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1. Introduction

In this paper we want to present a quite general version of Kirillov’s orbit method

for the representations of second countable locally compact nilpotent groups, which

resulted out of an attempt to understand the results of Howe in [20]. In particular,

we wanted to understand Howe’s version of a Kirillov theory for unipotent groups

over function fields with “small” nilpotence length, which might be useful in the

study of the Baum-Connes conjecture for linear algebraic groups over such fields,

following the ideas of [10]. Although we have to admit that we still struggle with

some details in Howe’s paper, we learned enough from his ideas to find a way to

formulate a quite general version of Kirillov’s theory which covers a big class of

nilpotent locally compact groups, containing

1. connected and simply connected real nilpotent Lie groups (the classical

situation studied by Kirillov [26]);

2. unipotent groups over Qp (which have been studied by Moore in [27] and by

Boyarchenko and Sabitova in [6]);
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3. Quasi-p groups with “small” nilpotence length (studied by Howe in [20]; but

see also [6]);

4. countable torsion free divisible groups (which have been studied by Carey,

Moran and Pearce in [8, 9]).

Following the ideas of Howe in [20] we will generalize the notion of a Lie group

by generalizing the classical notion of a Lie algebra. For this we introduce the

notion of nilpotent k -Lie pairs (G, g) for some k ∈ N∪{∞} in which G is a

locally compact nilpotent group of nilpotence length l ≤ k and g is a Lie algebra

over the ring Λk := Z[ 1
k!

] if k ∈ N and Λk := Q if k = ∞ such that G and

g can be identified via a bijective homeomorphism exp : G → g which satisfies

the Campbell-Hausdorff formula. In order to make things work, we need some

other technical ingredients, which are explained in detail in §4 below. A very

important one is the existence of a locally compact Λk -module m together with a

basic character ε : m→ T such that the dual g∗ := HomΛk(g,m) is isomorphic to

the Pontrjagin dual ĝ of the (locally compact) Lie algebra g via the map

g∗ → ĝ; f 7→ ε ◦ f.

We then say that (G, g) is (m, ε)-dualizable. For instance, if G is a classical

connected and simply connected nilpotent Lie group with Lie algebra g , then

(G, g) becomes an (R, ε)-dualizable nilpotent k -Lie pair for any k ≥ 2 by taking

ε : R→ T to be the basic character ε(t) = e2πit (but any other character of R will

do the job, too).

Having these data, then for each f ∈ g∗ we can define in a more or less

straightforward way the concept of standard polarizing subalgebras r of g such that

f determines a character ϕf ∈ R̂ for R = exp(r), and, using the ideas of Kirillov

and Howe, we can show that the induced representations indGR ϕf are always

irreducible. So far, everything works almost as in the classical Lie group case.

But in our general setting, we cannot expect that every irreducible representation

is induced, and it is also not clear that the induced representation indGR ϕf is

independent of the choice of the standard polarization r . However, it turns out

that the primitive ideal Pf := ker(indGR ϕf ) in the primitive ideal space Prim(G) of

the group C*-algebra C∗(G) of G is independent of the choice of r . We therefore

get a well-defined Kirillov map

κ : g∗ → Prim(G); f 7→ Pf = ker(indGR ϕf ).

There is a canonical coadjoint action Ad∗ : G → GL(g) and it is easily checked

that the Kirillov map κ is constant on Ad∗(G)-orbits in g∗ . Moreover, we shall

see that κ is always continuous with respect to the given topology on g∗ ∼= ĝ , so

that the Kirillov map will actually be constant on Ad∗(G)-quasi orbits in g∗ (two

elements f, f ′ ∈ g∗ lie in the same Ad∗(G)-quasi orbit if and only if f ∈ Ad∗(G)f ′
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and f ′ ∈ Ad∗(G)f — we then write f ∼ f ′ ). We therefore obtain a well defined

continuous map

κ̃ : g∗/∼ → Prim(G); [f ] 7→ Pf ,

which we call the Kirillov-orbit map. The main results of this paper are the

following:

Theorem 1.1. Let (G, g) be an (m, ε)-dualizable nilpotent k -Lie pair. Then

the Kirillov-orbit map κ̃ : g∗/∼ → Prim(G) is continuous and surjective.

Unfortunately, we can show injectivity of the Kirillov-orbit map only under

the additional assumption, that the sum h + n of two closed subalgebras h, n ⊆ g

with [h, n] ⊆ n is again closed in g . If this is satisfied, we say that (G, g) is regular.

It is easy to check that all examples mentioned in the above list are regular. For

regular Lie pairs (G, g) we can use ideas of Joy [23] to prove

Theorem 1.2. Suppose that (G, g) is a regular (m, ε)-dualizable nilpotent k -Lie

pair. Then the Kirillov-orbit map κ̃ : g∗/∼ → Prim(G) is a homeomorphism.

Of course, having these results, it is interesting to know under which condi-

tions the Kirillov orbit method not only computes the primitive ideals but also the

irreducible representations of G . Recall that it follows from Glimm’s famous theo-

rem (e.g., see [11, Chapter 12]) that an irreducible ∗-representation π : A→ B(Hπ)

of a separable C*-algebra A is completely determined by its kernel kerπ ∈ Prim(A)

if and only if its image contains the compact operators K(Hπ). We call such rep-

resentations GCR-representations. If, moreover, π(A) is equal to K(Hπ), we say

that π is a CCR-representation. Glimm’s result also implies that π is GCR (resp.

CCR) if and only if the singleton {π} is locally closed1 (resp. closed) in Â . For

representations of a second countable locally compact group G , these notations

carry over by the canonical identification of the unitary representations of G with

the ∗-representations of the group C*-algebra C∗(G). We are able to show:

Theorem 1.3. Suppose that (G, g) is a regular (m, ε)-dualizable k -Lie pair. Let

f ∈ g∗ such that Ad∗(G)f is locally closed (resp. closed) in g∗ . Then πf = indGR ϕf
is GCR (resp. CCR), where R = exp(r) for a standard f -polarizing subalgebra r

of g. In particular, if all Ad∗(G)-orbits are locally closed in g∗ , we obtain a well

defined homeomorphism

κ̂ : g∗ /Ad∗(G)→ Ĝ; Ad∗(G)f 7→ πf

The paper is organized as follows: after this introductory section we start

in §2 with some preliminaries on induced representations of groups and the Fell

1Recall that a subset Y of a topological space X is called locally closed if Y is open in its

closure Y .
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topology on the spaces of all equivalence classes of unitary representations. After

that, in §3 we proceed with some material on representations of general nilpotent

groups and, in particular, two-step nilpotent groups, which provides the base for

the following sections. Most of the material in that section is based on work

of Howe in [20] and might be well-known to the experts, but for completeness

and for the readers convenience we decided to present complete proofs. In §4 we

introduce our notion of (m, ε)-dualizable k -Lie pairs, and we present some of the

basic properties, before we construct the Kirillov map in §5. The main results on

(bi)-continuity and bijectivity of the Kirillov-orbit map are presented in §6. In

§7 we give the proof of Theorem 1.3. The examples listed above are discussed in

detail in §8 before we close this paper with some technical details on the Campbell-

Hausdorff formula which are needed in the body of the paper.

We should note that there is a vast literature on Kirillov-type theorems for

nilpotent groups including some important results for finitely generated groups

which are not covered by our results (e.g., see [21, 1, 2, 25]).

This paper is partly based on the doctoral thesis of the second named author

which was written under the direction of the first named author.

2. Some preliminaries on induced representations

Let G be a locally compact group, H a closed subgroup of G , q : G → G/H

the canonical quotient map, and σ a unitary representation of H on the Hilbert

space Hσ . Let us briefly recall the definition of the induced representation indGH σ

of G , where we want to use Blattner’s construction as introduced in [3]. As a

general reference we refer to Folland’s book [17]. Let γ : H → (0,∞) be given by

γ(h) = (∆G(h)/∆H(h))
1
2 where ∆G and ∆H denote the modular functions of G

and H , respectively. Note that nilpotent locally compact groups are unimodular

(see [20, Corollary 2]), so that the function γ will be trivial in the body of this

paper. Let

Fσ : = {ξ ∈ C(G,Hσ) | q(supp(f)) ⊆ G/H is compact, and

ξ(xh) = γ(h−1)σ(h−1)ξ(x) for x ∈ G, h ∈ H}.

If β : G → [0,∞) is a Bruhat section for G/H , we may define an inner product

〈ξ, η〉 ∈ C for ξ, η ∈ Fσ by

〈ξ, η〉 :=

∫
G

β(x)〈ξ(x), η(x)〉σ dµ(x). (1)

We denote by Hindσ the Hilbert space completion of Fσ with respect to this inner

product. The induced unitary representation indGH σ of G on Hindσ is then given

by (
indGH σ(x)ξ

)
(y) = ξ(x−1y).
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Remark 2.1. The following basic properties of the induced representation can

be found in Folland’s book [17]. We shall use them throughout without further

reference:

(a) (Induction in stages) Suppose L ⊆ H ⊆ G are closed subgroups of G , then

indGL σ
∼= indGH(indHL σ).

(b) (Induction-restriction) If π is a unitary representation of G and σ a unitary

representation of H ⊆ G , then indGH(π|H ⊗ σ) ∼= π ⊗ indGH σ . In particular, with

σ = 1H , we get indGH(π|H) ∼= indGH 1H ⊗ π .

(c) Let L be a closed normal subgroup of G and let H be a closed subgroup of

G with L ⊆ H . Then

indGH(σ ◦ q) ∼= (ind
G/L
H/L σ) ◦ q,

for any unitary representation σ of H/L , where q : G→ G/L denotes the quotient

map.

(d) If π is a representation of the closed subgroup H of G and x ∈ G , then

indGxHx−1(x ·π) ∼= indGH π , where x ·π denotes the unitary representation of xHx−1

defined by x · π(y) = π(x−1yx).

If H is a closed subgroup of G , then G acts on C0(G/H) by left translation.

A covariant representation of the C*-dynamical system (G,C0(G/H)) consists

of a pair (π, P ), where π : G → U(Hπ) is a unitary representation of G and

P : C0(G/H)→ B(Hπ) is a non-degenerate ∗-representation on the same Hilbert

space such that

P (x · ϕ) = π(x)P (ϕ)π(x−1)

for all ϕ ∈ C0(G/H) and x ∈ G , where x · ϕ(yH) = ϕ(x−1yH). By Schur’s

lemma, a covariant representation (π, P ) is irreducible, iff every intertwiner for

the pair (π, P ) is a multiple of the identity.

If σ is a unitary representation of H , then σ induces to a covariant rep-

resentation (indGH σ, P
σ), where indGH σ is the induced representation as explained

above, and P σ : C0(G/H) → B(Hindσ) is given by
(
P σ(ϕ)ξ

)
(x) = ϕ(xH)ξ(x).

Note that any intertwiner T : Hσ → Hρ for two unitary representations σ and ρ

of H induces an intertwiner T̃ for the induced covariant pairs (indGH σ, P
σ) and

(indGH ρ, P
ρ) via (T̃ ξ)(x) = T (ξ(x)). We shall make extensive use of

Theorem 2.2 (Mackey’s imprimitivity theorem). The assignment

σ 7→ (indGH σ, P
σ)

induces a bijective correspondence between the collection Rep(H) of all equivalence

classes of unitary representations of H and the collection Rep(G,C0(G/H)) of all

equivalence classes of covariant representations of (G,C0(G/H)). Moreover, the

induced pair (indGH σ, P
σ) is irreducible if and only if σ is irreducible.

We shall later need the following lemma. It might be well-known to experts,

but by lack of a reference, we shall give the proof.
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Lemma 2.3. Suppose that G is a locally compact group, R and N are closed

subgroups of G such that N is normal and G = NR is the product of N and R .

Suppose further that ∆R(r) = ∆G(r) for all r ∈ R . Then, if ρ is a representation

of R , then indNR∩N(ρ|R∩N) ∼= (indGR ρ)|N .

Proof. Since N is normal in G and N ∩R is normal in R , it follows from the

assumptions that (∆G(r)/∆R(r))
1
2 = 1 for all r ∈ R and (∆N(r)/∆N∩R(r))

1
2 =

(∆G(r)/∆R(r))
1
2 = 1 for r ∈ N ∩ R . It follows that the induced representation

indGR ρ acts on the Hilbert space completion of

FRρ := {ξ ∈ C(NR,Hρ) : ξ(xr) = ρ(r−1)ξ(x)

for all x ∈ NR, r ∈ R and ξ has compact support modulo R},
(2)

while indNN∩R(ρ|N∩R) acts on the Hilbert space completion of

FN∩Rρ := {ξ ∈ C(N,Hρ) : ξ(xr) = ρ(r−1)ξ(x)

for all x ∈ N, r ∈ R ∩N and ξ has compact support modulo N ∩R}
(3)

It is then straightforward to check that we obtain a bijective linear map

Φ : FN∩Rρ → FRρ ; ξ 7→ ξ̃

with ξ̃(nr) = ρ(r−1)ξ(n). It clear that this map preserves the left translation

action by N on both spaces. So the result will follow, if we can show that Φ

preserves the inner products on both spaces. For this let β : N → [0,∞) be a

Bruhat section for N/(N ∩R) and let ϕ ∈ Cc(R)+ such that
∫
R
ϕ(r) dr = 1. It is

then straightforward to check that

β̃ : NR→ [0,∞) : β̃(nr) =

∫
N∩R

β(nl)ϕ(l−1r) dl

is a Bruhat section for NR/R .

In order to compare Haar measures on NR and N we consider the semi-

direct product N o R given by the conjugation action of R on N . Then one

checks that

q : N oR→ NR; q(n, r) = nr

is a surjective homomorphism with ker q = {(r−1, r) : r ∈ N ∩ R} isomorphic

to N ∩ R via projection on the second component. Thus, using Weil’s integral

formula we get ∫
NoR

f(n, r) dn dr =

∫
NR

∫
N∩N

f(nl−1, lr) dl d(nr).
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Using this, we compute for ξ, η ∈ FRρ :

〈ξ, η〉 =

∫
NR

β̃(nr)〈ξ(nr), η(nr)〉 d(nr)

=

∫
NR

∫
N∩R

β(nl)ϕ(l−1r) dl 〈ξ(nr), η(nr)〉 d(nr)

=

∫
NoR

β(h)ϕ(r)〈ξ(nr), η(nr)〉 d(n, r)

=

∫
N

∫
R

β(n)〈ξ(n), η(n)〉ϕ(r) dr dn =

∫
N

β(n)〈ξ(n), η(n)〉 dn

= 〈Φ(ξ),Φ(η)〉.

Let us also recall the Fell topology and the notion of weak containment for

representations: In general, if A is a C∗ -algebra, then we denote by Rep(A) the

collection of all equivalence classes of nondegenerate ∗-representations of A . A

base of the Fell topology on Rep(A) is given by all sets of the form

U(π, I1, . . . , Il) = {ρ ∈ Rep(A) : ρ(Ii) 6= {0} for all 1 ≤ i ≤ l},

where I1, . . . , Il is any finite family of closed ideals in A . Restricted to Â , this

becomes the usual Jacobson topology on Â . Note that Rep(A) only becomes a

set, and hence a topological space, after restricting the dimensions of the repre-

sentations by some cardinal κ , but we can always choose this cardinal big enough,

so that all representations we are interesting in lie in Rep(A).

The Fell topology is closely related to the notion of weak containment of

representations: If π ∈ Rep(A) and Σ ⊆ Rep(A), then we say π is weakly

contained in Σ (written π ≺ Σ), if kerπ ⊇ ker Σ := ∩σ∈Σ kerσ . Two subsets

Σ1,Σ2 ⊆ Rep(A) are called weakly equivalent (written Σ1 ∼ Σ2 ) if every element of

Σ1 is weakly contained in Σ2 and vice versa. This is equivalent to ker Σ1 = ker Σ2 .

Restricted to Â , weak containment is same as the closure relation in Â with respect

to the Jacobson topology. Note also that every π ∈ Rep(A) is weakly equivalent

to its spectrum Sp(π) := {σ ∈ Â : σ ≺ π} and that Σ ∼
⊕

σ∈Σ σ for every

Σ ⊆ Rep(A).

Remark 2.4. The connection between weak containment and the Fell topology

is given by the following facts:

(a) A net πi converges to π in Rep(A) if and only if every subnet of πi weakly

contains π (see [15, Proposition 1.2]).

(b) If πi converges to π in Rep(A) and ρ ≺ π , then πi converges to ρ in Rep(A)

(see [15, Proposition 1.3]).

(c) Let (πi)i∈I be a net in Rep(A) with πi → π for some π ∈ Â . For every i ∈ I ,

let Di be a dense subset of Sp(πi). Then there exists a subnet (πλ)λ∈Λ of (πi)i∈I
and a net (ρλ)λ∈Λ in Â such that ρλ ∈ Dλ for all λ ∈ Λ and ρλ → π in Â (see

[30, Theorem 2.2]) .
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If G is a locally compact group, then the C∗ -group algebra C∗(G) of G is

defined as the enveloping C∗ -algebra of L1(G). If π is a unitary representation

of G , then π integrates to a ∗-representation of L1(G) via L1(G) 3 f → π(f) =∫
G
f(x)π(x) dx ∈ B(Hπ). This representation extends uniquely to C∗(G) and this

procedure gives a bijection between the set Rep(G) of all equivalence classes of

unitary representations of G and Rep(C∗(G)). The Fell topology and the notion of

weak containment on Rep(G) are defined via identifying Rep(G) with Rep(C∗(G))

in this way.

Remark 2.5. We list some useful facts about weak containment of group

representations:

(a) For ρ ∈ Rep(G) and Σ ⊆ Rep(G) with ρ ≺ Σ we have ρ ⊗ π ≺ Σ ⊗ π :=

{σ ⊗ π : σ ∈ Σ} (see [16, Theorem 1]).

(b) Suppose that N is a closed normal subgroup of G and ρ ∈ Rep(N). Then

(indGN ρ)|N ∼ {x · ρ : x ∈ G},

where x · ρ(n) = ρ(x−1nx) denotes the conjugate of ρ by x . In particular, we get

ρ ≺ (indGN ρ)|N .

(c) Let G be an amenable, locally compact group and let H be a closed subgroup

of G . Then π ≺ indGH(π|H) for all π ∈ Rep(G) (combine [19, Theorem 5.1] with

part (b) of Remark 2.1).

Note that if N is a normal subgroup of G , we have indGH 1N ∼= λG/N , the

left regular representation of G/N . If G/N is amenable, then λG/N is a faithful

representation of C∗(G/N) and hence weakly equivalent to Ĝ/N . Moreover, Ĝ/N

is weakly equivalent to D , for any dense subset D of Ĝ/N . Thus, as a (well-

known) corollary of the above, we get for all π ∈ Rep(G):

indGN(π|N) ∼= indGN 1N ⊗ π ∼= λG/N ⊗ π ∼ Ĝ/N ⊗ π ∼ D ⊗ π (4)

whenever D is a dense subset of Ĝ/N .

By the pioneering work of Fell we also know that weak containment is

preserved by induction and restriction of representations:

Theorem 2.6 ( [14]). Suppose that H is a closed subgroup of G, Σ ⊆ Rep(H)

and σ ∈ Rep(H). Then

σ ≺ Σ =⇒ indGH σ ≺ indGH Σ := {indGH τ : τ ∈ Σ}.

Similarly, if π ∈ Rep(G) and Π ⊆ Rep(G), then

π ≺ Π =⇒ π|H ≺ Π|H := {ρ|H : ρ ∈ Π}.
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3. Some results of Howe and two-step nilpotent groups

In this section we want to recall some general results on the representation the-

ory of nilpotent locally compact groups which are mainly due to Howe in [20].

Throughout this section suppose that G is a k -step nilpotent locally compact

group for some k ∈ N . We write

{e} = Z0 ⊆ Z1 ⊆ Z2 ⊆ · · · ⊆ Zk = G

for the ascending central series of G . We usually write Z for the center Z1 of

G . For two subsets A,B ⊆ G we write (A;B) for the subgroup generated by all

commutators (a; b) := aba−1b−1 with a ∈ A, b ∈ B .

If k ≥ 2, let A be any maximal abelian subgroup of Z2 and let N denote

the centralizer of A in G . Then N has nilpotence length at most k − 1 and we

obtain a nondegenerate bihomomorphism

Φ : G/N × A/Z → Z; (ẋ, ẏ) 7→ (x; y) = xyx−1y−1.

Recall that nondegeneracy means that the corresponding homomorphisms

G/N → Hom(A/Z,Z); ẋ 7→ Φ(ẋ, ·) and A/Z → Hom(G/N,Z); ẏ 7→ Φ(·, y)

are both injective. Now, if ψ ∈ Ẑ , we obtain a bicharacter

Φψ : G/N × A/Z → T; Φψ(ẋ, ẏ) = ψ
(
(x; y)

)
,

which is always nondegenerate if ψ is faithful on (G;A) ⊆ Z . Note that if Φψ is

nondegenerate, then the corresponding injective homomorphisms

G/N → Â/Z : ẋ 7→ Φψ(ẋ, ·) and A/Z → Ĝ/N : ẏ 7→ Φψ(·, ẏ), (5)

have both dense range. To see this, suppose that Λ ⊆ Â/Z is the closure of the

image of G/N under the first homomorphism in (5). Then Λ = L⊥ for some

closed subgroup L of A/Z , and one easily checks that L lies in the kernel of the

second homomorphism in (5). Thus L = {e} must be trivial and Λ = Â/Z .

Let us also remind the reader that it follows from Schur’s lemma, that for

every irreducible representation of G there exists a unique character ψπ ∈ Ẑ such

that π|Z = ψπ · 1Hπ . Of course, if π is faithful on (G;A) ⊆ Z , the same holds for

ψπ . The following proposition is a slight reformulation of [20, Proposition 5]. For

completeness, we give a proof.

Proposition 3.1. Suppose that G is a second countable nilpotent locally com-

pact group. Let Z,A and N be as above and suppose that π ∈ Ĝ with cen-

tral character ψ = ψπ such that π is not one-dimensional and the bicharacter

Φψ : G/N × A/Z → T is nondegenerate (which is automatic if π , and hence ψ ,

is faithful on (G,A) ⊆ Z ). Then there exists some ρ ∈ N̂ with ρ|Z ∼ ψ , indGN ρ

is irreducible and kerπ = ker(indGN ρ) in C∗(G).
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We devide the argument into two lemmas:

Lemma 3.2. Let π ∈ Ĝ, ψ ∈ Ẑ and N be as in the proposition. Then

kerπ = ker(indGN(π|N)).

Proof. For each y ∈ A let χy = Φψ(·, y) ∈ Ĝ/N . Then {χy : y ∈ A} is dense

in Ĝ/N . For y ∈ A and x ∈ G we compute

χy(x)π(x) = ψ(yxy−1x−1)π(x) = π(yxy−1x−1)π(x) = π(y)π(x)π(y−1)

so that χy ⊗ π is unitarily equivalent to π . Now, by Equation (4) we have

indGN(π|N) ∼ Ĝ/N ⊗ π ∼ {χy ⊗ π : y ∈ A} ∼ π.

If A,N ⊆ G are as above, then the center of N contains the center Z of

G and therefore the central character ψρ restricts to some character ψ of Z . We

then get

Lemma 3.3. Suppose that G,A and N are as above and let ρ ∈ N̂ such that

the central character ψρ of ρ restricts to ψ ∈ Ẑ such that Φψ : G/N × A/Z → T
is nondegenerate. Then π := indGN ρ is irreducible with central character ψπ = ψ .

Proof. Let T ∈ B(Hind ρ) be any intertwiner for indGN ρ . We show that T also

intertwines the multiplication operators P ρ(ϕ) : Hind ρ → Hind ρ , ϕ ∈ C0(G/N),

given by P ρ(ϕ)ξ = ϕ · ξ . Since ρ is irreducible, it will then follow from Mackey’s

imprimitivity theorem and Schur’s lemma that T is a multiple of the identity, and

hence that indGN ρ is irreducible.

Since any ϕ ∈ C0(G/N) can be approximated in norm by Fourier-transforms

of integrable functions on Ĝ/N , it suffices to show that T intertwines the mul-

tiplication operators P ρ(χ) for all χ ∈ Ĝ/N . By density, this will follow if T

intertwines all operators P ρ(χy), y ∈ A , with χy = Φψ(·, ẏ). To see that this

is the case, observe first that ρ|Z = ψπ · 1Hρ . Indeed, the restriction of ρ to the

center Z of G coincides with the restriction of x · ρ to Z for all x ∈ G . Since

restriction preserves weak containment, this implies that

ρ|Z ∼ {(x · ρ)|Z : x ∈ G} ∼ π|Z

from which the claim follows. Now, for y ∈ A , x ∈ G and ξ ∈ Hind ρ we get

ρ(y−1)
(

indGN ρ(y)ξ
)
(x) = ρ(y−1)ξ(y−1x) =

ξ(xx−1y−1xy) = ρ(y−1x−1yx)ξ(x) = χy(x)ξ(x).

Since A lies in the center of N , we have ρ(y−1) = ψρ(y
−1) IdHρ is a multiple of

the identity. Thus the above computation implies P ρ(χy) = ψρ(y
−1) · indGN ρ(y)

and hence T intertwines P ρ(χy) for all y ∈ A .

The last assertion follows from the fact that ρ ≺ {x · ρ : x ∈ G} ∼ π|N ,

and hence ρ|Z ≺ π|Z .
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Above and in the following proof of the proposition we use the fact that

for two characters χ, µ of an abelian locally compact group C we have χ ≺ µ ⇔
χ = µ . It follows from this that if π ∈ Ĝ and ψ ∈ Ĉ for some central closed

subgroup C of G , then:

ψ is the central character of π on C ⇔ ψ ∼ π|C ⇔ ψ ≺ π|C ⇔ π|C ≺ ψ.

Proof. [of Proposition 3.1] Since G is second countable, it follows from [18,

Theorem 2.1] that there exists some ρ ∈ N̂ with π|N ∼ {x · ρ : x ∈ G} . This

implies that ρ|Z ≺ π|Z ∼ ψ . It follows then from Lemma 3.3 that indGN ρ is

irreducible. Since indGN(x · ρ) ∼= indGN ρ for all x ∈ G we also get

indGN ρ ∼ indGN{x · ρ : g ∈ G} ∼ indGN(π|N) ∼ π

by Lemma 3.2.

Remark 3.4. We should also note that Proposition 3.1 together with an easy

induction argument on the nilpotence length of G implies that for any primitive

ideal P ∈ Prim(G) there exists a closed subgroup H of G and a character µ of H

such that ker(indGH µ) = P . We refer to the original argument in [20, Proposition

5] for the details.

If G is a locally compact group with center Z , then it follows from the fact

that restriction of representations preserves weak containment that the central

character ψπ ∈ Ẑ for any π ∈ Ĝ only depends on the kernel ker π ∈ Prim(G).

Thus we may write ψP instead of ψπ if P = ker π and we obtain a natural

decomposition as a disjoint union

Prim(G) =
⋃
ψ∈Ẑ

Pψ, with Pψ = {P ∈ Prim(G) : ψP = ψ} for ψ ∈ Ẑ. (6)

We now want to study the sets Pψ more closely in case where G is two-step

nilpotent. For this we want to introduce some notation: If ψ ∈ Ẑ , then a closed

subgroup A ⊆ G is called subordinate to ψ if

ψ
(
(x; y)

)
= 1 for all x, y ∈ G.

If Aψ is maximal with this property, then Aψ is called a polarizing subgroup for

ψ . Note that Aψ always contains Z and it is not difficult to check that Aψ is a

polarizing subgroup for ψ ∈ Ẑ if and only if Aψ/Kψ is a maximal abelian subgroup

of G/Kψ , if Kψ denotes the group kernel of ψ in Z . Moreover, if we define the

symmetrizer Zψ of ψ as

Zψ = {x ∈ G : ψ
(
(x; y)

)
= 1 for all y ∈ G},

then Zψ/Kψ is the center of G/Kψ . The following proposition is well-known (e.g.

see [24, Lemma 2] or [28]). However, for the readers convenience, we include a

proof.
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Proposition 3.5. Let G be a two-step nilpotent locally compact group and for

ψ ∈ Ẑ let Kψ, Zψ as above and let Aψ ⊆ G be any ψ -polarizing subgroup for ψ .

Let

Zψ := {χ ∈ Ẑψ : χ|Z = ψ} and Aψ = {µ ∈ Âψ : µ|Z = ψ}. Then the fol-

lowing are true

1. The map indψ : Zψ :→ Pψ;χ 7→ ker(indGZλ χ) is a well defined homeomor-

phism.

2. indGAψ µ is irreducible for all µ ∈ Aψ and ker(indGAψ µ) = ker
(

indGZψ(µ|Zλ)
)
.

As a direct corollary of this result we get

Corollary 3.6. Let G be a two-step nilpotent locally compact group and let Aψ
and Bψ be two polarizing subgroups for some given ψ ∈ Ẑ . Let χ ∈ Âψ and

µ ∈ B̂ψ such that χ|Zψ = µ|Zψ . Then indGAψ χ ∼ indGBψ µ.

The proof of Proposition 3.5 will follow from

Lemma 3.7. Suppose G is a two-step nilpotent locally compact group and

suppose that C is a closed subgroup of Z = Z(G) which contains the commutator

subgroup (G;G). Let ψ ∈ Ĉ be a faithful character of C and let A be a maximal

abelian subgroup of G. Let Pψ denote the set of primitive ideals of G with central

character ψ on C (i.e., we have ψ = ψP |C if ψP ∈ Ẑ denotes the central character

of P ) and let Zψ = {χ ∈ Ẑ : χ|C = ψ} and Aψ = {µ ∈ Â : µ|C = ψ}. Then

1. The map indψ : Zψ :→ Pψ;χ 7→ ker(indGZ χ) is a well defined homeomor-

phism.

2. indGA µ is irreducible and ker(indGA µ) = ker
(

indGZ(µ|Zλ)
)

for all µ ∈ Aψ .

Proof. Since G is two-step nilpotent, it follows that A coincides with its

centralizer N in G . Since ψ is faithful on (G;G), the same is true for any character

µ ∈ Aψ . Thus, it follows then from Lemma 3.3 that indGA µ is irreducible for all

such µ with ker(indGA µ) ∈ Pψ . Let χ := µ|Z and let Aχ = {ν ∈ Â : ν|Z = χ} .
Then indAZ χ = indAZ(µ|Z) ∼ Â/Z ⊗ µ = Aχ . Since χ is faithful on (G;G) we also

see that the map G/A→ Â/Z; ẋ 7→ µx with µx(y) = χ
(
(x; y)

)
has dense range in

Â/Z . For x ∈ G and y ∈ A we get

(x · µ⊗ µ̄)(y) = µ(xyx−1)µ(y) = µ(xyx−1y−1) = χ(xyx−1y−1) = µx(y)

from which it follows that the orbit {x · µ : x ∈ G} = {µx ⊗ µ : x ∈ G} is dense

in Â/Z ⊗ µ = Aχ ∼ π|A . Thus we get

indGZ χ = indGA(indAZ χ) ∼ indGAAχ ∼ indGA{x · µ : x ∈ G} ∼ indGA µ,
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since indGA(x · µ) ∼= indGA µ for all x ∈ G .

Combining the above results we get (2) and we see that the map in (1) is

a well defined injective map. To see that it is surjective, it suffices to show that

for each π ∈ Ĝ with central character χ ∈ Zψ and for each µ ∈ Aχ we have

π|A ∼ {x · µ : x ∈ G} , since it follows then from Lemma 3.2 that

π ∼ indGA(π|A) ∼ indGA{x · µ : x ∈ G} ∼ indGA µ.

By what we saw above, the desired result is equivalent to the statement π|A ∼ Aχ .

To see that this is true note first that for any fixed µ ∈ Aχ we have

π|A ≺ indAZ(π|Z) ∼ indAZ χ ∼ indAZ(µ|Z) ∼ λA/Z ⊗ µ ∼ Â/Z ⊗ µ ∼ Aχ

On the other hand, if µ ∈ Â is weakly contained in π|A , then µ|Z is weakly

contained in π|Z ∼ χ , hence µ|Z = χ . This proves the claim.

It follows now that the map in (1) is bijective with inverse given by mapping

any P ∈ Pψ to its central character χP ∈ Ẑ . Since induction and restriction

preserve weak containment, the map in (1) and its inverse are both continuous,

thus a homeomorphism.

Proof. [Proof of Proposition 3.5] The proposition follows from Lemma 3.7 by

passing from G to G/Kψ for fixed ψ ∈ Ẑ , in which case the groups Ċψ := Z/Kψ ,

Żψ and Ȧψ will play the rôles of C,Z and A in Lemma 3.7.

We finish this section with the following lemma, which will be used later:

Lemma 3.8. Let G be a two-step nilpotent locally compact group with center

Z and let ψ ∈ Ẑ . Let A ⊆ G be a closed subgroup of G which is subordinate to

ψ . Then the following are equivalent:

1. A is a polarizing subgroup for ψ .

2. The homomorphism Φψ : G/A→ Â; Φψ(ẋ)(y) = ψ
(
(x; y)

)
is injective.

Proof. (1) ⇒ (2) was already observed in the proof of the previous lemma. To

see the converse, assume that L is a closed subgroup of G which is subordinate to

ψ and which properly contains A . Then ψ
(
(x; y)

)
= 1 for all a ∈ L, y ∈ A , since

A ⊆ L . Hence L/A lies in the kernel of Φψ .

4. Nilpotent Lie pairs

In this section we give our notion of Lie pairs (G, g), which we want to use to

attack the problem of a more general Kirillov theory for locally compact nilpotent

groups. The conditions we use here are much stronger than the condition of an
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“elementary exponentiable” group as introduced by Howe in [20]. However, we

want to give a set of conditions which allows to prove a version of Kirillov’s orbit

method without (almost) no further restrictions on the structure of the underlying

groups, but which is general enough to cover a large class of examples. In order

to be successful, we need a notion of Lie pairs which is stable under passing to

certain characteristic subgroups/algebras and quotients.

Recall that if R is a commutative Ring with unit, then an algebra g over

R is called a Lie algebra over R if its multiplication, denoted by (X, Y ) 7→ [X, Y ] ,

satisfies the following identities:

(1) [X,X] = 0 and

(2) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0. (Jacobi-identity)

A topological Lie algebra over R is a Lie algebra over R with a Hausdorff topology

such that the Lie algebra operations X 7→ −X , (X, Y ) 7→ X + Y , and (X, Y ) 7→
[X, Y ] are continuous with respect to this topology. We say that a Lie algebra g

over R is nilpotent of length l ∈ N , if every l -fold commutator is zero and l is the

smallest positive integer with this property.

Definition 4.1. For k ∈ N or k = ∞ , let Λk denote the smallest subring of

Q in which every prime number p ≤ k is invertible, i.e., Λk := Z[ 1
k!

] if k < ∞
and Λ∞ = Q . Let G be a locally compact, second countable group and let g be

a nilpotent topological Lie algebra over Z with nilpotence length l ≤ k . We then

call the pair (G, g) a nilpotent k -Lie pair (of nilpotence length l) if the following

properties are satisfied

(i) The additive group g is a Λk -module, extending the Z-module structure of

g .

(ii) There exists a homeomorphism exp : g → G , with inverse denoted by log,

satisfying the Campbell-Hausdorff formula (see the appendix for details on

this formula).

Of course, any simply connected real Lie group G with corresponding Lie

algebra g forms an ∞-Lie pair (G, g) with respect to the ordinary exponential map

exp : g → G . The same holds for any unipotent group over the p-adic numbers

Qp . On the other extreme, every abelian second countable locally compact group

G gives rise to a 1-Lie pair (G, g) with g = G and exp = Id : G → G . We shall

see more interesting examples in the final section of this paper.

Remark 4.2. (1) If g and m are Λk -modules and f ∈ Hom(g,m) is a group

homomorphism, then it is an exercise to check that f is automatically Λk -linear.

In particular, it follows that for a Lie algebra g over Z such that the additive

group g is a Λk -module the commutator map [., .] : g× g→ g is Λk -bilinear, thus
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g is a Lie algebra over Λk .

(2) If (G, g) is a nilpotent k -Lie pair and x = exp(X) for some X ∈ g , then

for every m ∈ N with m ≤ k we may define the (unique) mth root of x as

x
1
m := exp( 1

m
X). More generally, if λ = n

m
∈ Λk we may define

xλ := exp(λX),

which then implies that log(xλ) = λ log(x) for all x ∈ G and λ ∈ Λk .

Definition 4.3. Let (G, g) be a nilpotent k -Lie pair. By a subalgebra of g we

understand a Lie subalgebra of g , which is also a Λk -module. An ideal of g is a

subalgebra n of g which has the additional property that [X, Y ] ∈ n for all X ∈ g

and for all Y ∈ n .

If (G, g) is a nilpotent k -Lie pair and if h is a subalgebra of g , then it follows

directly from the Campbell-Hausdorff formula that H = exp(h) is a subgroup of

G and hence that (h, H) is again a k -Lie pair. We need to answer the question,

which closed subgroups of G arise in this way. The following theorem is related

to Howe’s [20, Proposition 3].

Theorem 4.4. Let k ∈ N∪{∞} and let (G, g) be a nilpotent k -Lie pair. Then,

for a closed subgroup H of G the following are equivalent:

1. H is exponentiable, i.e., h = log(H) is a subalgebra of g.

2. H is k -complete in the sense that xλ ∈ H for all x ∈ H and for all λ ∈ Λk .

Note that the direction (1) ⇒ (2) follows directly from the equation xλ =

exp(λX) for λ ∈ Λk . The proof of the converse direction is given in the appendix

(see Lemma 9.4). There we also formulate a number of important consequences

which imply that certain characteristic subgroups of G are exponentiable.

In order to get good results for the representation theory of G , we need

some additional structure which allows to have an analogue of the linear dual

g∗ = Hom(g,R) in the case of a real Lie algebra g . Note that if we consider a real

Lie algebra g simply as a real vector space, then the linear dual g∗ = Hom(g,R)

can be identified with the Pontrjagin dual ĝ = Hom(g,T) of the underlying abelian

group via the map

Φ : Hom(g,R)→ ĝ; f 7→ ε ◦ f,

where ε : R → T is the basic character ε(x) = e2πix . Using this isomorphism, it

is possible to exploit the linear structure of g for the study of the representations

of the corresponding Lie group G . We now want to introduce a substitute for the

pair (R, ε) in more general situations:
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Definition 4.5. Let (G, g) be a k -Lie pair for some k ∈ N∪{∞} . Suppose

that m is a second countable locally compact Λk -module and ε : m → T is a

character such that

(a) the kernel ker ε ⊆ m does not contain any nontrivial Λk -submodule of m .

(b) The map

Φ : Hom(g,m)→ ĝ, f 7→ ε ◦ f

is an isomorphism of groups, where Hom(g,m) denotes the continuous group

homomorphisms from g to m and ĝ denotes the Pontrjagin dual of the

abelian group g .

(c) For every closed Λk -subalgebra h of g and for any f ∈ Hom(h,m) there

exists a map f̃ ∈ Hom(g,m) such that f̃ |h = f .

Then we call (G, g) an (m, ε)-dualizable nilpotent k -Lie pair (or just a dualizable

nilpotent k -Lie pair if confusion seems unlikely). We write g∗ := Hom(g,m) and

we equip g∗ with the compact open topology.

Remark 4.6. Since g and m are second countable locally compact groups, the

same is true for g∗ and the isomorphism Φ : g∗ → ĝ; Φ(f) = ε ◦ f is a continuous

isomorphism of groups, hence a topological isomorphism by the open mapping

theorem for second countable locally compact groups. Note also that it follows

from Remark 4.2 that any f ∈ Hom(g,m) is automatically a Λk -module map.

Lemma 4.7. let (G, g) be an (m, ε)-dualizable nilpotent k -Lie pair. Then so

are (H, h), if h is a closed subalgebra of g and H = log(h), and (G/N, g /n) if n

is a closed ideal in g and N = exp(n).

Proof. We omit the straightforward proof.

5. The Kirollov map

In this section we shall always assume that (G, g) is an (m, ε)-dualizable nilpotent

k -Lie pair as in Definition 4.5.

Definition 5.1. Let f ∈ g∗ . A closed subalgebra r of g is said to be f -

subordinate if

f([r, r]) = {0}.

If r is maximal with this property we say that r is a polarizing subalgebra for f .

Remark 5.2. (a) Let r be an f -subordinate subalgebra of g and let R = exp r .

It follows then from the Campbell-Hausdorff formula and the fact that f vanishes
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on commutators in r that ϕf : R→ T , defined by

ϕf (expX) := ε(f(X)) for all X ∈ r, (7)

is a unitary character of R . In what follows we shall always stick to the notation

ϕf for this character, even when f is viewed on different polarizing subalgebras

at the same time!

(b) By an easy application of Zorn’s lemma we see that for every subalgebra h ⊆ g

which is subordinate to some f ∈ g∗ , there exists a polarizing subalgebra r for f

which contains h . But we shall later see that for most of our constructions we need

polarizing subalgebras with special properties, which we shall introduce in Remark

5.9 below. Note that a given element f ∈ g∗ may have different, non-isomorphic

polarizing subalgebras.

If (G, g) is a k -Lie pair with nilpotence length l ≤ k , then the adjoint

action of G on g is defined by the homomorphism

Ad : G→ GL(g); Ad(x)(Y ) := log(x exp(Y )x−1).

If x = exp(X) for some X ∈ g , then it follows from standard computations that

Ad(exp(X))(Y ) = exp(ad(X))(Y ) =
l∑

n=0

1

n!
ad(X)n(Y ). (8)

Now if (G, g) is an (m, ε)-dualizable k -Lie pair, then the coadjoint action

of G on g∗ is given, as usual, by

Ad∗(x)(f) = f ◦ Ad(x−1) (9)

We are now going to provide a “standard way” to recursively construct a

polarizing subalgebra for a given f ∈ g∗ with certain nice properties. We start

with a lemma which allows to assume that f is faithful on z(g):

Lemma 5.3. Let (G, g) be an (m, ε)-dualizable nilpotent k -Lie pair, and let

f ∈ g∗ . Then there exists a largest ideal j inside the kernel of f . Let q : g→ g /j

denote the quotient map and let f̃ ∈ (g /j)∗ be defined by f̃(q(X)) = f(X). Then

f̃ is faithful on z(g /j) and if r ⊆ g is a subalgebra of g, then r is polarizing for

f if and only if r̃ := q(r) is a polarizing subalgebra for f̃ .

Proof. Zorn’s Lemma assures the existence of a maximal ideal j in ker(f)

while uniqueness is guaranteed by the fact that if j1, j2 are two such ideals, then

their sum would also be one, so that j is indeed the largest ideal in ker(f). Note

that j is automatically closed in g . Let f̃ ∈ (g /j)∗ be as in the lemma. If it is

not faithful on z(g /j), then k̃ = ker f̃ ∩ z(g /j) is a nontrivial closed ideal in g /j

and its inverse image k in g is a closed ideal of g lying in ker f and strictly larger

than j , a contradiction.
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In a similar fashion we get the following lemma.

Lemma 5.4. Let (G, g) be an (m, ε)-dualizable nilpotent k -Lie pair, and let

π ∈ Ĝ. Then there exists a maximal exponentiable normal subgroup J of G such

that J ⊆ ker(π).

Proof. We define

M := {I | I is a normal exponentiable subgroup of G and I ⊆ ker(π)}.

The set M is partially ordered by inclusion and since {1G} ∈ M , it follows that

M is nonempty. Let K be a chain in M . We claim that the set

J :=
⋃
I∈K

I

is an upper bound for K . To see this it suffices to show that J is an exponentiable

subgroup of G . But this follows from the fact that log(J) = ∪I∈K log I is an ideal

of g , since log(I) is an ideal of g for all I ∈ K .

Recall that for any π ∈ Ĝ the central character of π is the unique character

ψπ of the center Z of G such that π|Z = ψπ · 1Hπ .

Lemma 5.5. Suppose that (G, g) is an (m, ε)-dualizable k -Lie pair and let π ∈
Ĝ such that the group kernel of π does not contain any non-trivial exponentiable

subgroup. Let f ∈ g∗ such that the central character ψπ equals ϕf ∈ Ẑ . Then f

is faithful on z = z(g).

Proof. This follows directly from the fact that z ∩ ker f is an ideal in g .

Remark 5.6. Let (G, g) be an (m, ε)-dualizable k -Lie pair, let A ⊆ Z2(G)

be a choice of a maximal abelian subgroup of Z2(G) and let N ⊆ G denote the

centralizer of A in G . We will check in Lemma 9.10 that a = log(A) is a maximal

abelian subalgebra of z2(g) and n = log(N) is the centralizer of a in g . Let f ∈ g∗

be faithful on z = z(g). Then one easily checks that the bihomomorphism

Ψf : g /n× a/z→ m; Ψf (Ẋ, Ẏ ) = f([X, Y ]) (10)

is nondegenerate. This implies that the corresponding homomorphisms

Ψg /n : g /n→ (a/z)∗; Ẋ 7→ Ψf (Ẋ, · ) and Ψa/z : a/z→ (g /n)∗; Ẏ 7→ Ψf ( ·, Ẏ )

(11)

are injective with dense range. Injectivity is clear and the fact that they have

dense ranges follows from the fact that via the identifications (a/z)∗ ∼= â/z and

(g /n)∗ ∼= ĝ /n given by g 7→ ε ◦ g the maps in (11) can be identified with the
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homomorphisms g /n→ â/z and a/z→ ĝ /n corresponding to the nondegenerate

bicharacter ε ◦Ψf : g /n× a/z→ T .

Now a short exercise, using the Campbell-Hausdorff formula and the fact

that [g, a] ⊆ z , shows that for X ∈ g , Y ∈ a and x = exp(X), y ∈ exp(Y ) we

have exp([X, Y ]) = (x; y), the commutator of x and y in G . Thus, identifying a

with A and n with N via the exponential map, the pairing ε ◦ Ψf is identified

with

Φf : G/N × A/Z → T; Φf (ẋ, ẏ) = ϕf
(
(x; y)

)
, (12)

which shows that this is also a nondegenerate bicharacter.

Recall that if a group G acts on a topological space X , then two elements

x, y ∈ X lie in the same G-quasi orbit, if x ∈ G · y and y ∈ G · x . This determines

an equivalence relation on X and the equivalence class OG(x) of x is called the

G-quasi-orbit of x.

In what follows, if h ⊆ g is any subset of g , then h⊥ := {g ∈ g∗ : g(h) =

{0}} denotes the annihilator of h in g∗ .

Lemma 5.7 (cf. [20, Lemma 11]). Let A,N ⊆ G as above, and let f ∈ g∗

such that f is faithful on z = z(g). Suppose that r ⊆ n = log(N) is a polarizing

subalgebra for f |n ∈ n∗ and let R = exp(r). Then r is a polarizing subalgebra for

f . Moreover, the following are true:

1. If for all y ∈ N we have Ad∗(y)f |n ∈ (f+r⊥)|n ⇔ y ∈ R , then for all x ∈ G
we have Ad∗(x)f ∈ f + r⊥ ⇔ x ∈ R .

2. If (f + r⊥)|n ⊆ Ad∗(R)f |n , then we also have f + r⊥ ⊆ Ad∗(R)f .

3. Suppose that r is a polarization for (f + h)|n for all h ∈ r⊥ and that

(f + r⊥)|n = OR(f |n) for the coadjoint action of R on n∗ . Then r is a

polarization for f + h for all h ∈ r⊥ and f + r⊥ = OR(f) for the coadjoint

action of R on g∗ .

Proof. Let r′ be any closed subalgebra of g which is subordinate to f such that

r ⊆ r′ . Note first that a ⊆ z(n) ⊆ r ⊆ r′ , so that for X ∈ r′ we get f([X, Y ]) = 0

for all Y ∈ a . Since [X, Y ] ⊆ z for all Y ∈ a ⊆ z2(g) and since f is faithful on z ,

we see that [X, Y ] = 0 for all Y ∈ a . It follows that r′ ⊆ n , and hence that r′ = r

since r is a maximal f |n -subordinate subalgebra of n .

For the proof of (1) let g = Ad∗(x)(f) − f ∈ g∗ for some x ∈ G and let

X = log(x). Then we get

g(Y ) = f
(

Ad(x−1)(Y )− Y
)

= f
(
− [X, Y ] +

k∑
n=2

1

n!
ad(−X)n(Y )

)
. (13)

This certainly vanishes whenever X, Y ∈ r , so that g ∈ r⊥ for all x ∈ R .

Conversely, assume that x ∈ G such that g = Ad∗(x)(f) − f ∈ r⊥ . Then
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(13) implies that f([X, Y ]) = 0 for all Y ∈ a and hence [X, Y ] = 0 for all

Y ∈ a , since [X, a] ⊆ z and f is faithful on z . Thus X ∈ n and x ∈ N . Since

g|n = Ad∗(x)f |n − f |n ∈ r⊥|n , it follows from the assumption that x ∈ R .

For the proof of (2) we first remark that if (gn)n∈N is a sequence in g∗

and g ∈ g∗ such that gn|n → g|n in n∗ , then, after passing to a subsequence if

necessary, we find hn ∈ n⊥ such that gn + hn → g in g∗ . To see this we identify

g∗ with ĝ , h∗ with ĥ and h⊥ with the annihilator of h in g∗ via f 7→ ε ◦ f . The

claim then follows from the well-known isomorphism ĝ/h⊥ ∼= ĥ and the openness

of the quotient map ĝ→ ĝ/h⊥ .

Assume now that f ∈ g∗ and h ∈ r⊥ . By the assumption we may

approximate (f + h)|n by a sequence Ad∗(xn)f |n for some sequence (xn)n∈N in

R . By the above remark we may pass to a subsequence, if necessary, to find

elements hn ∈ n⊥ such that Ad∗(xn)f + hn → f + h in g∗ . So the result will

follow, if we can show that Ad∗(xn)f + n⊥ ⊆ Ad∗(R)f for all n ∈ N . But since

Ad∗(x) acts as the identity on n⊥ for all x ∈ R , we may apply Ad∗(x−1
n ) to this

equation in order to see that it suffices to show that f + n⊥ ⊆ Ad∗(R)f . Indeed,

we are going to show that f + n⊥ = Ad∗(A)f with A = exp(a). Since A ⊆ R ,

this gives the result.

To show that f +n⊥ = Ad∗(A)f we first observe that for X ∈ a and Y ∈ g

we have (
Ad∗(exp(X))(f)

)
(Y ) = f

(
exp(ad(−X))(Y )

)
= f(Y + [Y,X])

and hence we get Ad∗(exp(X))f = f + Ψf (·, Ẋ), where Ψf : g /n × a/z → m is

the bicharacter of (10). The result follows then from Remark 5.6.

Finally, for the proof of (3) let f ′ = f +h for some h ∈ r⊥ . We already saw

above that r is a polarizing subalgebra for f ′ if it is one for f ′|r . If (f + r⊥)|n =

OR(f |n), then OR(f ′|n) = OR(f |n) = (f + r⊥)|n = (f ′ + r⊥)|n . Since OR(g|n) ⊆
Ad∗(R)g|n for all g ∈ g , it follows then from (2) that f ′ ∈ f + r⊥ ⊆ Ad∗(R)f and

f ∈ f ′ + r⊥ ⊆ Ad∗(R)f ′ , thus f ′ ∈ OR(f).

Remark 5.8. In general, if f ∈ g∗ is arbitrary, we cannot expect f to be

faithful on the center z(g) of g . But by Lemma 5.3 we can find an ideal j in the

kernel of f such that f factors through an element f̃ ∈ (g /j)∗ which is faithful on

z(g /j). Let J = exp(j) and let A , N and R in G such that A/J , N/J and R/J

satisfy the assumptions of the above lemma. Then it is an easy exercise to show

that all conclusions of the lemma also hold for the groups R , N and G , since all

statements “factor” through R/J , N/J , and G/J .

Using Lemma 5.7 together with the above remark, we can now give an

explicit construction of a special kind of polarizations as follows:

Remark 5.9. Let (G, g) be an (m, ε)-dualizing k -Lie pair and let f ∈ g∗ . Then

we can give a recursive construction of a polarizing subalgebra for f as follows:
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We start by putting (G0, g0) := (G, g) and f0 := f . Then, if (Gi, gi) and fi ∈ g∗i
are constructed for some i ∈ N0 , we construct (Gi+1, gi+1) and fi+1 ∈ g∗i+1 by the

following steps:

1. Choose an ideal ji in gi which lies in the kernel of fi such that fi factors

through a functional f̃i ∈ (gi /ji)
∗ which is faithful on z(gi /ji) (this is possible

by Lemma 5.3). Then pass to (G̃i, g̃i) := (Gi/Ji, gi /ji) with Ji = exp(ji).

2. Choose a maximal abelian subalgebra ai of z2(g̃i) and let ġi+1 be its cen-

tralizer in g̃i ;

3. Put gi+1 := q−1
i (ġi), where qi : gi → g̃i is the quotient map, put Gi+1 :=

exp(gi+1) and fi+1 := fi|gi+1
.

Then after each recursion step, the quotient group Gi/Ji reduces its nilpotence

length at least by one. Let m be the smallest integer such that Gm/Jm is abelian,

in which case we see that gm is a polarizing subalgebra for fm . Then, in view

of Lemma 5.7 and Remark 5.8 we arrive at a sequence of closed exponentiable

subgroups

G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gm = R

and a corresponding sequence of subalgebras gi = log(Gi) with the following

properties

1. Gi+1 is normal in Gi and Gi/Gi+1 is abelian for all 0 ≤ i ≤ m− 1;

2. r = log(R) is a polarizing subalgebra for fi := f |gi for all 0 ≤ i ≤ m ;

3. R = {x ∈ Gi : Ad∗(x)fi ∈ fi + r⊥|gi} and fi + r⊥|gi = OR(fi) for each

0 ≤ i ≤ m .

In particular, r is a polarizing subalgebra for f ∈ g∗ , R = {x ∈ G : Ad∗(x)f ∈
f + r⊥} and f + r⊥ coincides with the Ad∗(R)-quasi-orbit ORf in g∗ .

Definition 5.10. A polarizing subalgebra r for f which is constructed by the

above recursion procedure is called a standard polarization of grade m =: m(f, r).

Note that we get m(fi, r) = m − i if fi ∈ g∗i is the i-th functional in the above

described recursion!

The standard polarizing subalgebras as defined above are well adjusted to

the Kirillov map:

Proposition 5.11. Let (G, g) be an (m, ε)-dualizable k -Lie pair and let f ∈ g∗ .

Suppose that r ⊆ g is a standard polarizing subalgebra for f , let R = exp(r) and

let ϕf ∈ R̂ be the character corresponding to f . Then indGR ϕf is irreducible with

central character ϕf |Z , with Z = Z(G).

Conversely, if P ∈ Prim(G) is any primitive ideal in C∗(G), there exists

some f ∈ g∗ and some standard polarization r of f such that P = ker(indGR ϕf ).
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Proof. We perform induction on the degree m = m(f, r). If m = 0, we

have r = g and nothing is to prove. If m > 0, then let (G1, g1) be as in the

recursion procedure for the construction of r and let f1 = f |g1 . Then r is a

standard polarizing subalgebra for f1 with m(f1, r) = m− 1, and it follows by the

induction hypothesis that ρ := indG1
R ϕf is irreducible.

To see that indGG1
ρ is irreducible as well let j = j0 ⊆ ker f denote the ideal

in step (1) of Remark 5.9 and let J = exp(j). Then passing to G/J and G1/J if

necessary, we may assume without loss of generality that f is faithful on z = z(g)

and G1 = N is the centralizer of some maximal abelian subgroup A of z2(g).

Then Remark 5.6 implies that the bicharacter Φf : G/N × A/Z → T; Φf (ẋ, ẏ) =

ϕf
(
(x; y)

)
is nondegenerate. By induction, the central character of ρ = indG1

R ϕf
equals ϕf |Z(G1) , and it follows then from Lemma 3.3 that indGR ϕf = indGG1

ρ is

irreducible with central character ϕf |Z .

We prove the second assertion by induction on the nilpotence length l of

G . If l = 1, then G is abelian, and nothing is to prove. So assume l > 1 and

that P ∈ Prim(G) is given. Choose π ∈ Ĝ with P = ker π . Let J ⊆ G be a

maximal exponentiable normal subgroup of G which lies in the kernel of π . If J

is nontrivial, we pass to (G/J, g /j) with j = log(J). So assume J is trivial. Let

ψ ∈ Ẑ be the central character of π and let g ∈ z∗ such that ψ = ϕg on Z . It

follows then from Lemma 5.5 that g is faithful on z∗ . Then Remark 5.6 implies

that the bicharacter Φψ : G/N × A/Z → T is nondegenerate and Proposition 3.1

implies that there exists some ρ ∈ N̂ with ρ|Z ∼ ψ , indGN ρ is irreducible, and

kerπ = ker(indGN ρ). Since N has nilpotence length smaller than l , we can assume

by induction that there exist a functional f1 ∈ n∗ and a standard polarization r

for f1 such that ker ρ = indNR ϕf1 . Choose any f ∈ g∗ which restricts to f1 on

N . It follows then from the first part of this proposition that ψ ∼ ρ|Z ∼ ϕf1|Z =

ϕf |Z = ϕg , and hence that f |z = g is faithful on z . But it follows then from our

constructions and Lemma 5.7 that r is a standard polarization for f and that

indGR ϕf = indGN(indNR ϕf1) is irreducible with ker(indGR ϕf ) = ker π = P .

The above proposition suggests, that for every (m, ε)-dualizable k -Lie pair

(G, g) there is a surjective map

κ : g∗ → Prim(G); f 7→ ker(indGR ϕf ) (14)

where R = exp(r) for some standard polarizing subalgebra r for f . But in order

to have this map well defined, we need to show that the C∗ -kernel of the induced

representation indGR ϕf does not depend on the particular choice of the standard

polarizing algebra for f . We first do the case of two-step nilpotent groups:

Lemma 5.12. Suppose that (G, g) is an (m, ε)-dualizable k -Lie pair such that

G is two-step nilpotent and let f ∈ g∗ such that f does not vanish on the center

Z = Z(G). Then, if r is a polarizing subalgebra for f in g, then R = exp(r) is a
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polarizing subgroup for ψ := ϕf |Z in G (see the discussion preceding Proposition

3.5).

Moreover, if r and r′ are any two polarizing subalgebras for f with corre-

sponding subgroups R = exp(r) and R′ = exp(r′) of G, then indGR ϕf ∼ indGR′ ϕf .

Proof. It is clear that if r is a polarizing subalgebra for f , then R = exp(r)

is subordinate to ψ . To see that R is a polarizing subgroup for ψ , it suffices to

show that the homomorphism Φψ : G/R → R̂ given by Φψ(ẋ)(y) = ψ
(
(x; y)

)
is

injective. Suppose it is not. Let x = exp(X) ∈ g \r such that Φψ(ẋ) ≡ 1. By

the Campbell-Hausdorff formula this implies that ε ◦ f([X, Y ]) = 1 for all Y ∈ r ,

hence f([X, Y ]) = 0 for all Y ∈ r by Lemma 4.7 . But this contradicts the fact

that r is a maximal subordinate algebra for f . The second assertion follows now

from Corollary 3.6.

The above lemma is used in the proof of

Proposition 5.13. Suppose that (G, g) is an (m, ε)-dualizable k -Lie pair. Let

f ∈ g∗ , let r be a standard polarization for f and let s ⊆ g be any closed subalgebra

of g which is subordinate to f . Then indGR ϕf ≺ indGS ϕf where R = exp(r) and

S = exp(s).

In particular, if r and s are both standard polarizations for f , then indGR ϕf ∼
indGS ϕf and the Kirillov map (14) is well defined.

Proof. We proceed by induction on the nipotence length l of G . If l = 1 the

result is trivial, and the case l = 2 follows from the above lemma. So assume

now that l ≥ 3. By an application of Zorn’s lemma, we can first choose some

polarization s′ for f which contains s . Let S ′ = exp(s′). Since S ′ is amenable,

it follows from Remark 2.5 that ϕf ≺ indS
′

S ϕf as representations of S ′ , and since

induction preserves weak containment, we see that indGS′ ϕf ≺ indGS′(indS
′

S ϕf ).

Thus if we can check that indGR ϕf ≺ indGS′ ϕf , the result will follow. So from now

on we may assume as well that s is a polarizing subalgebra for f .

Let j denote the largest ideal of g which lies in ker f . Since s + j is an

f -subordinate subalgebra of g , we have j ⊆ s by maximality of s and for the

same reason we have j ⊆ r . Thus, we may pass to (G/J, g /j), J = exp(j), to

assume that f is faithful on z = z(g). Since r is a standard polarization, we find

a maximal abelian subalgebra a of z2(g) such that a is contained in r , and then r

is also a standard polarization for f1 = f |n in n , where n denotes the centralizer

of a in g . Then N = exp(n) has nilpotence length smaller than l and if s ⊆ n , it

follows by the induction hypothesis that indNR ϕf ≺ indNS ϕf , which then implies

indGR ϕf ≺ indGS ϕf by induction in stages.

So assume now that s does not lie completely in n . Since a is an ideal in g ,

we see that h := s + a is a closed subalgebra of g . Let u := h∩ n (= (s ∩ n) + a).

Then u is subordinate to f since clearly s ∩ n and a are subordinate to f and
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since [s ∩ n, a] ⊆ [n, a] = {0} . Since u ⊆ n , we have indGR ϕf ≺ indGU ϕf , for

U = exp(u) by induction.

In what follows next, we want to argue that indGU ϕf ∼ indGS ϕf . If H :=

exp(h), then this follows by inducing representation in stages if we can show that

indHU ϕf ∼ indHS ϕf . We want to do this by showing that after passing to a suitable

quotient group H/K , the problem reduces to the two-step nilpotent case.

For this let k := ker f |s∩n . Then k is an ideal in h , since n ∩ s is clearly

an ideal of h = s + a , and for all X ∈ s ∩ n , Y ∈ s and Z ∈ a we have

f([X, Y + Z]) = f([X, Y ]) + f([X,Z]) = 0 since s is subordinate to f and n

centralizes a . It thus follows that [k, h] = [k, s + a] ⊆ k . Let K = exp(k). Then

K ⊆ U, S and ϕf vanishes on K . By passing to (H/K, h/k) if necessary, we may

therefore assume without loss of generality that f is faithful on s∩ n . We already

checked above that f([s∩ n, h]) = {0} , which by faithfulness of f on s∩ n implies

that [s ∩ n, h] = {0} , so s ∩ n lies in the center of h . On the other hand, we have

[h, h] ⊆ s ∩ n . To see this it suffices to show that [s + a, s + a] = [s, s] + [s, a] lies

in s ∩ n . But [s, s] ⊆ s ∩ n since g /n is abelian and [s, a] ⊆ z(g) ⊆ s ∩ n , since

a ⊆ z2(g). It is clear that s is a polarizing subalgebra for f in h . So the result

will follow from Lemma 5.12 if we can show that u is also a polarizing subalgebra

for f in h . Suppose that this is not the case. Then there exists X ∈ h \ n such

that f([X, u]) = {0} , which in particular implies that f([X, a]) = {0} and then

[X, a] = {0} , since [X, a] ⊆ z(g) and f is faithful on z(g). But this implies X ∈ n ,

a contradiction.

Remark 5.14. If s ⊆ g is an arbitrary polarization for f ∈ g∗ and r is a

standard polarization, then the above theorem does not imply that indGR ϕf ∼
indGS ϕf , it only gives the weak containment indGR ϕf ≺ indGS ϕf . If we could show

that the algebra u = (s ∩ n) + a is actually a polarizing subalgebra for f in g (and

not just in h), the stronger weak equivalence result would follow immediately from

the same kind of induction argument.

6. (Bi)-Continuity of the Kirillov map

In this section we want to show that the Kirillov map κ : g∗ → Prim(G) of (14) is

continuous and factors through a map

κ : g∗ / ∼→ Prim(G) (15)

where g∗ / ∼ denotes the quasi-orbit space for the coadjoint action of G on g∗ .

Recall that two elements f, f ′ ∈ g∗ are in the same Ad∗(G)-quasi orbit, if either

is in the closure of the Ad∗(G)-orbit of the other.

In order to prove continuity, we need to recall Fell’s topology on the

subgroup-representation space

S(G) = {(H, ρ) : H a closed subgroup of G and ρ ∈ Rep(H)}



Echterhoff and Klüver 625

of a locally compact group G .

In the following, let G be a locally compact group and let K(G) denote

the set of all closed subgroups of G equipped with the compact-open topology

as introduced in [13]. For later use, let us recall the following description of

convergence in K(G):

Lemma 6.1 ([13]). Assume that the net (Ki)i∈I converges to K ∈ K(G) and

let x ∈ G. Then x ∈ K if and only if there exist a subnet (Kj)j of (Ki)i∈I and

elements xj ∈ Kj for all j ∈ J such that xj → x in G.

If G is second countable, the same is true for K(G), and we can replace

nets by sequences in the above result. A smooth choice of Haar measures in K(G)

is a mapping K 7→ µK assigning to each K in K(G) a left Haar measure µK on K

such that K 7→
∫
K
f(x)dµKx is continuous for all f ∈ Cc(G) – it is shown in [15]

that smooth choices of Haar measures always exist. Let Y be the set of all pairs

(K, x), where K ∈ K(G) and x ∈ K . Then Y is a closed subset of K(G) × G ,

hence locally compact in the relative topology. Let {µK} be a fixed smooth choice

of Haar measures on K(G).

Let ∆K be the modular function for the closed subgroup K of G . Then

(K, x) 7→ ∆K(x) is a continuous function on Y . We make Cc(Y ) into a normed

∗-algebra with the following definitions of convolution, involution and norm given

by
(f ∗ g)(K, x) =

∫
K
f(K, y) g(K, y−1x) dµK(y),

f ∗(K, x) = f(K, x−1)∆K(x−1), and

‖f‖ = supK∈K(G)

∫
K
|f(K, x)| dµK(x).

Each element of Cc(Y ) can be thought of as a function on K(G), whose value at

K is in the group algebra of K . The operations are pointwise. The completion

As(G) = Cc(Y ) in the above defined norm is a Banach ∗-algebra and its enveloping

C∗ -algebra C∗s (G) is called the subgroup algebra of G . For each K ∈ K(G) we

obtain a canonical ∗-homomorphism ΦK : C∗s (G) → C∗(K) given on Cc(Y ) by

f 7→ f(K, ·) ∈ Cc(K). Then each unitary representation π of K can be lifted

to the ∗-representation π ◦ ΦK of C∗s (G). In this way we may regard S(G) as a

subset of Rep(C∗s (G)).

The Fell topology on S(G) is the restriction of the Fell topology on Rep(C∗s (G))

to S(G) via this identification.

Remark 6.2. In the following we list some important properties of the Fell

topology on S(G):

(a) The topology of S(G) is independent of the particular smooth choice of Haar

measures {µK} ([15, Lemma 2.3]).

(b) The projection S(G)→ K(G); (K, π) 7→ K is continuous ([15, Lemma 2.5]).

(c) For each K in K(G), the mapping π 7→ (K, π) is a homeomorphism from
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Rep(K) onto its image in S(G) ([15, Lemma 2.6]).

(d) Every irreducible ∗-representation of C∗s (G) is of the form π ◦ ΦK for some

unique (K, π) in S(G), π ∈ K̂ ([15, Lemma 2.8]).

In [15, §3], the Fell topology on S(G) is described in terms of functions

of positive type on subgroups. As a consequence, one obtains the continuity of

restricting and inducing representations to and from varying subgroups.

Theorem 6.3 ([15, Theorem 3.2] and [15, Theorem 4.2]). Let

W := {(H,K, π) | (K, π) ∈ S(G), H ∈ K(G), H ⊆ K} ⊆ K(G)× S(G).

Then the map (H,K, π) 7→ (H, π|H) from W to S(G) is continuous. Similarly, if

W := {(H,K, π) | (K, π) ∈ S(G), H ∈ K(G), H ⊇ K} ⊆ K(G)× S(G)

Then (H,K, π) 7→ (H, indHK π) from W to S(G) is continuous.

The following lemma is a direct consequence of [15, Theorem 3.1’] (and the

remark following that theorem):

Lemma 6.4. Let (Hn, χn) be a sequence in S(G), let (H,χ) ∈ S(G), and

suppose that χ, χn , n ∈ N, are characters. Then the following are equivalent:

(i) (Hn, χn)→ (H,χ) in S(G).

(ii) Hn → H in K(G) and for every subsequence (Hnk) of (Hn) and every

element hnk ∈ Hnk with hnk → h for some h ∈ H , one has χnk(hnk)→ χ(h)

in C.

Remark 6.5. Suppose that (G, g) is a k -Lie pair and that (Hn)n∈N is a

sequence of closed exponentiable subgroups of G . Let hn = log(Hn) denote the

corresponding closed subalgebras of g . Assume that Hn → H for some closed

subgroup of G . Regarding g as a locally compact abelian group, it follows

from Lemma 6.1 and the fact that exp : g → G is a homeomorphism, that

hn → h = log(H) in K(g), and another easy application of Lemma 6.1 shows

that h is a subalgebra of g . In particular, it follows that the set of exponentiable

subgroups of G is closed in K(G).

Using all these preparations, we are now able to prove

Proposition 6.6. Let (G, g) be a (m, ε)-dualizable nilpotent k -Lie pair. Then

the Kirillov map

κ : g∗ −→ Prim(G), f 7→ ker(indGR ϕf ),

is continuous.
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Proof. Let (fn)n∈N be a sequence in g∗ and suppose that fn → f in g∗

for some f ∈ g∗ . For every n ∈ N , let rn be a standard polarizing subalgebra

for fn and define Rn := exp(rn). We may regard (rn)n∈N as a sequence in the

compact space K(g) of closed subgroups of g , and we may hence assume, after

passing to a subsequence if necessary, that rn → s for some subalgebra s of g and

Rn → S = exp(s).

We claim that s is f -subordinate. For this, let X and Y be two arbitrary

elements of s . By Lemma 6.1 and by passing to a suitable subsequence if necessary,

we can find for every n ∈ N , elements Xn, Yn ∈ rn , such that Xn → X and Yn → Y

in g . Since forming commutators is continuous, we see that [Xn, Yn]→ [X, Y ] and

therefore

0 = fn([Xn, Yn])→ f([X, Y ]).

It follows then from Proposition 5.13 that if r is any standard polarization for f

and R = exp(r), then indGR ϕf ≺ indGS ϕf . Moreover, if xn ∈ Rn such that xn → x

for some x ∈ S , then Xn := log(xn) → log(x) =: X and hence fn(Xn) → f(X)

in m . But this implies that

ϕfn(xn) = ε ◦ fn(Xn)→ ε ◦ f(X) = ϕf (x),

which by Lemma 6.4 proves that (Rn, ϕfn)→ (S, ϕf ) in S(G). By Theorem 6.3 we

see that indGRn ϕfn → indGS ϕf in Rep(G), and since indGR ϕf ≺ indGS ϕf it follows

from Remark 2.4 that indGRn ϕfn → indGR ϕf in Ĝ . But then we also get

κ(fn) = ker(indGRn ϕfn)→ ker(indGR ϕf ) = κ(f)

in Prim(G). Thus κ is continuous.

Suppose that (G, g) is an (m, ε)-dualizable nilpotent k -Lie pair. Let r ⊆ g

be a standard polarizing subalgebra for a given f ∈ g∗ and let x ∈ G . Then one

easily checks that Ad(x)(r) is a standard polarizing subalgebra for Ad∗(x)(f) and

that

ϕAd∗(x)f (y) = ϕf (x
−1yx) = x · ϕf (y)

for all y ∈ exp(Ad(x)r) = xRx−1 , where R = exp(r). Thus it follows from Remark

2.1 that

indGR ϕf
∼= indGxRx−1 ϕAd∗(x)f ,

which implies that the Kirrolov map is constant on Ad∗(G)-orbits in g∗ .

Suppose now that f and f ′ are in the same Ad∗(G)-quasi-orbit in g∗ .

Recall that this means that f ′ ∈ Ad∗(G)f and f ∈ Ad∗(G)f ′ . Since κ is constant

on orbits, it follows from the continuity of κ that κ(f) ∈ κ(f ′) and vice versa.

Since Prim(G) is a T0 -space, this implies that κ(f) = κ(f ′). Hence we get

Corollary 6.7. Let (G, g) be an (m, ε)-dualizable nilpotent k -Lie pair. Then

the Kirillov-orbit map

κ̃ : g∗ /∼ → Prim(G), O 7→ ker(indGR ϕf ),
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where f ∈ g∗ is any chosen representative of the coadjoint quasi-orbit O , is a

well-defined continuous and surjective map.

In the rest of this section we want to show that the Kirillov-orbit map of

Corollary 6.7 is a homeomorphism, at least if G satisfies the following regularity

condition:

Definition 6.8. A k -Lie pair (G, g) is called regular if for any two closed

subalgebras h and r of g such that [h, r] ⊆ h , the sum h + r is closed in g .

Note that if h and r are as in the definition, then h+r is a closed subalgebra

of g and if H = exp(h) and R = exp(r), then HR = exp(h+r) is a closed subgroup

of G .

For the proof of openness of the Kirillov-orbit map under this extra condi-

tion we rely heavily on the ideas of Joy [23], in which convergence of a sequence in

Ĝ is described in terms of convergence of corresponding subgroup representations

in S(G). Regularity of (G, g) is used in the proof of the following lemma

Lemma 6.9. Let (G, g) be an (m, ε)-dualizable k -Lie pair and let H be a closed

normal, exponentiable subgroup of G such that G/H is abelian. Let f ∈ g∗ , π ∈ Ĝ
and ρ ∈ Ĥ with ker(π) = κ(f) and ker(ρ) = κ(f |h), where h = log(H). Then

π ≺ indGH ρ and if (G, g) is regular, we also have ρ ≺ π|H .

Proof. Let r be a standard polarizing subalgebra of g for f and let s be a

standard polarizing subalgebra of h for f |h . Let R = exp(r) and S = exp(s).

Since s is subordinate to f it follows from Proposition 5.13 that π ∼ indGR ϕf ≺
indGS ϕf

∼= indGH(indHS ϕf ) ∼ indGH ρ , which proves the first assertion.

Assume now that (G, g) is regular. Then HR is a closed normal subgroup

of G and it follows from Remark 2.5 and induction in stages that indHRR ϕf ≺
(indGR ϕf )|HR ∼ π|HR . This implies that (indHRR ϕf )|H ≺ π|H and it suffices to

show that ρ ≺ (indHRR ϕf )|H . By Lemma 2.3 we have (indHRR ϕf )|H ∼= indHR∩H ϕf
and since r ∩ h is clearly subordinate to f |h , we see from Proposition 5.13 that

ρ ∼ indHS ϕf ≺ indHR∩H ϕf
∼= (indHRR ϕf )|H , which finishes the proof.

The following lemma gives the main step in the proof of the openness of

the Kirillov map.

Lemma 6.10. Suppose that (G, g) is a regular (m, ε)-dualizable k -Lie pair. Let

(fn)n∈N be a sequence in g∗ and let f ∈ g∗ such that κ(fn) → κ(f) in Prim(G).

Let rn be a standard polarizing subalgebra for fn and let Rn = exp(rn). Then,

after passing to a subsequence if necessary, there exists a closed subgroup S of G

such that s = log(S) is subordinate to f , and a sequence (xn)n∈N in G such that

(xnRnx
−1
n , ϕAd∗(xn)fn)→ (S, ϕf ) in S(G).
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Proof. After passing to a subsequence, if necessary, we may assume that all

standard polarizations rn have the same degree m = m(fn, rn), as defined in

Definition 5.10. It follows then from Remark 5.9 that, for each n ∈ N , we find a

sequence of subgroups

G = G0
n ⊇ G1

n ⊇ G2
n ⊇ · · · ⊇ Gm

n = Rn

with the properties as listed in that remark. By definition, we have κ(fn) =

ker(indGRn ϕfn) for all n ∈ N .

Now fix some i < m and assume that there exists a closed subgroup H i

of G such that (Gi
n, ind

Gin
Rn
ϕfn) → (H i, indH

i

Si ϕf ) in S(G), where Si = log si for

some standard polarizing subalgebra si of hi = log(H i) for f |hi . After passing

to a subsequence, if necessary, we may assume that Gi+1
n → H i+1 for some closed

subgroup H i+1 of G . We claim that H i+1 is normal in H i and that H i/H i+1

is abelian. For this let x, y ∈ H i . After passing to another subsequence we

may assume that there are xn, yn ∈ Gi
n such that xn → x and yn → y . Then

xnynx
−1
n y−1

n → xyx−1y−1 and it follows from Lemma 6.1 that xyx−1y−1 ∈ H i+1 .

This proves the claim.

Let hi+1 = log(H i+1) and let si+1 be a standard polarizing subalgebra for

f |hi+1 . By continuity of restriction, we see that

(Gi+1
n , (ind

Gin
Rn
ϕfn)|Gi+1

n
)→ (H i+1, (indH

i

Si ϕf )|Hi+1)

in S(G). By Lemma 6.9 we have indH
i+1

Si+1 ϕf ≺ (indH
i

Si ϕf )|Hi+1 . Thus it follows

from Remark 2.4 that

(Gi+1
n , (ind

Gin
Rn
ϕfn)|Gi+1

n
)→ (H i+1, indH

i+1

Si+1 ϕf )

in S(G). By Remark 2.5 we have

(ind
Gin
Rn
ϕf )|Gi+1

n
∼ {x · (indG

i+1
n

Rn
ϕf ) : x ∈ Gi

n}

for all n ∈ N , so it follows from part (c) of Remark 2.4 that, after passing to a

subsequence if necessary, we can find xin ∈ Gi
n such that

(Gi+1
n , xin · (indG

i+1
n

Rn
ϕfn))→ (H i+1, indH

i+1

Si+1 ϕf ).

Since

xin · (indG
i+1
n

Rn
ϕfn) ∼= indG

i+1
n

xinRn(xin)−1 ϕAd∗(xn)fn

for all n ∈ N , we now see that

(Gi+1
n , indG

i+1
n

xinRn(xin)−1 ϕAd∗(xin)fn)→ (H i+1, indH
i+1

Si+1 ϕf )

in S(G). Now, starting this procedure at i = 0, where we have the convergent

sequence

(G, indGRn ϕfn)→ (G, indGR ϕf )
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by the assumption that κ(fn) → κ(f) in Prim(G), and passing from fn to

Ad∗(xin)fn for suitable xin ∈ Gi
n (and a suitable subsequence of (fn)n∈N ) in each

step i→ i+ 1, we will arrive after m steps at a convergent (sub-)sequence

(xnRnx
−1
n , ϕAd∗(xn)fn)→ (S, ϕf )

with xn = xm−1
n xm−2

n · · ·x0
n . Note that we do have the character ϕf on the right

hand side, since the set of one-dimensional representations in S(G) is closed in

S(G). Hence in the step (m − 1) → m of the above procedure we must have

indH
m

Sm ϕf a character, which implies that Hm = Sm =: S .

Remark 6.11. Suppose that G is an abelian locally compact group and that

(Hn)n∈N is a sequence of closed subgroups such that Hn → H in K(G). Let

(χn)n∈N be a sequence in Ĝ and let χ ∈ Ĝ such that

(Hn, χ|Hn)→ (H,χ|H) in S(G).

Then, after passing to a subsequence if necessary, we can find elements µn ∈ H⊥n
for all n ∈ N such that χn · µn → χ in Ĝ .

To see this well-known fact we simply use continuity of induction, to see

that indGHn(χn|Hn) → indGH(χ|H) in Rep(G). Since χ ≺ indGH(χ|H) and since

indGHn(χn|Hn) ∼ χn · Ĝ/Hn = χn ·H⊥n for all n ∈ N , the result follows from parts

(a) and (c) of Remark 2.4.

Lemma 6.12. Suppose that (fn)n∈N is a sequence in g∗ and that (rn)n∈N is a

sequence of closed subalgebras of g such that each rn is subordinate to fn . Let

f ∈ g∗ and let s be a closed subalgebra of g which is subordinate to f . Suppose

further that

(Rn, ϕfn)→ (S, ϕf ) in S(G).

Then, after passing to a subsequence, there exist elemens gn ∈ r⊥n such that

fn + gn → f in g∗ .

Proof. By passing from G to g via log : G→ g , we get from our assumption

that

(rn, ε ◦ fn|rn)→ (s, ε ◦ f |s)

in S(g), regarding g as an abelian locally compact group. By the remark, and

using the isomorphism g∗ ∼= ĝ; g 7→ ε◦g , we can find, after passing to a subsequence

if necessary, elements gn ∈ r⊥n such that

ε ◦ (fn + gn) = (ε ◦ fn) · (ε ◦ gn)→ ε ◦ f

in ĝ . But then we also have fn + gn → f in g∗ .
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We can now prove:

Proposition 6.13. Suppose that (G, g) is a regular (m, ε)-dualizable k -Lie pair

and assume that (fn)n∈N is a sequence in g∗ such that κ(fn)→ κ(f) in Prim(G)

for some f ∈ g∗ . Then, after passing to a subsequence, there exists a sequence xn
in G such that Ad∗(xn)fn → f in g∗ .

Proof. It follows from Lemma 6.10 that, after passing to a subsequence, and

after passing from fn to Ad∗(yn)fn for some suitable yn ∈ G , we may assume

that there is a choice of standard regularizations rn for fn and a subalgebra s

subordinate to f such that

(Rn, ϕfn)→ (S, ϕf )

in S(G). By the above lemma, we can find, after passing to another subsequence,

elements gn ∈ r⊥n such that fn + gn → f in g∗ . By Proposition 5.11 we know that

Ad∗(Rn)fn is dense in fn + r⊥n for all n ∈ N . Thus, we may approximate fn + gn
by Ad∗(xn)fn for a suitable xn ∈ Rn to obtain Ad∗(xn)fn → f in g∗ .

As a consequence we now get the main result of this paper

Theorem 6.14. Suppose that (G, g) is a regular (m, ε)-dualizable k -Lie pair.

Then the Kirillov-orbit map κ̃ : g∗ /∼→ Prim(G) is a homeomorphism.

Proof. Corollary 6.7 shows that the Kirillov-orbit map is continuous and

surjective and the above proposition directly implies that it is open. So the result

follows if we can check that it is injective. For this suppose that f, f ′ ∈ g∗ such that

κ(f) = κ(f ′). Then the Proposition 6.13 applied to the constant sequence fn = f

implies that there exists a sequence (xn)n∈N in G such that Ad∗(xn)fn → f ′ .

Similarly, we can also find a sequence (yn)n∈N in G such that Ad∗(yn)f ′ → f .

Thus f and f ′ lie in the same quasi-orbit in g∗ .

7. GCR and CCR representations

Recall that an irreducible representation π ∈ Â is called a GCR-representation

(resp. CCR-representation), if π(A) contains (resp. is equal to) the compact

operators K(Hπ). Note that this implies that every irreducibe representation

ρ ∈ Â with ρ ∼ π must already be unitarily equivalent to π .

We say that A is GCR (resp. CCR) if every irreducibe representation

of A is GCR (resp. CCR). If A is separable, it follows from Glimm’s famous

theorem (see [11, Chapter 12]) that A is GCR if and only if A is of type I and

a representation π ∈ Â is GCR (resp. CCR) if and only if {π} is locally closed

(resp. closed) in Â . (Recall that a subset Y of a topological space X is called

locally closed if Y is open in its closure Y .)
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A locally compact group G is called GCR (resp CCR, resp type I) if the

group C∗ -algebra C∗(G) is GCR (resp. CCR, resp type I), and similarly for

representations. In what follows, we prove the following theorem:

Theorem 7.1. Suppose that (G, g) is a regular (m, ε)-dualizable nilpotent k -

Lie pair. Let f ∈ g∗ , let r ⊆ g be a standard polarizing subalgebra for f and let

R = exp(r). Then the following are true:

1. If f ∈ g∗ such that Ad∗(G)f is locally closed (resp. closed) in g∗ , then

indGR ϕf is GCR (resp. CCR).

2. If Ad∗(R)f = f + r⊥ and indGR ϕf is GCR (resp. CCR), then Ad∗(G)f is

locally closed (resp. closed).

The condition that Ad∗(R)f = f + r⊥ is certainly necessary for Ad∗(G)f

being locally closed, as we shall see in Lemma 7.4 below. However, we do not know

whether this condition is automatically satisfied if indGR ϕf is GCR.

Remark 7.2. Since for a given GCR-representation π of C∗(G) any other

irreducible representation τ with the same kernel must already be equivalent to

π , we see that if indGR ϕf is GCR for some f ∈ g∗ and some standard polarizing

subalgebra r = log(R), then every representation indGR′ ϕf ′ for any f ′ ∈ O(f)

and any standard polarizing algebra R′ for f ′ must be equivalent to indGR ϕf . In

particular, if (G, g) is regular and C∗(G) is GCR, then it follows from Theorem

6.14 that

κ̂ : g∗ /∼→ Ĝ;O(f) 7→ indGR ϕf

is a well-defined homeomorphism.

This observation can be specialized to locally closed subsets of Ĝ : If E ⊆ Ĝ

is locally closed, then E is homeomorphic to E ′ := {kerπ : π ∈ E} ⊆ Prim(G)

via the canonical map π 7→ kerπ . Thus if g∗E ⊆ g∗ denotes the inverse image of

E ′ under the Kirillov map, we obain a homeomorphism

κ̂E : g∗E /∼→ E;O(f) 7→ indGR ϕf .

Since a locally closed orbit Ad∗(G)f coincides with the quasi-orbit O(f)

of f , it follows from Theorem 7.1 and the above remark that

Corollary 7.3. Suppose that (G, g) is a regular (m, ε)-dualizable nilpotent k -

Lie pair such that all Ad∗(G)-orbits are locally closed (resp. closed) in g∗ . Then

C∗(G) is GCR (resp. CCR) and the Kirillov-orbit map

κ̂ : g∗ /Ad∗(G)→ Ĝ; f 7→ indGR ϕf

is a homeomorphism.
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For the proof of Theorem 7.1 we need the following two lemmas:

Lemma 7.4. Suppose that (G, g) is an (m, ε)-dualizable nilpotent k -Lie pair

and let f ∈ g∗ such that Ad∗(G)f is locally closed in g∗ . Then Ad∗(R)f = f+r⊥ .

Proof. Let Gf = {x ∈ G : Ad∗(x)f = f} denote the stabilizer of f . Since

Ad∗(G)f is locally closed, hence locally compact Hausdorff, and since G and g

are second countable, it follows that G/Gf is homeomorphic to Ad∗(G)f via

xGf 7→ Ad∗(x)f (e.g. use [29, Proposition 7.1]). By the last paragraph of Remark

5.9 we know that for all x ∈ G we have Ad∗(x)f ∈ f + r⊥ implies that x ∈ R .

Since Ad∗(x)f = f for all x ∈ Gf , it follows that Gf ⊆ R . Thus R/Gf is closed

in G/Gf , which implies that Ad∗(R)f is closed in Ad∗(G)f , hence locally closed

in g∗ . It thus follows that the Ad∗(R)-quasi orbit OR(f) coincides with the orbit

Ad∗(R)f . It follows then from Remark 5.9 that Ad∗(R)f = f + r⊥ .

Lemma 7.5. Let N be a closed normal subgroup of the second countable locally

compact group G such that G/N is abelian. Let ρ ∈ N̂ such the stabilizer GP of

P = ker ρ for the action of G on Prim(N) is equal to N . Then the following are

equivalent:

1. π = indGN ρ is GCR (resp. CCR).

2. ρ is GCR and the orbit G ·ρ = {x ·ρ : x ∈ G} is locally closed (resp. closed)

in N̂ .

Proof. By Green’s theory (e.g. see [12, Chapter 1]) there exists a twisted ac-

tion (α, τ) of (G,N) on C∗(N) such that C∗(G) ∼= C∗(N) oα,τ G and such that

induction and restriction for the twisted crossed product C∗(N)oα,τ G is compat-

ible with induction and restriction of representations in the group G between any

subgroups of G which contain N . The lemma thererfore follows from [12, Lemma

3.2.2].

Proof. [Proof of Theorem 7.1] Let f ∈ g∗ and let r be a standard polarization

of f of degree m = m(f, r). We give the proof by induction on the degree m . If

m = 0 we have R = G and assertions (1) and (2) of the theorem are trivially true.

Assume now m > 0. Let j ⊆ g be the largest ideal in the kernel of f and

let J = exp j . Then f factors through a functional f̃ ∈ (g /j)∗ and one easily

checks that all assertions are true for (G, g) and f if and only if they are true for

(G/J, g /j) and f̃ . Thus, by Lemma 5.3 we may assume without loss of generality

that f is faithful on z = z(g).

Let a be a maximal abelian subalgebra of z2(g), let n be its centralizer

in g and let A = exp(a) and N = exp(n). It follows then from Lemma 5.7 and

Remark 5.9 that r is a standard polarization for f |n of degree m − 1. Hence we

may assume by induction that Theorem 7.1 holds for (N, n) and f |n .
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Let ρ ∈ indNR ϕf . We claim that the stabilizer for the action of G on

P = ker ρ is equal to N . Indeed, if ψ := ϕf |A , then it is shown in the proof

of Proposition 5.11 that ρ|A = ψ · IdHρ and we know from Remark 5.6 that the

bicharacter Φψ : G/N × A/Z → T; (ẋ, ẏ) 7→ ψ(xyx−1y−1) is nondegenerate. In

particular, the map G/N → Â/Z which sends ẋ to the character χx = Φψ(ẋ, ·)
is injective. Assume now that x ∈ G such that ker(x · ρ) = ker ρ . Then

x · ψ ∼ x · ρ|A ∼ ρ|A ∼ ψ , hence x · ψ = ψ , which implies that χx(y) =

ψ(y−1x−1yx) =
(
ψ · (x · ψ)

)
(y) = 1 for all y ∈ A , from which it follows that

x ∈ N .

Thus we may apply Lemma 7.5 to see that indGR ϕf = indGN ρ is GCR (resp.

CCR) if and only if ρ = indNR ϕf is GCR and the orbit {x · ρ : x ∈ G} is locally

closed (resp. closed) in N̂ .

Assume now that the orbit Ad∗(G)f is locally closed (resp. closed) in g∗ .

Let Gf = {x ∈ G : Ad∗(x)f = f} denote the stabilizer of f in G . As observed in

the proof of Lemma 7.4 we have G/Gf
∼= Ad∗(G)f via xGf 7→ Ad∗(x)f and since

Gf ⊆ R ⊆ N it follows that Ad∗(N)f is also locally closed in g∗ . Since r ⊆ n it

follows from Lemma 7.4 that

f + n⊥ ⊆ f + r⊥ = Ad∗(R)f ⊆ Ad∗(N)f ⊆ Ad∗(G)f.

The same argument works if we replace f by Ad∗(x)f and R by xRx−1 ⊆ N

for any x ∈ G , from which it follows that Ad∗(G)f = Ad∗(G)f + n⊥ and

Ad∗(N)f = Ad∗(N)f + n⊥ . Since n∗ carries the quotient topology with respect

to the projection res : g → n; f 7→ f |n (which becomes clear after identifying g∗

with ĝ and n∗ with n̂), we see that Ad∗(G)f |n and Ad∗(N)f |n are locally closed

in n∗ (closed if Ad∗(G)f is closed in g∗ ). Since the theorem holds for (N, n), this

implies that ρ := indNR ϕf is GCR, and since κ−1({ker(x ·ρ) : x ∈ G} = Ad∗(G)f |n
is locally closed in n∗ , it follows from Theorem 6.14 combined with Remark 7.2

that the orbit G · ρ is locally closed in N̂ (closed if Ad∗(G)f is closed). Thus,

indGR ϕf = indGN ρ is GCR by Lemma 7.5 (and CCR if Ad∗(G)f is closed).

Assume now for the converse that π = indGR ϕf is GCR and that Ad∗(R)f =

f+r⊥ . This property is certainly invariant under conjugation with elements x ∈ G ,

so we have

Ad∗(xRx−1) Ad∗(x)f = Ad∗(x)f + Ad(x)(r)⊥

for all x ∈ G . It follows as above that Ad∗(G)f = Ad∗(G)f + n⊥ .

Since indGR ϕf is GCR, it follows from Lemma 7.5 that ρ = indNR ϕf is

GCR and the orbit G · ρ is locally closed in N̂ (closed if π is CCR). Applying

Theorem 7.1 to (N, n) this implies that Ad∗(N)f |n is locally closed in n∗ . Since

for all x ∈ G the representation x · ρ ∼= indNxRx−1 ϕAd∗(x)f |n is also GCR we see by

induction that the Ad∗(N)-orbits of Ad∗(x)f |n are locally closed for all x ∈ G

and hence coincide with the respective quasi-orbits ON(Ad∗(x)f |n). It follows
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then from Theorem 6.14 that

Ad∗(G)f |n =
⋃
x∈G

Ad∗(N) Ad∗(x)f |n =

⋃
x∈G

ON(Ad∗(x)f |n) = κ−1
N ({ker(x · ρ) : x ∈ G})

is locally closed in n∗ (closed if π is CCR), if κN : n∗ → Prim(N) denotes the

Kirillov map for N . But since Ad∗(G)f = Ad∗(G)f + n⊥ , this implies that

Ad∗(G)f is locally closed in g∗ (closed if π is CCR).

8. Examples

In this section we discuss some examples to which our generalized Kirillov theory

applies. We start with the case of unipotent groups over R or Qp :

Example 8.1. Let K be a local field of characteristic zero (i.e., K = R,C
or a finite extension of Qp for some prime p). Let g be any finite dimensional

nilpotent Lie algebra over K and let G = g with multiplication given by the

Campbell-Hausdorff formula. Then exp : g → G is given by the identity map.

It follows that (G, g) is an ∞-Lie pair (or rather, a Q-Lie pair) in the sense

of Definition 4.1. Note that every unipotent nilpotent Lie group over K can be

realized in this way and that in case K = R this class coincides with the class of

connected and simply connected nilpotent real Lie groups.

Since every finite dimensional Lie algebra over a finite extension of K = R
or K = Qp is also a finite dimensional Lie algebra over K , we assume from now

on that K = R or K = Qp . Let ε : R→ T denote the basic character ε(t) = e2πit

for t ∈ R and

ε : Qp → T,
∞∑
j=m

cj p
j 7→ exp(2πi

−1∑
j=m

cjp
j)

for x =
∑∞

j=m cjp
j ∈ Qp . If V is a finite dimensional vector space V over K ,

then it follows from [32, Theorem 3] that V ∗ := Hom(V,K) ∼= V̂ via f 7→ ε ◦ f .

In particular, we obtain g∗ ∼= ĝ via f 7→ ε ◦ f . Since Q is dense in K , every

every closed Q-subalgebra h of g is also a K -subalgebra. By basic linear algebra,

this implies that every f ∈ h∗ extends to a functional f̃ ∈ g∗ , hence (G, g) is

(K, ε)-dualizable in the sense of Definition 4.5. Moreover, since the sum of two

K -subalgebras h and n is a finite dimensional subspace of g , it must be closed

in g . This shows that (G, g) is also regular in the sense of Definition 6.8. It

is well known that the Ad∗(G)-orbits in g∗ are always closed, since they can be

described as the set solutions of certain polynomial equations. It therefore follows

from Corollary 7.3 that C∗(G) is CCR for all such G , and the Kirillov-orbit map

κ̂ : g∗ /Ad∗(G)→ Ĝ; f 7→ indGR ϕf
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is a homeomorphism. Thus, we recover the original case of Kirillov [26] (together

with the main result of [7]) in case of real groups. Unipotent groups over Qp have

been considered by Moore in [27] and (for the homeomorphism result) by Howe in

[20].

Example 8.2. Recall from [20] that a locally compact group G is called a

quasi-p group if every x ∈ G generates a compact subgroup of G which is a

projective limit of finite p-groups. For instance, every unipotent group over Qp ,

as considered in the previous example, is a quasi-p group in this sense. Howe has

shown in [20, Theorem I] that every nilpotent quasi-p group is totally disconnected

and has a unique k -Lie algebra g such that the exponential map exp : g → G is

bijective and satisfies the Campbell-Hausdorff formula, if G (and hence g) is of

nilpotence length k < p . Thus, in this case (G, g) is a nilpotent k -Lie pair.

Moreover, the underlying abelian group g is also a quasi-p group (since exp

sends the closed subgroup generated by X ∈ g to the closed subgroup generated by

x = exp(X) ∈ G). It follows that every character of g takes its values in a cyclic

group of order a power of p . Thus if we let m := {ζ ∈ T : ζp
m

= 1 for some m ∈ N}
(which is known as Prüfer’s p-group) equipped with the discrete topology, and if

ε : m→ T denotes the inclusion map, then one easily checks that (G, g) is (m, ε)-

dualizable. Finally, since the sum a + b of two closed subgroups a and b in

the abelian totally disconnected group g is always closed (since the sum of the

intersection of both groups with a fixed compact open subgroup c of g is compact

and open in a+ b), we see that the Lie algebra g is also regular. Thus our results

apply to those groups and we recover most of the content of [20, Theorem II].

Example 8.3. In this example we consider unipotent groups over a local field

K of positive characteristic. Note that this means that K is isomorphic to a

function field Fq((t)), for some power q of p . We denote by Tr0(n,K) (resp.

Tr1(n,K)) the set of upper triangular n×n-matrices over K with 0’s (resp. 1’s)

on the diagonal. If n < p := char(K), one can check that the exponential map

exp : Tr0(n,K)→ Tr1(n,K);X 7→ exp(X) =
n∑
l=0

X l

l!

is a bijection with inverse map log : Tr1(n,K)→ Tr0(n,K); log(x) =
∑n

l=1
(−1)l

l+1
(1−

x)l . It is clear that Tr0(n,K) is a Λk -module for all k < p , so we see that(
Tr1(n,K), T r0(n,K)

)
becomes a k -Lie pair for all n ≤ k < p . For any closed

subgroup G of Tr1(n,K) let g = log(G) ⊆ Tr0(n,K). Then G is a quasi-p group

with Lie algebra g as considered in the previous example and our results apply to

the pair (G, g).

Note that every unipotent linear algebraic group G over K is isomorphic

to an algebraic subgroup of the upper triangular unipotent group Tr1(n,K) for

some n ∈ N (see [4, Theorem 4.8]).
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Example 8.4. Another important class of examples to which our approach

applies is formed by the class of countable torsion free discrete divisible nilpotent

groups, as considered by Carey, Moran and Pearce in [9]. As explained in [9,

§2], if G is such a group, then there exists a Lie algebra g over Q together

with an exponential map exp : g → G with inverse map log : G → g which

satisfy the Campbell-Hausdorff formula, so (G, g) is an ∞-Lie pair in our notation.

Particular examples are given as follows: Let gR be any real nilpotent Lie algebra

with basis {X1, . . . , Xn} and with rational structure coefficients with respect to

this basis. Let gQ ⊆ gR denote the Q-vector space spanned by X1, . . . , Xn and

let GQ = exp(gQ) ⊆ GR , where GR denotes the simply connected and connected

nilpotent Lie group corresponding to gR . Then GQ is a countable, torsion free,

and divisible group with Lie algebra gQ .

We need to show that there exists a Q-module m and a basic character

ε : m → T such that the pair (m, ε) satisfies the conditions of Definition 4.1. For

this we recall that the dual group Q̂ of Q can be identified with the compact group

m := AQ/Q , where AQ is the group of adeles and Q is imbedded diagonally into

AQ . The identification is given by

[a] 7→ εa with εa(λ) = ε∞(λa∞)
∏
p∈P

εp(λap)

where (a∞, a2, a3, . . .) is any representative of [a] in AQ , ε∞ is the basic character

of R , and εp is the basic character of Qp for every prime p ∈ P (see Example 8.1).

We define ε : m→ T by

ε([a]) := εa(1).

We claim that for any Q-vector space V (viewed as a discrete group), we obtain

an isomorphism V ∗ := HomQ(V,m) ∼= V̂ via f 7→ ε ◦ f . To see that this map is

injective suppose that ε ◦ f ≡ 1 for some f ∈ V ∗ . Fix v ∈ V . Then, for each

λ ∈ Q we get

1 = ε(f(λv)) = ε(λ · f(v)) = εf(v)(λ)

so that εf(v) is the trivial character of Q , which implies that f(v) = 0. For

surjectivity let χ ∈ V̂ . Then for each v ∈ V we obtain a character χv ∈ Q̂ by

defining χv(λ) = χ(λv). We then define f : V → m by f(v) = [a] if [a] ∈ m such

that εa = χv .

It follows in particular that ĝ ∼= HomQ(g,m) for any Lie algebra g over Q .

Thus, if g is the Lie algebra of some torsion free divisible group G , then (G, g) is

an (m, ε)-dualizable Q-Lie pair. Since G is discrete, it is clearly regular. It follows

that for all such groups the Kirillov-orbit map

κ̃ : g∗ /∼→ Prim(G)

is a homeomorphism. This covers the main result of [9].
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Example 8.5. In this finite example we consider the class countable torsion

free nilpotent groups G with nilpotence length less or equal to a fixed integer k

and such that the equation xp = a has a solution x ∈ G for any a ∈ G and any

prime p ≤ k . In [31] Tandra and Moran prove a Kirillov theory for these groups

following the ideas from [9] in case of divisible groups as considered in the previous

example. In particular they show that there exists a Lie-algebra over Λk such that

(G, g) becomes a k -Lie pair in our sense. Put m := Λ̂k , the Pontrjagin dual of Λk

with basic character given by ε : m→ T; ε(χ) = χ(1). Note that m := Λ̂k becomes

a Λk -module by λ · χ(x) := χ(λx) for λ, x ∈ Λk . As in the previous example one

checks that HomΛk(g,m) ∼= ĝ , which implies that (G, g) is an (m, ε)-dualizable

k -Lie pair and all our results apply to this situation. We therfore recover the main

results of [31] as a special case of our setting.

9. Appendix on the Campbell-Hausdorff formula

In this appendix we present some details for the proofs of some results related

to the Campbell-Hausdorff formula as used in this paper and we give a proof of

Theorem 4.4. We start with a general remark on the Campbell-Hausdorff formula:

Remark 9.1. Suppose that (G, g) is a k -Lie pair. For X, Y ∈ g we write

ad(X)(Y ) := [X, Y ] . As part of the definition we require that the Campbell-

Hausdorff formula describes the multiplication inside the group G using the laws

of the Lie algebra g : If X, Y ∈ g then exp(X) exp(Y ) = exp(Z), where the

element Z = log(exp(X) exp(Y )) is of the form

Z =
l∑

n=1

Zn =
l∑

n=1

(
1

n

∑
s+t=n

(Z ′s,t + Z ′′s,t)

)
,

where

Z ′s,t =
∑

s1+···+sm=s
t1+···+tm−1=t−1

si+ti≥1 ∀i
sm≥1

(−1)m+1

m

ad(X)s1 ad(Y )t1 . . . ad(X)sm(Y )

s1!t1! . . . sm!
(16)

and

Z ′′s,t =
∑

s1+···+sm−1=s
t1+···+tm−1=t
si+ti≥1 ∀i

(−1)m+1

m

ad(X)s1 ad(Y )t1 . . . ad(Y )tm−1(X)

s1!t1! . . . tm−1!
. (17)

Explicitly, the values of the first three homogeneous components of Z are

Z1 = X + Y, Z2 =
1

2
[X, Y ], and Z3 =

1

12
([X, [X, Y ]] + [Y, [Y,X]]).
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Hence we have for all X, Y ∈ g :

(expX)(expY ) = exp(X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]] +

1

12
[Y, [Y,X]] + · · · ).

A complete description of this formula can be found for example in [5]. Since the

Lie algebra g is nilpotent, all sums which appear above are finite.

In what follows, a commutator [X1, . . . , Xm] of length m ≥ 1 in g is defined

inductively by

[X1] := X1 and [X1, . . . , Xm] := [[X1, . . . , Xm−1], Xm], Xi ∈ g, i = 1, . . . ,m.

and similarly, we define commutators (x1; . . . ;xm) of length m ≥ 1 in G . The

following important result follows from [22, Theorem 6.1.6].

Proposition 9.2. Let (G, g) be a nilpotent k -Lie pair. If x1, . . . , xm ∈ G then

log
(
(x1; . . . ;xm)

)
= [log(x1), . . . , log(xm)] +

∑
j

Fj, (18)

where each Fj is a Λk -linear combination of commutators [log(xi1), . . . , log(xij)]

of length j > m and il ∈ {1, . . . ,m} for 1 ≤ l ≤ j , such that each of 1, . . . ,m

occurs at least once among the il .

From this proposition we deduce

Lemma 9.3. Let (G, g) be a nilpotent k -Lie pair and let H be a k -complete

subgroup of G. Let h ∈ H , let D be any commutator of length r ≥ 1 with entries

in log(H), and let µ ∈ Λk . Then there exists an element h′ ∈ H and there exist

finitely many Λk -linear combinations, Gt , of commutators of length t ≥ r+1 with

entries in log(H), such that

log(h) + µD = log(h′) +
∑
t

Gt.

Proof. Let r ≥ 1 be fixed and let D = [log(x1), . . . , log(xr)] for some xi ∈ H ,

i = 1, . . . , r . Since the commutator is Λk -bilinear, we obtain

µ[log(x1), . . . , log(xr)] = [µ log(x1), . . . , log(xr)] = [log(xµ1), . . . , log(xr)],

with xµ1 ∈ H since H is k -complete. Recall the Campbell-Hausdorff formula

log(xy) = log(x) + log(y) +
∑
t≥2

Gt,

where each Gt is a linear combination of commutators of length t ≥ 2 in log(x)

and log(y). Applying this formula to x = h and y = (xµ1 ; . . . ;xr) yields

log
(
h · (xµ1 ; . . . ;xr)

)
= log(h) + log

(
(xµ1 ; . . . ;xr)

)
+
∑
t

Gt, (19)
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where each Gt is a linear combination of commutators of length t ≥ 2 in log(h)

and log
(
(xµ1 , . . . , xr)

)
. Proposition 9.2 gives

log
(
(xµ1 ; . . . ;xr)

)
= [log(xµ1), . . . , log(xr)] +

∑
s

Fs,

where each Fs is a linear combination of commutators of length s > r in log(xµ1)

and in log(xj), j ∈ {2, . . . , r} . Thus every term Gt in (19) is in fact a commutator

of length t ≥ r + 1 in log(h), log(xµ1), and log(xj), j ∈ {2, . . . , r} and we obtain

log(h) + log
(
(xµ1 ; . . . ;xr)

)
= log

(
h · (xµ1 ; . . . ;xr)

)
+
∑
t

Gt, (20)

where each Gt is a linear combination of commutators of length t ≥ r + 1 in

log(h), log(xµ1), and log(xj), j ∈ {2, . . . , r} . Since h′ := h(xµ1 ; . . . ;xr) ∈ H the

result follows.

The next lemma completes the proof of Theorem 4.4. A similar result can

be found in [5, Chapter II, Exercises 6].

Lemma 9.4. Let (G, g) be a nilpotent k -Lie pair, and let H be a k -complete

subgroup of G. Then log(H) is a subalgebra of g.

Proof. Note first that λ log(x) = log(xλ) for all λ ∈ Λk since H is k -complete.

We now show that log(H) is closed under addition. For this let x, y ∈ H . The

above lemma implies that

log(x) + log(y) = log(x1) +
∑
t

Gt

for some x1 ∈ H and a finite sum
∑

tGt where Gt is a λk -linear combination of

commutators of length t ≥ 2 with entries in log(H). Applying the same lemma

again and again to each summand µD of Gt for t = 2, we finally obtain an element

x2 ∈ H such that

log(x) + log(y) = log(x2) +
∑
s

Fs

where each Gt is a λk -linear combination of commutators of length s ≥ 3 with

entries in log(H). After a finite number of steps we obtain an element xl ∈ H

such that

log(x) + log(y) = log(xl) +
∑
r

Er

where each Er is a λk -linear combination of commutators of length r ≥ l + 1. If

l is the nilpotence length of g , then all those commutators Er vanish, and we get

log(x) + log(y) = log(xl) ∈ log(H).

If we apply Lemma 9.3 to h = 1 and D = [log(x), log(y)], a similar

argument shows that [log(x), log(y)] ∈ log(H) for all x, y ∈ H , which finishes

the proof.
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A similar proof as for Lemma 9.4 gives the following

Corollary 9.5. For every nilpotent k -Lie pair (G, g) there exist two different

inversion formulas of the Campbell-Hausdorff formula. One formula expresses the

sum of two elements of log(G) as an element of log(G):

log(x) + log(y) = log

(
k∏

m=1

Cm(x, y)

)
, (21)

where each Cm(x, y) is a product of commutators (z1; . . . ; zm) of length m and

where each zi is equal to some rational power λ ∈ Λk of some product in x and

y .

The other formula expresses the commutator of two elements of log(G) as

an element of log(G):

[log(x), log(y)] = log

(
k∏

m=2

Dm(x, y)

)
, (22)

where each Dm(x, y) is a product of commutators (z1; . . . ; zm) of length m and

where each zi is equal to some rational power by λ ∈ Λk of either x or y .

The proof of the following proposition follows from the above formulas in

the usual way and is omitted.

Proposition 9.6. Let (G, g) be a nilpotent k -Lie pair. Then the assignment

n 7→ N := exp(n) is a bijection between the sets of closed ideals n in g and

of exponentiable normal subgroups N of G. Moreover, if N = exp(n) is an

exponentiable normal subgroup of G, then (G/N, g /n) is a nilpotent k -Lie pair.

We are now going to show that certain characteristic subgroups of G are

exponentiable. We start with another important consequence of Proposition 9.2.

Of course, the proof is the same as in the case of ordinary Lie groups, but for

completeness, we include the arguments.

Lemma 9.7. Suppose that (G, g) is a nilpotent k -Lie pair. Let x = exp(X)

and y = exp(Y ) for some X, Y ∈ g. Then (x; y) = 1 if and only if [X, Y ] = 0. In

particular, we have Z(G) = exp(z(g)), where Z(G) and z(g) denote the centers

of G and g, respectively, and therefore Z(G) is an exponentiable subgroup of G.

Proof. If [X, Y ] = 0, then so are all higher commutators in X and Y , and it

follows then from Proposition 9.2 that (x; y) = exp(0) = 1. Conversely, assume

that (x; y) = 1. Then the same is true for all higher group commutators in x and

y . Let m be the nilpotence length of g . Then all commutators of length m + 1

in g vanish. Suppose now that [Z1, . . . , Zm] is a commutator of length m with
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Zi ∈ {X, Y } for all 1 ≤ i ≤ m . Then Proposition 9.2 implies that

[Z1, . . . , Zm] = log(z1; . . . ; zm) +
∑
j

Fj

with zi = exp(Zi) for all 1 ≤ i ≤ m and with each Fj a Λk -linear combination

of commutator in X, Y of length > m . But then all Fj vanish, and since

(z1; . . . ; zm) = 1 it follows that [Z1, . . . , Zm] = 0. The same argument then shows

that commutators of length m− 1 in X, Y vanish, and by induction we then see

that all commutators of length l ≥ 2 in X, Y vanish. In particular, it follows that

[X, Y ] = 0. The last assertion follows from the fact that z(g) is an ideal in g .

Lemma 9.8. Let (G, g) be a nilpotent k -Lie pair of nilpotence length l . Then

exp(zi(g)) = Zi(G) ∀ i = 1, . . . , l,

where zi(g) denotes the ith element of the ascending central series of g and

Zi(G) denotes the ith element of the ascending central series of G. In particular,

Zi(G) is exponentiable for every i = 1, . . . , l .

Proof. This is an easy consequence of Lemma 9.7 and Proposition 9.6.

Lemma 9.9. Let (G, g) be a nilpotent k -Lie pair and let G′ := (G;G) denote

the closed commutator subgroup of G and let g′ = [g, g] the closed commutator

subalgebra of g. Then G′ = exp(g′).

Proof. It follows from Proposition 9.2 that (G;G) ⊆ exp([g, g]) which implies

(G;G) ⊆ exp([g, g]). The converse follows from equation (22). The result then

follows from the easy fact that [g, g] is an ideal in g .

In view of Proposition 3.1, the following lemma is certainly very useful:

Lemma 9.10. Let k ≥ 2 and let (G, g) be a nilpotent k -Lie pair of nilpotence

length l ≥ 2. Then A 7→ log(A) =: a gives a bijective correspondence between the

maximal abelian subgroups A of Z2(G) and the maximal abelian subalgebras a of

z2(g). In particular, every maximal abelian subgroup of Z2(G) is exponentiable.

Moreover, if N is the centralizer of a maximal abelian subgroup A of Z2(G),

then N is exponentiable and n = log(N) is the centralizer of a = log(A) in g.

Proof. The first assertion is an easy consequence of Lemma 9.7 together with

Lemma 9.8. The second assertion is a consequence of Lemma 9.7 and the fact that

n is a subalgebra of g .
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