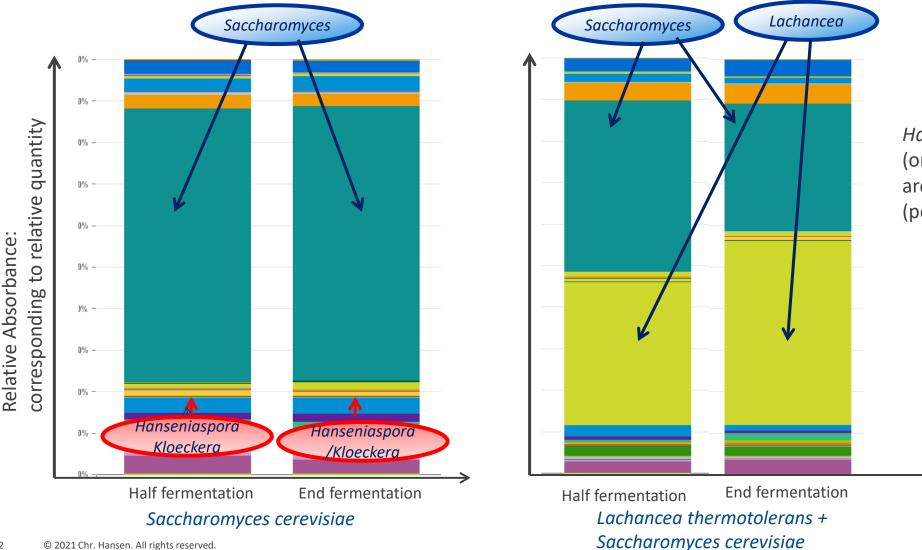
PASSIVE BIOLOGICAL PROTECTION EXAMPLE – PICHIA KLUYVERI AND OXYGEN CONSUMPTION



Trial (FrootZen + H. uvarum + S. cerevisiae) Day 4

ACTIVE BIOLOGICAL PROTECTION EXAMPLE – LACHANCEA THERMOTOLERANS AND L-LACTIC ACID

Lactic acid at levels >1.5 g/L are already inhibitory to indigenous malolactic bacteria, with significant delay from 3 g/L onwards

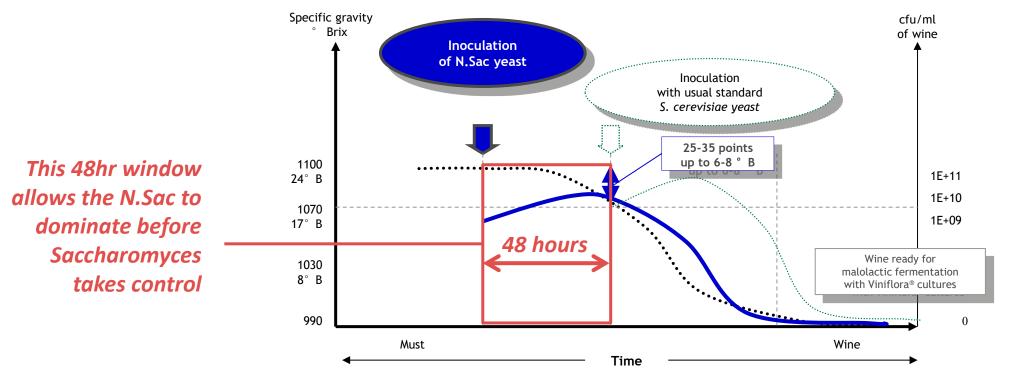

Viniflora[®] OCTAVE used in pre-fermentation can inhibit the development of spontaneous MLF, keeping most of the malic acid and adding with lactic acid

AFTER ALCOHOLIC FERMENTATION

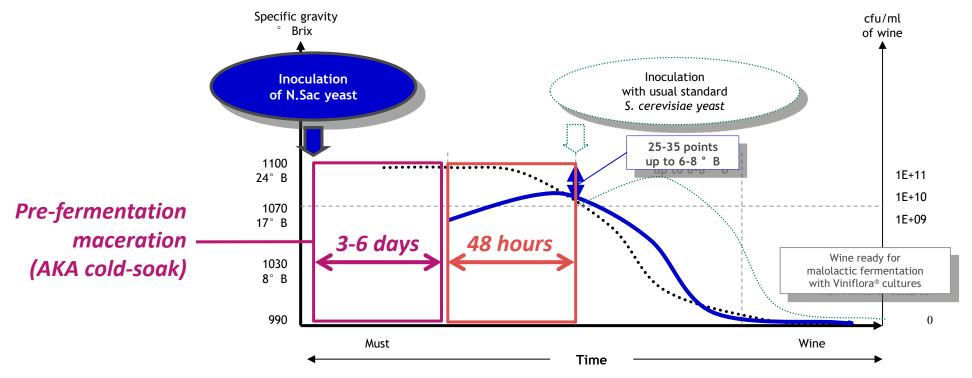
ACTIVE BIOLOGICAL PROTECTION EXAMPLE – LACHANCEA THERMOTOLERANS AND L-LACTIC ACID

History of fungal microflora using metagenomics (DNA fragments....so not 'live' cells)

Haneniaspora uvarum (or *Kloeckera apiculata*) are higher in the control wine (possible ethyl acetate production)


How when and why to apply Non-Saccharomyces yeast

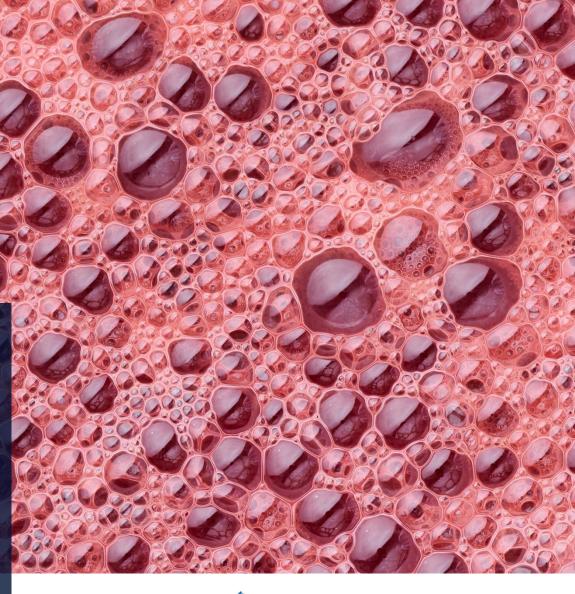
HOW TO USE NON-SACCHAROMYCES YEAST INOCULATION TIMING


- Sequential inoculation is recommended to get the most from a Non-Saccharomyces yeat
- Standard dosage for Non-Sacc yeast is 20-25g/hL (or 200-250ppm)
- Inoculate the Non-Sacc when you would normally add yeast, followed by Saccharomyces after 48 hours:

HOW TO USE NON-SACCHAROMYCES YEAST

- Sequential inoculation is recommended to get the most from a Non-Saccharomyces yeat
- Standard dosage for Non-Sacc yeast is 20-25g/hL (or 200-250ppm)
- Inoculate the Non-Sacc when you would normally add yeast, followed by Saccharomyces after 48 hours:

For red wines undergoing pre-fermentation maceration (cold-soak), N.Sac can be added at the start of this process, with Saccharomyces added once must is warmed


HOW TO USE NON-SACCHAROMYCES YEAST *REHYDRATION PROCESS SIMILAR BUT NOT THE SAME TO OTHER WINE YEASTS*

How about Nitrogen?

- As with any wine yeast, Chr. Hansen strongly suggest measuring YAN before any yeast inoculation
- If Nitrogen supplementation is required, then this should be added once the Saccharomyces is inoculated
- An ideal YAN target when using Non-Sacc yeast during a fermentation is 250mg/L

Thank you Questions ? Sales Contact Information: sales@gusmerenterprises.com 866.213.1131 Contact Your Gusmer Enterprises Technical Sales Representative

Disclaimer

The information contained herein is presented in good faith and is, to the best of our knowledge and belief, true and reliable. It is offered solely for your consideration, testing and evaluation, and is subject to change without prior and further notice unless otherwise required by law or agreed upon in writing. There is no warranty being extended as to its accuracy, completeness, currentness, non-infringement, merchantability or fitness for a particular purpose. To the best of our knowledge and belief, the product(s) mentioned herein do(es) not infringe the intellectual property rights of any third party. The product(s) may be covered by pending or issued patents, registered or unregistered trademarks, or similar intellectual property rights. All rights reserved.

