

Normovolemic hemodilution ancient or modern?

Prof. Dr. Jens Meier

Klinik für Anästhesiologie und Intensivmedizin Kepler Universitätsklinikum Linz

"Everything you always wanted to know about hemodilution

But were afraid to ask"

ANH – ancient or modern?

Europ. Surg. Res. 4: 55-70 (1972)

Acute Normovolemic Hemodilution

Changes of Central Hemodynamics and Microcirculatory Flow in Skeletal Muscle¹

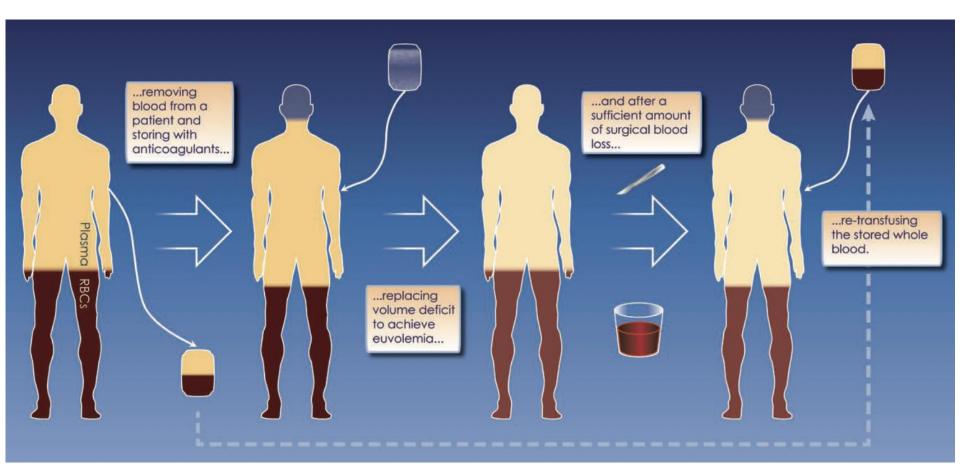
K. Messmer, D. H. Lewis, L. Sunder-Plassmann, W. P. Klövekorn, N. Mendler and K. Holper

Institute for Surgical Research, Surgical University Clinic, Munich, and Department of Surgery I, University of Gothenburg, Gothenburg

Abstract. Isovolemic hemodilution down to hematocrit values of 10% has been performed in splenectomized dogs during pentobarbital anaesthesia. Circulatory changes were followed in the systemic circulation; for the estimation of capillary flow and capillary transport in skeleteal muscle a double isotope technic has been applied. Progressive hemodilution resulted

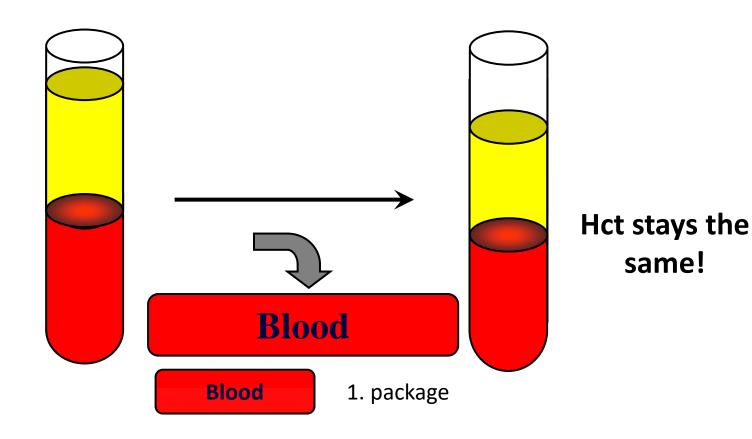
Key Words
Oxygen transport capacity
Oncotic properties of dextran-60
In vivo viscosity
Capillary transport
51Cr-EDTA clearance
Limited hemodilution

in a significant increase of cardiac output and skeletal muscle flow; peripheral resistance decreased clearly parallel with the whole blood viscosity as measured at different shear rates. The transport capacity (PS) in skeletal muscle was not significantly changed. From this finding and from the lack of changes in the local effluent blood it is concluded that hypoxia does not occur when limited hemodilution is performed normovolemically. These data, therefore, add further support to the concept of limited hemodilution as a therapeutic tool in microcirculatory disorders.

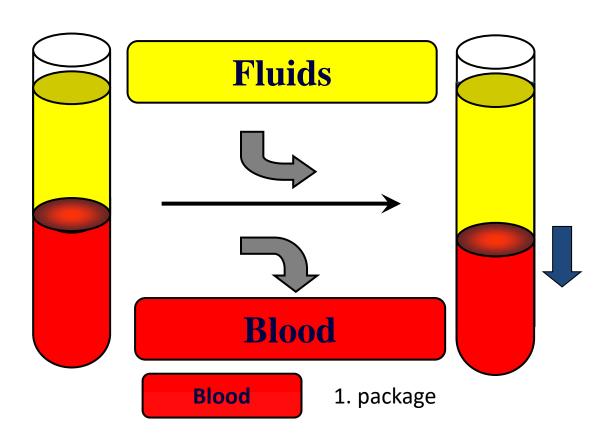

The interest in the relationship of hematocrit and blood viscosity in vivo has been greatly stimulated by viscometric findings of recent years. By different groups it has been demonstrated that acute changes in hematocrit are followed by an increase in cardiac output [19, 21, 24]

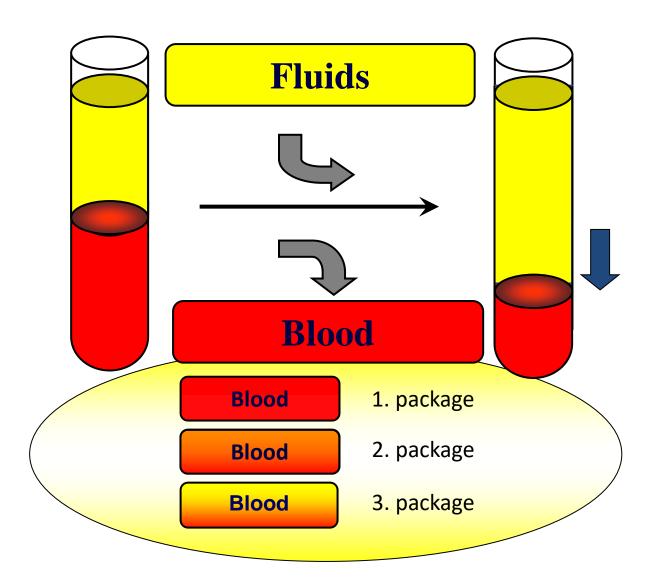
¹ Paper presented at the 6th Congres of the European Society for Experimental Surgery, Hälsingborg, April 1971.

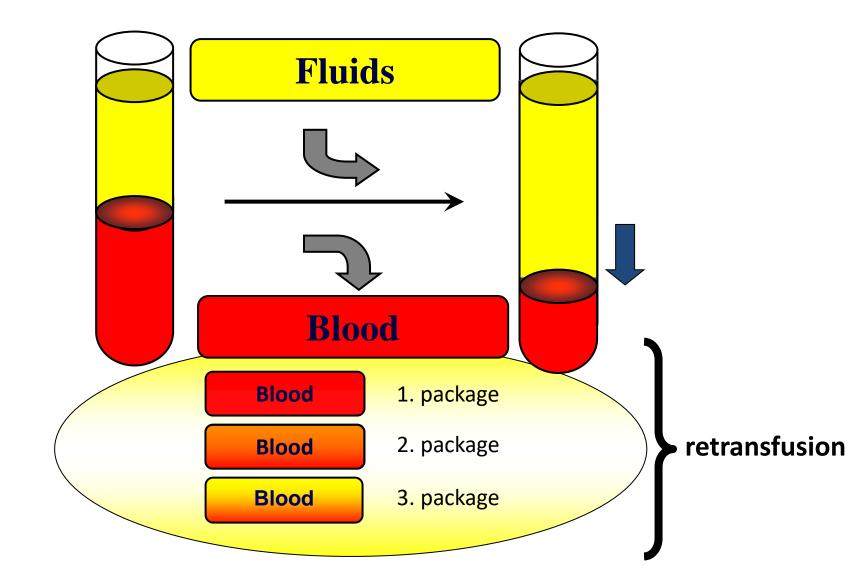
Received: September 10, 1971; accepted: September 28, 1971.

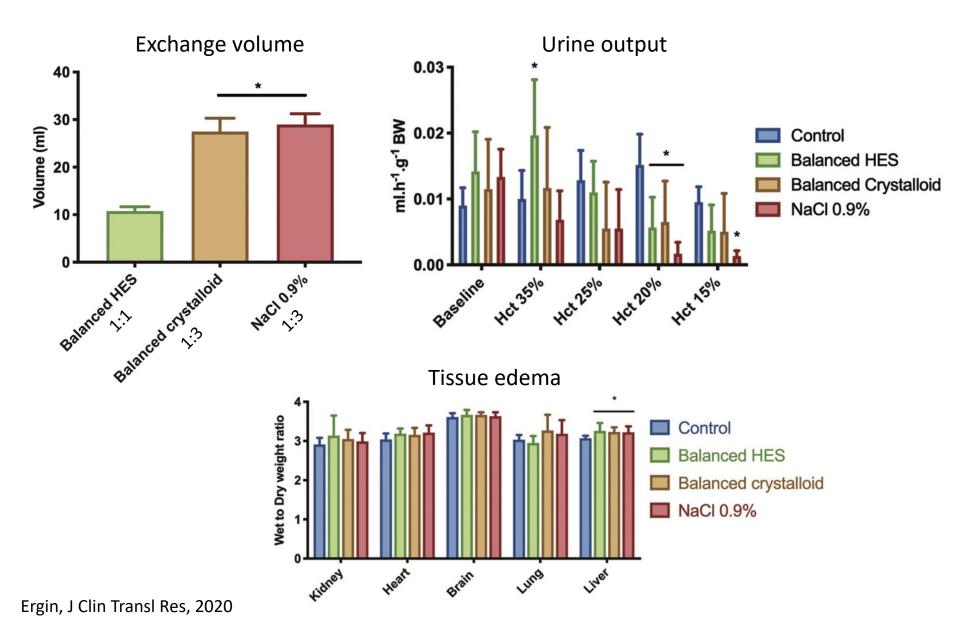


Wanderer, Anesth Analg, 2017

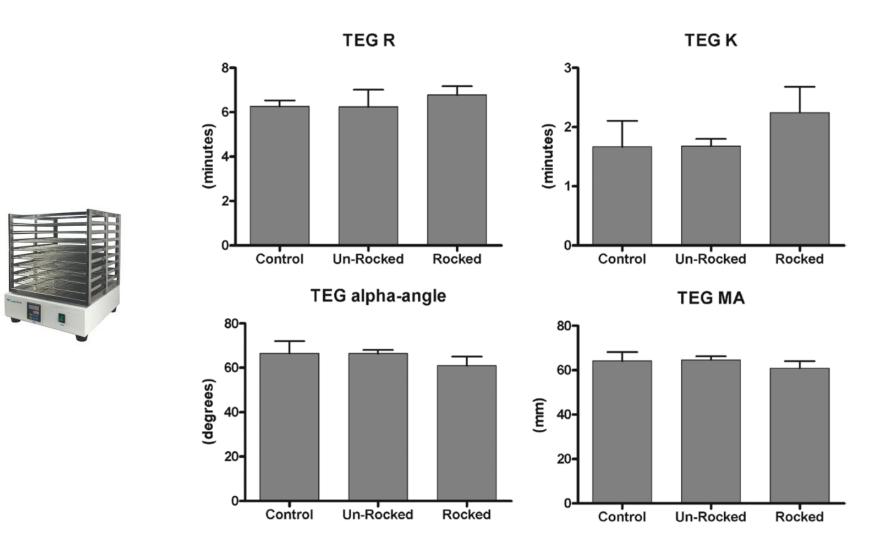








Which solution should be used? **J**



Shaking needed for 8 hour storage?

Goldberg, Ann Thorac Surg, 2015

And the benefit?

no
ANH

Hkt

45 %

Hb

15 g/dl

bleeding

1000 ml

loss of hemoglobin

150 g

pRBCs

And the benefit?

modorato

	no ANH	ANH
Hkt	45 %	21 %
Hb	15 g/dl	7 g/dl
bleeding	1000 ml	1000 ml
loss of hemoglobin	150 g	70 g
pRBCs		

And the benefit?

	no ANH	moderate ANH	extreme ANH	
Hkt	45 %	21 %	9 %	
Hb	15 g/dl	7 g/dl	3 g/dl	
bleeding	1000 ml	1000 ml	1000 ml	
loss of hemoglobin	150 g	70 g	30 g	
pRBCs			0	

The more exchangeable blood volume in cardiac surgery – the better

Table 3. Adjusted Postoperative Outcomes by Use and Volume of Acute Normovolemic Hemodilution (ANH)

				ANH Volume			
Variables	No ANH	ANH	<400 mL	400–799 mL	≥800 mL	p Value ^a	p Value ^b
Observations	11,197	2,337	308	958	1,071		
Reoperation for bleeding (%)	2.3%	1.9%	2.5%	2.0%	1.0%	0.30	0.09
Stroke (%)	1.8%	1.3%	1.8%	1.4%	1.0%	0.22	0.14
Acute kidney injury (%)	28.2%	24.1%	28.3%	25.6%	20.9%	< 0.001	< 0.001
Renal failure (%)	2.9%	1.3%	2.8%	1.4%	1.1%	< 0.001	< 0.001
Intraaortic balloon pump (%)	8.2%	4.9%	7.5%	5.3%	3.3%	< 0.001	< 0.001
Red blood cells (%)							
None	59.7%	66.5%	66.1%	63.1%	70.7%	< 0.001	< 0.001
Intraoperative only	8.5%	7.7%	3.5%	9.4%	7.1%	0.78	0.81
Postoperative only	21.9%	16.1%	25.9%	18.7%	6.6%	< 0.001	< 0.001
Intraoperative $+$ postoperative	10.4%	4.9%	5.9%	6.6%	2.7%	< 0.001	< 0.001
Plasma (%)	8.5%	4.9%	7.3%	5.8%	3.3%	< 0.001	< 0.001
Platelets (%)	8.5%	5.2%	7.8%	6.1%	3.4%	< 0.001	< 0.001
Prolonged length of stay (%)	15.9%	12.4%	18.2%	13.0%	10.5%	< 0.001	< 0.001
30-day mortality	2.8%	1.5%	2.0%	0.01%	2.0%	< 0.001	0.01
Readmission (%)	12.1%	11.4%	9.5%	12.5%	10.5%	0.61	0.66

^a For the comparison of ANH use.

^b For the comparison across ANH volume categories.

Which Hb will be reached?

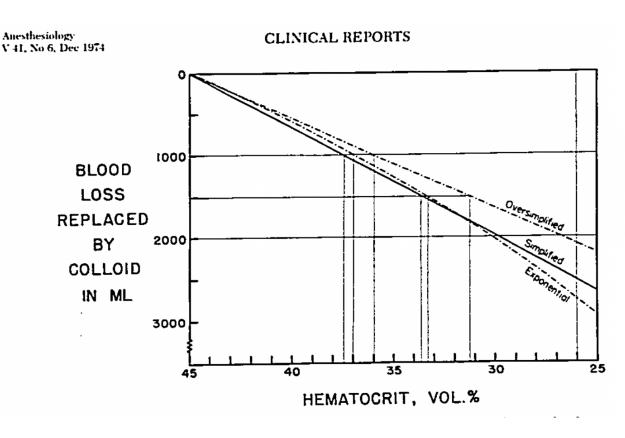
Mathematical and computer modeling of acute normovolemic hemodilution

M.E. BRECHER AND M. ROSENFELD

Background: Advocates of acute normovolemic hemodilution (ANH) frequently neglect to consider the decreasing hematocrit of the patient during both hemodilution and the subsequent operative procedure and the need to begin transfusion at some minimal hematocrit.

Table 1. Units of RBCs saved in typical examples of ANH* and the number of units of blood collected during ANH

Units calls	Number of units saved										
		Mini	mum Hct (EBV (mL)			Minimum Hct 0.18† EBV (mL)					
	1500	2000	2250	2500	1000	1500	2000	2250	2500		
	0.14	0.20	0.25	0.25	0.24	0.14	0.20	0.25	0.27	0.30	
	0.26	0.38	0.43	0.42	0.40	0.26	0.38	0.48	0.53	0.57	
	0.38	0.50	0.53	0.52	0.50	0.38	0.54	0.69	0.75	0.82	
	0.45	0.55	0.58	0.56	0.54	0.48	0.69	0.88	0.96	1.03	
Ection	0.45	0.55	0.57	0.56	0.54	0.58	0.83	1.04	1.11	1.17	


THE at which the remaining the state of the

may apply to the use of ANH. If, as our modeling predicts, there is little advantage to the use of ANH, we must seriously question whether we are unnecessarily placing patients at risk by decreasing their Hct in the period immediately before operation and by allowing further lowering of Hct during the surgical procedure.

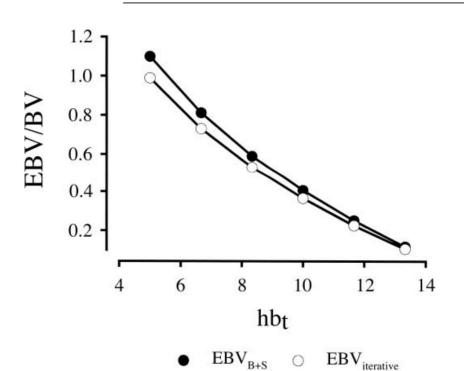
Which Hb will be reached?

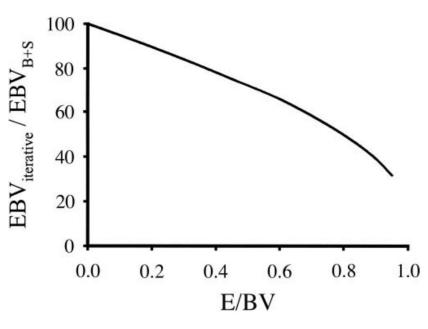
$$EBV = BV \times \ln\left(\frac{hb_0}{hb_t}\right)$$

Blood loss = estimated volume × the natural logarithm of the ratio of initial to final hematocrit.

Are these calculations correct?

Acta Anaesthesiol Scand 2003; 47: 37-45 Printed in Denmark. All rights reserved Copyright © Acta Anaesthesiol Scand 2003


ACTA ANAESTHESIOLOGICA SCANDINAVICA


0001-6340

New mathematical model for the correct prediction of the exchangeable blood volume during acute normovolemic hemodilution

J. MEIER¹, M. KLEEN², O. HABLER², G. KEMMING^{1,2} and K. MESSMER¹

¹Institute for Surgical Research, ²Clinic of Anesthesiology, Klinikum Großhadern, Ludwig-Maximilians-University Munich, Germany

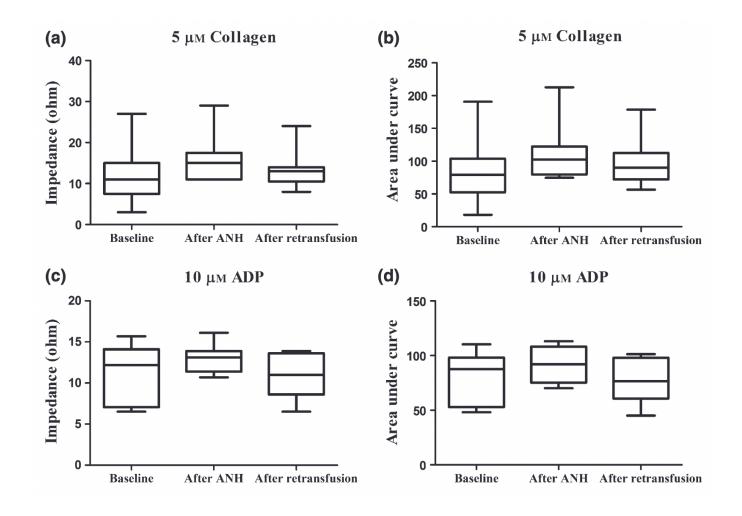
Meier, Acta Anaesth Scand, 2003

What makes ANH effective?

- 1. High starting Hb
- 2. Low target Hb
- 3. Huge blood volume
- 4. Significant perioperative blood loss

RADIOMETER ABL800 FLEX ABL825 13H1 PATIENTENBERICHT Probe Nr. Spritze - S 195 µL Identifikation Patienten ID Nachname (Pat.) Vorname (Pat.) Arteriell Probentyp Probenart Blutgas Ergebnis 40,7 Säure Basen Status cBase(B)c 1,2 cBase(Ecf)c 1,2 mmol/L AnionGap.K+ **FCOHb** FMetHb Elektrolyt Ergebnis mmol/l cCa2 mmol/L cCa21(7.4)c Metabolit Ergebnis cLac 0,9 mmol/L Temperatur Korrektion pH(T) $pO_2(T)$ $pCO_2(T)$ Sauerstoff Status pO₂(A-a)e Melaungen Kalkulierte(r) Wert(e) Astimierte(r) Wert(e) 0493 Warnung Bilirubin ermittelt und kompensiert

Effect of ANH on patients' coagulation



	Reference values	Baseline	After ANH
INTEM			
CT; s	100-240	169.0 (148.5–198.5 [114–212])	118.0 (103.5-122.5 [87.0-146.0])*
CFT; s	30-110	78.0 (64.5-86.5 [57.0-99.0])	92.0 (82.0-119.0 [73.0-159.0])*
α; °	70–83	74.0 (72.0-77.0 [65.0-79.0])	71.0 (64.0-73.5 [49.0-75.0])*
MCF; mm	50-72	60.0 (56.5-62.5 [33.0-63.0])	58.0 (51.0-59.0 [41.0-61.0])
EXTEM			
CT; s	38-79	40.0 (31.5-44.0 [22.0-48.0])	49.0 (44.5–58.5 [38.0–61.0])
CFT; s	34–159	80.0 (71.5-110.5 [69.0-397.0])	107.0 (96.5–137.0 [83.0–441.0])*
α; °	63–83	74.0 (70.0-76.0 [68.0-80.0])	69.0 (63.0-70.5 [37.0-73.0])*
MCF; mm	50–72	63.0 (56.0-66.0 [35.0-87.0])	57.0 (50.5–59.5 [38.0–62.0])*
FIBTEM			
MCF; mm	9–25	15.0 (10.0–18.0 [8.0–19.0])	9.0 (6.5–11.0 [5.0–11.0])*

Effect of ANH on patients' platelet function

Coagulation in the ANH blood

EXTEM	Reference range [11]	0	4 h	8 h	12 h	24 h
CT, s	42–74	67 ± 6	55 ± 5	61 ± 7	60 ± 3	64±6
CFT, s	46–148	111 ± 5	121 ± 11	133 ± 9	120 ± 9	$141 \pm 7**$
MCF, mm	49–71	62 ± 1	61 ± 1	$58 \pm 1***$	$56 \pm 2*$	$55 \pm 1***$
MCE, (G dynes/cm ²)/50	105–235	167±6	155 ± 4	139±6***	131±10*	121±5***

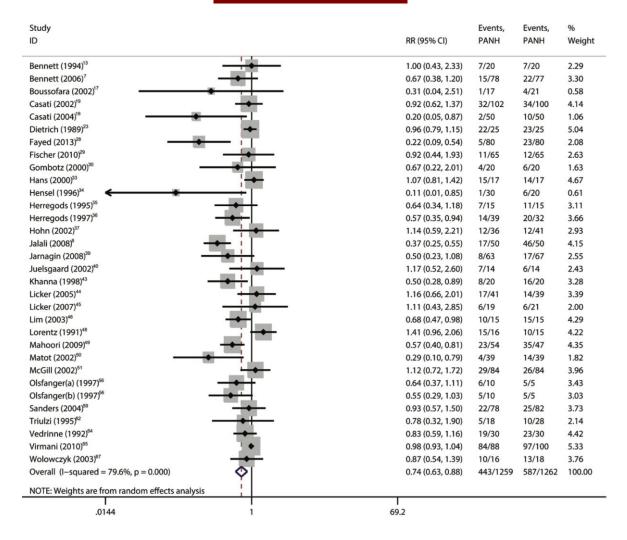
 $Mean \pm SEM$

CT clotting time CFT clot formation time, MCF maximum clot firmness, MCE maximal clot elasticity; *p < 0.05, **p < 0.01, ***p < 0.001vs. 0

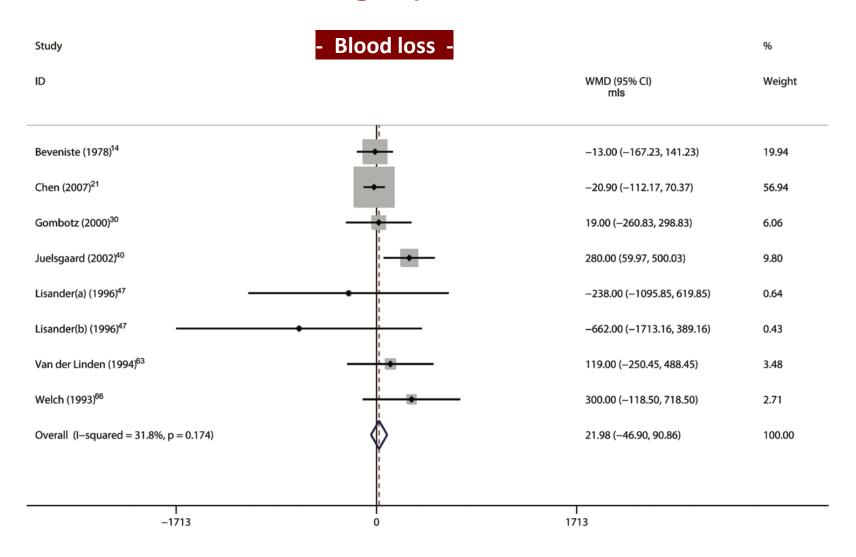
FIBTEM	Reference range [11]	0	4 h	8 h	12 h	24 h
CT, s MCF, mm MCE, (G dynes/cm ²)/50	43–69	59±3	56±5	61±4	47±4	52±3
	9–25	15±2	15±2	13±1	14±1	14±1
	13–27	18±2	19±4	15±2	17±2	16±1

 $Mean \pm SEM$

CT clotting time, CFT clot formation time, MCF maximum clot firmness, MCE maximal clot elasticity

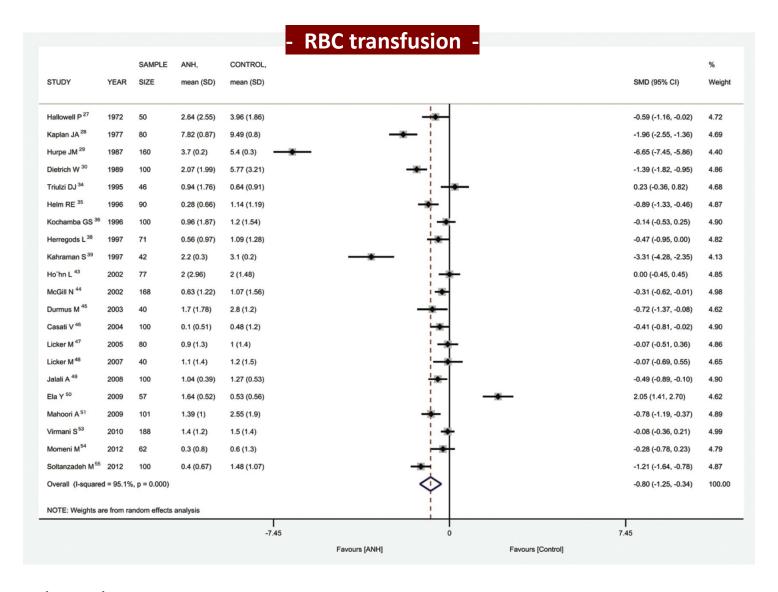

Kinoshita, J Anesth, 2021

Efficacy in non-cardiac + cardiac surgery


- RBC transfusion -

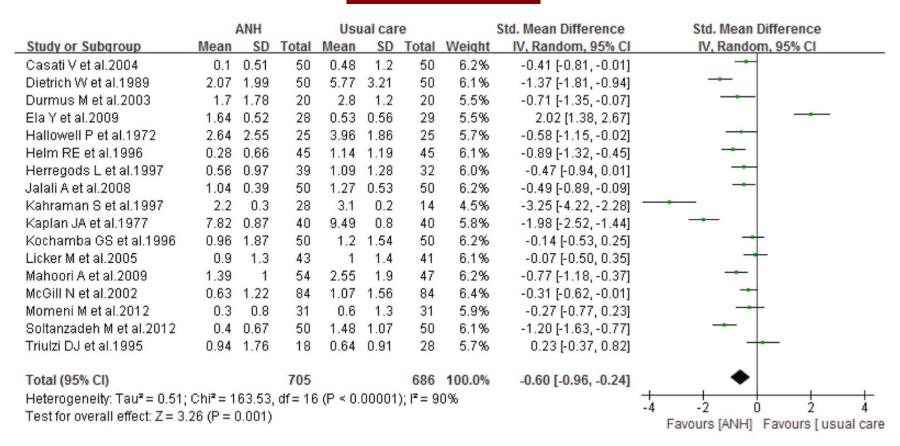
Efficacy in non-cardiac + cardiac surgery

Complications in non-cardiac + J cardiac surgery


Table 2. Adverse Ev	rents and Other Outcomes										
		PANH		Control		M-H pooled RR/I-V pooled WMD			Heterogeneity		
Events	Number of studies	n+	Total		Total	RR/WMD (95% CI)	z	P	χ²	I² (%)	P
Mortality	227,18,19,29,35-41,44,45,49,50,55,58,63-65	9	968	11	960	0.82 (0.37, 1.84)	0.48	0.634	3.04	0.0	0.80
Reoperation for bleeding	187,9,18,20,28,35,36,39,41,44,45,49,50,63,64,68	15	798	16	764	0.93 (0.49, 1.79)	0.21	0.836	4.93	0.0	0.90
Any infection	107,14,17,20,34,38,39,49,50,64	31	527	49	543	0.64 (0.42, 0.97)	2.08	0.037	7.66	21.6	0.26
Deep vein thrombosis	77,20,29,46,58,62,63	9	286	5	289	1.82 (0.63, 5.32)	1.10	0.271	0.51	0.0	0.92
Pulmonary embolus	97,19,20,29,46,47,62,63	4	333	2	331	1.56 (0.42, 5.75)	0.67	0.504	1.29	0.0	0.73
Stroke	1119,20,29,40,44-47,50,63	7	405	4	402	1.59 (0.53, 4.76)	0.83	0.408	0.78	0.0	0.94
Myocardial ischemia/ infarction	1818-20,29,36,37,39-41,44,45,47,50,63,64,67	9	646	10	634	0.90 (0.39, 2.04)	0.26	0.794	1.66	0.0	0.95
Renal dysfunction	918,19,40,44,45,47,50,65	15	353	24	351	0.61 (0.34, 1.11)	1.62	0.105	3.57	0.0	0.61
Length of hospital stay	7 ^{17,30,37,41,61,62}	129		134		-0.15 (-0.89, 0.58)	0.41	0.679	2.65	0.0	0.85

n+ = The number of patient with adverse event; Total = the number of the total patients; RR = relative risk; WMD = weighted mean difference; MH = Mantel-Haenszel; I-V = inverse-variance.

Efficacy in cardiac surgery



Efficacy in cardiac surgery

RBC transfusion -

Efficacy in cardiac surgery

Estimated blood loss -

		ANH	•	C	ontrol			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Boldt J et al.1991	840	350	15	1,080	320	15	5.5%	-0.70 [-1.44, 0.04]	
Casati V et al.2004	375	168	50	350	106	50	6.6%	0.18 [-0.22, 0.57]	+
Dietrich W et al.1989	1,858	241	50	1,929	249	50	6.6%	-0.29 [-0.68, 0.11]	
Ela Y et al.2009	259	38	28	388	46	29	5.4%	-3.01 [-3.78, -2.24]	
Hallowell P et al.1972	961	489	25	1,110	602	25	6.1%	-0.27 [-0.82, 0.29]	
Helm RE et al.1996	855	321	45	868	321	45	6.5%	-0.04 [-0.45, 0.37]	+
Herregods L et al.1997	965	470	39	1,295	600	32	6.3%	-0.61 [-1.09, -0.13]	
Jalali A et al.2008	561	300	50	536	339	50	6.6%	0.08 [-0.31, 0.47]	+
Kahraman S et al.1997	592	70	21	712	79	21	5.6%	-1.58 [-2.28, -0.88]	
Kaplan JA et al.1977	825	84	40	825	84	40	6.5%	0.00 [-0.44, 0.44]	+
Kochamba GS et al.1996	696	311	50	916	410	50	6.6%	-0.60 [-1.00, -0.20]	
Licker M et al.2005	623	108	41	567	137	39	6.4%	0.45 [0.01, 0.90]	-
Mahoori A et al.2009	871	48	54	975	59	47	6.3%	-1.93 [-2.41, -1.46]	
McGill N et al.2002	852	526	84	796	443	84	6.8%	0.11 [-0.19, 0.42]	 -
Triulzi DJ et al.1995	475	192	18	735	519	28	5.9%	-0.60 [-1.21, 0.00]	
Zisman E et al.2009	732	205	27	820	413	35	6.3%	-0.26 [-0.76, 0.25]	
									•
Total (95% CI)			637			640	100.0%	-0.53 [-0.88, -0.17]	•
Heterogeneity: Tau² = 0.46;	$Chi^2 = 1$	41.60	, df = 1	5(P < 0	.0000	1); I² = .	89%		-4 -2 0 2 4
Test for overall effect: $Z = 2$.	88 (P = I	0.004)	E.						Favours [ANH] Favours [control]
									r avours [Aiviri] T avours [control]

ANH – when should it be used in cardiac surgery?

ANH acceptable with these conditions

Pre-autologous donation Left main stenosis in a stable compensated cardiac surgery patient Previous cardiac surgery Anticipated prolonged cardiopulmonary bypass (e.g., >2.5 hours)

SABM standards and best practice for acute normovolemic hemodilution

Unstable angina

Symptomatic LV dysfunction Presence of symptomatic CV disease Severe AS Combination of CAD and severe AS Emergency surgery Severe COPD Hypoxemia (e.g., O₂sat <90% on room air) Severe pulmonary HTN History of CVA Presence of carotid stenosis (>70% stenosis)

Presence of renal insufficiency (GFR <60)

Presence of hemoglobinopathy

Presence of significant coagulopathy (history of spontaneous or challenged bleeding and/or high risk of bleeding

No ANH

Hemodynamically significant arrhythmia Presence of acute infection (i.e., bacteremia or sepsis)

Conclusion

- ANH results in an anemic patient that looses less HB during bleeding
- Harvested blood can be given back at the end of surgery
- ANH is effective if Hb₀ is high, Hb_{target} is low, BV is high and bleeding is substantial
- Today ANH is often used in cardiac surgery
- ANH is effective in cardiac surgery
- ANH is safe in cardiac surgery
- In case of diminished anemia tolerance ANH is not advised.

ANH – ancient or modern?

Europ. Surg. Res. 4: 55-70 (1972)

Acute Normovolemic Hemodilution

Changes of Central Hemodynamics and Microcirculatory Flow in Skeletal Muscle¹

K. Messmer, D. H. Lewis, L. Sunder-Plassmann, W. P. Klövekorn, N. Mendler and K. Holper

Institute for Surgical Research, Surgical University Clinic, Munich, and Department of Surgery I, University of Gothenburg, Gothenburg

Abstract. Isovolemic hemodilution down to hematocrit values of 10% has been performed in splenectomized dogs during pentobarbital anaesthesia. Circulatory changes were followed in the systemic circulation; for the estimation of capillary flow and capillary transport in skeleteal muscle a double isotope technic has been applied. Progressive hemodilution resulted

Key Words
Oxygen transport capacity
Oncotic properties of dextran-60
In vivo viscosity
Capillary transport
51Cr-EDTA clearance
Limited hemodilution

in a significant increase of cardiac output and skeletal muscle flow; peripheral resistance decreased clearly parallel with the whole blood viscosity as measured at different shear rates. The transport capacity (PS) in skeletal muscle was not significantly changed. From this finding and from the lack of changes in the local effluent blood it is concluded that hypoxia does not occur when limited hemodilution is performed normovolemically. These data, therefore, add further support to the concept of limited hemodilution as a therapeutic tool in microcirculatory disorders.

The interest in the relationship of hematocrit and blood viscosity in vivo has been greatly stimulated by viscometric findings of recent years. By different groups it has been demonstrated that acute changes in hematocrit are followed by an increase in cardiac output [19, 21, 24]

¹ Paper presented at the 6th Congres of the European Society for Experimental Surgery, Hälsingborg, April 1971. International Journal of Surgery 83 (2020) 131-139

ELSEVIER

International Journal of Surgery

journal homepage: www.elsevier.com/locate/ijsu

Review

Effect of acute normovolemic hemodilution on coronary artery bypass grafting: A systematic review and meta-analysis of 22 randomized trials

Shengping Li a, Yulin Liu b,*, Ying Zhu b

^a Department of Anesthesiology, Jingzhou Central Hospital, Jingzhou, 434020, China

ARTICLE INFO

Keywords: Acute normovolemic hemodilution Coronary artery bypass grafting Blood loss Transfusion

ABSTRACT

Background: Efficacy of minimal acute normovolemic hemodilution (ANH) in avoiding homologous blood transfusion during cardiovascular surgery remains controversial. Distoperative bleeding and transfusion remain a source of morbidity and cost after open heart operations. To better understand the role of acute normovolemic hemodilution (ANH) in coronary artery bypass grafting (CABG), we compared ANH with standard intraoperative care in a systematic review including a standard pairwise meta-analysis of randomized controlled trials (RCTs). Wethods: We searched the Cochrane Library, PubMed, EMBASE, Web of Science and Chinese National Knowledge Infrastructure (CNKI) up to April 1, 2020. The primary outcome was to assess the incidence of ANH-related number of allogeneic red blood cell units (ARBCu) transfused. Secondary outcomes included the rate of allogeneic blood transfusion and estimated total blood loss.

Results: A total of 22 RCTs including 1688 patients were identified for the present meta-analysis. Of these studies, 19 were about CABg with on-pump and three with off-pump. Our pooled result indicated that patients received ANH experienced fewer ARBCu transfusions, with a standardized mean difference (SMD) σ -0.60 (98%CI -0.96 to -0.24; P = 0.001). The rate of allogeneic blood transfusion in ANH group was significant reduced when compared with controls, with a relative risk (RR) of 0.65 (95%CI 0.52 to 0.82; P = 0.0002). In addition, less postoperative estimated total blood loss was present, with a SMD of -0.53 (95%CI -0.88 to -0.17; P = 0.004). Conclusions: The present meta-analysis indicated that ANH could reduce the number of ARBCu transfused in the CABG surgery setting. In addition, ANH could also reduce the rate of ARBCu transfusion and estimated total blood loss for CABG patients.

1. Introduction

In cardiac surgery, postoperative bleeding accounts for 15%-20% of total transfusion request, within a national blood supply range [1]. Allogeneic red blood cell units (ARBCu) transfusions as a safeguard for surgical bleeding, however, are associated with a worse short- and long-term outcome [1,2]. However, there is an additive risk of mortality and cardiac adverse events for each unit transfused [3–6]. Satisfactory control of major bleeding in operation and management of blood losses can reduce the proportion of transfused patients and post-operative re-interventions rate [7,8]. Although there were guideline indications and numerous approaches to reduce bleeding and to lower hemoglobin transfusion threshold at present, it was estimated that approximately more than 50% of the patients undergoing coronary artery bypass

grafting (CABG) experienced transfusions [9,10]. Thus, additional different approaches, acute normovolemic hemodilution (ANH), could be a valid alternative. However, it is still controversial as to whether ANH is capable of reducing the need for allogeneic blood and for exerting a positive effect on morbidity and mortality.

ANH is performed by drawing a specific amount of blood volume from the patient, hydrating the patient to maintain isovolemia, storing patient's blood in storing bags at room temperature with anticoagulants, and re-administering it during surgery, usually after cardiopulmonary bypass (CPB) or according to the patient's need. ANH may be beneficial to a reduction of risk of adverse reactions related to transfusion of allogeneic blood products, preservation of erythrocytes from CPB damage, enhancing coagulation with the possibility of re-administering the patient's whole blood containing clotting factors and platelets, and

Received: September 10, 1971; accepted: September 28, 1971.

b Department of Anesthesia, Chongqing Emergency Medical Center (Chongqing University Central Hospital), Chongqing, 400014, China

^{*} Corresponding author. Department of Anesthesia, Chongqing Emergency Medical Center (Chongqing University Central Hospital), No., Jiankang Road, Chongqing. 400014. China.