2017 DOE Hydrogen and Fuel Cells Program Annual Merit Review

Life-Cycle Analysis of Air Pollutants Emission for Refinery and Hydrogen Production from SMR

Amgad Elgowainy, Pingping Sun, Zifeng Lu, Jeongwoo Han, Michael Wang

Argonne National Laboratory

June 6, 2017

SA066

Overview

Timeline

Start: FY 2017

End: Determined by DOE

% complete (FY17): 60%

Budget

Funding for FY17: \$200K

Barriers to Address

- Inconsistent data, assumptions, and guidelines
- Insufficient suite of models and tools
- Emission data are only available for specific years (2011 and 2014)
- Confidential business information

Partners/Collaborators

- Eastern Research Group (ERG)
- Jacobs Consultancy
- PNNL
- Other industry stakeholders

Relevance/Impact

- Reducing air pollutant emissions from transportation is a target for major cities in the U.S.
 - Zero emissions vehicle (ZEV) regulations in California and NE states
 - Vehicle electrification, including fuel cell electric vehicles, provides significant potential for reducing air pollutant emissions
- Fuel cell electric vehicles (FCEVs) have zero tailpipe emissions
 - Hydrogen is mostly produced from steam methane reforming (SMR)
 - Upstream emissions with hydrogen production, delivery and compression may negate emissions benefits of FCEVs
 - Accurate air pollutant emissions is needed for baseline petroleum fuels and H₂
 - LCA provides a consistent platform for evaluating and comparing air pollutant emissions along the production pathways of transportation fuels (including H₂)
- Hydrogen is also essential for processing, refining and upgrading of petroleum and biofuels
 - Understanding emissions associated with hydrogen production is key for evaluating life cycle emissions of other fuels

LCA of air pollutant emissions for petroleum fuels and hydrogen production pathways — Relevance

Acquire refinery and SMR air emissions and production data

Approach

Part I: U.S. Refinery Air Pollutants Emission

Connect refinery air emissions inventory to refinery products

Approach

Facility

 Match individual refinery for process emission from NEI at unit level and utility/auxiliary emission

Unit

 Guided by LP modeling flow schemes, allocate utility/auxiliary emissions to individual process units

Product

 Guided by LP modeling flow schemes and product pools, allocate unit emissions to individual refinery products Connect refinery air emissions inventory to refinery operation

Approach

Extra filter: minimal refinery operation change from 2011 to 2012 to ensure consistency

Evaluated 11 refineries with 2011 emissions data:

Seven non CA refineries (PADD 2,3,5) and four CA refineries

Develop refinery flow scheme via LP modeling – Approach

Refinery National Emission Inventory at Process Unit Level

- Most pollutant air emissions are mainly sourced from combustion via heater, boiler,
 FCC, flare, and engine
- VOC is mainly sourced from fugitive emission, tank and waste

Refinery emissions allocated to products – Accomplishment

Large variation of emissions between refineries – Accomplishment

- The product emission factors are based on 11 refineries (capacity weighted)
- The average emission factors per unit crude input is calculated on a national level (>120 refineries)
- The error bars indicate 1 quartiles and 3 quartiles by facility

Part II: Standalone SMR Pollutants Emission

Acquire SMR emissions and production data – Approach

- SMR can be within refinery fenceline or standalone
- After initial reviews: only standalone SMR were investigated as the former do not have a consistent system boundary
- For standalone SMR, no allocation is needed, all facility emissions are accounted for H₂ production
 - √ 2014 emissions data
 - ✓ Combustion and non-combustion emissions
- Limited overlap of facilities reporting both emissions and productions
- Verified via communication with industry

Standalone SMR H_2 production data pooling - Approach

Examining SMR emission factors from various data pools

Approach/Accomplishment

- Smaller SMR plants have apparent higher emission factor
- Used the CDR derived emission factors (EF) and industry input as metrics to evaluate the results from the PNNL data
- The significant scattering and divergence of GHGRP derived EFs (relative to CDR derived EFs) led to the GHGRP EF pool rejection

Develop SMR emission factors (combustion) - Accomplishments

- Similar to refinery facilities, the SMR emissions are mainly sourced from combustion sources, heater, boiler, engine, flare
- Previous GREET 2016 combustion related emission factors are within the variation range from the present study

Develop SMR emission factors (non-combustion)

Accomplishments

- The non combustion sources include hydrogen plant, cooling water, fugitive emission, and other (based on SCC code)
- The weighed average of non-combustion emission factors are smaller compared to previous GREET 2016 values

Total SMR emission factors – Accomplishments

- ➤ Considering a <u>larger emissions data pool</u>, the weighed average SMR emission factors are much smaller compared to previous GREET 2016 values
 - ✓ Mainly due to updates of non-combustion emissions

Part III: Petroleum Fuels vs. SMR Hydrogen in Light-Duty Vehicle Applications

Refinery fuels and SMR H_2 emission factors – Accomplishments

Well-to-wheels (WTW) VOC and CO emissions of FCEV are much lower compared gasoline ICEV – Accomplishments

Fuel Economy:
Gasoline ICEV→ 26 mpg
H₂ FCEV → 55 mpgge

Well-to-wheels (WTW) NOx and PM10 emissions of FCEV are much lower compared to gasoline ICEV — Accomplishments

Well-to-wheels (WTW) SOx emissions of FCEV are higher compared to gasoline ICEV – Accomplishments

Gasoline ICEV

Hydrogen FCEV

24

Summary - Accomplishment

- ✓ Collected emissions inventory data of individual refineries and for individual refining process units
- ✓ Mapped refinery process unit data into individual process units using flow schemes and unit energy intensities from LP modeling
- ✓ Allocated unit level emissions into various refinery product pools
- ✓ Quantified regional differences and variability for emissions associated with each refinery product
- ✓ Collected emissions inventory data and developed combustion and noncombustion related emission factors in standalone SMR plants
- ✓ Considering the larger emissions data pools, the weighed average emission factors for refinery products and SMR hydrogen are smaller compared to previous GREET 2016 values
- ✓ Updated GREET with new emission factors for refinery and SMR products
- ✓ Compared WTW emissions of hydrogen FCEVs vs. baseline gasoline ICEVs
 - Much lower WTW air pollutant emissions (except SOx) for FCEVs compared to gasoline ICEVs
 - > WTW SOx emissions for SMR hydrogen is impacted by electricity use for CSD

Collaborations and Acknowledgments

- ERG Consultancy pooled U.S. refinery/SMR emissions inventory and production capacity
- Jacobs Consultancy provided refinery configurations and energy and yields at the process unit level
- PNNL provided nameplate capacity for SMR plants
- Industry stake holders verified SMR emissions information

Future Work

- ☐ Continue to match individual refinery unit operation and emissions using 2014 emissions dataset
 - improve product-specific emissions estimate with a larger sample of emissions inventory data
- Expand sample of SMR emission factors with annual production estimates and considering combined 2011/2014 emissions data
- Correlate emission factors with SMR plant capacity
- □ Reconcile and refine different air emission evaluation methods with respect to system boundary and allocation (e.g. tank emission, fugitives)
- □ Assess variability of air emissions by region (regional analysis)
- Expand analysis from inventory level to impact assessment by region
 - ✓ Assess benefits of hydrogen FCEVs on air quality in different regions
- □ Update public GREET model with revised emission factors and publish air emission results in peer reviewed article

Project Summary

Relevance:

- Reducing air pollutant emissions from transportation is a target for major cities in the U.S
- Vehicle electrification provides significant potential for reducing air pollutant emissions
- Accurate air pollutant emissions is needed for baseline petroleum fuels and H2
- > LCA provides a consistent platform for evaluating and comparing air pollutant emissions along the production pathways of transportation fuels (including H2)
- **Approach:** Acquire emissions inventory and production data for petroleum refineries and SMR hydrogen plants. Allocate emissions to individual refinery products using flow schemes from LP modeling.
- **Collaborations**: Worked with ERG, Jacobs Consultancy and PNNL to acquire high quality emissions inventory and refinery/SMR operation data. Communicated with industry to verify emissions data.

Technical accomplishments and progress:

- Allocated refinery pollutant emissions into various refinery product pools
- Quantified regional differences and variability for emissions associated with each refinery product
- Developed combustion and non-combustion related emission factors in standalone SMR plants
- Considering the larger emissions data pools, the weighed average emission factors for refinery products and SMR hydrogen are smaller compared to previous GREET 2016 values
- Lower WTW air pollutant emissions (except SOx) for FCEVs compared to gasoline ICEVs

Future Work:

- Expand emissions inventory sample by considering 2014 refinery and SMR operation and emissions
- Assess variability of air emissions by region (regional analysis)
- Expand analysis from inventory level to impact assessment by region
 - Assess benefits of hydrogen FCEVs on air quality in different regions
- Update public GREET model with revised emission factors and publish air emission results in peer reviewed article

Ac	ronyms		
	C2G WG: Cradle-to-Grave Work Group	mpg: miles per gallon	
	CA: California	mpgge: miles per gallon of gasoline	
	CDR: chemical data reporting	equivalent	
	CO: Carbon Monoxide	MSM: Maco-Systems Model	
	CSD: Compression, Storage, and Dispensing	NE: North Eastern	
	EF: Emission Factor	NEI: national emission inventory	
	EIA: Energy Information Administration	NOx: Nitrogen Oxides	
	EPA: Environmental Protection Agency	PM10: Particulate Matter less than 2	10
	FCC: Fluid Catalytic Cracking	micron	
	FCEV: Fuel Cell Electric Vehicle	PM2.5: Particulate Matter less than	
	FCTO: Fuel Cells Technologies Office	2.5 micron	
	FY: Fiscal Year	PNNL: Pacific northwest national	
	GHG: Greenhouse Gases	laboratory	
	GHGRP: Green house gas reporting program	RD&D: Research, Development, and	
	GREET: Greenhouse gases, Regulated	Demonstration	
	Emissions, and Energy use in Transportation	RefCap: refinery capacity report	
	H ₂ : Hydrogen	SCC: Standard Classification Code	
	H2A: Hydrogen Analysis	SMR: Steam Methane Reforming	
	ICEV: Internal Combustion Engine Vehicle	SOx: Sulfur Oxides	
	LCA: Life-Cycle Analysis	VOC: Voatile Organic Compound	
	LP: Linear Programming	WTW: Well-To-Wheels	
	LPG: Liquefied Petroleum Gas	ZEV: Zero Emissions Vehicle	29

Technical Backup Slides

Refinery regional emissions difference – Accomplishment

Non-CA: higher in VOC, NOx

CA: higher in CO, PM10 and PM2.5