Crystal Data: Monoclinic. *Point Group*: 2/m. Coating spinel grains as irregular masses 1-7 μ m. *Twinning*: None observed.

Physical Properties: *Cleavage*: n.d. *Tenacity*: n.d. *Fracture*: n.d. Hardness = n.d. D(meas.) = n.d. D(calc.) = 3.41

Optical Properties: Transparent. *Color*: Light gray in thin-section. *Streak*: n.d. *Luster*: n.d. *Optical Class*: [Biaxial]. n.d.

Cell Data: Space Group: C2/c. a = 9.80 b = 8.85 c = 5.36 $\beta = 105.62^{\circ}$ Z = 4

X-ray Powder Pattern: Allende meteorite. 2.996 (100), 2.535 (47), 2.581 (42), 2.964 (31), 2.600 (28), 2.909 (25) 2.130 (19)

Chemistry:		(1)	(2)
-	SiO ₂	27.99	25.14
	Al_2O_3	24.71	21.33
	CaO	24.58	23.46
	Ti ₂ O ₃	10.91	30.08
	TiO ₂	6.68	
	MgO	4.45	
	Sc_2O_3	0.43	
	V_2O_3	0.19	
	ZrO_2	0.13	
	FeO	0.08	
	$\underline{Cr_2O_3}$	0.03	<u> </u>
	Total	100.20	100.01

(1) Allende meteorite; average electron microprobe analysis supplemented by Raman spectroscopy, total Ti as 18.80 wt% TiO₂ was partitioned between Ti³⁺ and Ti⁴⁺ to make ideal stoichiometry; corresponds to Ca_{1.00}[(Ti³⁺_{0.35}Al_{0.18}Sc_{0.01}V³⁺_{0.01}) Σ =0.55Mg_{0.25}Ti⁴⁺_{0.19}] Σ =1.00(Si_{1.07}Al_{0.93}) Σ =2.00O₆. (2) CaTi³⁺AlSiO₆.

Mineral Group: Clinopyroxene group.

Occurrence: Likely formed through high-temperature condensation in the solar nebula, followed by melting and crystallization in Ca-,Al-rich refractory inclusions in a meteorite.

Association: Spinel, perovskite, grossite, melilite.

Distribution: In the Allende meteorite.

Name: Honors Lawrence *Grossman* (b. 1946), Professor of Cosmochemistry, University of Chicago, USA, for his fundamental contributions to meteorite research.

Type Material: National Museum of Natural History, Washington D.C., USA (USNM 7562).

References: (1) Ma, C. and G.R. Rossman (2009) Grossmanite, $CaTi^{3+}AlSiO_6$, a new pyroxene from the Allende meteorite. Amer. Mineral., 94, 1491-1494.