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Mycorrhizae are indigenous to soil and plant rhizosphere and 
potential tools for sustainable agriculture. They enhance the growth of a root 
system and even of an entire plant and often control certain plant pathogens. 
It is a fascinating subject, multidisciplinary in nature, and concerns scientists 
involved in plant heath and plant protection. There have been marked advan-
ces in this field during the last few decades. This book stresses the need to 
document the information, developing a unifying theme which treated mycorrhi-
zae in a holistic manner. Mycorrhizal fungi improve plant vigor and soil 
quality by using the greater surface area. The hyphae of these fungi extend 
out into the soil, secrete extracellular enzymes and efficiently absorb the maxi-
mum amount of available nutrients and deliver these nutrients back to the 
plant inside the root cell wall. They play a crucial role in plant nutrient 
uptake, water relations, ecosystem establishment, plant diversity, and the pro-
ductivity of plants. Scientific research in this field involves multidisciplinary 
approaches to understand adaptation of mycorrhizae to the rhizosphere, 
mechanism of root colonization, effect on plant physiology and plant growth, 
biofertilization, plant resistance, biocontrol of plant pathogens. The main 
purpose of the book is to provide a comprehensive source of current literature 
and future prospects for research. 

The book has 15 chapters and attempts to present balanced accounts 
on various aspects of mycorrhizae. Chapter 1 gives an overview of mycor-
rhizal fungi and their role in reduction in chemicals and sustainable agricul-
ture, while Chapter 2 describes the molecular basis of nutrient exchange 
between arbuscular mycorrhizae (AM) and plants. Other chapters deal with 
AM fungi as potential bioprotectants against plant pathogens, role of AM 
fungi in alleviation of soil stresses on plant growth, AM fungi communities 
in major intensive North American grain productions and indirect contribu-
tions of AM fungi and soil aggregation to plant growth and protection. 
Chapters on AM fungi and their role in plant restoration in native ecosystems 
and interactions of AM fungi and beneficial saprophytic mycoflora and 
mycorrhizosphere effect: a multitrophic interaction complex is also dis-
cussed. Ectomycorrhizae (ECM) and their importance in forest ecosystem 
and ECM associations in tropical rain forests, function to maintain tropical 
monodominance and the use of mycorrhizal biotechnology in restoration of 
disturbed ecosystem are presented in other chapters. A separate chapter has been 
devoted to in vitro mycorrhization of micropropagated plants while effective 
and flexible methods for visualizing and quantifying endorhizal fungi are 
dealt in detail in the last chapter. 
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The book is not an encyclopedic review. However, an international 
emphasis has been placed on trends and probable future developments. The 
chapters incorporate both theoretical and practical aspects, and may serve as 
base line information for future research through which significant develop-
ments can be expected. This book will be useful to students, teachers and re-
searchers, both in universities and research institutes, especially working in 
areas of agricultural microbiology, plant pathology, and agronomy.  

With great pleasure, we extend our sincere thanks to all the contri-
butors for their timely response, excellent and up to date contributions and 
consistent support and cooperation. We are thankful to Professors Ainul Haq 
Khan, Aqil Ahmad, R.P. Singh, Department of Botany, A.M.U. Aligarh, 
Professor Wasim Ahmad, Department of Zoology, A.M.U. Aligarh, and Pro-
fessor C.M.M. Bandara Visiting Professor, Graduate School of Agriculture, 
Kyoto University, Japan for their moral support during this project. We 
acknowledge with thanks the valuable assistance from my friends, well wishers 

ment of Botany, A.M.U. Aligarh, Yuko Takeuchi, Graduate School of Agricul-
ture, Kyoto University and Abdul Rajjak, Department of Chemistry, Kyoto 
University, Kyoto, Japan for their encouragement, courtesy and help as this 
book progressed. 

We are extremely thankful to Springer, Dordrecht, the Netherlands 
for completing the review process expeditiously to grant acceptance for 
publication. Cooperation and understanding of its staff especially of Maryse 
Walsh, Publishing Editor and Melanie van Overbeek, Senior Publishing Assis-
tant is also thankfully acknowledged. 

We express sincere thanks to our family members, for all the support 
they provided, and regret the neglect and loss they suffered during the pre-
paration of this book. 

Finally, we must be gracious to the Providence who helped us to 
develop and complete a book on Mycorrhyzae: Sustainable Agriculture 
and Forestry.

Zaki A. Siddiqui 
M. Sayeed Akhtar 

Kazuyoshi Futai 
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Chapter 1 

MYCORRHIZAE: AN OVERVIEW 

ZAKI A. SIDDIQUI1 AND JOHN PICHTEL2

1Department of Botany, Aligarh Muslim University, Aligarh 202002, INDIA; 2Ball State 
University, Natural Resources and Environmental Management, Muncie, IN 47306 USA

Abstract:       Mycorrhizae establish symbiotic relationships with plants and play an essential 
role in plant growth, disease protection, and overall soil quality. Of the seven 
types of mycorrhizae described in current scientific literature (arbuscular, ecto, 
ectendo, arbutoid, monotropoid, ericoid and orchidaceous mycorrhizae), the 
arbuscular and ectomycorrhizae are the most abundant and widespread. This 
chapter presents an overview of current knowledge of mycorrhizal inter-
actions, processes, and potential benefits to society. The molecular basis of 
nutrient exchange between arbuscular mycorrhizal (AM) fungi and host 
plants is presented; the role of AM fungi in disease protection, alleviation of 
heavy metal stress and increasing grain production is also reviewed. Use of 
mycorrhizae, primarily AM and ectomycorrhizae (ECM), on plant growth 
promotion and disease suppression are discussed and their implications on sus-
tainable agriculture are considered. The effect of co-inoculation of AM fungi 
and beneficial saprophytic mycoflora, in terms of plant growth promotion and 
root colonization, are discussed. The role of AM fungi in the restoration of 
native ecosystems and the mycorrhizosphere effect of multitrophic interactions 
are briefly outlined. The mechanisms by which mycorrhizae transform a dis-
turbed ecosystem into productive land are briefly discussed. The importance of 
reintroduction of mycorrhizal systems in the rhizosphere is emphasiszed and 
their impact in landscape regeneration and in bioremediation of contaminated 
soils are discussed. The importance of ECM in forest ecosystems, and asso-
ciations of ECM in tropical rainforests and their function in maintaining tropical 
monodominance are discussed. In Vitro mycorrhization of micropropagated 
plants and visualizing and quantifying endorhizal fungi are briefly explained.

Keywords:     Agriculture; forestry; mycorrhizae; reclamation; sustainable. 
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1 INTRODUCTION 

In 1885 Albert Bernard Frank (Frank, 1885), in his study of soil 
microbial-plant relationships, introduced the Greek term ‘mycorrhiza’, which 
literally means ‘fungus roots’. Mycorrhizal fungi form symbiotic relation-
ships with plant roots in a fashion similar to that of root nodule bacteria 
within legumes. Of the seven types of mycorrhizae described (arbuscular, 
ecto, ectendo-, arbutoid, monotropoid, ericoid and orchidaceous mycorrhizae), 
arbuscular mycorrhizae and ectomycorrhizae are the most abundant and wide-
spread (Smith and Read, 1997; Allen et al., 2003). Arbuscular mycorrhizal 
(AM) fungi comprise the most common mycorrhizal association and form 
mutualistic relationships with over 80% of all vascular plants (Brundrett, 
2002). AM fungi are obligate mutualists belonging to the phylum Glomero-
mycota and have a ubiquitous distribution in global ecosystems (Redecker  
et al., 2000). Ectomycorrhizal (ECM) fungi are also widespread in their 
distribution but associate with only 3% of vascular plant families (Smith 
and Read, 1997). These fungi are members of the phyla Ascomycota and 
Basidiomycota, and the ECM mutualism is thought to have been derived 
multiple times independently from saprophytic lineages (Hibbett et al., 2000).  

Ectendomycorrhizae possess characteristics of both ECM and AM 

these fungi also occurs, a characteristic unlike that of ECM but consistent 
with AM. Ectendomycorrhizae can be formed with roots of many angio-
sperm and gymnosperm species; fungal symbionts include members of the 
Basidiomycota, Ascomycota, or Zygomycota. In fact, the same fungal species 
can form either ECM or ectendomycorrhizae depending upon the plant 
species with which it is associated. Similarly, arbutoid mycorrhizae possess 
characteristics of both ECM and AM fungi, i.e., there is a well developed 
mantle, a hartig net, and prolific extrametrical mycelium. Additionally, intra-
cellular penetration occurs and hyphal coils are produced in autotrophic cells. 
These mycorrhizae are associated with members of the Ericales; namely, 
Arbutus and Arctostaphylos species. The fungal symbionts are exclusively 
Basidiomycete species, which may form ECM with other autotrophic hosts. 

Monotropoid and orchid mycorrhizae are formed between Basidio-
mycete fungi and achlorophyllous plant species. Monotropoid mycorrhizae 
are formed between plants of the Monotropaceae family and a specific 
subset of fungi in the Russulaceae or the Boletaceae family. Orchid mycor-
rhizae have only been found in association with Basidiomycete species. In 
the other mycorrhizal symbioses plants are usually generalists and associate 
with a wide array of fungal species. In contrast, plants that participate in 

2 Siddiqui and Pichtel

duced in ectendomycorrhizae, although the mantle may be reduced compared 
fungi (Table 1). As with ECM, both a hartig net and mantle structures are pro-

with ECM. The hartig net is defined as an inward growth of hyphae which 
penetrates the root structure. Intracellular penetration of healthy plant cells by
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monotropoid and orchid mycorrhizal associations are highly specific, asso-
ciating with only a narrow range of fungal species. It had been thought that 
these mycorrhizal associations are formed exclusively with Basidiomycete 
fungal species; however, it has recently been discovered that several species 
of tropical achlorophyllous epiphytes form mycorrhizal associations with 
AM fungal species in the Glomeromycota (Bidartondo et al., 2002). Ericoid 
mycorrhizae are known to form between autotrophs in the Ericaceae and 
fungi in the Ascomycota. Intracellular penetration of root cells occurs and 
there is no mantle or hartig net development. 

Table 1. Major categories of mycorrhizae and their attributes. (Adapted from Smith and Read, 
1997).

Mycorrhizal 
type

Arbuscu-
lar

Ecto Ectendo  Arbutoid Monotro-
poid  

Ericoid  Orchid-
aceous

Fungal taxa Glomero Basidio 
Asco
Zygo

Basidio
Asco 

Basidio Basidio Asco Basidio 

Plant taxa Bryo
Pterido
Gymno
Angio

Gymno
Angio

Gymno
Angio 

Ericales Monotr- 
opoideae

Ericales
Bryo

Orchid
aceae

Intracellular
colonization 

+ – + + + + + 

Fungal sheath – + +/– +/– + – – 
Hartig net – + + + + – – 
Vesicles +/– – – – – – – 
Achlorophylly – – – – + – + 

2      MOLECULAR BASIS OF NUTRIENT EXCHANGE 
IN AM FUNGI

The driving force behind AM interactions is an exchange of nutri-
ents between fungus and plant. Glomeromycotan fungi are obligate symbionts 
and rely on the carbon provided by their plant hosts to complete their life 
cycle. In return, the fungus provides nutritional benefits to the plant by deli-
vering minerals, including the biologically essential nutrients phosphorus (P) 
and nitrogen (N). The majority of this nutrient exchange is believed to occur 
within root cortical cells containing highly-branched hyphal structures termed 
arbuscules. As arbuscules develop they become enveloped by newly syn-
thesised host membrane tissue; the arbuscules never enter the host cytoplasm.  

The plant and fungal arbuscular membranes define a space, the inter-
facial apoplast, into which nutrients can be delivered and from which they can 

Mycorrhizae: An Overview 

+ = present;   – = absent 
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be extracted (Harrison, 1999; Balestrini and Bonfante, 2005). The molecular 
components of the interface and the enclosing membranes facilitate and 
regulate the processes of nutrient exchange. Plant and fungal encoded mem-
brane localised ATPase proteins maintain the interfacial apoplast at low pH, 
providing an electrochemical gradient that powers the action of various 
membrane-localised proton:nutrient symporters. A combination of physio-
logical, biochemical and genetic analyses has begun to define the components 
of the arbuscular membranes, the best characterized of which are the PHT1-
type phosphate transporter proteins (Rausch et al., 2001; Javot et al., 2007b). 
Gene expression studies have demonstrated that specific members of these 
protein families are expressed in the roots of colonized plants. For example, 
the medic gene Medtu:Pht1;4 is expressed exclusively in colonized roots and 
the protein product is specifically localized to the peri-arbuscular membrane 
within arbusculated cells (Harrison et al., 2002; Javot et al., 2007a). 

Phosphate acquisition via the mycorrhizal pathway begins with the 
uptake of free phosphate from soil by fungal extra-radical hyphae (Bucher, 
2007). These fungal hyphae extend beyond the host root system, allowing a 
greater soil volume to be exploited for phosphate uptake. Uptake at the soil-
hypha interface is mediated by fungal high-affinity phosphate transporters  
of the Pht1 family (Harrison and Buuren, 1995). Following fungal uptake, 
phosphate is transferred to the fungal vacuole where it is polymerized to 
form polyphosphate chains and translocated through the vacuolar compart-
ment to the intraradical hyphae. The polyphosphate is then hydrolysed and 
phosphate released to the interfacial apoplast. From the interfacial apoplast, 
plant mycorrhizal Pht1 transporters guide the phosphate across the peri-
arbuscular membrane. Once in the plant cytosol, phosphate is translocated 
into the vasculature for delivery to all parts of the plant. 

The extraradical mycelium of mycorrhizal fungi also absorb ammo-
nium, nitrate and amino acids (Hodge et al., 2001), and the role of mycor-
rhizal nitrogen delivery is becoming better understood (Chalot et al., 2006). 
The majority of nitrogen is thought to be taken up in the form of ammonia 
via the action of fungal-encoded AMT1 family transporters such as the 
protein GintAMT1 characterized from Glomus intraradicies (Lopez-Pedrosa 
et al., 2006). There is no evidence for fungal translocation of either ammo-
nium or nitrate and it is thought that nitrogen transport occurs in the form  
of the amino acid arginine (Govindarajulu et al., 2005). Having been trans-
located to the intra-radical hyphae, amino acids may be delivered directly to 
the interfacial apoplast for plant absorption. However, there is also evidence 
for an alternative route whereby arginine is broken down by ornithine amino-
transferase and urease to release free ammonium. It has been proposed that 
ammonium is exported by protein-mediated mechanisms and a candidate 
fungal AMT transporter has been identified that is highly expressed in the 
internal hyphae. Additionally, studies of ectomycorrhizal fungi have identified 

Siddiqui and Pichtel
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proteins homologous to the yeast Ato proton:ammonium antiporter. Once in 
the apoplast, ammonium is taken up by the plant. Gene expression analyses 
of medic and rice have identified mycorrhiza-induced transcripts that puta-
tively encode ammonium transporters that are candidates for this function. 
There is also the possibility for passive ammonia uptake across the peri-
arbuscular membrane, perhaps facilitated by the presence of aquaporin pro-
teins (Uehlein et al., 2007). 

The use of radiolabeled substrates has demonstrated that AM fungi 
take up plant carbohydrates in the form of hexose. The route of this transport, 
and whether or not it is specific to the arbuscule, remains to be determined. 
There is little molecular evidence for the presence of hexose export proteins 
in the peri-arbuscular membrane itself. Although a number of mycorrhiza-
responsive sugar transporter genes have been identified in medic, they are 
thought to act as proton:sugar symporters in sugar import rather than export, 
possibly in support of high metabolic activity in arbusculated cells (Harrison, 
1996).

One simple mechanistic alternative to explain the transport of sugars 
to the apoplast is passive movement. Once in the apoplast, hexose is thought 
to be absorbed by the fungus via specific transport proteins. Although such 
fungal transporters remain to be identified, the recent characterization of the 
GpMST1 hexose transporter from Geosiphon pyriformis, a Glomeromycotan 
fungus that associates with single-celled algae, provides a promising direc-
tion for further investigation (Schussler et al., 2006). In the intraradical 
hyphae, much of the carbon is converted to storage lipids, predominantly 
triacylglycerides. Lipids not only act to store carbon but are also the main 
form of carbon translocated from intra- to extra-radical hyphae where they 
provide the major respiratory substrate. 

AM fungi provide other benefits to their plant hosts. In addition to 
enhancing mineral nutrition, they increase tolerance to water stress, induce 
greater resistance to pathogens and reduce sensitivity to toxic substances 
present in the soil. However, the costs of colonization can be high, with up 
to 20% of the host’s fixed carbon being delivered to the microbial symbiont. 
Nonetheless, under experimental conditions when nutrients are limiting, 
mycorrhizal crop plants typically exhibit a performance advantage over non-

in high-input agricultural systems, the relative advantages are reduced 
while the carbon costs remain, and the performance of colonized plants can 
fall below that of non-colonized plants (Janos, 2007). Although mycorrhizal 
fungi possess a limited potential to improve on present levels of crop per-
formance, profitable agricultural application of AM symbioses demands 
that the inevitable loss of carbon to the fungus is compensated by a reduc-
tion in the overall cost of production on a per unit yield basis.

Mycorrhizae: An Overview 

colonized siblings. However, under the nutrient-saturated conditions occurring 
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Studies of plant performance have identified variation in the capa-
city of plants to benefit from mycorrhizal colonization, both within and 
between species. Molecular characterization of mycorrhizal nutrient uptake 
allows a more detailed interpretation of such performance variation (Sawers 
et al., 2008). Expression studies have revealed that the induction of the 
mycorrhizal state in the plant is not a simple superimposition of novel gene 
activity on the non-colonized state but a distinct switch from an asymbiotic 
to a symbiotic growth regime. One important consequence of this distinc-
tion is the partial genetic independence of plant performance between non-
colonized and colonized plants and the subsequent implications this has for 
the interpretation of phenotypic variation and the selection of future varieties. 
Clearly, an understanding of the molecular basis of nutrient exchange has 
great potential to benefit diverse aspects of mycorrhizal research and to con-
tribute to the future application of AM fungi in agriculture, forest management, 
site remediation, and other settings. 

3         AM FUNGI AND PLANT DISEASE CONTROL

Plant diseases can be controlled by manipulation of indigenous 
microbes or by introducing antagonists to reduce the disease-producing pro-
pagules (Linderman, 1992). AM fungi and their associated interactions with 
plants reduce the damage caused by plant pathogens (Siddiqui and Mahmood, 
1995; Siddiqui et al., 1999; Harrier and Watson, 2004). With the increasing 
cost of pesticides and the environmental and public health hazards associated 
with pesticides and pathogens resistant to chemical pesticides, AM fungi 
may provide a more suitable and environmentally acceptable alternative for 
sustainable agriculture and forestry. The interactions between different AM 
fungi and plant pathogens vary with the host plant and the cultural system. 
Moreover, the protective effect of AM inoculation may be both systemic and 
localized.

Plant parasitic nematodes occur in agricultural soils worldwide, and 
most crops are susceptible to damage by these parasites. Nematode para-
sitism on host plants may cause up to 50% yield losses, and these losses may 
be aggravated when the plant is predisposed to other pathogens. Diseases 
caused by fungal pathogens persist in the soil matrix and in residues on the 
soil surface. Damage to root and crown tissue is often concealed in the soil; 
thus, diseases may not be noticed until the above-ground parts of the plant 
are severely affected.  

Colonization of the root by AM fungi generally reduces the seve- 
rity of diseases caused by plant pathogens. Reduced damage in mycorrhizal 
plants may be due to changes in root growth and morphology; histopatho-
logical changes in the host root; physiological and biochemical changes 
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within the plant; changes in host nutrition; mycorrhizosphere effects which 
modify microbial populations; competition for colonization sites and photo-
synthates; activation of defense mechanisms; and  nematode parasitism by 
AM fungi (Siddiqui and Mahmood, 1995). Of the various mechanisms pro-
posed for biocontrol of plant diseases, effective bioprotection is a cumulative 
result of all mechanisms working either separately or together. The challenges 
to achieving biocontrol via use of AM fungi include the obligate nature of 
AM fungi, limited understanding of the mechanisms involved, and the role 
of environmental factors in these interactions.  

AM fungi are rarely found in commercial nurseries due to the use  
of composted soil-free media, high rates of fertilizer application and regular 
application of fungicide drenches. The potential advantages of AM fungi in 
horticulture, agriculture, and forestry are not perceived by these industries  
as significant. This perception may be due in part to inadequate methods for 
large-scale inoculum production.  

Cropping sequences, fertilization, and plant pathogen management 
practices affect both AM fungal propagules in soil and their effects on plants 
(Bethlenfalvay and Linderman, 1992). In order to apply AM fungi in sus-
tainable agriculture, knowledge of factors such as fertilizer inputs, pesticide 
use, and soil management practices which  influence AM fungi is essential 
(Allen, 1992; Bethlenfalvay and Linderman, 1992). In addition, efficient ino-
culants should be identified and employed as biofertilizers, bioprotectants, 
and biostimulants for sustainable agriculture and forestry.

4     AM FUNGI AND ALLEVIATION OF SOIL HEAVY 
METAL STRESS

Some heavy metal elements such as Cu, Fe, Mn, Ni and Zn are essen-
tial for normal growth and development of plants. These metals are required 
in numerous enzyme-catalyzed or redox reactions, in electron transfer, and 
have structural function in nucleic acid metabolism (Gohre and Paszkowski, 
2006). In contrast, metals like Cd, Pb, Hg, and As are not essential (Mertz, 
1981) and may be toxic to plants at very low concentrations in soils. Heavy 
metals occur in terrestrial and aquatic ecosystems from both natural and 
anthropogenic sources, and are also emitted into the atmosphere.

The roots of terrestrial plants are in immediate contact with soil 
metal ions. Essential heavy metals are transferred into the root by specific 
uptake systems, but at high concentrations they also enter the cell via non-
specific transporters. At high concentrations heavy metals interfere with 
essential enzymatic activities by modifying protein structure or by replacing 
an essential element, resulting in deficiency symptoms. As a consequence 
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toxicity symptoms such as chlorosis, growth retardation, browning of roots, 
effects on both photosystems, cell cycle arrest, and others are observed. 

Anthropogenic soil contamination resulting from mining activities, 
industrial processes, agriculture, and military activities have resulted in high 
localized concentrations of heavy metals. Conventional soil remediation prac-
tices in most countries rely primarily on the excavation of the contaminated 
soil. However, physical displacement, transport and storage, or alternatively 
soil washing are expensive procedures which leave a site devoid of soil 
microflora.  

AM fungi are significant in the remediation of contaminated soil as   
accumulation (Jamal et al., 2002). The external mycelium of AM fungi 
allows for wider exploration of soil volumes by spreading beyond the root 
exploration zone (Khan et al., 2000), thus providing access to greater quan-
tities of heavy metals present in the rhizosphere. Higher concentrations of 
metals are also stored in mycorrhizal structures in the root and in fungal 
spores. AM fungi can also increase plant establishment and growth despite 
high  levels of soil heavy metals due to improved  nutrition (Taylor and Harrier, 
2001), water availability (Auge, 2001), and soil aggregation properties (Kabir 
and Koide, 2000) associated with this symbiosis.

AM fungi occur in the soil of most ecosystems, including polluted 
soils. By acquiring phosphate, micronutrients and water and delivering a 
proportion to their hosts they enhance the host nutritional status. Similarly, 
heavy metals are taken up via the fungal hyphae and can be transported to 
the plant. Thus, in some cases mycorrhizal plants experience enhanced heavy 
metal uptake and root-to-shoot transport while in other cases AM fungi con-
tribute to heavy metal immobilization within the soil. The result of mycorrhizal 
colonization on remediation of contaminated soils depends on the plant–
fungus–heavy metal combination and is influenced by soil chemical and 
physical conditions.

The significance of AM fungi in soil remediation has been recog-
nized (Gaur and Adholeya, 2004; Khan, 2005). A vast amount of literature is 
available on the effects of mycorrhizal colonization on plants under heavy 
metal stress but contradictory observations and wide variations in results are 
reported (Khan, 2005). Enhanced understanding of heavy metal tolerance of 
plants and AM fungi has defined valuable parameters for improving phyto-
remediation, i.e., the engineered use of green plants to remediate an affected 
site. The utility of AM fungi in soil remediation is also important for sus-
tainable agriculture. Application of these fungi is generally useful to over-
come heavy metal problems and to alleviate soil stress, and ultimately 
increases agricultural production. 

In many cases AM fungi serve as a filtration barrier against transfer 
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AM isolates existing naturally in heavy metal-polluted soils are more 
metal-tolerant than isolates from non-polluted soils, and are reported to 
efficiently colonize plant roots in heavy metal-stressed environments. Thus, 
it is important to screen indigenous and heavy metal-tolerant isolates in 
order to guarantee the effectiveness of AM symbiosis in restoration of con-

be enhanced by inoculating metal hyperaccumulating plants with mycorrhizal 
fungi at the contaminated site. However, there is a need to optimize the con-
ditions to grow AM fungi in large quantities, and to characterize and screen a 
large number of AM fungal species for tolerance to metals.  

5  AM FUNGAL COMMUNITIES AND GRAIN 
PRODUCTION

With population increase, urban sprawl and the growing interest in 
the use of biofuels, significant pressures are occurring on some of the highest 
quality agricultural soils in many nations. Growth of grain and oilseed crops 
such as barley, corn, soybean and wheat have been an important part of the 
agricultural economy for years and the continuous increases in demand and 
prices have led farmers to apply highly intensive agricultural management 
practices, with the aim of increasing crop productivity. Tillage, crop rotation, 
fallows, changes in plant cultivars and pesticide application are often used 
with broadacre field crops, and all  these practices influence the surrounding 
environment (Mozafar et al., 2000; Carter and Campbell, 2006).  

Fertilizer use represents a common agricultural management prac-
tice, but a growing body of evidence has demonstrated an array of negative 
impacts on ecosystems from their use. No matter which form of fertilizer is 
applied (organic or mineral), conventional farming generates large N and P 
surpluses, which can lead to N leaching through the soil profile and P losses 
in runoff (Brady and Weil, 2002). Not only is there a high financial cost to 
farmers associated with this loss, but the phenomenon  also resulted in soil 
contamination. In addition, excess fertilizer inputs can be a major threat to 
aquatic ecosystems through surface and groundwater degradation (Kirchmann 
and Thorvaldsson, 2000). Recently, fertilizer runoff from agricultural fields 
was emphasized among the causes of excessive cyanobacterial growth and 
increasing of potentially harmful blooms leading to restricted access to lakes. 

Low-input agricultural systems have gained attention in many Indus-
trialized countries due to increased interest in the conservation of natural 
resources, reduction of environmental degradation, and the escalating costs 
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of fertilizers. Conventional farming systems using lower application rates  
of fertilizers and pesticides have been developed, but are used only mini-
mally in North American grain production, perhaps due to insufficient under-
standing of agricultural soils dynamics (Ryan and Graham, 2002).  

Numerous biological, chemical and physical factors influence soil 
quality. Among them, rhizosphere microbial communities have been shown 
to directly affect soil fertility by carrying out essential processes that con-
tribute to nutrient cycling, and enhancing soil structure and plant growth and 
health (Mader et al., 2002; Wu et al., 2005; Miransari et al., 2007; St-Arnaud 
and Vujanovic, 2007). The extent to which these communities interact is thus 
of great importance and involves phenomena such as hormone production, 
enhancement of nutrient availability, and decrease of root diseases. Arbu-
scular mycorrhizal symbioses have been shown to benefit growth of many 
field crops in large part due to the extensive hyphal network development  
in soil, more efficient exploitation of nutrients, and enhanced plant uptake 
(Smith and Read, 1997). AM symbiosis also increases resistance to biotic and 
abiotic stresses and reduces disease incidence, representing a key component 
of sustainable agriculture (St-Arnaud and Vujanovic, 2007; Subramanian 
and Charest, 1999; Aliasgarzad et al., 2006). Appropriate management of 
mycorrhizae in agriculture should ultimately result in a substantial reduction 
in chemical use and production costs.  

Soils generally contain indigenous AM fungi that colonize plant roots 
(Covacevich et al., 1995). The growth enhancement and P uptake of plants 
colonized by AM fungi is a well-known process (Pfleger and Linderman, 
1996; Schweiger and Jakobsen, 1999; Jeffries et al., 2003). Not all plants are 
dependent on mycorrhizal associations (Azcón and Ocampo, 1981; Trouvelot 
et al., 1982; Hetrick et al., 1993); however, most increase  in yield following 
inoculation with AM fungi (Jakobsen and Nielsen, 1983; Baon et al., 1992; 
Talukdar and Germida, 1994; Xavier and Germida, 1997; Al-Karaki et al.,
1998) particularly in low-P soils (Thompson, 1990; Rubio et al., 2003). With 
the current tendency for reduced use of agrochemicals, research is being 
directed at crop yield improvement and yield sustainability. The efficient 
use of AM fungi may allow for the attainment of acceptable yield levels with 

tion risk (Covacevich et al., 2007). This is a promising approach for obtaining 
high yields with low fertilizer inputs in order to support sustainable agricul-
tural systems. 

6      SUSTAINABLE AGRICULTURE

Sustainable agricultural systems employ natural processes to achieve 
acceptable levels of productivity and food quality while minimizing adverse 
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environmental impacts (Harrier and Watson, 2004). Sustainable agriculture 
must, by definition, be ecologically sound, economically viable, and socially 
responsible. Similarly, sustainable forestry refers to an overall commitment 
to environmental conservation that integrates the production of trees for use-
ful products with reforestation and conservation of soil, air, water quality, 
wildlife and aesthetics. Sustainable agriculture relies on long-term solutions 
using proactive rather than reactive measures at system levels.  

Several soil fertility factors contribute to sustainable agriculture 
through control of soil-borne diseases, including increased soil microbial acti-
vity leading to increased competition and parasitism within the rhizosphere 
(Jawson et al., 1993; Knudsen et al., 1995). Research and development stra-
tegies are presently focused on the search for suitable alternatives to the use 
of commercial synthetic pesticides. Progress has also been made, however, 
in exploring the use of microorganisms to improve soil fertility. Greater 
emphasis is being placed on enhanced exploitation of indigenous soil micro-
bes which contribute to soil fertility, increased plant growth and plant pro-
tection.

Mycorhizal fungi, particularly AM, are ubiquitous in soil and create 
symbiotic associations with most terrestrial plants including agricultural crops, 
cereals, vegetables, and horticultural plants. In agriculture, several factors 
such as host crop dependency to mycorrhizal colonization, tillage system, 
fertilizer application, and the potential of mycorrhizal fungi inocula, affect 
plant response and plant benefits from mycorrhizae. Interest in AM fungi 
propagation for sustainable agriculture is increasing due to its role in the 
promotion of plant health, and improvements in soil fertility and soil aggre-
gate stability. These fungi can be utilized effectively for increasing yields 
while minimizing use of pesticides and inorganic fertilizers. 

To improve crop production in infertile soils, chemical fertilizers 
have been intensively used, organic matter is incorporated and soil man-
agement technologies such as fallow or legume cultivation have also been 

to advance soil conditions, enhance soil biological activity and optimise 
nutrient cycling to minimise external inputs and maximise the efficiency of 
their use (Sanchez, 1994). This approach has been developed for soil biota 
management using earthworms and microsymbionts (Woomer and Swift, 
1994; Swift, 1998). 

These soil organisms may represent more than 90% of soil biological 
activity and thus contribute to nutrient cycling, soil fertility and symbiotic 
processes in the rhizosphere. Soil fungal diversity and activity have not been 
adequately studied and understood (Hawksworth, 1991). Mycorrhizae rep-
resent an important group because they have a wide distribution, and may 
contribute significantly to microbial biomass and to soil nutrient cycling 
processes in plants (Harley and Smith, 1983). Mycorrhizal associations are 
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beneficial to plants and thus crop productivity for sustainable agriculture 
(Gianinazzi-Pearson and Diem, 1982; Bethlenfalvay, 1992). They improve 
nutrient uptake, especially P, and also uptake of micronutrients such as zinc 
or copper; they stimulate the production of growth substances and may 
reduce stresses, diseases or pest attack (Sylvia and William, 1992; Davet, 
1996; Smith and Read, 1997). For appropriate use of this technology, it is 
necessary to select the best inocula adapted to the specific limiting envi-
ronmental factors for crop productivity.  

7  INDIRECT CONTRIBUTION OF AM FUNGI  
IN SOIL AGGREGATION AND PLANT GROWTH

Mycorrhizal symbiosis has evolved to assist plants in colonizing the 
land. In the environment of early Earth, ecological pressures resulted in a 
highly efficient symbiotic relationship where plants traded photosynthetic 
carbon for fungally-acquired nutrients and water.  

The formation of a biomolecule such as glomalin would have served 
as an evolutionary advantage to the fungus. Glomalin is a glycoprotein pro-
duced on hyphae of AM in the soil. Originally, glomalin production might 
have arisen to protect fungal hyphae from losses of water or nutrients when 
being carried from microsites in the soil back to the plant, from fluctuations 
in turgor pressure due to wet/dry cycles, and from decomposition by micro-
bial attack. The indirect or ‘secondary’ impacts of glomalin on the formation 
and stabilization of soil aggregates further improved the efficiency of the 
symbiotic relationship and the growth environment (Andrade et al., 1998b; 
Rillig and Mummey, 2006). 

Modern agricultural practices have placed new pressures on plant-
mycorrhizal symbiosis. Tillage practices physically disrupt soil aggregates 
and AM hyphal networks. This action deteriorates soil structure, lessens 
fertility and nutrient cycling ability, and results in more C allocation within 
the fungal hyphae to reestablishing these networks and less C to glomalin 
formation (Nichols and Wright, 2004).  No-tillage (NT) practices along with 
continuous cropping systems (by eliminating fallow periods and/or growing 
cover crops), using mycorrhizal host crops, and reducing synthetic inputs 
(especially P), enhance the plant-mycorrhizal symbiotic relationship (Nichols 
and Wright, 2004; Preger et al., 2007; Roldan et al., 2007;  Rillig, 2004; Rillig 
et al., 2007). These practices also increase the percentages of water-stable 
aggregates within the soil by increasing hyphal length, root and microbial exu-
dates in the mycorrhizosphere, and allocating more C to glomalin production. 
In addition, higher levels of C sequestration are possible in these systems, 
since not only is C being allocated below-ground to hyphal networks and 
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formation of the highly stable glomalin molecule, but organic matter occluded 
within aggregates appears to have a turnover time double that of free organic 
matter (Six et al., 2001; Nichols and Wright, 2004; Preger et al., 2007; Roldan 
et al., 2007; Rillig, 2004; Rillig, et al., 2007).  Therefore, effective manage-
ment of soil organisms and, as a consequence, agricultural systems, will main-
tain a consistent supply of plant-available nutrients to meet the demands of 
food, feed, fiber and biofuels production for a growing world population 
while maintaining optimal ecosystem function.  

8 AM FUNGI AND THEIR ROLE IN RESTORATION 
OF NATIVE ECOSYSTEMS 

Desertification of terrestrial ecosystems claims several million hec-
tares annually (Warren et al., 1996). Disturbance of natural plant commu-
nities is the first visible symptom, but is often accompanied or preceded  
by loss of key physicochemical and biological soil properties (Skujins and  
Allen, 1986). These properties largely determine soil quality and fertility, 
and thus plant establishment and productivity. Hence their degradation results 
in a loss of sustainability. Soil degradation limits the potential for reestablish-
ment of native plants (Agnew and Warren, 1996; Warren et al., 1996), and 
erosion and desertification are accelerated. Desertification reduces the ino-
culum potential of mutualistic microbial symbionts that are key ecological 
factors in governing the cycles of major plant nutrients and hence in sus-
taining vegetative covers in natural habitats.

AM fungi enhance the ability of plants to establish and cope in 
stressful situations including nutrient deficiency, drought, and soil disturbance 
(Barea et al., 1997; Schreiner et al., 1997). Those regions characterized by 
long, dry, hot summers, with scarce, erratic, but torrential rainfall, together 
with anthropogenic activities like overgrazing, nonregulated cultivation 
techniques, and deforestation, are major threats to ecosystem sustainability 
(López-Bermúdez and Albaladejo, 1990; Vallejo et al., 1999). Susceptibility 
to desertification is generally increasing worldwide (Warren et al., 1996).

Desertified and desertification-threatened areas are common and 
there are many representative areas where reclamation or rehabilitation 
programs are being attempted to restore sustainable ecosystems (Francis and 
Thornes, 1990; Herrera et al., 1993). Shrub communities, associated with 
other small woody plants, are characteristic of many semiarid ecosystems. 
Thus, reestablishing a shrubland is a key step in revegetation strategies. All 
the woody legumes involved also form a symbiotic association with AM 
fungi (Herrera et al., 1993). The fungal mycelium which extends from the 
mycorrhizal roots forms a three-dimensional network which links the roots 

Mycorrhizae: An Overview 



14

and the soil environment. It constitutes an efficient system for nutrient uptake 
(particularly P) and scavenging in nutrient-poor conditions. The mycelium 
also contributes to the formation of water-stable aggregates necessary for 
good soil tilth (Jeffries and Barea, 2000). Loss of microsymbiont propagules 
from degraded ecosystems can preclude either natural or artificial processes 
of revegetation; therefore, augmentation of the inoculum may be needed 
(Requena et al., 1996).

In revegetation schemes, inoculation of plants with microsymbionts 
should not only help plant establishment (Herrera et al., 1993) but also 
improve soil physical, chemical, and biological properties contributing to soil 
quality (Carrillo-García et al., 1999). The introduction of target indigenous 
species of plants associated with a managed community of microbial sym-
bionts is a successful biotechnological tool to aid the recovery of desertified 
ecosystems.

9  INTERACTION OF AM FUNGI  
AND SAPROPHYTIC MYCOFLORA

Interactions of AM fungi with other soil microorganisms are diverse. 
AM fungi interact with almost all organisms in the mycorrhizosphere but 
few studies have been conducted on their interactions with beneficial 
saprophytic fungi (Calvet et al., 1992, 1993; Green et al., 1999). Saprophytic 
fungi living on the rhizoplane (McAllister et al., 1996; Garcia-Romera et al.,
1998) and mycorrhizosphere of plants generally procure their nutritional 
requirements from organic matter and other elements in the soil (Garcia-
Romera et al., 1998). AM fungi and saprophytic organisms like the plant 
growth promoting fungi (PGPF) have equally good potential in both plant 
growth promotion and plant disease control (Hyakumachi and Kubota, 2004b). 
Since both are beneficial microorganisms, their synergistic or additive effects 
could be more valuable than their individual effects.   

In vitro studies on AM fungi and saprophytic fungi demonstrated 
stimulatory, inhibitory or no effect on spore or conidial germination and 
hyphal growth of either fungi. Pot and field studies indicate that saprophytic 
fungi can affect AM development inside the root. The results of the inter-
action of saprophytic fungi on AM colonization differ widely. The effect  
of AM fungi on root colonization of saprophytic fungi is generally known 
and is determined via measurement of the population of saprophytic fungi in 
rhizosphere soil. Moreover, interaction of saprophytic fungi and AM fungi 
differ with respect to the species of AM fungi and saprophytic fungi involved.

Mycorrhizal plants produce compounds which interfere with rhizo-
sphere microorganisms and modify the microbial community around the 
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mycorrhizal roots (Linderman, 1988; Linderman and Paulitz, 1990). In addition, 
the extraradical mycelium of AM may also impact microbial populations 
around mycorrhizal roots (Filion et al., 1999). The interaction effect of AM 
fungi and other beneficial soil microorganisms on plant growth has been 
demonstrated, and trends are similar. PGPF may increase mineralization and 
suppress deleterious microorganisms (Hyakumachi and Kubota, 2004b). 
PGPF-mediated induced systemic resistance (ISR) has been demonstrated  
by increased lignin deposition at the point of attempted penetration by the 
pathogen (Hyakumachi and Kubota, 2004a) and also by conspicuous super-
oxide generation by culture filtrates of respective PGPF isolates (Koike  
et al., 2001). Biochemical analysis has revealed systemic accumulation of 
salicylic acid and increased activities of chitinase, ß-1,3-glucanases and 
peroxidase in plants inoculated by PGPF (Hyakumachi and Kubota, 2004a; 
Yedidia et al., 1999). Hossain et al. (2007) hypothesized that multiple defense 
mechanisms are involved in disease suppression. 

The interaction of saprophytic fungi and AM fungi may vary depen-
ding on the inherent characteristics of the fungi being tested. The effect 
could be contradictory within species of the same genus and even within 
strains of the same species. Generally, interactions of these groups of micro-
organisms are synergistic or additive in plant growth promotion and disease 
suppression. Suitable combinations of these organisms may increase plant 
growth and enhance resistance to plant pathogens. Combinations generally 
increase genetic diversity in the rhizosphere microrganisms that resultantly 
persist, and which utilize a wider array of mechanisms to increase plant 
growth. Combinations of these organisms may be effective over a wide 
range of environmental conditions. In particular, combinations of AM fungi 
and PGPF may provide protection at different times, under different condi-
tions, and occupy different or complementary niches.  

10 MYCORRHIZOSPHERE EFFECT:  
A MULTI-TROPHIC INTERACTION  

The mycorrhizosphere includes the region around the mycorrhizal 
roots. Due to the ubiquity of mycorrhizal symbioses in terrestrial eco-
systems, most of the actively absorbing rootlets are connected with the 
surrounding soil through an interface called the mycorrhizosphere (Johansson 
et al., 2004). In addition, because mycorrhizal symbiosis modifies root 
morphology (Linderman, 1988), the volume of the mycorrhizosphere soil  
is larger than the rhizosphere soil. From a biochemical point of view, root 
exudation in the mycorrhizosphere is quantitatively and qualitatively different 
from that in the rhizosphere because mycorrhizal fungi use some of the root 
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exudates and modify root metabolic functions (Rambelli, 1973; Leyval and 
Berthelin, 1993; Rygiewicz and Andersen, 1994). Furthermore, mycorrhizal 
fungi associated with plant roots can produce antibiotics (Olsson et al.,
1996). These differences between rhizosphere and mycorrhizosphere explain 
the so-called ‘mycorrhizosphere effect’ defined by Linderman (1988), which 
qualifies modifications of the microbial equilibrium induced by the mycor-
rhizal symbiosis. 

Mycorrhizal fungi alter root exudation both quantitatively and quali-
tatively (Leyval and Berthelin, 1993), as they catabolise some root exudates 
and modify root metabolic functions. The microbial communities of the soil 
surrounding mycorrhizal roots and extrametrical mycelium differ from those 
of the rhizosphere of non-mycorrhizal plants and bulk soil (Katznelson et al.,
1962; Garbaye, 1991). Specific relationships occur between mycorrhizal fungi 
and mycorrhizosphere microbiota, and there is abundant literature attesting 
that mycorrhizal symbiosis is largely influenced by soil microorganisms (De
Oliveira and Garbaye, 1989). These interactions mainly have focused on the 
effects of microbial communities on mycorrhizal formation, and on mycor-
rhizal efficiency on host plant growth.  

In addition to their known direct effect on plant growth, mycorrhizal 
symbionts could positively act on host plant development through a selective 
effect on bacterial communities involved in soil functioning and soil fertility. 
The loss or reduction of activity of mycorrhizal fungi has often been detected 
(Bethlenfalvay and Schüepp, 1994). Hence, management of soil mycorrhizal 
potential is of great importance since mycorrhizal symbiosis determines plant 
biodiversity, ecosystem variability and productivity directly from its influence 
on plant mineral nutrition, but also indirectly from its impact on soil microbial 
functioning.  

Mycorrhizal and rhizobial symbioses often act synergistically in 
terms of infection rate, mineral nutrition and plant growth (Amora-Lazcano 
et al., 1998). The fungal effect on plant P uptake is beneficial for the function-
ing of the nitrogenase enzyme of the rhizobial symbiont leading to higher N 
fixation and, consequently, to better root growth and mycorrhizal develop-
ment (Johansson et al., 2004). The fungal effect on rhizobial development is 
dependent on mycorrhizal colonization of root systems but also on the fungal 
symbiont. However, the influence of mycorrhizal symbiosis on nodule develop-

of rhizobial bacteria along the root system. Below-ground diversity of AM 
fungi is a major factor contributing to the maintenance of plant diversity and 

sity also has a beneficial effect on the nodulation process.  
The mycorrhizosphere effect exerted a significant stimulating effect 

on populations of fluorescent pseudomonads in soil (Andrade et al., 1998a).
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bial communities, as fungal exudates (Sun et al., 1999) and/or from sene-
scence of hyphae (Bending and Read, 1995) that are used by fluorescent 
pseudomonads. In addition to this quantitative effect, ectomycorrhizal sym-
biosis has also modified the distribution of phosphate-solubilizing and lipase 
producing fluorescent pseudomonads, especially in the hyphosphere soil com-
partment. Extramatrical mycelium can absorb and translocate to the host 
plant, soluble P from mineral and organic matter, through the excretion of 
organic acids and phosphatase, respectively (Landeweert et al., 2001). These 
results corroborate those of Frey-Klett et al. (2005) who demonstrated that 
phosphate-solubilizing fluorescent pseudomonads were more abundant in the 
hyphosphere than in  bulk soil.  

Culture-independent methods for the analysis of soil microbial com-
munity structure such as fatty acid extraction (Cavigelli et al., 1995; Ibekwe 
and Kennedy, 1998) and PCR-DGGE (polymerase chain reaction-denaturing 
gradient gel electrophoresis) (Ferris et al., 1996; Muyzer and Smalla, 1998; 
Assigbetse et al., 2005) are increasingly being used. In contrast, little is known 
of the importance of the functional diversity of soil microbial communities 
(Pankhurst et al., 1996) resulting from limited access to suitable techniques. 
The functional diversity of microbial communities includes the range and 
relative expression of activities involved in decomposition, nutrient transfor-
mation, and plant growth promotion (Giller et al., 1997).

Decomposition functions performed by heterotrophic microbes is one 
component of microbial functional diversity. An assay has been developed 
to provide a measure of the catabolic functional diversity in soil. This assay 
provides catabolic response profiles (patterns of in situ catabolic potential, 
ISCP) by measuring the short-term utilization of a range of readily available 
substrates added to soils (Degens and Vojvodic-Vukovic, 1999). Patterns of 
ISCP provide a real-time measure of microbial functional diversity, since they 
allow direct measurement of substrate catabolism by microbial communities 
in soils without prior culturing of microorganisms. This methodological 
approach has been widely used to describe the mycorrhizal effect on the 
functional diversity of soil microbial communities. 

11  ECTOMYCORRHIZAE AND FOREST  
ECO-SYSTEMS

Forest trees are in general completely dependent upon a symbiotic 
association of their roots with ectomycorrhizal fungi. These fungi mobilize 
minerals from soil and transfer them to the plant. In exchange the trees deliver 
assimilated C to the fungi. Ectomycorrhizal fungi have a limited capability 
to enzymatically degrade the complex carbohydrates of most organic detritus 
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and, instead, rely upon their tree hosts for their energy needs.  In return, they 
take up P, N, sulfur, and zinc from soil and translocate them to their host and 
greatly extend the functional root system of the host (Allen, 1991).  An 
ectomycorrhizal fungus can connect to and integrate roots of several trees, 
such that fungi and roots grow as one intact unit. Most ectomycorrhizal fungi 
are basidiomycetes, with Amanita, Cortinarius, Lactarius, Russula, and
Suillus among the best known ectomycorrhizal genera (Hacskaylo, 1972).  
Ectomycorrhizal associations are widespread, particularly in temperate regi-
ons, and involve many of the ecologically important tree species such as 
Pseudotsuga, Picea, Pinus, Abies, Salix, Quercus, Betula and Fagus.

Fundamental knowledge about the biodiversity of soil microbial 
communities and their functional impact, especially for the ectomycorrhizal 
fungi, is essentially non-existent. However, maintaining this below-ground 
biodiversity is essential for the maintenance of a healthy forest and for suc-
cessful reforestation programs. Ectomycorrhizal fungi are, economically, one 
of the most important groups of soil fungi. These organisms form a symbiotic 
relationship with a plant, forming a sheath around the root tip. The fungus 
then forms a hartig net. The fungus then gains C and other essential organic 
substances from the tree and in return support the tree in taking up water, 
mineral salts and metabolites. The fungus also repels parasites, nematodes, 
and soil pathogens. Indeed, most forest trees are highly dependent on their 
fungal partners and in areas of poor soil quality could possibly not exist in 
their absence. Thus, in optimal forest husbandry, a lack of management of 
mycorrhizal fungi could result in damage to trees and forest crops.  

The importance of ectomycorrhiza in forest plantations has received 
much attention when it was observed that trees often fail to establish at new 
sites if the ectomycorrhizal symbiont is absent. This effect has been obser-
ved in exotic pine transplantation in different parts of the world. In Western 
Australia, Pinus radiata and P. pinaster failed to establish in nursery beds in 
the absence of mycorrhizal fungi (Lakhanpal, 2000). Even the addition of 
fertilizer had no effect on the establishment of seedlings on such sites. Addi-
tion of forest soil produced normal and healthy seedlings, however, because 
the forest soil contained propagules of mycorrhizal fungi.  

High ectomycorrhizal diversity is important in the healthy functioning 
of woodlands. Different fungi appear to occupy different niches. Some may 
be more proficient at supporting the tree in taking up particular nutrients, others 
may be specialized at protecting against pathogens, and others may assist in 
enzyme production. Intensive study is needed to determine the ectomycor-
rhizal diversity which will optimize forest husbandry.

Pine wilt disease (PWD) is a globally serious forest disease and 
demonstrates the importance of tree-ectomycorrhizal relationships. Pines 
planted on a mountain slope of Japan (Yamaguchi Prefecture) were killed by 
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rhizal relationships had developed better than on lower slopes. The abundant 
mycorrhizae found in the upper slope enhanced water uptake by the pines, 
mitigated drought stress, and thereby decreased the mortality from pine wilt 
disease (Akema and Futai, 2005). Moreover, under laboratory conditions, 
inoculation of pine seedlings with ECM fungi confirmed their enhanced 
resistance to pine wood nematode infection.  Pine seedlings are also known 
to tolerate environmental stresses such as acid mist, when infected with 
ECM fungi (Asai and Futai, 2001). 

ECM fungi also make a significant contribution to forest ecosystems 
by increasing their network among trees through which nutrients may be 
transported. In addition ECM fungi improve the growth of host plants at 
the seedling stage. Many pioneer plants in barren tips and other waste lands 
are facilitated in their establishment by ECM. This association has been 
successfully applied to reforestration in tropical forests by inoculating mycor-
rhizae on nursery seedlings (Lakhanpal, 2000). In forest nursery manage-
ment it is well known that pine seedlings could not be replanted from the 
nursery to any other location once they start to expand new lateral roots in 
spring, though it is easy to replant them in winter. This effect can be attri-
buted to damage of the mycorrhizal association to newly developed lateral 
roots in spring. Thus, mycorrhizal association is essential for pine seedlings. 
Generally, we ignore the importance of the mycorrhizal relationship, because 
mycorrhizae occur underground and are invisible. When trees are exposed to 
biotic or abiotic stresses, the importance of the mycorrhizal association is 
noticed, as in the case of  pine wilt disease. More than 90% of land plants are 
associated with mycorrhizal fungi, and two thirds of them are arbuscular 
mycorrhizae. But tree species predominant in temperate forests are ecto-
mycorrhizal. Why have ECM fungi established the special mycorrhizal 
relationship with such trees? Does the ECM relationship bring about the 
prosperity of the trees, or does the prosperity of the trees ensure the esta-
blishment of ECM associations? There are many questions to be resolved on 
the ECM relationship, but the beneficial effects of ECM on these trees is an 
established fact.

12 ECTOMYCORRHIZAL ASSOCIATIONS  
TO MAINTAIN TROPICAL MONODOMINANCE  

Tropical rainforests harbor the highest known tree diversity on the 
planet, and a wealth of ecological studies has attempted to explain the inti-
mate association of so many co-occurring species (Leigh et al., 2004;
Valencia et al., 1994).  Tropical tree diversity, however, is not uniformly 
diverse, and the existence of tropical ‘monodominance’, where a single tree 
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species dominates the canopy (Connell and Lowman, 1989; Torti et al.,
2001), is just one example of the extreme variation found in rainforests. 
While other traits likely play a role in the maintenance of tropical mono-
dominance, the particular mechanisms by which ECM associations operate 
in the maintenance of tropical monodominance have not been fully explored 
(Torti and Coley, 1999).

planted Dicymbe  corymbosa seedlings were found to survive better in a 
monodominant forest compared to a mixed forest. Poor ECM colonization of 
transplanted D. corymbosa seedlings in the mixed forest suggested the ECM 
inoculum limitation may prevent rapid expansion of the monodominant forest 
into the mixed forest (McGuire, 2007c). Incorporation of seedling roots to 
the common ECM network served as an effective mechanism for higher D.
corymbosa seedling survival in the monodominant forest, potentially pro-
viding seedlings with photosynthate from overstory individuals of the same 

to be significantly deeper in the monodominant forest than in the mixed forest, 
although averaged over two years, above-ground litter production was higher 
in the mixed forest relative to monodominant forest (McGuire, 2007b). This 
observation suggests that slower decomposition in the monodominant forest 
was responsible for a greater floor mass. A reciprocal litter bag transplant 
experiment demonstrated that leaf litter decomposition was slower in the 
monodominant forest compared to the mixed forest, and that leaf type (D.
corymbosa or mixed species leaf litter) had no effect on decomposition rate. 
Moreover, microbial biomass and biomarkers for broad saprotrophic bacteria 
were higher in the mixed forest compared to the monodominant forest.  DGGE 
analysis revealed that fungal community composition was different between 
forest types and that forest type explained about 80% of the variation (McGuire, 
2007b). These observations suggest that ECM fungi were suppressing 
saprotrophic decomposition in the monodominant forest to gain preferential 
access to nutrients contained in forest floor. Together, these studies provide 
evidence that positive feedbacks between ECM fungi and ECM monodo-
minant trees function to maintain tropical monodominance. 

13 MYCORRHIZAL BIOTECHNOLOGY  
IN RESTORATION OF DISTURBED ECOSYSTEMS 

Surface mining activities generate huge areas of disturbed land in 
many parts of the world and  there is an urgent need for soil reconstruction 
and restoration of productive and functional soil-plant systems on these deg-
raded lands. Ecological restoration is the process of supporting the reclamation 
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of an ecosystem that has been disturbed, degraded, and destroyed (SER, 
2004).  Soil disturbance can have a tremendous impact and alters the compo-
sition and activity of mycorrhizal fungi as well as the host plants (Allen  
et al., 2005). Numerous studies have documented the fundamental impor-
tance of mycorrhizal symbiosis and other microbial systems in reclamation 
and restoration of contaminated and disturbed ecosystems (Miller, 1987; 
Danielson and Visser, 1989; Meharg and Cairney, 2000; Khan, 2006; Robertson 
et al., 2007). Microsymbionts provide benefits not only to individual plants, 
but most essential ecosystem processes depend upon different mycorrhizal 
fungi and associated microorganisms. Mycorrhizal fungi can play a critical 
role in ecosystem dynamics and productivity. 

Of the various types of mycorrhizae, four main types, i.e., arbuscular 
mycorrhizae (AM), ectomycorrhizae (ECM), ectendo-mycorrhizae, and 
ericoid mycorrhizae (ERM) are important for returning disturbed sites to 
productive agricultural and forested lands. The ECM, which are generally 
associated with forest plants, and formed by basidiomycetes, ascomycetes, 
and several species of zygomycetes comprising some 5,000–6,000 species 
(Brundrett et al., 1996).  The ECM fungi have the ability to provide buffer-
ing capacity to plant species against various environmental stresses (Malajczuk 
et al., 1994).   

The majority of vascular plants form arbuscular mycorrhizae. The 
AM are formed by a small group of fungi in the new phylum Glomeromycota 
and class Glomeromycetes (Schü ler et al., 2001) containing eight known 
genera. These symbiotic fungi promote plant growth (Klironomos, 2003) and 
enhance a number of essential ecosystem processes such as plant productivity, 
plant diversity and soil structure, and act as bio-ameliorators of stressed soil 
conditions (van der Heijden et al., 1998, 2006; Vogelsang et  al., 2006; Al 
Karaki et al., 2001).   

The ectendomycorrhizae exhibit some structural similarities to both 
ecto and endomycorrhizae. They are frequently found on the roots of plants 
growing on disturbed lands. The ericoid mycorrhizae (ERM) associate with 
plants belonging to the order Ericales. The ERM are associated with Erica-
ceous plants that have very fine root systems and typically grow in acid, 
peaty, and infertile soils. The fungus enables access to recalcitrant sources of 
minerals and provides protection from adverse soil conditions. Ericoid plants 
withstand extremely difficult environments and can become established on 
various eroded lands. Ericoid mycorrhizae have demonstrated a special role 
in the mineralization of soil organic N (Read et al., 1989).

In, northeastern Alberta, the oil sands industry produces vast areas of 
degraded land that requires reclamation and revegetation (Fung and Macyk, 
2000). However, creating functional and self-sustaining boreal-forested lands 
and wildlife habitat on oil sands mines is a challenging task. Besides the phy-
sical and chemical properties of disturbed sites, the soil disturbance event 

Mycorrhizae: An Overview 



22

often destroys mycorrhizal fungal networks and other microbial activities in 

harsh conditions in areas affected by mining activities. 
Successful establishment of forest tree seedlings at reforestation 

sites is often dependent on mycorrhizal association and on the ability of 
seedlings to acquire site resources early in the plantation establishment period 
(Amaranthus and Perry, 1987; van den Driessche, 1991). Mycorrhizal inocula-
tion has been proven beneficial in a wide range of situations. Of the various 
approaches to enhance reforestation success, inoculation of nursery seedlings 
with site-adapted mycorrhizal fungi is a successful and environmentally-
friendly approach. Inoculation of nursery seedlings has the potential for 
selective inoculation with stress-tolerant microsymbiont strains, adapted to 
both target host species and site. Consequently, more effective and greater 
success is expected in the reclamation effort.   

The goal of any reclamation program is to convert disturbed land to 
its comparable pre-disturbance ecosystem. Therefore, re-introduction of soil 

consideration is required in isolation, identification, selection of site-adapted 
microsymbionts and understanding of the ecophysiology best suited for 
reclamation of disturbed lands. Ecologically-based technologies, such as use 
of mycorrhizal and actinorhizal plants, are expected to provide sustainable 

ductive forested lands.  Application of mycorrhizal biotechnology has great 
potential and can play an essential role in restoration of degraded lands in 
many surface-mined areas.  

14 IN VITRO MICORRHIZATION
OF MICROPROPAGATED PLANTS

Ectomycorrhizal (ECM) fungi bring several advantages to plants, 
including increased root absorbing area (Bowen, 1973; Harley and Smith, 
1983), enhanced uptake of nutrients (Harley and Smith, 1983), increased 
resistance to plant pathogens (Marx, 1969), and  drought tolerance (Duddridge 
et al., 1980; Boyd et al., 1986; Meyer, 1987; Feil et al., 1988; Marx and 
Cordell, 1989). ECM can also increase growth and nutrient content of plants 
growing in low-nutrient soils (Jones et al., 1991). Water stress appears to be 
one of the major causes for failure of micropropagated plants during accli-
mation. The use of compatible mycorrhizal fungi in the soil substrate during 
the weaning process could not only improve the nutritional state of the 
plants, but also increase resistance to the water stress of ex vitro conditions, 
increasing weaning rates. 
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The methods of axenic synthesis have been subject to criticism, 
because working under conditions where: (1) interacting factors are eliminated; 
(2) C sources are provided to allow fungal growth before infection sets in; 
and (3) substrates are sterilized; may significantly change the determinants 
of efficiency and type of infection (Piché and  Peterson, 1988). Non-axenic 
systems allow detailed studies of root colonization by the fungus (Fortin  
et al., 1983).

Fungal attachment to the root epidermis takes place via root poly-
saccharide secretion (Nylund, 1980). The translocation of photosynthetic 
products to the root increases the concentration of carbon compounds in root 
exudates. These exudates are composed primarily of amino acids, proteins, 
organic acids and plant growth regulators. Mineral balance and plant growth 
regulator concentrations directly control cell permeability and fungal adhesion 
to the root when mycorrhization occurs (Barea, 1986). Axenic and non-
axenic mycorrhizal syntheses mainly differ in terms of time and degree of 
infection (Duddridge and Read, 1984). These findings validate the use of in
vitro mycorrhization techniques. Furthermore, Brunner (1991) showed that 
mycorrhiza obtained by different methods of in vitro synthesis had mantles 
and hartig nets with similar structures. Micropropagated plants develop under 
high moisture and low lighting conditions. They often experience low lignifi-
cation levels and decreased functionality of root systems that cause low 
survival rates during weaning. Mycorrhization of micropropagated plants 
before acclimation increases survival, enhancing the functionality of the root 
system and the mineral nutrition of the plant (Rancillac, 1982; Grellier et al.,
1984; Heslin and Douglas, 1986; Poissonier, 1986; Tonkin et al., 1989; 
Martins, 1992, 2004; Martins et al., 1996; Herrmann et al., 1998; Díez et al.,
2000). Similarly, in vitro mycorrhization of micropropagated plants can be 
used to increase survival and growth during ex vitro weaning (Nowak, 1998). 
From the point of view of mycorrhization studies, on the other hand, the use of 
seedlings with in vitro mycorrhizal systems must take into account the genetic 
differences among plants that may condition plant response to mycorrhization. 
Plant micropropagation techniques allow controlling both biotic and abiotic 
mycorrhizal conditions, while genetic uniformity is guaranteed. 

In vitro mycorrhization (using endo and ectomycorrhizae) of micro-
propagated plants can be used to increase survival and growth during ex vitro
weaning (Martins et al., 1996; Nowak, 1998). In the case of fruit trees, 
inoculation with AM fungi facilitated in vitro plant adaptation to ex vitro
conditions (Sbrana et al., 1994). In vitro ectomycorrhization can improve 
microcutting rooting (Normand et al., 1996) and enables vitro plants to 
acclimate more readily (Martins et al., 1996; Díez et al., 2000). The in vitro
mycorrhization of micropropagated plants like Helianthemum spp. (Morte  
et al., 1994) and Cistus spp. (Díez and Manjón, 1996) has been obtained only 
in very few Mediterranean species. Even acclimation of somatic embryos 
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can be improved through mycorrhization, such as that reported for cork oak 
(Díez et al., 2000). 

Mycorrhizal plants normally have a different morphology of the root 
system that corresponds to a different soil exploitation strategy. Fresh and dry 
weights of mycorrhizal roots are higher than in non-mycorrhizal roots while 
the length of the major root is lower. The number of roots per unit length and 
per unit weight is consequently higher in mycorrhizal plants as reported by 
Biggs and Alexander (1981). Under in vitro conditions, mycorrhization 
increases the growth parameters of plants. Mycorrhization also leads to the 
morphological development of mycorrhizal structures. Micropropagated plant 
performance improves and survival capacities increase accordingly. Micro-
propagation and mycorrhization can be combined as a tool to impart viability 
to the production of difficult to propagate species, thus increasing their survival 
and growth. Mycorrhization can provide a sustainable method for plant pro-
duction, either by micropropagation or through traditional propagation methods. 

15   VISUALIZATION OF ENDORHIZAL FUNGI

Few of the interactions between plant roots and endorhizal and 
rhizosphere fungi produce macroscopic phenotypes, particularly in the early 
stages. AM fungi interactions predominate, which are found in about 80% of 
terrestrial plant families and do not produce a visible change in root tissues. 
In addition, roots harbor a diversity of endophytic fungi that now are shown 
to be widely distributed and have roles including stress tolerance. In order to 
fully understand the nature of plant-fungal interactions and their relative 
importance to the plant, it is essential that endophytic fungi be clearly visu-
alized and accurately quantified. 

Fine roots measure several cell layers thick and may have pigmented 
surface layers, whereas most fungi are disseminated mycelia of hyaline 
hyphae. In order to conduct transmitted light microscopy of endorhizal fungi, 
roots are typically cleared of cytoplasm and then stained with chlorazole black 
E, trypan blue, or lactofuchsin. However, these stains may provide insuffi-
cient contrast for high resolution imaging, or for examining fine endophyte 
hyphae, which typically measure less than 1.5 m in diameter. 

In order to study plants collected from sites where endorhizal coloni-
zation has not been well explored, and for species where endorhizal fungi 
had been thought rare or absent, a sensitive method for fungal visualization 
has been developed, along with a secure method for specimen preservation. 
This method is considered reliable for quantifying potentially multiple endo-
rhizal morphotypes. Endorhizal visualization methods using fluorescence 
microscopy can be applied to studying roots with multiple fungal morphotypes 
and from herbarium specimens (Ormsby et al., 2007).  
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For samples harvested from field sites where there is often little 
control of the fungal root symbiont(s), lactofuchsin staining viewed with 
epifluorescence microscopy provides a convenient combination of relative 
simplicity of preparation and imaging quality. Confocal epifluorescence optics 
are often superior for documentation, whereas widefield optics are more 
efficient for quantitation. 

Assessing endorhizal colonization using the Multiple Quantitation 
Method (MQM) is straightforward and reproducible. MQM is well-suited for 
plant roots harvested from natural locations where the endorhizal fungi are 
not necessarily well described. Furthermore, MQM can describe the relative 
contributions of different endorhizal interactions, which must intrinsically be 
related to their importance to the plant’s physiology. 

16  CONCLUSIONS 

Mycorrhizal fungi are now known to provide a wide range of signi-
ficant benefits to their plant hosts. In addition to enhancing mineral nutrition, 
they induce greater resistance to soil pathogens, enhance tolerance to drought 
stress, and reduce sensitivity to toxic substances occurring in the soil.

Introduction of mycorrhizal fungi do not appear to offer much advan-
tage to enhanced nutrition or disease resistance in native species. Optimization 
of the ability of native fungi to colonize hosts in their natural habitat or to 
minimize loss of these fungi with disturbance is required. Highly dependent 
crop hosts should be selected over mycorrhizal- independent hosts in crop 
rotations or in multiple cropping systems. Traditional methods of breeding 
and producing crop plants in soils with high nutrient contents may select 
against the most efficient fungal communities or even against the mycorrhizal 
association.  

Many efforts have been made in recent years to accrue benefits 
from mycorrhizae for agriculture, horticulture, forestry, and site remediation. 
The results have been consistently positive, with some difficulties due to 
complications from diverse variables under field conditions. Mycorrhizal 
interactions between plants, fungi, and the environment are complex and 
often inseparable. Mycorrrhizae are an essential below-ground component in 
the establishment and sustainability of plant communities, but thorough 
knowledge is required to achieve maximum benefits from these micro-
organisms and their associations.

Mycorrhizae: An Overview 
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Chapter 2 

THE MOLECULAR COMPONENTS
OF NUTRIENT EXCHANGE IN ARBUSCULAR 
MYCORRHIZAL INTERACTIONS 
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Abstract: The driving force behind arbuscular mycorrhizal (AM) interactions is an 
exchange of nutrients between fungus and plant. Glomeromycotan fungi are 
obligate symbionts and rely on the carbon provided by their plant hosts to 
complete their life cycle. In return, the fungus provides nutritional benefits to 
the plant, notably by delivering minerals. The majority of this nutrient exchange 
is thought to occur in root cortical cells containing the highly-branched fungal 
arbuscules. In this chapter, we describe the molecular components of the arbus-
culated cell and the proteins involved in the transfer of nutrients between fungus 
and plant. We consider, in detail, the passage of phosphorous and nitrogen 
from the soil to the arbusculated cell and the concomitant delivery of carbon to 
the fungal symbiont. In natural conditions, the exchange of nutrients does not 
need to be completely equitable and selective pressure may act on both 
partners to push the balance in their favour. In cultivated plants, the artificial 
environment may further distort the balance. We discuss how a better under-
standing of the molecular regulation of nutrient transfer benefits attempts to 
optimise AM associations for agricultural use. 

Keywords: Arbuscular mycorrhiza; nutrient exchange; phosphate; nitrogen; carbohydrate.

1 INTRODUCTION 

Arbuscular mycorrhizal (AM) symbioses are formed between plant 
roots and members of the Glomeromycota (Schüßler et al., 2001). These fungi 
obtain carbon from their hosts and, in return, provide nutritional benefits to 
the plant (Smith and Read, 1997). Mycorrhizal development begins with the 
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germination of fungal spores present in the soil. Initially, simple, un-branched 

and glycogen present in the spore (Bago et al., 2000). Hyphae that enter the 
vicinity of a suitable host respond to spatial cues provided by root exudates, 
of which the best characterized are the strigolactones, and begin to branch 
more vigorously (Akiyama et al., 2005). On contact with the host, a hypho-
podium is formed and the root epidermis penetrated in a process tightly 
coordinated between fungus and plant (Genre et al., 2005).

2 DEVELOPMENT AND ANATOMY  
OF ARBUSCULAR MYCORRHIZAL 
ASSOCIATIONS 

Once inside the root cortex, the fungus begins symbiotic growth 
and produces longitudinal hyphae from which extend the highly branched, 
tree-like arbuscules (Smith and Read, 1997). Arbuscules are formed by 
dichotomous branching of intra-radical fungal hyphae. As the hyphae become 
increasingly ramified, the width of the fungal wall decreases (from ~500 nm 
thick in intra-radical longitudinal hyphae to ~30 nm thick in the terminal 
arbuscular branches) and the wall structure becomes more open (Bonfante-
Fasolo et al., 1990). During arbuscule development, the plant vacuole frag-
ments, organelles multiply and move to surround the arbuscule (Lohse et al.,
2005) and the nucleus expands and moves into the centre of the cell (Balestrini 
et al., 1992). Although the arbuscule eventually expands to largely fill the 
cortical cell, the fungus never penetrates the host cell plasma membrane. 
Increased biosynthetic activity within the host cell allows the production of 
additional membrane components to keep pace with arbuscule growth and, 
as the arbuscule expands and branches, it is enveloped by newly synthesised 
host membrane. In the mature arbusculated cell, the host membrane will have 
increased in surface area several times to completely surround the fungal 
structure (Alexander et al., 1988). Subsequently, the fungus develops an 
extensive network of extraradical hyphae that extends beyond the plant root 
system and provides an increased soil volume for nutrient acquisition (Smith 
and Read, 1997). In certain mycorrhizal interactions the pattern of fungal
growth is somewhat different with the production of coiled structures taking 
the place of the arbuscules (Dickson et al., 2007). However, we will not 
specifically consider these structures here. 

Arbuscules are short-lived structures and begin to senesce after  
4–10 days of activity (Strack et al., 2003). As the arbuscule collapses, the 
hyphal remnants are encapsulated by the cell wall components and degraded. 
Subsequently, the plant cell returns to the pre-arbuscular state and can be 

hyphae are produced and growth is sustained by reserves of triglycerides 
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re-colonized at a later time. Mycorrhizal colonization is an asynchronous 
process and a mature colonized root system will harbour cells at all stages of 
development. The regulation of the cycle of colonization is clearly important 
to the balance of nutrient exchange. The plant partner has the ability to 
partially regulate the overall level of colonization; for example, maize root 
colonization decreases as phosphate availability increases (Braunberger et al.,
1991; Kaeppler et al., 2000), and barley has been shown to resist further  
AM colonization once a certain critical level of fungal growth is reached 
(Vierheilig, 2004). Similarly, if genetic disruption is used to prevent plant 
uptake of fungal phosphate, the plant will not support the symbiosis and the 
fungus dies (Maeda et al., 2006; Javot et al., 2007a).

The plant peri-arbuscular membrane and the arbuscular surface 
enclose a narrow space (80–100 nm) between microbial symbiont and host 
that is known as the interface compartment or interfacial apoplast (Balestrini 
and Bonfante, 2005). The interfacial apoplast connects plant host and sym-
biotic fungus and represents a space into which nutrients can be delivered and 
from which they may be acquired. Although, the peri-arbuscular membrane is 
continuous with the cell plasma membrane and, consequently, the interfacial 
apoplast continuous with the cellular apoplast, the composition of the sym-
biotic interface is unique (Strack et al., 2003; Balestrini and Bonfante, 2005). 
During arbuscule development, the peri-arbuscular membrane continues to 
produce cell wall materials, including pectins, xyloglucans, polygalacturonans 
and hydroxyproline-rich glycoproteins (HRGPs). These components are 
secreted into the interfacial apoplast but do not further assemble into a wall 
structure, possibly due to the action of fungal lytic enzymes (Balestrini and 
Bonfante, 2005). Gene expression studies have identified transcripts encoding 
proline rich proteins in arbusculated cells of medic (van Buuren et al., 1999) 
and maize (Balestrini et al., 1997). The medic transcript (MtAM1) is pre-
dicted to encode a protein containing both an N-terminal signal sequence and 
a C-terminal glycosyl phosphatidylinositol (GPI) anchor addition site, con-
sistent with localisation attached to the external phase of the peri-arbuscular 
membrane (van Buuren et al., 1999). The mature MtAM1 protein exhibits 
features typical of the heavily glycosylated arabinogalactan HRGPs (AGPs) 
and contains two potential Src-homology (SH-3) ligand sites. The SH-3 
ligand motif was identified by its ability to interact with the SH-3 domain 
and is implicated in mediating protein-protein interactions during signalling 
events (Ren et al., 1993). However, beyond these sequence predictions little 
is known about the role of HRGPs in AM symbioses. 

The permeability and transfer properties of the arbuscular membranes 
are thought to be enhanced by the presence of aquaporin proteins (Uehlein  
et al., 2007). Aquaporins function in animals, plants and fungi to greatly 
increase the permeability of lipid membranes (Kruse et al., 2006) and are 
known to play a significant role in the regulation of plant water relations 
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(Javot and Maurel, 2002). Plant aquaporins are assigned to four sub-families, 
tonoplast intrinsic proteins (TIPs), plasma membrane intrinsic proteins (PIPs), 
Nodulin-26 like intrinsic proteins (NIPs) and small basic intrinsic proteins 
(SIPs). Aquaporin genes expressed to higher levels following AM coloni-
zation have been characterized from e.g. parsley (Roussel et al., 1997), bean 
(Aroca et al., 2007) and medic (Krajinski et al., 2000; Journet et al., 2002; 
Manthey et al., 2004; Brechenmacher et al., 2005; Uehlein et al., 2007). In 
addition, gene expression profiling has identified a NIP aquaporin from rice 
that is up-regulated following colonization (Güimil et al., 2005). In medic, 
accumulation of PIP proteins in the root cortex has been demonstrated by 
immunological staining, although the localization of aquaporins to the peri-

2007). Characterization of the expression of additional aquaporin genes has 
added confusion to the interpretation of their role in AM symbiosis. Under 
drought stress, mycorrhizal colonization has been observed to reduce expres-
sion of PIP aquaporin genes in the roots of soybean and lettuce (Porcel et al.,
2006). Similarly, colonization of salt stressed tomato by AM fungi reduced 
the accumulation of transcripts encoding a PIP protein (Ouziad et al., 2005). 
Furthermore, the use of a medic split-root inoculation system has demon-
strated that a single aquaporin gene can be induced in the colonized parts of 
the root system but down-regulated in adjacent non-colonized portions (Liu 
et al., 2007). Intriguingly, it has been shown that aquaporins may also faci-
litate the movement of small solutes suggesting that they could play a wider 
role in mycorrhizal nutrient exchange than originally proposed (Jahn et al.,
2004).

Acidotropic staining techniques have shown that the interfacial apoplast 
is strongly acidified with respect to plant and fungal cytoplasm (Guttenberger, 
2000). Plant and fungal P-type H+-ATPases are thought to maintain a high 
proton concentration within the apoplast (Gianinazzi-Pearson et al., 1991). 
Plant-encoded P-tvpe H+-ATPase genes that are induced by mycorrhizal 
colonization have been identified from e.g., barley (Murphy et al., 1997), 
tobacco (Gianinazzi-Pearson et al., 2000), tomato (Ferrol et al., 2002) and 
medic (Krajinski et al., 2002). Immunocytological techniques have con-
firmed the localisation of tobacco H+-ATPase proteins to the peri-arbuscular 
membrane (Gianinazzi-Pearson et al., 2000). On the fungal side, expression 
of the H+-ATPase gene GmHA5 from Glomus mossae is induced at the onset 
of symbiotic growth and remains highly expressed during intra-radical deve-
lopment (Requena et al., 2003). The electrochemical gradient established by 
ATPase proteins is thought to be essential to the functioning of diverse 
proton:nutrient transporters (Gianinazzi-Pearson et al., 1991) as will be 
discussed further below. 

It has been hypothesised that plants employ components of their 
pathogen defence mechanism to regulate symbiotic fungal growth (discussed 
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arbuscular membrane never been unequivocally demonstrated (Uehlein et al.,
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in Paszkowski, 2006). Among the classes of defence-related genes that have 
been found to respond to mycorrhizal expression are chitinases (Salzer et al.,
2000), lectins (Frenzel et al., 2005, 2006) and germin-like proteins (Doll et al.,
2003). These protein classes are functionally diverse and, although many 
hypotheses have been advanced, their role during mycorrhizal colonization 
remains poorly defined. The most direct evidence for a regulatory role is 
available for the chitinases. In addition to gene expression data, enzymatic 
assays have demonstrated chitinase activity in mycorrhizal roots of e.g., leek 
(Spanu et al., 1989), tobacco (Dumas-Gaudot et al., 1992), bean (Lambais 
and Mehdy, 1993), pea (Dumas-Gaudot et al., 1994), alfalfa (Volpin et al.,
1994) and soybean (Xie et al., 1999). Chitinases catalyse the hydrolysis of 
the glycosidic bonds that link glucosamine residues in the chitin polymer, 
the primary constituent of fungal hyphal walls. Chitinases do not degrade 
mature fungal walls and act primarily on exposed chitin chains, such as those 
found at the growing hyphal tips of newly forming arbuscular branches 
(Collinge et al., 1993; Bestel-Corre et al., 2002). Reducing the levels of a 
barley chitinase by antisense transformation has been shown to result in an 
increase in mycorrhizal colonization and it has been proposed that chitinase 
activity promotes arbuscule turnover (Troedsson et al., 2005). However, in 
further studies, over-expression of chitinase genes in tobacco had no influ-
ence on mycorrhizal colonization (Vierheilig et al., 1995) and over-expression 
of a medicago chitinase in root culture had no effect on the level of colonization, 
although there was a promotion of fungal spore germination (Elfstrand et al.,
2005).

3    ARBUSCULAR MYCORRHIZAL PHOSPHATE 
ACQUISITION

Phosphate is an essential nutrient and is limiting for plant growth in 
many environments (Bucher, 2007). Phosphate is present in the soil in the 
form of inorganic orthophosphate (Pi) and is readily sequestered by cations, 
especially in acidic conditions, of which the most abundant are iron, alumi-
nium and calcium. The mobility of sequestered phosphate is reduced and, as 
a consequence, plant uptake rapidly exhausts the phosphate available in the 
vicinity of the root system and creates a localised depletion zone (Bucher, 
2007). In modern agriculture, the problem of phosphate limitation has been 
addressed by the extensive use of phosphate-additions, more than 4,000,000 
tons annually in the USA alone (www.fao.org). However, as supplies are 
reduced, phosphate becomes increasingly difficult and costly to extract. 
Furthermore, the efficiency of phosphate uptake may be as low as 20% (Zhu 
et al., 2003) and much of the added phosphates will pass to adjacent water 
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courses with detrimental environmental consequences. It has been demons-
trated that, in wild ecosystems, plants derive much of their phosphate via 
mycorrhizal fungi (Smith et al., 2004). Investigating the current importance, 
and potential future benefits, of mycorrhizal colonization to crop phosphate 
uptake remains one of the major concerns of current mycorrhiza research. 

Two distinct plant phosphate uptake pathways have been described; 
a direct pathway functions in the absence of colonization and a second, 

2007; Javot et al., 2007b). A second set of Pht1 family transcripts accu-
mulates in the absence of mycorrhizal fungi and, in certain cases, is reduced 
in accumulation following colonization (Bucher, 2007; Javot et al., 2007b). 
Pht1 proteins are proton:phosphate symporters belonging to the major 
facilitator superfamily (Bucher, 2007). They are homologous to the yeast 
PHO84 phosphate transporter and share a topology of 12 membrane spanning 
helices (Bun-Ya et al., 1991). The family is defined by a highly conserved 
signature motif (GGDYPLSATIxSE) present in the fourth transmembrane 
domain (Karandashov and Bucher, 2005). Functional testing of Pht1 proteins, 
predominantly by heterologous expression in yeast, has revealed a broad 
range of affinity for phosphate, although the functional importance of this 
variation is unresolved (Javot et al., 2007b). 

It is now widely accepted that plant Pht1 family proteins play a key 
role in the transport of Pi across the peri-arbuscular membrane (Karandashov 

have been identified from medic (MEDtr:Pht1;4. Harrison et al., 2002), rice 
(ORYsa:Pht1;11. Paszkowski et al., 2002), potato (SOLtu:Pht1;4 and 
SOLtu:Pht1;5. Nagy et al., 2005), wheat (TRIac:Pht1:myc. Glassop et al.,
2005) and tomato (LYCes:Pht1;4. Nagy et al., 2005); Pht1 genes encoding 
transcripts that accumulate constitutively and then accumulate to higher levels 
following AM colonization have been identified from potato (SOLtu:Pht1;3.
Rausch et al., 2001), tomato (LYCes:Pht1;3 and LYCes:Pht1;5. Nagy et al.,
2005), lotus (LOTja:Pht1;3. Maeda et al., 2006), barley (HORvu:Pht1;8.
Rae et al., 2003; Glassop et al., 2005) and maize (ZEAma:Pht1;6. Nagy  
et al., 2006). Phylogenetic analysis of the Pht1 gene family (Karandashov 
et al., 2004) has grouped MEDtr:Pht1;4, ORYsa:Pht1;11, SOLtu:Pht1;4,
SOLtu: Pht1;5, LYCes:Pht1;4, HORvu:Pht1;8, ZEAma:Pht1;6 into a single 
sub-family. The genes SOLtu:Pht1;3, LYCes:Pht1;3 and LOTja:Pht1;3 
form a distinct subfamily that, to date, consists solely of sequences from 

Sawers et al .

mycorrhiza-associated pathway operates in colonized plants (Smith et al.,

extent, as physiological alternatives (Smith et al., 2004). The onset of mycor-
rhizal colonization results in the expression of specific phosphate transporter 
genes encoding members of the Phosphate transporter 1 (Pht1) family (Bucher,

plant species; Pht1 genes that are specifically expressed in AM colonized roots

and Bucher, 2005; Javot et al., 2007b; Table 1). Expression analysis has identi-
fied genes encoding candidate arbuscular Pht1 transporters from a number of 

2003; Fig. 1). These two pathways are not complementary but function, to an
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dicotyledonous plants and which has no AM-associated representatives in 
the fully sequenced rice genome (Paszkowski et al., 2002). The use of in situ 
hybridization has localised mRNAs encoding LOTja:Pht1;3 (Maeda et al.,
2006), TRIac:Pht1:myc, HORvu:Pht1;8 and ZEAma:Pht1;6 (Glassop et al.,
2005) exclusively to arbusculated cells. Promoter-reporter fusions have 
given similar results for MEDtr:Pht1;4 (Harrison et al., 2002), LYCes:Pht1;4
and SOLtu:Pht1;4 (Nagy et al., 2005). Laser micro-dissection has confirmed 
the localization of LYCes:Pht1;4 transcripts and shown that LYCes:Pht1;3
transcripts also accumulate uniquely in arbusculated cells (Balestrini et al.,
2007).

Mycorrhizal Pht1 gene induction is thought to require the action of 
the lipid messenger-molecule lyso-phosphatidyl-choline (LPC), as demon-
strated by the ability of mycorrhizal lipid fractions and purified LPC to induce 
activity of the SOLtu:Pht1;3 and SOLtu:Pht1;4 promoters in root culture 
(Drissner et al., 2007). At this time it is not known whether LPC in the root 
lipid fraction is of plant or fungal origin. LPC acts through, or in conjunction, 
with cis-acting promoter elements to drive arbuscule specific expression. 
The promoter regions of the three Pht1 family genes SOLtu:Pht1;3, MEDtr:
Pht1;4 and ORYsa:Pht1;11 have been characterized in detail by fusion to the 
-glucuronidase (GUS) reporter gene and subsequent transformation into 

root culture for testing in the presence of AM fungi (Karandashov et al.,
2004). Native MEDtr:Pht1;4 and ORYsa:Pht1;11 transcripts accumulate 
exclusively in colonized plants. The native SOLtu:Pht1;3 gene is consti-
tutively active but transcript accumulation is higher following colonization. 
Following transfer into cultured roots derived from a number of dicoty-
ledenous species, the promoter regions of SOLtu:Pht1;3, MEDtr:Pht1;4
drove GUS reporter gene expression in response to mycorrhizal colonization 
(Karandashov et al., 2004). In contrast, the ORYsa:Pht1;11 promoter was 
found to be inactive in these cultures. Promoter-deletion analysis defined  
a 129 bp region of the SOLtu:Pht1;3 promoter as sufficient to condition 
mycorrhiza-specific expression. Further computational phylogenetic foot-
printing analysis identified a cluster of six putative cis elements within this 
129 bp region (Karandashov et al., 2004). Of these elements, the motif 
CTTC, present in the promoter of SOLtu:Pht1;3, could also be found in the 
promoters of MEDtr:Pht1;4 and LYCes:Pht1;4. The CTTC motif was also 
detected in the promoter of a previously characterised medic mycorrhiza-
induced glutathione transferase (GST) (Karandashov et al., 2004). A second 
motif, TAAT, was common to the promoters of SOLtu:Pht1;3, MEDtr:Pht1;4
and LYCes:Pht1;4 but absent from the medic GST promoter. Notably, neither 
the CTTC nor the TAAT motif were present in the promoter of the rice gene 
ORYsa:Pht1;11. This is consistent with the absence of activity of the 
ORYsa:Pht1;11 promoter in eudicot root culture and suggests divergence of 
regulatory elements between monocotyledonous and dicotyledenous plants.  
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Immunocytochemical analysis using a specific antibody has localized 
the MEDtr:Pht1;4 protein to the peri-arbuscular membrane (Harrison et al.,
2002). Detection was strongest around the fine branches of the arbuscule 
while the thicker branches showed little staining. No staining was obser- 
ved in the cell plasma membrane, indicating a specific localisation to the 
peri-arbuscular membrane. Cell fractionation confirmed the presence of 
MEDtr:Pht1;4 in the membrane fraction. Interestingly, the distinction in 
staining between trunk and fine branches suggests a degree of spatially hetero-
geneity within the peri-arbuscular membrane. Mature arbuscules were more 
strongly stained than young arbuscules and little staining was observed in 
senescing or collapsed arbuscules, suggesting that MEDtr:Pht1;4 accumu-
lation is co-ordinated with the life of the arbuscule. With the exception of 
MEDtr:Pht1;4, the subcellular localisation of plant mycorrhizal Pht1 trans-
porters has not been unequivocally determined but homology to MEDtr:Pht1;4,
suggests a similar peri-arbuscular localization. 

Phosphate acquisition by the AM pathway begins with the uptake of 
Pi free in the soil by fungal extra-radical hyphae. These fungal hyphae extend 
beyond the host root system allowing a greater soil volume to be exploited 
for phosphate uptake. In addition, AM colonization promotes physiological 
responses in the host, such as root branching and phosphatase secretion that 
indirectly promote phosphate uptake (Ezawa et al., 2005). There is also at 
least one report that AM fungi can hydrolyse an organic phosphate source, 
thereby liberating phosphate that would not otherwise be available to the 
host (Koide and Kabir, 2000). Uptake of inorganic phosphate at the soil-
hypha interface is mediated by fungal high affinity phosphate transporters of 
the Pht1 family (Harrison and van Buuren, 1995; Maldonado-Mendoza et al.,
2001; Benedetto et al., 2005). Following fungal uptake, phosphate is trans-
ferred to the fungal vacuole where it is polymerized to form poly-phosphate 
chains (Ezawa et al., 2001). Poly-phosphate is translocated through the 
vacuolar compartment to the intraradical hyphae (Ohtomo and Saito, 2005) 
where it is presumed to be hydrolysed prior to release of free phosphate 
into the interfacial apoplast of arbusculated cells. The mechanism of poly-
phosphate breakdown has not been characterized but is hypothesized to 
require the action of fungal phosphatase enzymes present in the arbuscule 
(Javot et al., 2007b). It is not known if release of Pi requires the action of 
fungal phosphate transporters, although transcripts encoding the phosphate 
transporter GmosPT of Glomus mosseae have recently been found to accu-
mulate in arbusculated cells (Benedetto et al., 2005; Balestrini et al., 2007). 
From the interfacial apoplast, the plant mycorrhizal Pht1 transporters are 
thought to transport Pi across the peri-arbuscular membrane. Reverse gene-
tics techniques have been used to confirm the functional importance of 
LOTja:Pht1;3 (Maeda et al., 2006) and MEDtr:Pht1;4 (Javot et al., 2007a)  
in mycorrhizal phosphate uptake. Lotus plants with an RNA interference 
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(RNAi)-mediated reduction in LOTja:Pht1;3 protein accumulated less phos-
phate when colonized by AM fungi (Maeda et al., 2006). Similar results 
were observed in medic plants in which MEDtr:Pht1;4 was either silenced 
using an RNAi construct or the endogenous gene mutated (Javot et al., 2007a), 
providing strong evidence that Pht1 proteins are required for mycorrhiza-
associated Pi uptake. Once in the plant cytosol, phosphate is translocated into 
the vasculature for delivery to all parts of the plant (Bucher, 2007). 

4 ARBUSCULAR MYCORRHIZAL NITROGEN  
UP-TAKE

Similarly to phosphate, nitrogen is a major limiting nutrient of plant 
growth, especially during the production of cereal crops. Consequently nitro-
gen additions also feature heavily in modern high-input agricultural systems. 
Nitrogen is available in the soil in the form of ammonium (NH4

+) and nitrate 
(NO3

–). Although the concentration of ammonium in the soil is 10–1,000 
times lower than that of nitrate, ammonium is the preferential form of nitro-
gen absorbed when plants are subjected to nitrogen deficiency (Lee and 
Rudge, 1986; Gazzarrini et al., 1999) or grown in water-logged or acid soils 
(Marschner, 1995). Ammonium has low mobility in the soil and a depletion 
zone is formed in the vicinity of the roots in a fashion similar to that obser-
ved with phosphate. The extraradical mycelium of mycorrhizal fungi can 
absorb ammonium (Johansen et al., 1992, 1996; Johnson et al., 1997) nitrate 
(Johansen et al., 1996) and amino acids (Hodge et al., 2001) and the role  
of mycorrhizal nitrogen delivery is becoming increasingly recognized 
(Govindarajulu et al., 2005; Cruz et al., 2007). The majority of nitrogen is 
thought to be taken up in the form of ammonium (Villegas et al., 1996; 
Hawkins et al., 2000; Toussaint et al., 2004) via the action of fungal-
encoded AMT1 family transporters such as the protein GintAMT1 char-

There is no evidence for fungal translocation of either ammonium or 
nitrate and it is more likely that nitrogen is translocated in the form of amino 
acids (Bago et al., 2001). Arginine is by far the most abundant amino acid in 
the extraradical mycelium and is thought to be the major form of trans-
located nitrogen (Johansen et al., 1996; Govindarajulu et al., 2005; Jin et al.,
2005). Within the extraradical mycelium, ammonium is thought to be first 
combined with glutamate to form glutamine by the enzymes of the glutamine 
synthetase/glutamate synthase (GS/GOGAT) cycle (Johansen et al., 1996; 
Breuninger et al., 2004). Arginine can then be readily synthesized from 
glutamine by the enzyme argininosuccinate synthase (ASS) (Cruz et al.,
2007). Having been translocated to the intraradical hyphae, arginine is broken 

acterized from Glomus intraradices (Lopez-Pedrosa et al., 2006; Fig. 1).
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down by ornithine aminotransferase and urease to release free ammonium. 
Both of these enzyme activities have been shown to be higher in the intra-
radical hyphae than in the extraradical mycelium (Govindarajulu et al.,
2005; Cruz et al., 2007). De-protonated ammonia (NH3) has the potential  
to passively diffuse into the apoplast provided a concentration gradient is 
maintained. Alternatively, either NH3 or NH4

+ could be exported by protein-
mediated mechanisms. A candidate fungal AMT transporter has been iden-
tified that is highly expressed in the internal hyphae (Govindarajulu et al.,
2005). However, the role for AMT proteins in the export of ammonia against 
a proton gradient is unclear and it has been hypothesised that AMT proteins 
actively translocate ammonia into intracellular vesicles for sub-sequent release 
into the interfacial apoplast by an exocytotic mechanism. In addition, studies 
of ectomycorrhizal fungi have identified proteins homologous to the yeast 
Ato proton:ammonium antiporter (Chalot et al., 2006) and such proteins may 
yet be found to function in AM symbiosis. Once in the apoplast, ammonium 
is potentially taken up directly by the plant. Gene expression analyses of medic 
and rice have identified mycorrhizainduced transcripts that putatively encode 
ammonium transporters that are candidates for this function (Frenzel et al.,
2005; Güimil et al., 2005; Hohnjec et al., 2005). Additionally, putative 
mycorrhiza induced nitrate transporters have been identified in tomato, 
medic and rice that could play a role (Hildebrandt et al., 2002; Güimil et al.,
2005; Hohnjec et al., 2005). There is also the possibility for passive ammonia 
uptake across the peri-arbuscular membrane, perhaps facilitated by the pre-
sence of aquaporin proteins (Uehlein et al., 2007). 

5 CARBON DELIVERY TO THE FUNGAL PARTNER 
IN ARBUSCULAR MYCORRHIZAL SYMBIOSIS 

Arbuscular mycorhizal fungi are obligate symbionts entirely depen-
dent on their plant host for the supply of carbon (Bago et al., 2000). The use 
of radio-labeled substrates has demonstrated that AM fungi take up plant 
carbohydrate in the form of hexose (Shachar-Hill et al., 1995; Solaiman and 

carbon is predominantly translocated in the form of sucrose and the action of 
invertase and sucrose synthase enzymes is required to release hexoses 
(Sturm and Tang, 1999). Such activities have not been identified from AM 
fungal species and it is assumed that sucrose breakdown is catalysed by plant-
encoded enzymes. Mycorrhiza-responsive sucrose synthase and invertase 
genes have been identified in maize (Ravnskov et al., 2003), bean (Blee and 
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to the arbuscule, remains to be determined (Harrison, 1999). Within the plant,
Saito, 1997; Fig. 1). The route of this transport, and whether or not it is specific
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Fig. 1. Transport of nitrogen, phosphate and carbohydrate between arbuscular mycorrhizal 
fungi and plant. Nitrate or ammonium is taken up by the extraradical mycelium and becomes 
assimilated into amino acids, especially Arginine, via the GS/GOGAT pathway. Arginine is 

ammonium by plant ammonium transporters. Alternatively, ammonia passively diffuses into 
the interfacial apoplast and may be taken up by plant aquaporins. Phosphate is acquired by the 
extraradical mycelium and becomes polymerized into poly-phosphate chains inside the 
vacuole. The poly-phosphate is transferred through the vacuolar compartment to the intra-

brane, plant Pht1 transporters, such as MtPT4, take up phosphate from the interfacial apoplast. 

for hexose uptake from the interfacial apoplast. Passive diffusion could also play a role. The 
AM symbiosis-induced plant hexose transporter Mtst1 is predicted to act in sugar import. 
Fungal and plant P-type H+-ATPase pump protons out of the cell resulting in the generation 
of a proton gradient. The electrochemical gradient established by ATPase proteins is essential 
to the functioning of diverse proton:nutrient transporters. Abbreviations: NR, nitrate reductase; 
Arg, arginine; GS, glutamine synthetase; Gln, glutamine; Glu, Glutamate; ASS, argininosuccinate 
synthetase; GOGAT, Glutamate synthase; GDH, Glutamate dehydrogenase; OAT, ornithine 
aminotransferase.

Anderson, 2002), medic (Hohnjec et al., 2003) and tomato (Schaarschmidt  
et al., 2006). Although transcripts and promoter activities of several of these 
genes have been localized to arbusculated cells, accumulation and activity 
have additionally been observed in adjacent cells and generally associated 
with intraradical hyphae (Blee and Anderson, 2002; Hohnjec et al., 2003; 

transferred from the extraradical into the intraradical mycelium and broken down into am-

ammonium antiporters. The acidic apoplast provides a proton-driven force for taking up 

In the carbohydrate transport pathway, GpMST1-like transporters may be possible candidates 

monium. Ammonium may be transported into the interfacial apoplast by Ato-like proton: 

apoplast. It is not clear how the efflux of phosphate is mediated. In the peri-arbuscular mem-
radical mycelium, where it is hydrolyzed into phosphate and transported into the interfacial 
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Schaarschmidt et al., 2006). It remains unclear whether these genes encode 
activities directly involved in carbon delivery to the fungus or are required to 
support a general increase in metabolic activity associated with colonization 
(Harrison, 1999). The mechanism of hexose delivery to the apoplast is simi-
larly unresolved. There is little molecular evidence for the presence of hexose 
export proteins in the peri-arbuscular membrane itself. Although a number of 
mycorrhiza responsive sugar transporter genes have been identified in medic, 
of which the best characterized is Mtst1 (Harrison, 1996), they are thought to 
act as proton:sugar symporters in sugar import not in export, perhaps to 
support high metabolic activity in arbusculated cells (Harrison, 1996). One 
simple mechanistic alternative to explain the transport of sugars to the apoplast 
is passive movement (Bago et al., 2000). Once in the apoplast, hexose is 
thought to be absorbed by the fungus via specific transport proteins. Although 

of the GpMST1 hexose transporter from Geosiphon pyriformis, a Glomero-
mycotan fungus that associates with single celled algae, provides a pro-
mising direction for further investigation (Schussler et al., 2006). It is also 
possible that passive transport plays a role in fungal sugar uptake, with rapid 
conversion of hexose to trehalose or glycogen, or metabolism via the pentose 
phosphate pathway, maintaining a favorable concentration gradient (Shachar-
Hill et al., 1995). Once in the intraradical hyphae, much of the carbon is 
converted to storage lipids, predominantly triacylglycerides. Lipids not only 
act to store carbon but are also the main form of carbon translocated from 
intra- to extra- radical hyphae where they provide the major respiratory 
substrate (Pfeffer et al., 1999). 

6 OPTIMIZATION OF ARBUSCULAR  
MYCORRHIZAL NUTRIENT EXCHANGE
FOR AGRICULTURAL APPLICATION

AM fungi provide many benefits to their plant hosts. In addition to 
enhancing mineral nutrition, they can increase tolerance to water stress, induce 
greater resistance to pathogens and reduce sensitivity to toxic substances 
present in the soil (Smith and Read, 1997). However, the costs of coloni-
zation can be high, with up to 20% of the host’s fixed carbon being delivered 
to the microbial symbiont (Bago et al., 2000). Nonetheless, under experimental 
conditions when nutrients are limiting, mycorrhizal crop plants typically 
exhibit a performance advantage over non-colonized siblings (Smith and 
Read, 1997). However, under the nutrient saturating conditions found in high-
input agricultural systems, the relative advantages are reduced while the 
carbon costs remain and the performance of colonized plants can fall below 
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such fungal transporters remain to be identified, the recent characterization 
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that of those that are non-colonized (Janos, 2007). Although mycorrhizal 
fungi possess a limited potential to improve on present levels of crop per-
formance, profitable agricultural application of AM symbioses demands 
only that the inevitable loss of carbon to the fungus is compensated by a 
reduction in the overall cost of production on a per unit yield basis. With the 
rising costs of nutrient additions, and an increased awareness of the broader 
environmental costs of their use, the potential real-world value of mycorrhiza 
continues to increase. Perhaps the most attractive scenario for application is 
the potential use of AM fungi to increase the uptake-efficiency of nutrient 
additions, thus allowing a reduction in their use without compromising total 
yields. An increase in available data now makes it possible to consider such 
uses at the molecular level; analysis of existing variation can be facilitated 
and candidate genes identified for future manipulation. 

Table 1. Genes discussed in the text. AM ind, AM induced – constitutive expression enhanced 
in colonized plants. AM spe, AM specific – transcript only accumulates in colonized plants. 
AM/D rep, AM and drought repressed – constitutive expression reduced in drought stress, 
reduction promoted by AM colonization. Arb, specific expression in arbusculated cells. Ext, 
transcripts abundant in external mycelium. Accession numbers reference Genbank with the 
exception of those marked * that reference tentative EST contigs or microarray identifiers. There 
is potential redundancy between these less well-characterized sequences. (1, Rae et al., 2003; 
2, Glassop et al., 2005; 3, Maeda et al., 2006; 4, Nagy et al., 2005; 5, Harrison et al., 2002; 6, 
Paszkowski et al., 2002; 7, Güimil et al., 2005; 8, Rausch et al., 2001; 9, Nagy et al., 2006; 
10, Harrison and van Buueren, 1995; 11, Benedetto et al., 2005; 12, Balestrini et al., 2007; 
13, Maldonado-Mendoza et al., 2001; 14, Hohnjec et al., 2005; 15, Lopez-Pedrosa et al.,
2006; 16, Hildebrandt et al., 2002; 17, Gianinazzi-Pearson et al., 2000; 18, Porcel et al.,
2006; 19, Ouziad et al., 2005; 20, Uehlein et al., 2007; 21, Krajinski et al., 2000; 22, 
Brechenmacher et al., 2005; 23, Journet et al., 2002; 24, Manthey et al., 2004; 25, Roussel  
et al., 1997; 26, Aroca et al., 2007; 27, Murphy et al., 1997; 28, Ferrol et al., 2002; 29, 
Krajinski et al., 2002; 30, Requena et al., 2003; 31, Van Buuren et al., 1999; 32, Balestrini  
et al., 1997; 33, Salzer et al., 2000; 34, Bestel-Corre et al., 2002; 35, Harrison et al., 1996; 36, 
Schussler et al., 2006). 

Phosphate transporters 
Species Gene name Expression Accession Ref. 
Hordeum vulgare  HORvu;Pht1;8 or

HvPT8
AM ind AAO72440 1, 2 

Lotus japonicus LOTju;Pht1;3 or
LjPT3

AM ind BAE93353 3 

Lycopersicon esculentum LYCes;Pht1;4 or
LePT4

AM spe AAX85192 4 

Lycopersicon esculentum LYCes;Pht1;5 or
LePT5

AM ind AAX85194 4 

Medicago truncatula MEDtr;Pht1;4 or
MtPT4

AM spe AAM76744 5 

( continued)
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Oryza sativa ORYsa;Pht1;11 or
OsPT11

AM spe AAN39052 6 

Oryza sativa ORYsa;Pht1;13 or
OsPT13

AM spe AAN39054 6, 7 

Solanum tuberosum SOLtu;Pht1;3 or
StPT3

AM ind CAC87043 8 

Solanum tuberosum SOLtu;Pht1;4 or
StPT4

AM spe AAW51149 4 

Solanum tuberosum SOLtu;Pht1;5 or
StPT5

AM spe AAX85195 4 

Triticum aestivum TRIae;Pht1;myc AM spe CAH25730 2 
Zea mays ZEAma;Pht1;6 or

ZmPT6
AM ind CAH25731 9, 2 

Glomus versiforme GvPT Hyphae AAC49132 10 
Glomus mosseae GmosPT Hyphae/arb DQ074452 11, 12 
Glomus intraradices GiPT Hyphae AAL37552 13 

     
Ammonium transporters

Species Gene name Expression Accession Ref. 
Medicago truncatula MtAMT1;1 AM ind TC77463*  14 
Oryza sativa OsAMT3;1 AM ind NP_001044932  7 
Glomus intraradices GintAMT1 Ext CAI54276  15 

     
Nitrate transporters

Species Gene name Expression Accession Ref. 
Lycopersicon esculentum LeNRT2;3 AM ind AY038800  16 
Medicago truncatula Uncharacterized  

Nitrate transporter 
AM ind TC78158*  14 

Medicago truncatula Uncharacterized 
Nitrate transporter 

AM ind TC78157* 14 

Medicago truncatula Uncharacterized 
Nitrate transporter 

AM ind TC80954* 14 

Medicago truncatula Uncharacterized 
Nitrate transporter 

AM ind TC84545* 14 

Medicago truncatula Uncharacterized 
Nitrate transporter 

AM ind AL383332 17 

Oryza sativa OsPTR2 AM ind NP_001067564 7 
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Glycine max GmPIP2 AM/D rep CAI79103 18 
Lactuca sativa LsPIP1 AM/D rep CAI79104 18 
Lactuca sativa LsPIP2 AM/D rep CAI79105 18 
Lycopersicon esculentum Nramp2 AM ind AAS67887 19 
Medicago truncatula MtNIP1 AM ind AY059381 20 
Medicago truncatula MtPIP1;1 AM ind AF386739 20 
Medicago truncatula MtPIP2;1 AM ind AY059380 20 
Medicago truncatula MtAQP1 AM ind AJ251652 21 
Medicago truncatula Uncharacterized NIP AM ind AJ311232 22 
Medicago truncatula Uncharacterized PIP AM ind MtC00007* 23 
Medicago truncatula Uncharacterized NIP AM ind MtC10430* 23 
Medicago truncatula Uncharacterized NIP AM ind BG582879 24 
Medicago truncatula Uncharacterized NIP AM ind BG583224 24 
Oryza sativa Uncharacterized NIP AM spe BAD53665 7 
Oryza sativa Uncharacterized NIP AM ind AAV44140 7 
Petroselinum crispum PcRb7 AM ind CAA88267 25 
Phaseolus vulgaris PvPIP1;2 AM ind Z48232 26 

     
H +-ATPases
Species Gene name Expression Accession Ref. 
Hordeum vulgare BMR78 AM ind  27
Lycopersicon esculentum LHA2 AM ind AAF98344 28 
Medicago truncatula MtHA1 AM spe CAB85494 29 
Nicotiana tabacum PMA2 AM ind M80492 17 
Nicotiana tabacum PMA4 AM ind X66737 17 
Oryza sativa OsAM43 AM ind NP_001048647 7 
Glomus mossae GmHA5  AAO91802 30 

   
Hydroxyproline-rich glycoproteins 
Species Gene name Expression Accession Ref. 
Medicago truncatula MtAM1 AM ind AAD39890 31 
Zea mays ZmHRGP AM ind AAB23539 32 

    
Chitinases
Species Gene name Expression Accession Ref. 
Medicago truncatula MtChitinase III-2 AM ind AAF67827 33 
Medicago truncatula MtChitinase III-3 AM ind AAQ21404 33 
Medicago truncatula MtChitinase I AM ind AAP68451 34 

    
    

( continued)

Aquaporins
Species Gene name Expression Accession Ref. 
Glycine max GmPIP1 AM/D rep CAI79102 18 
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Hexose transporters
Species Gene name Expression Accession Ref. 
Medicago truncatula Mtst1 AM ind AAB06594 35 
Geosiphon pyriformis GpMST1  CAJ77495 36 

Studies of plant performance have identified variation in the capacity 
of plants to benefit from mycorrhizal colonization both within and between 
species (e.g. Hetrick et al., 1992; Kaeppler et al., 2000; Smith et al., 2004). 
In addition, there is evidence that genetic variability in the fungal partner 
also influences the level of responsiveness and that different plant-fungal 
combinations alter the degree of benefit derived by the host (Smith et al.,
2004). Typically, the impact of colonization has been measured as the perfor-
mance difference between colonized and non-colonized plants under limiting 
nutrient conditions. Molecular characterization of mycorrhizal nutrient uptake 
has begun to allow a more detailed interpretation of mycorrhizal performance 
variation. For example, on the basis of characterization of phosphate uptake, it 
has been recognized that a lack of responsiveness does not have to be linked 
to a lack of importance of mycorrhizal associations; it can be that irres-
pective mycorrhizal phosphate uptake dominates in a field setting (Smith
et al., 2003). Furthermore, it can be recognized that variation in responsive-
ness results from a combination of variation in both non-mycorrhizal and 
mycorrhizal growth (discussed in Sawers et al., 2008). The characterization of 
transporter families suggests that these two traits are, to some extent, gene-
tically independent. For example, allelic variation in a myorrhiza-specific 
phosphate transporter gene can exist in a population independently of vari-
ation in a gene encoding a transporter required for direct phosphate uptake; 
there does not have to be a phenotypic correlation between the efficiency 
of mycorrhizal and direct phosphate uptake. Consequently, a given species 
or variety could be identified as more responsive than another on the basis 
of exceptionally poor performance in the absence of AM symbiosis, rather 
than a greater capacity to benefit from the association. It is clearly important 
to distinguish these two alternatives when attempting to identify bene- 
ficial genetic variation for the optimization of crop mycorrhizal associations. 
Optimization of mycorrhizal symbiosis for agricultural application can be 
considered as the attempt to extract the maximum plant benefit from coloni-

influence the balance of this exchange. As the mechanisms of this regulation 
are better understood and the responsible genes identified there is the 
potential to directly push this balance further towards the plant partner. 
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zation for the minimum loss of resources. Plants possess the capacity to 
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7         PERSPECTIVES 

Increasing characterization of the molecular components of mycor-
rhizal nutrient exchange is providing an important complement to physio-
logical studies. However, the current picture is based predominantly on 
correlative gene expression information. Two main approaches will no doubt 
shape future progress; first, an increased biochemical characterization, notably 
of the plant-fungal interface and constituent proteins; second, the use of 
reverse genetics and genetic manipulation to directly assess the functional 
role of proteins implicated in nutrient exchange. However, the available gene 
expression data provide important insights in their own right. Expression 
studies have revealed that the induction of the mycorrhizal state in the plant 
is not a simple superimposition of novel gene activity on the non-colonized 
state but a switch from an asymbiotic to a symbiotic growth program. One 
important consequence of this distinction is the partial genetic independence 
of performance between non-colonized and colonized plants and the sub-
sequent implications this has for interpretation of phenotypic variation and 
the selection of future varieties. Clearly, an understanding of the molecular 
basis of nutrient exchange has great potential to benefit diverse aspects of 
mycorrhizal research and to contribute to the future application of AM fungi 
in an agricultural setting.
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Chapter 3 

ARBUSCULAR MYCORRHIZAL FUNGI
AS POTENTIAL BIOPROTECTANTS AGAINST 
PLANT PATHOGENS
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Abstract: Arbuscular Mycorhizal (AM) fungi are ubiquitous and form symbiotic 
relationships with roots of most terrestrial plants. Their associations benefit 
plant nutrition, growth and survival due to their enhanced exploitation of soil 
nutrients. These fungi play a key role in nutrient cycling and also protect plants 
against environmental and cultural stresses. The establishment of AM fungi in 
the plant root has been shown to reduce the damage caused by soil-borne plant 
pathogens with the enhancement of resistance in mycorrhizal plants. The 
effectiveness of AM fungi in biocontrol is dependent on the AM fungus in-
volved, as well as the substrate and host plant. However, protection offered by 
AM fungi is not effective against all the plant pathogens and is modulated by 
soil and other environmental conditions. AM fungi generally reduce the severity 
of plant diseases to various crops suggesting that they may be used as potential 
tool in disease management. AM fungi modify the quality and abundance of 
rhizosphere microflora and alter overall rhizosphere microbial activity. These 
fungi induce changes in the host root exudation pattern following host coloni-
zation which alters the microbial equilibrium in the mycorrhizosphere. Given 
the high cost of inorganic fertilizers and health hazards associated with chemical 
pesticides, AM fungi may be most suitable for sustainable agriculture and also 
for increasing the yield of several crops through biocontrol of plant pathogens. 
This chapter provides an overview of mechanisms of interaction which take 
place between soil-borne plant pathogens and AM fungi on different plants. 
The availability of new tools and techniques for the study of microbial inter-
actions in the rhizosphere may provide a greater understanding of biocontrol 
processes in the near-future.

Keywords:  Arbuscular mycorrhiza; biocontrol; plant diseases; plant pathogens; rhizosphere. 
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1 INTRODUCTION 

Arbuscular mycorrhizal (AM) fungi occur over a wide range of agro 
climatic conditions and are geographically ubiquitous. They form symbiotic 
relationships with roots of about 90% land plants in natural and agricultural 
ecosystems (Brundrett, 2002). The AM association has been observed in 200 
families of plants representing 1,000 genera and about 300,000 plant species 
(Bagyaraj, 1991). It is as normal for the roots of plants to be mycorrhizal as it 
is for the leaves to photosynthesize (Mosse, 1986). The AM fungi are included 
in the phylum Zygomycota, order Glomales (Redecker et al., 2000) but 
recently they have been placed into the phylum ‘Glomeromycota’ (Schussler 
et al., 2001). The Glomeromycota is divided into 4 orders, 8 families, 10 
genera and 150 species. The common genera are Acaulospora, Gigaspora,
Glomus and Scutellospora (Schussler, 2005). They are characterized by the 
presence of extra radical mycelium branched haustoria-like structure within 
the cortical cells, termed arbuscules, and are the main site of nutrient transfer 
between the two symbiotic partners (Hock and Verma, 1995; Smith and 
Read, 1997). AM fungi colonize plant roots and penetrate into surrounding 
soil, extending the root depletion zone and the root system. They supply 
water and mineral nutrients from the soil to the plant while AM benefits from 
carbon compounds provided by the host plant (Smith and Read, 1997; 
Siddiqui et al., 1999). AM fungi are associated with improved growth of 
host plant species due to increased nutrient uptake, production of growth 
promoting substances, tolerance to drought, salinity and synergistic inter-
actions with other beneficial microorganisms (Sreenivasa and Bagyaraj, 
1989). The soil conditions prevalent in sustainable agriculture are likely to 
be more favorable to AM fungi than are those under conventional agriculture 
(Bethlenfalvay and Schuepp, 1994; Smith and Read, 1997).  

Any agricultural operation that disturbs the natural ecosystem will 
have repercussions on the mycorrhizal system (Mosse, 1986). The preceding 
crops affect growth and yield of subsequent crops (Karlen et al., 1994). The 
inclusions of non-mycorrhizal crops within rotations decrease both AM fungal 
colonization and yield of subsequent crops (Douds et al., 1997; Arihawa and 
Karasawa, 2000). In addition to crop sequence, varietals selection, cultiva-
tion and fallowing have been shown to affect mycorrhizal activity (Ocampo 
et al., 1980; Hetrick et al., 1996; McGonigle and Miller, 2000). However, 
impact of soluble fertilizers on colonization and function of AM fungi is 
contradictory. The application of soluble phosphorus decreased root coloni-
zation (Abbott and Robson, 1984) with occasional reports of increases 
(Gryndler et al., 1990). Similarly, contradictory results have also been repor-
ted with nitrogen fertilizer (Baltruschat and Dehne, 1988; Gryndler et al.,
1990; Liu et al., 2000). Therefore, uses of AM fungi in the biocontrol for 
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sustainable agriculture require knowledge of culture systems which may 
affect their establishment and multiplication in the field. 

2 BIOPROTECTANT BEHAVIOR OF AM FUNGI 

Plant diseases can be controlled by manipulation of indigenous 
microbes or by introducing antagonists to reduce the disease-producing pro-
pagules (Linderman, 1992). AM fungi and their associated interactions with 
plants reduce the damage caused by plant pathogens (Harrier and Watson, 
2004). These interactions have been documented for many plant species 
(Tables 1 and 2). With the increasing cost of inorganic fertilizers and the 
environmental and public health hazards associated with pesticides and 
pathogens resistant to chemical pesticides, AM fungi may provide a more 
suitable and environmentally acceptable alternative for sustainable agriculture. 

AM fungi are a major component of the rhizosphere of plants and 
may affect the incidence and severity of root diseases (Linderman, 1992). 
Comprehensive reviews exploring the possibilities of AM fungi in the bio-
control of plant diseases include Schonbeck (1979), Dehne (1982), Bagyaraj 
(1984), Smith (1988), Caron (1989), Paulitz and Linderman (1991), Linderman 
(1992, 1994), Siddiqui and Mahmood (1995a), Azcon-Aguilar and Barea 
(1996), Smith and Read (1997), Mukerji (1999), Siddiqui et al. (1999), Barea 
et al. (2005). The primary results which can be drawn from the various obser-
vations are (1) AM associations reduce the damage caused by plant pathogens, 
especially those caused by fungi and nematodes; (2) AM symbiosis enhances 
resistance or tolerance in roots but is not equal in different crops; (3) pro-
tection is not effective against all pathogens, and (4) disease protection is 
modulated by soil and other environmental conditions. Therefore, the inter-
actions between different AM fungi and plant pathogens vary with the host 
plant and the cultural system. Moreover, the protective effect of AM inocula-
tion may be both systemic and localized. Actions of AM fungi against phyto-
pathogens have been categorized into the following three sub-categories: 

 2.1 Interaction of AM fungi with plant parasitic nematodes 

 2.2 Interaction of AM fungi with fungal plant pathogens 

 2.3 Interaction of AM fungi with other plant pathogens. 

Arbuscular Mycorrhizal Fungi as Potential Bioprotectants 
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2.1 Interaction of AM fungi with plant parasitic nematodes 

Plant parasitic nematodes are found in all agricultural regions of the 
world and any crop is susceptible to suffer damage by these parasites. Plant 
parasitic nematodes can be separated into different groups according to feed-
ing habits. Ectoparasites remain outside the roots and are generally epidermal 
or subepidermal feeders. In the case of semiendoparasites, a portion of the 
organism enters the root to feed, but a portion remains outside the root tissue; 
migratory endoparasites enter and migrate within roots, feeding on various 
tissues and induce lethal responses to root tissues. Sedentary endoparasites 
become immobile as adults and depend on specialized transfer cells for 
nutrition. Parasitism of nematodes on the host plant may cause up to 50% 
yield losses but these losses may further be aggravated when the plant is 
predisposed to other plant pathogens. 

The occurrence of AM fungi and plant parasitic nematodes in the 
roots of different crops and their dependence for nutrition on the host may 
result in a common association of AM fungi, plant parasitic nematodes and 
host plant. Association of these two groups of organisms generally exert 
opposite effects on the host plant. Thus, it is of utmost importance to deter-
mine the effect of interaction of these organisms on plant growth and yield 
including their mutual effects. The interaction of AM fungi and plant parasitic 
nematodes has received much attention and a large number of research 
papers have been published (Table 1). 

Table 1. Effect of AM fungi on the plant parasitic nematodes and plant growth. 

AM fungi Nematode Effect Reference
Gigaspora
margarita

Pratylenchus
brachyurus

Reproduction was similar on 
mycorrhizal and non-mycorrhizal 
cotton plants 

Hussey and 
Roncadori, 1978 

Glomus mosseae M. incognita Nematode development was 
reduced by mycorrhizal roots on 
tomato 

Sikora, 1978 

G. fasciculatum M. incognita 
M. javanica 

Reduced number and size of galls 
on mycorrhizal tomato 

Bagyaraj et al.,
1979

G. etunicatus 
similis

No effect on nematode population 
on citrus 

O’Bannon and 
Nemec, 1979 

G. mosseae Tylenchulus 
semipenetrans

Disease symptoms were less 
severe on mycorhizal citrus 

O’Bannon
et al., 1979 

G. macrocarpum M. incognita Reduced number of galls per gram 
root was observed on soybean

Kellam and 
Schenck, 1980 

G. fasciculatum M. arenaria Nematode population was highest 
on mycorrhizal grapes 

Atilano et al., 1981 

G. fasciculatum Rotylenchulus 
reniformis 

Adversely affected nematode 
reproduction on tomato 

Sitaramaiah and 
Sikora, 1982 
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G. etunicatum
G. mosseae 

M. incognita Nematode eggs per gram root were 
lower on mycorrhizal cotton 

Hussey and 
Roncadori, 1982 

G. etunicatus M. incognita No effect on nematode 
reproduction on peach 

Strobel
et al., 1982 

Gigaspora
margarita
G. mosseae 

M. incognita AM fungus had no effect on M.
incognita eggs per plant or eggs per 
egg mass on tomato 

Thompson Cason 
et al., 1983 

G. fasciculatum M. incognita Sixty or more spores of AM fungi 
had adverse effect on nematode 
reproduction on cotton 

Saleh and Sikora, 
1984

G. fasciculatum M. hapla Nematode reproduction was 
enhanced on mycorrhizal onion 

Kotcon
et al., 1985 

G. fasciculatum M. hapla No effect on nematode 
reproduction on onion 

G. fasciculatum M. incognita No difference in juvenile 
penetration on mycorrhizal and 
non-mycorrhizal tomato plants 

et al., 1985 

G. intraradices M. incognita Adverse effect on nematode 
reproduction at both intervals 
(planting and after 28 days) on 
cotton

Smith et al., 1986a 

G. intraradices M. incognita Penetration was similar on 
mycorrhizal and non- mycorrhizal 
cotton roots after 7 days of 
inoculation. 

Smith et al.,
1986b

G. etunicatum M. javanica Severity of nematode disease 
reduced on mycorrhizal bean. 

Zombolin and 
Oliveira, 1986 

G. manihotis 
G. margarita 
G. gigantea 

M. javanica Reproduction was differentially 
suppressed, most pronounced with 
G. manihotis, less with G.
margarita and slightly with G.
gigantea on chickpea. 

Diederichs, 1987 

G. epigaeus Heterodera 
cajani

G. epigaeus stimulates nematode 
reproduction on cowpea 

Jain and Sethi, 
1987

G. fasciculatum M. javanica Pre-inoculation of AM reduced 
nematode reproduction on tomato 

Morandi, 1987 

G. fasciculatum 
G. epigaeus 

H. cajani Prior inoculation of AM fungi 
adversely affected nematode 
penetration more than simultaneous 
inoculation on cowpea 

Jain and Sethi, 
1988

G. intraradices Radopholus 
similis 

Plants inoculated with AM fungus 
7 days prior to R. similis reduce the 
ill effect of nematodes on banana

Umesh
et al., 1988 

G. intraradices Radopholus 
citrophilus

Reduced nematode reproduction on 
citrus

Smith and Kaplan, 
1988

G. margarita M. incognita Suppressed nematode reproduction 
on soybean 

Carling et al.,
1989

G. intraradices M. incognita No effect on degree of root galling 
and number of nematode eggs per 
egg mass on muskmelon 

Heald et al., 1989 
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G. mosseae 
Acaulospora laevis 
G. fasciculatum 
Gigaspora
margarita

M. incognita Individually all AM fungi reduced 
nematode reproduction but the 
greatest reduction was caused by A.
laevis on black pepper 

Anandaraj
et al., 1990

G. fasciculatum 
G. etunicatum 

M. incognita Significantly reduced galling  
and nematode population when
pre-inoculated with AM fungi on 
pepper

Sivaprasad
et al., 1990

Mixed inoculum Heterodera 
glycines 

Increased tolerance to nematodes in 
greenhouse experiments and 
outdoor microplots on soybean 

Tylka et al., 1991 

G. fasciculatum M. incognita Prior inoculation of AM fungus 
reduced nematode population on 
cowpea

Devi and 
Goswami, 1992 

G. fasciculatum M. javanica Nematode population inhibited in 
mycorrhizal tomato 

Sundarababu
et al., 1993

Glomus sp. M. javanica Nematode population significantly 
lower on mycorrhizal Sahelian 
acacia than on non-mycorrhizal 
plants

Duponnois and 
Cadet, 1994 

G. fasciculatum M. incognita Prior inoculation of AM fungus 
reduced nematode population on 
black gram 

Sankaranarayanan 
and Sundarababu, 
1994

G. fasciculatum 
G. mosseae 

M. incognita Prior inoculation of AM fungi 
adversely affects nematode 
population than does simultaneous 
inoculation, but greatest reduction 
was caused by G. fasciculatum on 
brinjal 

Sharma and 
Trivedi, 1994 

G. mosseae M. javanica Inoculation of AM fungus 
suppressed gall index and number 
of galls per root system 

Al-Raddad, 1995 

G. fasciculatum M. incognita Reduced nematode population on 
chickpea

Rao and 
Krishnappa, 1995 

G. fasciculatum H. cajani Reduced nematode multiplication 
on pigeon pea 

Siddiqui and 
Mahmood, 1995b 

G. margarita H. cajani Adversely affect nematode 
reproduction on pigeon pea 

Siddiqui and 
Mahmood, 1995c 

G. macrocarpum M. incognita Prior inoculation of AM fungus 
caused significant reduction in 
galling and nematode population on 
Subabul

Sundararaju et al.,
1995

G. margarita 
G. etunicatum 

M. arenaria Inoculation of AM fungi caused 
increase in galling and egg 
production on peanut 

Carling et al.,
1996

G. fasciculatum M. incognita Prior inoculation of AM fungus 
reduced galling and improved NPK 
uptake on tomato 

Mishra and 
Shukla, 1996 

G. fasciculatum M. incognita Significantly reduced galls and no. 
of eggs per egg mass on tomato 

Rao et al., 1996 
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G. mosseae M. incognita Reduced galling and nematode 
population on Musa

Jaizme-Vega  
et al., 1997

G. fasciculatum M. incognita AM fungus had adverse effect on 
nematode populations on tomato 

Mishra and 
Shukla, 1997 

G. mosseae M. incognita Significantly reduced nematode 
populations on Crossandra
undulaefolia

Nagesh and 
Reddy, 1997 

G. intraradices M. javanica AM fungus had no effect on 
nematode population on Musa

Pinochet et al.,
1997

G. deserticola M. incognita Reduced nematode multiplication 
on tomato 

Rao et al., 1997

G. fasciculatum M. incognita Reduced nematode population on 
black gram 

Sankaranarayanan 
and Sundarababu, 
1997a

G. mosseae M. incognita AM fungus had adverse effect on 
nematode population on black gram 

Sankaranarayanan 
and Sundarababu, 
1997b

G. mosseae 
G. fasciculatum

M. incognita Reduced nematode population but 
the greatest reduction was caused 
by G. mosseae on okra 

Sharma and 
Trivedi, 1997 

G. mosseae M. javanica Reduced galling and nematode 
multiplication on chickpea 

Siddiqui and 
Mahmood, 1997 

G. fasciculatum M. incognita Prior inoculation of AM fungus had 
adverse effect on galling and 
nematode multiplication on 
barseem

Jain et al., 1998

G. mosseae M. incognita Reduced nematode population on 
brinjal but use with P. lilacinus
gave better results 

Rao et al., 1998a

G. fasciculatum M. incognita Significantly reduced nematode 
populations on brinjal but results 
were more pronounced when used 
with castor cake 

Rao et al., 1998b

G. deserticola M. incognita Nematode population inhibited on 
tomato 

Rao and Gowen, 
1998

G. fasciculatum M. incognita Adverse effect on nematode 
multiplication on green gram 

Ray and Dalei, 
1998

G. mosseae M. incognita Significantly reduced galling and 
nematode multiplication on tomato 

Reddy et al., 1998

G. mosseae 
G. fasciculatum 

M. incognita Inoculation of AM fungi reduced 
gall index and nematode population 
on black gram 

Sankaranarayanan 
and Sundarababu, 
1998

G. fasciculatum M. incognita Nematode population inhibited on 
cowpea

Santhi and 
Sundarababu,
1998

G. mosseae M. javanica Reduced nematode multiplication 
on tomato 

Siddiqui and 
Mahmood, 1998 

G. fasciculatum M. incognita Reduced nematode multiplication 
on tomato 

Nagesh et al.,
1999a
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G. mosseae 
G. fasciculatum 
G. intraradices 
A. laevis 

M. incognita Individually all the AM fungi had 
adverse effects on nematode 
population on Crossandra
undulaefolia

Nagesh et al.,
1999b

G. aggregatum 
G. fasciculatum 
G. mosseae 

M. incognita Inoculation of all AM fungi 
reduced nematode population but 
the greatest reduction caused by G.
aggregatum on Hyoscyamus niger

Pandey et al.,
1999

G. mosseae M. incognita Reduced galling and nematode 
multiplication on tomato 

Rao et al., 1999

G. mosseae M. incognita Adverse effect on nematode 
multiplication on black gram 

Sankaranarayanan 
and Sundarababu, 
1999

G. etunicatum M. incognita Reduced nematode multiplication 
on tomato 

Bhagawati et al.,
2000

G. mosseae M. incognita Adverse effect on nematode 
multiplication on tomato 

Bhat and 
Mahmood, 2000 

G. mosseae M. incognita Reduced nematode population on 
okra and Pennisetum glaucum

Jothi et al., 2000

G. fasciculatum 
G. mosseae 
G. intraradices 
G. fulvum 

M. incognita Had adverse effect on nematode 
multiplication but the greatest 
reduction was caused by G.
mosseae on brinjal 

Jothi and 
Sundarababu,
2000

G. mosseae M. javanica Significantly reduced galling and 
nematode multiplication but the 
effect was more pronounced when 
used with ammonium sulphate on 
tomato 

Siddiqui and 
Mahmood, 2000 

G. mosseae H. cajani Application of G. mosseae with B. 
japonicum caused a greater 
reduction in cyst formation than use 
of G. mosseae alone

Siddiqui et al.,
2000

G. intraradices 
G. mosseae 
G. etunicatum 

M. javanica Inoculation of all the AM fungi had 
adverse effect on nematode 
population on peach almond hybrid 
GF-677

Calvet et al., 2001

G. mosseae M. incognita Had adverse effect on nematode 
population on pearl millet and 
green gram 

Jothi and 
Sundarababu,
2001

G. mosseae M. javanica Reduced nematode multiplication 
on chickpea 

Siddiqui and 
Mahmood, 2001 

G. mosseae M. incognita Reduced the nematode 
multiplication on chilli 

Sundarababu
et al., 2001

G. mosseae M. incognita Had adverse effect on nematode 
population on tomato 

Talavera et al.,
2001

G. etunicatum 
Isolate (KS18) 
G. mosseae
Isolate (KS14) 

M. hapla Significantly reduced nematode 
multiplication but the greatest 
reduction was caused by G.
mosseae on Pyrethrum

Waceke et al.,
2001

G. mosseae 
G. macrocarpum
G. caledonicum 

M. javanica Had adverse effect on nematode 
multiplication on Musa

Elsen et al., 2002
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Glomus sp. M. incognita Reduced nematode population on 
brinjal 

Jothi and 
Sundarababu,
2002

G. fasciculatum
G. macrocarpum 
G. margarita 
A. laevis 
S. dussii 

M. incognita Inoculation of all AM fungi 
reduced nematode population but 
the greatest reduction was caused 
by G. fasciculatum

Labeena et al.,
2002

Glomus mosseae M. incognita Reduced galling and nematode 
multiplication but use of AM 
fungus with DAP gave better 
results

Shafi et al., 2002

Glomus sp. (K14) M. hapla Significantly suppressed nematode 
multiplication on Pyrethrum

Waceke et al.,
2002

G. fasciculatum M. incognita Reduced galling and nematode 
population on brinjal 

Borah and 
Phukan, 2003 

G. coronatum M. incognita Prior inoculation of AM fungus 
reduced nematode infestation on 
tomato 

Diedhiou et al.,
2003

G. mosseae 
G. intraradices 
G. fasciculatum 
Gigaspora gilmori 

M. incognita Inoculation of all AM fungi 
reduced galling and nematode 
population but the greatest 
reduction was caused by G.
mosseae on chickpea 

Jain and Trivedi, 
2003

G. fasciculatum M. incognita Reduced nematode population on 
tomato 

Pradhan et al.,
2003

G. mosseae M. incognita Reduced galling on okra Sharma and 
Mishra, 2003 

G. fasculatum 
G. mosseae 

M. incognita Reduced nematode population but 
the greatest reduction was caused 
by G. fasciculatum on ginger 

Nehra, 2004 

G. intraradices M. hapla Reduced the no. of galls and egg-
sacs on tomato cv. ‘Hildares’ but 
biocontrol of nematode was not 
achieved in cv. ‘Tiptop’ 

Masadeh et al.,
2004

G. aggregatum M. incognita Significantly reduced nematode 
population on Mentha arvensis

Pandey, 2005 

G. fasciculatum M. incognita Reduced nematode population on 
tomato but SBI-G.f. isolate was 
most effective compared with CTI-
G.f. isolate 

Kantharaju et al.,
2005

G. intraradices M. incognita Combined inoculation of AM 
fungus with A. niger and Bacillus
(B22) caused a geater increase in 
chickpea growth 

Akhtar and 
Siddiqui, 2006 

G. fasciculatum 
G. constrictum 
G. mosseae 
G. intraradices 
Acaulospora sp.
Sclerocystis sp.

M. incognita Individually all AM fungi reduced 
nematode reproduction but the 
greatest reduction was caused by G.
fasciculatum on chickpea 

Siddiqui and 
Akhtar, 2006 
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G. mosseae 
G. manihotis 

M. incognita Significantly reduced galling in 
AM fungus-inoculated papaya 

G. fasciulatum M. incognita Significantly reduced nematode 
population on chickpea 

Akhtar and 
Siddiqui, 2007a 

G. intraradices M. incognita Reduced nematode multiplication 
on chickpea 

Akhtar and 
Siddiqui, 2007b 

G. fasciculatum M. incognita Inoculation of AM fungus 
significantly reduced nematode 
population and no. of galls on 
tomato 

Shreenivasa et al.,
2007

G. mosseae 
Gigaspora
margarita

M. incognita G. mosseae was superior in 
reducing galling and nematode 
multiplication compared with G.
margarita on tomato 

Siddiqui and 
Akhtar, 2007 

G. intraradices M. incognita Combined use of AM fungus with
Pseudomonas straita and
Rhizobium caused greater increase 
in chickpea growth

Akhtar and 
Siddiqui, 2008a 

G. intraradices M. incognita Application of G. intraradices with
P. alcaligenes and B. pumilus 
caused greater increase in shoot dry 
mass of chickpea

Akhtar and 
Siddiqui, 2008b 

G. intraradices M. incognita Use of AM fungus with T.
harzianum caused 37% increase in 
the growth of nematode inoculated 
tomato plants 

Siddiqui and 

2.2       Interaction of AM fungi with fungal plant pathogens 

More than 10,000 species of fungi are known to cause diseases of 
plants and are common in soil, air (spores) and on plant surfaces throughout 
the world in arid, tropical, temperate and alpine regions (Agrios, 2005). The 
diseases caused by fungal pathogens persist in the soil matrix and in residues 
on the soil surface, and are defined as soilborne diseases. The soil is a reser-
voir of inoculum of these pathogens, the majority of which are widely 
distributed in agricultural soils. Damage to root and crown tissues is often 
hidden in the soil; thus, these diseases may not be noticed until the above-
ground parts of the plant are severely affected, showing symptoms such as 
stunting, wilting, chlorosis and death. 

Fungal diseases are difficult to control because they are caused by 
pathogens which can survive for long periods in the absence of the normal 
crop host, and often have a wide host range including weed species. The 
occurrence of AM fungi and plant pathogenic fungi in roots of different 
crops and their dependence for nutrition on the host generally result in the 
interaction of AM fungi, plant pathogenic fungi and host plant. Association 
of these organisms generally exert opposite effects on the host. Thus it is 
desirable to test the mutual effects of these organisms on plant growth and 
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yield. The interaction of AM fungi and plant pathogenic fungi has received 
considerable attention and a large number of research papers have been 
published (Table 2). 

Table 2. Effects of AM fungi on fungal diseases and plant growth. 

AM fungi Pathogenic 
fungus

Effect Reference 

Glomus
intraradices

Fusarium
oxysporum f. sp.
radicis-
lycopersici

AM fungus significantly 
reduced Fusarium root rot on 
tomato 

Caron et al.,
1985

G. fasciculatum Aphanomyces 
euteiches 

Reduced root rot on pea Rosendahl, 1985 

G. mosseae F. oxysporum  Significantly reduced Fusarium 
wilt on tomato and pepper 

Al-Momany and 
Al-Raddad, 1988 

G. etunicatum
Glomus sp.

Pythium ultimum  Prior or simultaneous 
inoculation of AM fungus with 
P. ultimum reduced disease 
severity on cucumber 

Rosendahl and 
Rosendahl, 1990 

G. fasciculatum Macrophomina 
phaseolina

Prior inoculation of AM fungus 
reduced disease on cowpea 

Devi and 
Goswami, 1992 

Glomus sp.,
G. fasciculatum, 
G. mosseae 

Verticillium  
albo-atrum
F. oxysporum f.
sp. medicaginis 

Seedlings inoculated with AM 
fungi had lower incidence of 
wilt in alfalfa than did non-
mycorrhizal species 

Hwang et al.,
1992

G. fasciculatum F. oxysporum Prior inoculation of AM fungus 
reduced colonization by 
pathogens and severity of 
disease on cowpea 

Sundaresan et al.,
1993

G. intraradices Pythium ultimum Reduced populations of P.
ultimum on Tagetes patula

St Arnaud et al.,
1994

G. intraradices F. oxysporum f.
sp. lycopersici 

Significantly reduced disease 
severity but is most effective 
when applied with   T.
harizianum

Datnoff et al.,
1995

G. mosseae 
G. vesiformae 
Scutellospora
sinuosa

Verticillium 
dahliae

Inoculation of AM fungi 
reduced disease indices in 
cotton

Liu, 1995 

G. fasciculatum Fusarium 
oxysporum

Reduced wilt indices in 
chickpea

Rao and 
Krishnappa, 1995 

G. fasciculatum Fusarium udum Significantly reduced disease 
severity in pigeon pea 

Siddiqui and 
Mahmood, 1995b 

G. margarita Fusarium udum Reduced wilt indices in pigeon 
pea

Siddiqui and 
Mahmood, 1995c 

Glomus sp.  Sclerotium 
cepivorum

AM fungi reduced white rot 
incidence and delayed disease 
development on onion 

Torres-Barragan 
et al., 1996 
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G. mosseae Fusarium udum Reduced disease severity on 
pigeon pea 

Siddiqui and 
Mahmood, 1996 

G. mosseae Phytophthora 
nicotianae var.
parasitica

Reduced root necrosis, and 
necrotic root apices ranged 
between 63–89 % 

Trotta et al.,
1996

Glomus
intraradices

Aphanomyces
euteiches 

Reduced disease severity in pea Kjoller and 
Rosendahl, 1997 

G. mosseae Fusarium solani Significantly reduced disease 
severity in chickpea 

Siddiqui and 
Mahmood, 1997 

Glomus
intraradices

Aphanomyces
euteiches 

Reduced disease severity in pea Bodker et al.,
1998

G. mosseae Fusarium udum Reduced disease severity in 
pigeon pea 

Siddiqui et al.,
1998

G. etunicatum F. oxysporum f. Reduced disease severity in 
tomato 

Ozgonen et al.,
1999

G. etunicatum F. oxysporum f.
sp. lycopersici 

Reduced disease severity on 
tomato 

Bhagawati et al.,
2000

G. mosseae F. solani 
R. solani 

Significantly reduced severity 
of diseases on peanut 

Elsayed Abdalla 
and Abdel-
Fattah, 2000 

G. intraradices Rhizoctonia solani Defense response elicited by R.
solani significantly suppressed 
by AM fungus in alfalfa 

Guenoune et al.,
2001

G. clarum Rhizoctonia solani Significantly reduced root 
necrosis and number of 
sclerotia on cowpea 

Abdel-Fattah and 
Shabana, 2002 

Glomus sp.
G. proliferum, 
G. intraradices 
G. versiforme

Cylindroclad-ium
spathiphylli

AM fungi significantly 
increased growth and reduced 
disease severity in banana. 
Glomus sp. and G. proliferum
caused greatest increase in 
plant growth compared to that 
caused by G. intraradices and 
G. versiforme

Declerck et al.,
2002

G. mosseae 
G. intraradices 

P. parasitica G. mosseae was most effective 
in reducing disease symptoms 
produced by P. parasitica on 
tomato 

Pozo et al., 2002 

G. etunicatum 
G. intraradices 

R. solani Significantly reduced disease 
severity in micro- propagated 
banana 

Yao et al., 2002

G. mosseae Fusarium 
chlamydospo-
rium

Reduced disease severity but 
best management was obtained 
when used with T. viridae

Boby and 
Bagyaraj, 2003 

G. intraradices 
G. claroideum

Aphanomyces
euteiches 

Reduced disease severity on 
pea but effects were more 
pronounced in plant inoculated 
with G. intraradices than with 
G. claroideum

Thygesen et al.,
2004

G. fasciculatum F. oxysporum f.
sp. ciceris 

Reduced the disease severity in 
chickpea

Siddiqui and 
Singh, 2004 
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Glomus
intraradices

F. oxysporum f.
sp. lycopersici 

Reduced severity of disease in 
tomato 

Akkopru and 
Demir, 2005 

G. intraradices 
BEG12

Rhizoctonia solani Significantly decreased 
epiphytic and parasitic growth 
of pathogen in tomato  

Berta et al., 2005

G. mosseae Alternaria 
triticina 

Reduced percent infected leaf 
area on wheat

Siddiqui and 
Singh, 2005 

 G. etunicatum 
BEG168

F. oxysporum f.
sp. cucumerinum 

AM fungus influenced 
secondary metabolites and 
increased wilt resistance in 
cucumber seedlings 

Hao et al., 2005

G. mosseae C. orbiculare AM fungus had no significant 
effect on disease development 

Chandanie et al.,
2006

G. intraradices M. phaseolina Inoculation of AM fungus with 
A. niger and Bacillus (B22) 
caused a geater reduction in 
root-rot of chickpea 

Akhtar and 
Siddiqui, 2006 

G. fasciculatum M. phaseolina Reduced disease severity in 
chickpea

Akhtar and 
Siddiqui, 2007a 

G. intraradices M. phaseolina Significantly reduced disease 
severity in chickpea 

Akhtar and 
Siddiqui, 2007b 

G. mosseae,
G. etunicatum,
G. fasciculatum
Gigaspora
margarita

Phytophthora
capsici 

AM fungi significantly 
increased plant growth and 
reduced disease severity in 
pepper but G. mosseae reduced 
disease severity to a greater 
extent

Ozgonen and 
Erkilic, 2007 

G. intraradices M. phaseolina Combined inoculation of AM 
fungus with Pseudomonas 
straita and Rhizobium caused a 
greater reduction in the root-rot 
of chickpea 

Akhtar and 
Siddiqui, 2008a 

G. intraradices M. phaseolina Combined application of G. 
intraradices with P. alcaligenes 
and B. pumilus caused a greater 
reduction in the root-rot of 
chickpea

Akhtar and 
Siddiqui, 2008b 

2.3  Interaction of AM fungi with other plant pathogens 

Besides nematodes and fungi some other plant pathogens including 
plant pathogenic bacteria, phytoplasma and plant viruses also interact with 
AM fungi on various plants. Disease severity caused by these pathogens was 
generally reduced the mycorrhizal plants (Table 3). 
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Table 3. Effects of AM fungi on bacteria, phytoplasma and viral diseases and plant growth. 

AM fungi Pathogen Effect Reference 
G. etunicatum Citrus tristeza 

virus 
and Citurs 
urgose virus

Growth of Citurs macrophylla
inoculated with tristeza virus (T-3 
isolate) and Citurs urgose virus 
(CLRV-2) was not reduced by 
virus infection in mycorrhizal 
plants

Nemec and 
Myhre, 1984

G. mosseae P. syringae Neither growth of tomato nor 
percentage VA infection was 
negatively affected by pathogenic 
bacteria

Garcia-
Garrido and 
Ocampo,
1989

Gigaspora
gilmorei
Acaulospora
marrowae
G. fasciculatum 
G. constrictum

Yellow
mosaic virus

Mycorrhizal colonization and 
spore formation was reduced by 
yellow mosaic virus on mungbean

Jayaram and 
Kumar, 1995

G. intraradices Tobacco  
mosaic virus 

Higher incidence and severity of 
necrotic lesion in mycorrhizal than 
in non mycorrhizal plants 

Shaul et al.,
1999

G. mosseae Yellow
disease

Symptoms induced by the 
phytoplasma were less severe on 
tomato when the plants were also 
harboured AM fungi 

Lingua et al.,
2002

AM fungi P.
solanacearum

Disease decrease in eucalyptus 
seedlings injected with AM fungi

MingQin
et al., 2004

G. intraradices Pear decline 
(PD)
Phytoplasma

AM fungus significantly increased 
shoot length both in non-PD and 
PD infected pear trees 

García-Chapa 
et al., 2004

3 REASONS FOR REDUCED DAMAGE  
IN MYCORRHIZAL PLANTS 

3.1    Change in root growth and morphology 

The colonization by AM fungi results in morphological changes to 
the root, leading to an increased surface area of root. Roots offer structural 
support to the plants and function in absorption of water and supply mineral 
nutrients for a wide range of microorganisms (Curl and Truelove, 1986; 
Rovira, 1985). Changes in root morphology will ultimately affect the plant’s 
responses to other organisms. AM fungal-colonized roots are more highly 
branched, i.e., the root system contains shorter, more branched, adventitious 
roots of larger diameters and lower specific root lengths (Schellenbaum  
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et al., 1991; Berta et al., 1993) The AM inoculated plants possess a strong 
vascular system, which imparts greater mechanical strength to diminish the 
effects of pathogens (Schonbeck, 1979).  

Dehne et al. (1978) observed increased lignifications in the 
endodermal cells of mycorrhizal tomato and cucumber plants and speculated 
that such responses may account for reduced incidence of Fusarium wilt 
(Fusarium oxysporum f. sp. lycopersici). Becker (1976) reported a similar 
effect on pink root of onion (Pyrenochaeta terrestris). Mycorrhizal plants 
produced wound-barriers at a faster rate than non-mycorrhizal plants and 
increased wound barrier formation inhibited Thielaviopsis black root-rot of 
mycorrhizal holly (Ilex crenata) plants (Wick and Moore, 1984). The AM 
fungi reduce disease severity caused by Aphanomyces euteiches on pea 
(Bodker et al., 1998) and Cylindrospermum destructans in strawberry (Paget, 
1975) and these examples emphasize the significance of AM fungi in bio-
protection against fungal pathogens.  

3.2    Histopathological changes 

Histopathological studies on galls caused by the root-knot nematode 
M. incognita showed that galls in mycorrhizal plants had fewer giant cells, 
which are needed for the development of nematode larvae, than did non-
mycorrhizal plants. Nematodes in mycorrhizal plants were smaller and took 
longer times to mature to the adult form (Suresh, 1980). Smaller syncytia 
and fewer giant cells were reported to confer resistance against nematodes 
on the host plant (Trudgill and Parrott, 1969; Fassuliotis, 1970). Histochemical 
and immunocytochemical studies provided evidence that decreased pathogen 
development in mycorrhizal root systems both in parts with or with out 
mycorrhiza were associated with modifications in the host cells, together 
with the accumulation of defense-related molecules (Sharma and Adholeya, 
2000).

3.3    Physiological and biochemical changes 

The physiological and biochemical changes caused by mycorrhizal 
fungi in the host plant generally reduce the severity of nematode diseases 
(Dehne, 1982). Phenolic compounds have been shown to be formed after 
mycorrhizal colonization (Sylvia and Sinclair, 1983) and are thought to play 
a role in disease resistance (Goodman et al., 1967). Production of phyto-
alexin was greater on mycorrrhizal roots than on non-mycorrhizal roots 
(Morandi, 1987) and phytoalexins are believed to play a major role in the 
host defense system against pathogens (Kaplan et al., 1980). An increase in 
lignin and phenols in mycorrhizal plants was observed and was associated 
with reduced nematode reproduction (Sikora, 1978; Umesh et al., 1988; 
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Singh et al., 1990). Increased phenylalanine and serine concentrations in 
tomato roots due to inoculation with AM fungi have been observed (Suresh, 
1980). These two amino acids are known to be inhibitory to root-knot 
nematodes (Prasad, 1971; Reddy, 1974). Suresh and Bagyaraj (1984) reported 
that AM inoculation increased the quantities of sugars and amino acids in 
plant tissue which may be responsible for the reduction of nematode infestation. 
However, inferences based on the absence of galling on segments of roots 
and split root experiments argue for a more localized effect (Tylka et al.,
1991; Fitter and Garbaye, 1994).

Various evidence indicates structural and biochemical changes in  
the cell walls of plants colonized by AM fungi. Dehne and Schonbeck 
(1979) and Becker (1976) reported enhanced lignification of endosperm 
cell walls and vascular tissues. Dehne et al. (1978) also demonstrated an 
increased concentration of antifungal chitinase in AM roots. They suggested 
that increased arginine accumulations in AM roots suppress sporulation  
of Thielaviopsis, as reported earlier (Baltruschat and Schonbeck, 1975). 
Morandi et al. (1984) determined increased concentrations of phytoalexins, 
for example isoflavonoid compounds, in AM roots of soybean compared  
to those in non-AM soybean and postulated that these compounds are res-
ponsible for the increased resistance to fungal pathogens in AM plants. 
Krishna and Bagyaraj (1986) reported that higher amounts of catechols 
inhibit Sclerotium rolfsii growth in vitro. Cordier et al. (1998) demonstrated 
that control of Phytophthora parasitica in the mycorrhizal tomato root system 
involved induction of localized resistance in arbuscules containing cells and 
systemic resistance in non-mycorrhizal tissues. The induction of defense-
related enzymes in mycorrhizal roots against P. parasitica was also reported 
by Pozo et al. (1998).

3.4   Changes in host nutrition 

Mycorrhizal plants contain higher concentrations of phosphorus than 
do non-mycorrhizal plants (Hayman, 1978; Bowen, 1980). Improvement of 
phosphorus nutrition following AM colonization of phosphorus-deficient 
roots results in a decrease in membrane permeability and reduction in root 
exudation (Graham et al., 1981). Mycorrhizal-induced decreases in root 
exudation have been correlated with reduction of soil-borne disease (Graham 
and Menge, 1982), while improved nutritional status of the host brought 
about by AM fungus-root colonization may affect quantitative changes in 
root exudates  (Linderman, 1985; Reid, 1984). 

The severity of nematode damage of cotton was greater on P-fertilized, 
non-mycorrhizal plants than non-mycorrhizal plants at a P level deemed 
adequate to high for cotton (Thompson Cason et al., 1983). This effect was 
attributed to zinc deficiency induced by nematode infection at high soil P 
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levels. High levels of P fertilization inhibit zinc uptake (Mengel and Kirkby, 
1979) but apparently AM fungi can alleviate this P-induced zinc deficiency 
and thus increase host tolerance to nematode parasitism. AM fungi have 
been shown to induce responses caused by environmental stress in root 
growth, root exudation, nutrient absorption and host physiology (Smith, 
1988). Changes in exudation due to P nutrition alter the chemotaxic attrac-
tion of the nematodes to the roots and affects exclusion of nematode species 
that require a hatching stimulus (Baker and Cook, 1982). In general, AM 
fungi infection in P-deficient plants affects membrane permeability and 
exudation patterns in a fashion similar to that caused by P-fertilization in 
non-mycorrhizal plants. 

The obvious contribution to reduction of root diseases is increased 
nutrient uptake, particularly of P and other minerals, because AM symbiosis 
results in more vigorous plants, which thus become more resistant or tolerant 
to pathogen attacks (Linderman, 1994). Davis (1980) found this type of 
response on Thielaviopsis root rot of citrus, where AM plants were larger 
than nonmycorrhizal plants until the latter were fertilized with additional P. 
The mycorrhizal-induced compensation processes may explain the increased 
tolerance of mycorrhizal and P-fertilized plants because plants may com-
pensate for the loss of root mass or function caused by pathogens (Wallace, 
1973). Graham and Menge (1982) suggest a similar effect, where AM fungi 
or added P reduced wheat take-all disease caused by Gaeumannomyces 
graminis, and speculate that enhanced P status of the plant causes a decrease 
in root exudates used by the pathogen for spore germination and infection. 
Declerck et al. (2002) suggested a similar effect whereby AM fungi or added 
P reduced root rot of bananas caused by C. spathiphyylii. It has been 
hypothesized that direct competition between root pathogens require host 
nutrients for reproduction and development and this competition may be the 
cause of their inhibition (Dehne, 1982; Smith, 1988). Greater tolerance of 
AM plants is also attributable to increased root growth and phosphate status 
of the plant (Cameron, 1986). In addition to P, AM fungi can enhance the 
uptake of Ca, Cu, Mn, S and Zn (Pacovsky et al., 1986; Smith and Gianinazzi-
Pearson, 1988). Host susceptibility to pathogens and tolerance to disease can 
be influenced by the nutritional status of the host and the fertility status of 
the soil (Cook and Baker, 1982). 

Increase in plant growth after root colonization by AM fungi is due 
to improvement in the mineral nutrient status of host plant. Depending on 
the host plant and AM fungus isolate, colonization of the root system can 
increase phosphorus nutrition and other mineral nutrients (Clark and Zeto, 
2000). Host susceptibility to infection can also be influenced by nutritional 
status of the host and fertility status of the soil (Bodker et al., 1998; Jaizme-
Vega and Pinochet, 1997). However, in some cases enhanced mineral nutrition 
of mycorrhizal plants has no affect against pathogens (Graham and Egel, 
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1988). Therefore, enhanced mineral nutrition of AM plants does not account 
for all protection conferred by AM fungi to host plant (Caron et al., 1986a). 

3.5    Mycorrhizosphere effect 

AM fungal colonized plants differ from non-mycorrhizal roots in 
terms of microbial community composition of the rhizosphere (Marschner  
et al., 2001). These differences have been attributed to alterations in root 
respiration rate and quality and quantity of exudates. Plant root systems 
colonized by AM fungi differ in their effect on the bacterial community 
composition within the rhizosphere and rhizoplane. The number of facul-
tative anaerobic bacteria, fluorescent pseudomonads, Streptomyces species 
and chitinase producing actinomycetes differ depending on the host plant 
and the isolate of AM fungus (Harrier and Watson, 2004). In addition, extra 
radical hyphae of AM fungi provide a physical or nutritional substrate for 
bacteria. AM symbiosis can also cause qualitative and quantitative changes 
in rhizospheric microbial populations; the resulting microbial equilibria 
could influence the growth and health of plants. These changes may result 
from AM fungus-induced changes in root exudation patterns (Smith, 1987; 
Azcon-Aguilar and Bago, 1994; Smith et al., 1994; Bansal et al., 2000). 
Changes in microbial populations induced by AM formation may lead to 
stimulation of the microbiota which may be antagonistic to root pathogens. 
AM establishment can change both total microbial populations and specific 
functional groups of microorganisms in the rhizoplane or the rhizosphere 
soil (Meyer and Linderman, 1986; Linderman, 1994). Numbers of pathogen-
antagonistic actinomycetes were greater in the rhizosphere of AM plants 
than in nonmycorrhizal controls (Secilia and Bagyaraj, 1987). The authors 
showed that pot cultures of G. fasciculatum harbored actinomycetes antagoni-
stic to F. solani than those of non-mycorrhizal plants. Other studies indicate 
that pathogen suppression by AM fungi involves changes in mycorrhizosphere 
microbial populations. Caron et al. (1985, 1986a, b, c) showed a reduction in 
Fusarium populations in mycorrhizosphere soil of tomatoes and a corres-
ponding reduction in root-rot in AM plants compared with non-AM plants, 
probably due to the increased antagonism in the AM mycorrhizosphere. 

3.6    Competition of colonization sites and photosynthates

AM fungi and soil-borne plant pathogens occupy similar root tissues 
and there may be direct competition for space if colonization is occurring at 
the same time (Smith, 1988). If AM fungi and plant pathogens are coloni-
zing the same host tissues there may be competition for space because both 
usually develop within different cortical cells of roots (Azcon-Aguilar and 
Barea, 1996). Davies and Menge (1980) observed localized competition 
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between AM fungi and Phytophthora. They observed reduced development 
of Phytophthora in AM-colonized and adjacent uncolonized root systems, 
and pathogens never penetrated arbuscule-containing cells (Cordier et al.,
1996). Similarly Aphanomyces was suppressed on pea roots by AM fungi 
only when the two organisms were present on the same root (Rosendahl, 
1985). Vigo et al. (2000) observed that the number of infection sites was 
reduced within mycorrhizal root systems and colonization by the AM fungus 
had no effect on the spread of necrosis. 

AM fungi are dependent on the host as a carbon source and 4–20% 
of the host net photosynthate is transferred to the AM fungus (Smith and 
Read, 1997). There is much information to support the competition for host 
photosynthates and this phenomenon may have an important role in inter-
actions with endoparasitic nematodes because of the obligate nature of both 
organisms for host-derived compounds (Azcon-Aguilar and Barea, 1996). 

3.7    Activation of defense mechanism

The activation of specific plant defense mechanisms as a response to 
AM colonization is an obvious basis for the protective behavior of AM 
fungi. The elicitation, via an AM symbiosis of specific plant defense reac-
tions, could predispose the plant to an early response to attack by a root 
pathogen (Gianinazzi-Pearson et al., 1994). In relation to plant defense 
relevant compounds include phytoalexins, enzymes of the phenylpropanoid 
pathway, chitinases, -1,3-glucanases, peroxidases, pathogenesis-related (PR) 
proteins, callose, and phenolics (Gianinazzi-Pearson et al., 1994). 

Phytoalexins are low-molecular-weight, toxic compounds usually 
accumulating with pathogen attack and are released at the sites of infection 
(Morandi et al., 1984; Morandi, 1996). Both phenylalanine ammonium-lyase 
(PAL), the first enzyme of the phenylpropanoid pathway, and chalcone iso-
merase, the second enzyme specific for flavonoid/isoflavonoid biosynthesis, 
increased in amount and activity during early colonization of plant roots by 
AM fungi (Lambais and Mehdy, 1993; Volpin et al., 1994, 1995). These 
results suggest that AM fungi initiate a host defense response which is sub-
sequently suppressed. Chitinases are little or only transiently induced by AM 
colonization (Dumas-Gaudot et al., 1992a, b). It has been reported that 
increased levels of chitinase activity are only detected in AM roots at the 
beginning of colonization (Spanu et al., 1989; Bonfonte-Fasolo and Spanu, 
1992; Lambais and Mehdy, 1993). A decrease in  -1,3 endoglucanase acti-
vity has also been reported at specific stages during mycorrhiza development 
(Lambais and Mehdy, 1993). These observations suggest a systemic suppres-
sion of the defense reaction during the establishment of the AM association. 
PR proteins are synthesized only locally and in very low amounts during 
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AM colonization, although these molecules were regularly distributed around 
the arbuscular hyphae (Balestrini et al., 1994).

The increased lignification of root endodermal cells induced by AM 
colonization has been suggested to play an important in the plant defense 
mechanism (Dehne, 1982). However, these compounds could sensitize the 
root to pathogens and enhance mechanisms of defense to subsequent pathogen 
infection; the results of Benhamou et al. (1994) strengthened this hypothesis. 
It was evident from their results that mycorrhizal carrot roots afford increased 
protection against Fusarium oxysporum f. sp. chrysanthemi. In mycorrhizal 
roots, growth of the pathogen was usually restricted to the epidermis and 
cortical tissues, whereas in non-mycorrhizal roots the pathogen developed 
further, infecting even the vascular stele. Fusarium hyphae within mycorrhizal 
roots exhibited a high level of structural disorganization, characterized by 
the massive accumulation of phenolic-like compounds and the production of 
chitinases. This reaction was not induced by non-mycorrhizal roots, sugges-
ting that the activation of plant defense responses by mycorrhiza formation 
provides a certain protection against the pathogen (Azcon-Aguilar and Barea, 
1996). These results need to be confirmed on different plants, and must 
clearly show that AM infection makes the root more responsive to pathogen 
attack, i.e., promoting a quicker and stronger reaction against the pathogen. 

In contrast to the weak defence response towards AM fungi found in 
AM hosts, it is noteworthy that in myc- pea mutants, AM fungi trigger a 
strong resistance reaction. This suggests that the AM fungi are able to elicit a 
defense response, but that symbiosis-specific genes somehow control the 
expression of the genes related to plant defense during AM establishment 
(Gianinazzi- Pearson et al., 1994, 1995, 1996). It is curious, in this context, 
that the constitutive expression of several PRs in tobacco plants did not 
affect either the time course or the final level of colonization by Glomus
mosseae, which was only reduced in plants constitutively expressing an acidic 
isoform of tobacco PR-2, a glucanase (Vierheilig et al., 1996). 

3.8    Nematode parasitism by AM fungi 

In some studies, parasitism of nematodes eggs with AM fungus has 
been demonstrated, but the level of parasitism was not considered sufficient 
to negatively affect nematode activities (Francl and Dropkin, 1985). AM 
fungal chlamydospores have been reported to occupy seeds and dead insects 
in soil (Rabatin and Rhodes, 1982; Taber, 1982) and have limited saprophytic 
capabilities (Harley and Smith, 1983). It seems likely that the AM fungi 
colonize only stressed or weakened nematode eggs. The nematode parasitism 
by AM fungi is opportunistic and depends on carbon nutrition from auto-
trophic symbionts, rather than being representative of a true host-parasite 
relationship. 
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4    EXPLANATION OF DIVERSE RESULTS 

The diversity of interactions reported here shows that each pathogen-
AM fungus-plant combination is unique and generalizations regarding such 
interactions are difficult to make. Pathogen-AM fungus interactions are influ-
enced by the host cultivars, pathogen species, AM fungus species and their 
combination, pathogen and AM fungus initial inoculum densities, soil ferti-
lity and sequence of pathogen inoculation (Smith, 1987). Most of the evi-
dence is however, from laboratory, greenhouse and microplot studies. There 
is a need for extending these studies into field conditions. Moreover, more 
studies are needed to confirm earlier results. Increased root growth and 
function, nutrition effects other than those for P, alteration in root exudation 
patterns, competition for host photosynthates and competition for space and 
infection sites are some reasons which indirectly affect the host-pathogen 
relationship in mycorrhizal plants. 

Contradictory results are often obtained with the same plant-AM 
fungus-pathogen system in different soils or substrates, probably because the 
efficiency of these mechanisms are affected by soil, biological, chemical and 
physical conditions. The primary soil factors involved are availability of 
phosphorus and the microflora present. Mycorrhizal infection does not always 
increase disease resistance; sometimes mycorrhizal infection may increase 
disease incidence (Caron, 1989). In addition, sometimes differences between 
genotype of pathogens and AM fungi determine the interaction (Strobel 
and Sinclair, 1991). Therefore, a mycorrhizal fungus must express its pro-
tective effect under a wide range of environmental conditions, and should  
be aggressive against pathogens and also colonize the roots of host plants 
aggressively. 

5     PRACTICAL CONTROL SYSTEM

Bioprotection from AM fungi-colonized plants is the outcome  
of complex interactions between plant, pathogen and AM fungi. Various 
mechanisms are proposed for conferring bioprotection, but generally effec-
tive bioprotection is a cumulative result of all mechanisms working either 
separately or together. The challenges to obtain biocontrol through AM 
fungi include the obligate nature of AM fungi, poor understanding of the 
mechanisms involved and the role of environmental factors in these inter-
actions. Moreover, improved understanding of agricultural practices on AM 
colonization is required using new techniques like confocal laser scanning 
microscopy. These techniques may reveal the processes involved in root 
colonization and also in the biocontrol process. Furthermore, these techniques 
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may provide new ways for increasing benefits of AM fungi by their use with 
other beneficial microorganisms. 

The potential of AM fungi to enhance plant growth is well recog-
nized but not exploited to the fullest extent. These organisms are rarely found 
in nurseries due to the use of composted soil-less media, high levels of ferti-
lizer and regular application of fungicide drenches. The potential advantages 
of AM fungi in horticulture, agriculture, and forestry are not perceived by 
these industries as significant. This may be due in part to inadequate methods 
for large-scale inoculum production. Monoxenic root-organ in vitro culture 
methods for AMF inocula production have also been attempted by various 
workers (Mohammad and Khan, 2002; Fortin et al., 2002) but these techni-
ques, although useful for the study of physiological, biochemical, and 
genetic relationships, have limitations in terms of producing inocula of AM 
fungi for commercial purposes. Pot cultures in pasteurized soils have been 
the most widely used method for producing AM fungi inocula but are time-
consuming, bulky, and often not pathogen-free. To overcome these difficulties, 
soil-free methods such as soil-less growth media, aeroponics, hydroponics 
and axenic cultures of AM fungi have been used successfully to produce 
AMF-colonized root inocula (Sylvia and Jarstfer, 1994a, b; Mohammad and 
Khan, 2002). Substrate-free colonized roots produced by these methods can 
be sheared and used for large-scale inoculation purposes. 

Although AMF are ubiquitous, natural associations of AM fungi are 
not efficient in increasing plant growth (Fitter, 1985). Cropping sequences, 
fertilization, and plant pathogen management practices affect both AM fungi 
propagules in soil and their effects on plants (Bethlenfalvay and Linderman, 
1992). The propagation system used for horticultural fruit and micro-
propagated plants can benefit most from AM biotechnology. Micropropagated 
plants can withstand transplant stress from in vitro to in vivo systems if they 
are inoculated with appropriate AM fungi (Lovato et al., 1996; Azcon-
Aguilar et al., 2002). In order to use AM fungi in sustainable agriculture, 
knowledge of factors such as fertilizer inputs, pesticide use, and soil manage-
ment practices which influence AM fungi is essential (Bethlenfalvay and 
Linderman, 1992; Allen, 1991, 1992). In addition efficient inoculants should 
be identified and used as biofertilizers, bioprotectants, and biostimulants for 
sustainable agriculture. 

In general, a single biocontrol agent is used for biocontrol of plant 
disease against a single pathogen (Wilson and Backman, 1999). This protocol 
may account for the inconsistent performance by the biocontrol agent, because 
a single agent is not active in all soil environments or against all pathogens 
that attack the host plant. On the other hand, mixtures of biocontrol agents 
with different plant colonization patterns may be useful for the biocontrol of 
different plant pathogens via different mechanisms of disease suppression. 
Moreover, mixtures of biocontrol agents with taxonomically different 
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organisms that require different optimum temperature, pH, and moisture 
conditions may colonize roots more aggressively, and improve plant growth 
and efficacy of biocontrol. Greater suppression and enhanced consistency 
against pathogens was observed using mixtures of biocontrol agents (Akhtar 
and Siddiqui, 2007a). Consortia of biocontrol agents may better adapt to the 
environmental changes that occur throughout the growing season and protect 
against a broader range of pathogens. Mixtures of micro-organisms increase 
the genetic diversity of biocontrol systems that may persist longer in the 
rhizosphere and utilize a wider array of biocontrol mechanisms (Pierson and 
Weller, 1994). Multiple organisms may enhance the level and consistency of 
biocontrol via a more stable rhizosphere community and effectiveness over a 
wide range of environmental conditions.  

 rhizo-
bacteria, antagonistic fungi and their use with composted manure may 
provide protection at different times, under different conditions, and occupy 

mixtures may coexist without exhibiting adverse effects on each other 

control agents may increase plant growth and resistance to pathogens. More 
detailed investigations of the relationships in various pathosystems and 
interactions between these microorganisms and the host plant are needed for 
developing suitable biocontrol of plant diseases. 
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Abstract:     Within the last decade, inventories of the soil’s productive capacity indicate 
severe degradation and loss of arable lands as a result of soil erosion, cultivation, 
salinization, over-grazing, land clearing, desertification, soil pollution, and atmo-
spheric pollution. Large areas of land have been, and continue to be, contami-
nated by trace metals, and petroleum hydrocarbons. Many technologies using 
physical and chemical treatment methods have been developed to remediate 
contaminated soils. Recently, phytoremediation has been thought to provide  
an environmentally friendly alternative for the treatment of polluted soils. In 
phytoremediation of metal-contaminated soils, bioavailability and metal uptake 
are important factors. Among soil-plant factors controlling metal uptake, the 
rhizosphere flora is known to play a special role in the phyto-availability of 
trace elements. In this regard, arbuscular mycorrhizal fungi (AMF), which are 
among the most common components of soil rhizosphere flora, is of great 
interest to soil and environmental scientists, from a phyto-remediation and  
an environmental standpoint. AMF play important roles in the restoration of 
contaminated ecosystems and are increasingly used in many countries to 
improve plant nutrition and fertility of degraded land. As AMF are becoming 
commercially available, their use will also provide further avenues for redu-
cing pollution from agriculture. This chapter reviews the role, the importance, 

(mycorrhizoremediation). Emphasis is given to the effects of AMF on growth 
and yield, and on the uptake of trace metals by plants (rhizo-availability) from 
agricultural and metal-contaminated soils. The chapter also addresses the AMF’s 
potential for improving or sustaining soil fertility. 

Keywords: Arbuscular mycorrhizal fungi; nutrient availability; mycorrhizoremediation; 
rhizoextraction; metal pollution; heavy metals. 

and the application of AMF in ecologically remediating contaminated soils 
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1 INTRODUCTION 

Arbuscular mycorrhizal fungi (AMF) are important soil micro-
organisms (Liu and Lianfeng, 2008) that play a key role in facilitating nutrient
uptake by crops in a variety of agroecosystems, particularly in low-input far-
ming systems, and in revegetation and rhizomerediation processes (Barea 
and Jeffries, 1995; Barea et al., 2002; Atkinson et al., 2002; Lombi et al.,
2001; Gadd, 2005; Jansa et al., 2008). Many studies in glasshouse and fields 
have assessed the positive effects of AMF on plant uptake, and plant growth 
and yield. Enhancing the mycorrhizal system of a low-fertility or degraded 
soil helps the root system acquire more nutrients (Roesti et al., 2005). It is 
widely acknowledged that AMF play an important role in improving the 
uptake of low mobile ions, in phosphate (PO4

3–) and in ammonium (NH4
+)

phases (Smith and Read, 1997; Marschner, 2007; Martin et al., 2007). AMF 
not only increase the rate of nutrient transfer from the roots to the host plant, 
but they also increase resistance to biotic and abiotic stresses (Smith and 
Read, 1997; Khan, 2006; Singh, 2006; Martin et al., 2007). In polluted soils, 
AMF adapted to the high toxic metal concentrations can restore the biomass 
values. This chapter aim to provide a synopsis on the role of AMF in rhizo-
remediation of low-fertility land and polluted soils.

2  WHAT ARE ARBUSCULAR MYCORRHIZAL 
FUNGI (AMF)?

2.1 Arbuscular mycorrhizal associations

Arbuscular mycorrhizal fungi (AMF) or endomycorrhizae, including 
fungi belonging to the recently established phylum Glomeromycota (Schüßler 
et al., 2001), are a normal part of the root system (Gregory, 2006) in most 
natural and agroecosystems, including polluted soils (Göhre and Paszkowki, 
2006). It is postulated that arbuscular mycorrhizae are the ancestral and 
predominant form of mycorrhizae (Wang and Qiu, 2006). They occur in the 
soil rhizosphere as spores, hyphae and propagules (Martin et al., 2007). 
Arbuscular mycorrhizal fungi are considered as obligate symbiotic biotrophs, 
in that they cannot grow without a host plant supplying them with carbo-
hydrates (glucose and sucrose) (Muchovej, 2001; Harrison, 2005; Martin
et al., 2007; Hamel and Plenchette, 2007). In this symbiotic association, the 
fungus colonizes the plant’s root hairs by entering the cortex cells and acts 
as an extension of the root system (Douds and Millner, 1999; Muchovej, 
2001). This type of association is characterized by the formation of arbuscles  
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(finely branched hyphal structures) in the region of the root cortex that may 
function as nutrient organs (or nutrient exchange sites between the symbionts) 
and also for fungal multiplication (Muchovej, 2001; Gregory, 2006). Accord-
ing to Douds and Millner (1999), the AMF genera Gigaspora and Scutellos-
pora produce only arbuscules and extensive intraradical and extraradical 
hyphal networks (Smith and Read, 1997), whereas Glomus, Entrophospora,
Acaulospora, and Sclerocystis also produce vesicles (formerly known as 
vesicular-arbuscular mycorrhizal VAM  fungi (Martin et al., 2007)). Kistner 
and Parniske (2002) suggested that the genes involved in arbuscular mycor-
rhizae and rhizobial symbioses are common in both infection processes. The 
formation of mycorrhizae induces great changes in the physiology of the 
roots, in the internal morphology of the plant, and in the mycorrhizosphere, 
i.e., the soil surrounding the roots (Leyval and Joner, 2001; Gregory, 2006; 
Martin et al., 2007). The symbiotic association of AMF and plant roots has 
been considered to be the oldest symbiosis of plants and is suspected to eco-
logically be the most important symbiotic relationship between micro-
organisms and higher plants (Paszkowski, 2006).  

Arbuscular mycorrhizal associations are reported to occur in about 
80% of terrestrial plants including trees, shrubs, forbs and grasses (Gregory, 
2006). Many plants are able to establish symbiotic relationships with AMF. 
The plants are called mycorrhizal crops. However, crop plants from Bras-
sicaceae, Chenopodiaceae, and Polygonaceae do not form mycorrhizal 
associations. The reader is referred to Varma and Hock (1999), Brundrett 

Fig. 1. Rhizosphere and mycorrhizosphere interactions with heavy metals in soils. Mycorrhizal 
extraradical hyphae release organic acids that weather rocks and minerals in soils. Heavy 
metals are sequestered and extracted by AMF colonized roots. Nutrients and metals can be 
exchanged between the fungus and the host plant via mycorrhizal arbuscules inside the root cell. 
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and Abbott (2002), and Martin et al. (2007), for a detailed description and 
occurrence of AMF. 

In the mycorrhizosphere, microscopic fungi naturally occur in soil to 
form a symbiosis with plant roots and produce a highly elaborated mycelium 
network (hyphae) (see Fig. 1). These fungal associations could grow into the 
soil some 5–15 cm from the infected root, reaching farther and into smaller 
pores than could the plant’s own root hairs (Brady and Weil, 2008). AMF 
have the capability of penetrating extremely small pores in soil and of access-
ing contaminants contained within (Hutchinson et al., 2003). 

2.2 Role of AMF in improving plant metal nutrition 

The role of AMF on nutrient uptake (N, P and microelements), on 
the growth of AM crops, as well as on possible mechanisms of nutrient 
uptake, have been widely studied, as recently reviewed by Jeffries et al.
(2003), Al-Karaki (2006), Cardoso and Kuyper (2006), Göhre and Paszkowki 
(2006), Gregory (2006), Martin et al. (2007), and Cavagnaro (2008). It is 
now generally recognized that AMF enhance the uptake of nitrogen (N) and 
of relatively immobile soil nutrients such as phosphorus (P), sulfur (S), 
copper (Cu), zinc (Zn), and boron (B).  

AMF increase the plant contact area with soil. They were shown to 
enhance root absorption area up to 47-fold (Smith and Read, 1997). By 
colonizing the roots, the fungus enhances plant growth by making soil ele-
ments more accessible (George et al., 1992; Nadian et al., 1997; Gregory, 
2006; Siddiqui, 2006) and by improving water absorption (Sweat and Davis, 
1984; Cui and Nobel, 1992). Accordingly, mycorrhizal colonization improves 
vegetation establishment and survival particularly in adverse conditions such 
as in low fertility and arid soils (Jasper et al., 1989; Allen et al., 1996; Smith 
et al., 1998). Knowing that contaminated sites are generally poor in nutrients 
and contain a highly altered soil structure, mycorrhizal fungi are suspected  
to play an important role in vegetation establishment for phytoremediation 
purposes.     

Nutrients are taken up via the fungal hyphae by specific uptake 
systems and can be mobilized and transported to the plant via continuous 
fungal extra- and intracellular structures (Göhre and Paszkowki, 2006). It is 
suggested that constitutive expression or induction of nutrient transporters 
during symbiosis could improve translocation to the plant (Harrison et al.,
2002). However, some studies have reported decreased nutrient uptake or 
growth of mycorrhizae in certain circumstances (Kucey and Janzen, 1987; 
Arines et al., 1990). For example, arbuscular mycorrhizal colonization of 
plants may depend on edaphic properties and environmental factors such  
as rainfall and sunlight hours. Lingfei et al. (2005) found that arbuscular 
mycorrhizal colonization were negatively correlated with total N, total P, 



    103

available P and soil organic matter but positively correlated with soil pH. 
Karanika et al. (2008) found, in a field experiment, that AMF colonization 
was negatively affected by P and positively affected by N addition. However, 
the response varied among different plant species. In fact, they observed that 
P addition, in the field experiment, increased the colonization level of the 
high P demanding annual forb (non-leguminous dicot) such as Galium
lucidum, decreased hyphal abundance of the forb Plantago lanceolata and 
the grass Agrostis capillaris, and appeared to have a negligible effect on the 
forb Prunella vulgaris and on leguminous species.  

Other studies have shown a negative impact of AMF on the uptake 
of some nutrients, probably due to dilution effects (Burleigh et al., 2003) and 
complex interactions between nutrients (e.g., P and Zn) within AMF at the 
cellular/sub-cellular levels (Cardoso and Kuyper, 2006; Christie et al., 2004; 
Cavagnaro, 2008). Antagonistic reactions between nutrients exist under defici-
ency stress (e.g., P/Zn interaction, Cd/Zn interaction, etc.) (Kabata-Pendias, 
2001).

In sum, under low soil nutrient concentrations, improvements in 
mineral nutrition of mycorrhizal crops can be attributed to the following 
factors (Burleigh et al., 2003; Christie et al., 2004; Cardoso and Kuyper, 
2006; Cavagnaro et al., 2007; Cavagnaro, 2008; Jackson et al., 2008): (1) 
uptake of available nutrients via the mycorrhizal pathway; (2) differing P 
uptake kinetics in hyphae from those of roots, possibly through a higher 
affinity (lower Km); (3) morphological and physiological changes in roots 
induced by AMF colonization; (4) differing ways in which roots and hyphae 
explore microsites, especially small patches of organic matter; (5) changes in 
edaphic conditions (e.g., pH and others soil variables) favourable to AMF 
colonization and nutrient solubility and mobility; (6) microbial communities 
(e.g., activity of mycorrhizal-helper bacteria); (7) nutrient cycling.  

3    MYCORRHIZAL RELATIONSHIPS WITH TRACE 
ELEMENTS

3.1  Heavy metals or trace metal elements 

Heavy metals (HM) occur naturally in the environment. Many defi-
nitions and interpretations of the term “heavy metal” exist (Duffus, 2002; 
Karam, 2007). Although imprecise and thoroughly objectionable (Phipps, 
1981), the term “heavy metal” has been used increasingly in various public-
cations and in legislation related to chemical hazards and the safe use of 
chemicals (Duffus, 2002) to identify metals with atomic weights greater than 
40 (Rand et al., 1995) and densities or specific gravities greater than about 

AM and Alleviation of Soil Stresses on Plant Growth 



104 Giasson et al.

5.0 g/cm3 (Lozet and Mathieu, 1991; Morris, 1992). This term is often used 
as a group name for metals and metalloids (semimetals) that have been associ-
ated with contamination and potential toxicity (Duffus, 2002). Some authors 
proposed that this term “heavy metal” be abandoned in favour of “trace ele-
ment”. The later commonly refers to mineral elements that are present in soil 
in low concentrations, relative to the more abundant element in both the soil 
solution and the plant (Pandolfini et al., 1997). Here the terms “metal”, “heavy 
metal” and “trace metal” will be used interchangeably to indicate trace metal 
elements such as arsenic (As), cadmium (Cd), chromium (Cr), Cu, man-
ganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), lead (Pb), 
selenium (Se), and Zn.  

Numerous studies have indicated that agroecosystems receive inputs 
of heavy metals from the increased use of commercial fertilizers and bio-
cides, from the application of metal-containing wastes such as sewage sludge, 
pig manure, coal and wood ashes to soils, and from atmospheric deposition 
(Mhatre and Pankhurst, 1997; Kabata-Pendias, 2001; Kabata-Pendias and 
Mukherjee, 2007). Although some of these metals are essential plant micro-
nutrients since they are required for plant growth and development (Zn, Cu, 
Fe, Mn, Ni, Mo, Co), high contents of heavy metals, as well as the long-term 
presence of potentially toxic metals (Cd, Pb) and metalloids (As) in surface 
horizon of agricultural soils, are generally considered a matter of concern to 
society as they may adversely affect the quality of soils and surface water, 
and compromise sustainable food production (Pandolfini et al., 1997; 
Kabata-Pendias, 2001; Keller et al., 2002; Voegelin et al., 2003; Kabata-
Pendias and Mukherjee, 2007). The soil microbial community is thought to
be a sensitive bioindicator of metal pollution effects on bioavailability and
biogeochemical processes (Hinojosa et al., 2005). 

Metal forms in soils are basically characterized by their differential 
solubilities in various chemical extractants. The majority of fractionation 
schemes (Tessier et al., 1979; Ma and Rao, 1997) group soil metal fractions 
into: “soluble”, “exchangeable”, “carbonate bound”, “sesqui-oxides bound”, 
“organic matter bound/sulfides” and “residual”. 

All metals present in a soluble form in the soil solution can be taken 
up by microorganisms and terrestrial plants (Cataldo and Wildung, 1978; 
Pandolfini et al., 1997; Kabata-Pendias, 2001; Naidu et al., 2003; Boruvka 
and Drabek, 2004). Many soil and environmental factors influence metal 
solubility and phytoavailability (Jackson and Alloway, 1992; Pandolfini  
et al., 1997; Leyval and Joner, 2001; Karam et al., 2003; Kabata-Pendias and 
Mukherjee, 2007). These factors can be summarized as follows: (1) nature of 
soil types; (2) nature of the metal species and their interaction with soil 
colloids and other soil components (sorption-desorption processes; comple-
xation; diffusion; occlusion; precipitation); (3) concentration and chemical 
form of the metal entering the soil; (4) mineralogical composition (e.g., clay 
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minerals and other aluminosilicates, oxides and hydroxides, carbonates, 
phosphates, sulphides, sulphates, and chlorides); (5) sorptive properties of 
soils or binding capacity; (6) physical, chemical, and biological soil pro-
perties (e.g., soil texture, soil moisture content and temperature, soil pH, 
redox potential, cation-exchange capacity, exchangeable cations, salt content, 
amount and type of clay, organic mater and oxides and hydroxides of Fe and 
Mn, free carbonates, and microbial activity); (7) biological activity of the 
rhizosphere; (8) duration of contact with the surface binding these metals; 
(9) chemical composition of the soil solution; (10) plant type and plant 
exudate. 

Many studies have demonstrated that in neutral or alkaline substrates 
(soils, mine tailings, etc.) metals are more intensively adsorbed and chelated 
in unavailable forms relative to acidic substrates. Moreover, in soils rich in 
calcium carbonate and phosphate, in well-aerated soils with S compounds, 
and in soils and mine tailings amended with organic materials, metals are 
less mobile and available, or are associated with substrate constituents in 
unavailable forms (Kabata-Pendias, 2001; Kabata-Pendias and Mukherjee, 
2007; Karam and De Coninck, 2007). 

3.2   AMF tolerance and adaptation to heavy metals

The literature presents a range of “classic” ecological principles exp-
laining the processes that increase the tolerance or resistance of a community 
(Boivin et al., 2002). Resistance refers to the ability of microorganisms to 
withstand the effects of a pollutant usually effective against them, while 
tolerance refers to the ability of microorganisms to adapt to the persistent 
presence of the pollutant. As stated by Leyval and Joner (2001), tolerance and 
resistance to the toxic effect of heavy metals depends upon the mechanism 
involved. Briefly, as mentioned in epidemiological studies (Foster and Hall, 
1990; Tosun and Gönül, 2005), metal tolerance could be defined as a pheno-
menon by which microorganisms increase resistance towards stress resulting 
from exposure to heavy metal toxicity. 

Metal tolerance of arbuscular mycorrhizal (AM) and ectomycorrhizal 
(ECM) fungi have been assessed using several observation methods including: 
AM spore numbers, root colonization and the abundance of ECM fruiting 
bodies (Weissenhorn et al., 1993, 1994; Del Val et al., 1999b). Unfortunately, 
such methods did not give information concerning conditions, limitations and 
threshold values ensuring the survival and growth of AMF, or about the 
genetic basis for multi-metal resistance and tolerance. Moreover, AMF coexist 
with other microbial communities and plant roots that can tolerate and accu-
mulate metals, and this could confound the real interactions between AMF 
and metals in the medium.

AM and Alleviation of Soil Stresses on Plant Growth 
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More recently, to evaluate the tolerance of microorganisms in soils 
polluted with metals, specialists have adopted the concept of pollution-
induced community tolerance (PICT) (Nikli ska et al., 2006). This pers-
pective stipulates that with time, in an ecosystem, contamination exposure 
increases tolerance in microbial communities. Davis et al. (2004) used the 
PICT method to assess the effects of long-term exposure to Zn on the meta-
bolic diversity and tolerance to Zn of soil microbial community. They showed 
that long-term exposure to Zn imposes stress on soil microbes, resulting in 
an increased tolerance. They concluded that the long-term accumulation of 
Zn in soils provides the microbial community with time to adapt to this 
metal. Indeed, microbial communities are often found to recover after an 
initial inhibition by high metal inputs (Holtan-Hartwig et al., 2002). This 
adaptation has been attributed to two factors (Almås et al., 2004). The first 
one is a gradual decrease in metal availability due to immobilization reactions 
occurring in the rhizosphere. The other factor is a gradual change in micro-
bial community structure, based on changes in phospholipid fatty acid 
profiles (Frostegård et al., 1993) which results in more tolerant organisms. 

Although metals may induce changes in the microbial community, 
resulting in microorganisms more resistant to metals (Almås et al., 2004), 
most essential and non essential metals exhibit toxicity above a certain 
concentration. This toxicity stress, appreciated by a threshold value (Leyval 
and Joner, 2001), will vary depending on many factors including the type of 
microorganism, the physico-chemical properties and concentration of the 
metal, and the edaphic and environmental conditions (Gadd, 1993).

Even though metals can exhibit a range of toxicities toward soil 
microorganisms (McGrath, 1994; McGrath et al., 1995; Giller et al.; 1998; 
Dai et al., 2004; Gadd, 2005; Nikli ska et al., 2006), AMF isolates, parti-
cularly the ecotypes living in metal-enriched soils, metalliferrous sites and 
mine spoils heavily polluted with metals, can, depending on intrinsic and 
extrinsic factors, tolerate and accumulate HM (Gildon and Tinker, 1981, 
1983a, b; Weissenhorn et al., 1993, 1994; Joner and Leyval, 1997; Leyval  
et al., 1997; Smith and Read, 1997; Gadd, 2005). Field investigations have 
indicated that mycorrhizal fungi can colonize plant in metal contaminated sites 
(Díaz and Honrubia, 1994; Pawlowska et al., 1996) and in agricultural soils 
contaminated with metals of different origins, including atmospheric deposi-
tion from smelter and sludge amendments (Weissenhorn et al., 1995b, c). 
Mycorrhizal fungi have also been shown to be associated with metallophyte 
plants on highly polluted soils. Nevertheless, it should be kept in mind that 
in some extreme metal conditions, AMF inoculation can be entirely inhibited 
(Weissenhorn et al., 1994). Del Val et al. (1999b) reported that spore numbers 
decreased with the increasing amounts of heavy metals, whereas specie 
richness and diversity increased in soils receiving an intermediate rate of 
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sludge contamination but decreased in soils receiving the highest rate of 
heavy metal-contaminated sludge. 

Several reports and reviews suggested that mycorrhizal fungi (MF) 
from metal-contaminated sites have developed tolerance against metal toxicity 
and are well adapted (Weissenhorn et al., 1993, 1994; Del Val et al., 1999a; 
Leyval and Joner, 2001; Toler et al., 2005; Sudova et al., 2007). The evo-
lution of metal tolerance is showed to be rapid in MF. As stated by Sudova 
et al. (2007), tolerant strains of some MF may develop within one or two 
years (Weissenhorn et al., 1994; Tullio et al., 2003). Gonzalez-Chavez et al.
(2002a, b) reported that arbuscular mycorrhizal fungi have evolved arsenate 
resistance and conferred enhanced resistance on Holocus lanatus. HM con-
centration may decrease the numbers and vitality of AMF as a result of HM 
toxicity (Dixon, 1988; Dixon and Buschena, 1988) or may have no effect on 
mycorrhizal colonization (Wilkins, 1991; Leyval et al., 1997). Biró et al.
(2005) studied the stress buffer effect of the AMF and their colonization beha-
viour in metal spiked soil on a long-term level in controlled conditions. The 
soils used were collected after a 12 year metal-adaptation process, where 13 
trace element salts, such as Al, As, Ba, Cd, Cr, Cu, Hg, Ni, Pb, Se, Sr and Zn 
were applied in four gradients (0, 30, 90 and 270 mg/kg dry soil). Barley 
(Hordeum vulgare L.) was used as a test plant. They found a strong dose-
dependency at the arbuscular richness in general. The sporulation of the AMF 
was found as the most sensitive parameter to long-term metal(loid) stress. 
They reported that Al, As, Ba, Cd, Cr, Cu, Pb, Se, Sr and Zn reduced signi-
ficantly the spore-numbers of the AMF, while the Ni loadings (at 36 g/soil) 
increased mycorrhizal sporulation.   

At present, potential interaction mechanisms between AMF and 
metals, and the cellular and molecular mechanisms of HM tolerance in AMF, 
are poorly understood (Leyval and Joner, 2001; Martin et al., 2007). Metal 
transporters and plant-encoded transporters are involved in the tolerance and 
uptake of heavy metals (Göhre and Paszkowski, 2006; Hildebrandt et al.,
2007) from extracellular media, or in their mobilization from intracellular 
stores (Gaither and Eide, 2001). Göhre and Paszkowski (2006) hypothesized 
that metals could be released at the pre-arbuscular interface and then taken 
up by plant-encoded transporters.

The ability of an organism to tolerate and to resist metal toxicity 
may involve more than one of the following mechanisms (Gadd, 1993, 2005; 
Leyval and Joner, 2001; Lux and Cumming, 2001; Ouziad et al., 2005; 
Sudová and Vosátka, 2007): 

Fungal gene expression 
Extracellular metal sequestration and precipitation
Production of metallothioneins (metal binding proteins) 
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Avoidance of metals (reduced uptake or increased efflux, formation 
of complexes outside cells, release of organic acids, etc.) 
Intracellular chelation (synthesis of ligands such as polyphoshates 
and metallothioneins) 
Compartmentation within leaf vacuoles 
Loss of leafs during dry or cold seasons 
Phosphorus plant status or interaction between P and metals (increa-
sed P uptake by host plant) 
Biological sorption via glomalin  
Volatilization.

The expression of several protein encoding genes potentially in-
volved in heavy metal tolerance varied in their response to different heavy 
metals. Such proteins included a Zn transporter, a metallothionein, a 90 kD 
heat shock protein and a glutathione S-transferase (all assignments of protein 
function are putative). Studies on the expression of the selected genes were 
also performed with roots of Medicago truncatula grown in either a natural, 
Zn-rich heavy metal “Breinigerberg” soil, or in a non-polluted soil sup-
plemented with 100 M ZnSO4. The transcript levels of the genes analyzed 
were enhanced up to eightfold in roots grown in the heavy metal-containing 
soils. The data obtained demonstrate the heavy metal-dependent expression 
of different AMF genes in the intra- and extraradical mycelium. The distinct 
induction of gene coding for proteins possibly involved in the alleviation of 
damage caused by reactive oxygen species (a 90 kD heat shock protein and a 
glutathione S-transferase) might indicate that heavy metal-derived oxidative 
stress is the primary concern of the fungal partner in the symbiosis. 

In a soil environment, levels and persistence of metal tolerance of 
the AMF (Leyval and Joner, 2001; Jamal et al., 2002; Turnau and Mesjasz-
Przybylowicz, 2003; Toler et al., 2005; Fomina et al., 2005; Biró et al.,
2005; Sudová et al., 2007) depends on a number of factors:

AM community ecotype or diversity of AM fungi 
Specific properties of host plant and conditions of plant growth 
Nature of the metal 
Level of soil metal contamination, particularly available or extrac-
table HM 
Cultivation regime 
Colonization conditions (axenic culture vs symbiotic conditions) 
Activities related to land disturbance 
Seasonal variations. 
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3.3   Heavy metal uptake by AMF

Many studies have shown that metals are sorbed in the soil system 
by microbial biomass, such as fungi, yeast, bacteria, algae and cyanobacteria 
(Lepp, 1992; Mullen et al., 1992; Morley and Gadd, 1995; Kapoor and 
Viraraghavan, 1998; Zhou, 1999). In general, mobilization of metals by soil 
microorganisms can be achieved by protonation, chelation, and chemical 
transformation (Gadd, 2005). The exudates, such as citric acid and other 
organic compounds, released from both plant roots and soil microorganisms, 
are very effective in solubilizing and releasing metals from soil components 
(Murphy and Levy, 1983; Gadd, 1990).  

Arbuscular mycorrhizae have often been reported to sequester and  
to accumulate metals in their biomass as well as in the roots of host plants 
(Burke et al., 2000; Joner et al., 2000; Leyval and Joner, 2001; Gadd, 2005; 
Martin et al., 2007). It is reported that intracellular and extraradical mycelium 
of AM and ectomycorrhizal (ECM) fungi would have potential for metal 
sorption (Marschner et al., 1998; Joner et al., 2000). Most of the metals were 
demonstrated to be bound to the cell wall components like chitin, cellulose, 
cellulose derivatives and melanins of ecto-and endomycorrhizal fungi (Galli 
et al., 1994). High sorption capacity of fungal mycelium for some metals 
such as Pb was also confirmed for ECM fungi (Marschner et al., 1998). 

Recently, much evidence indicates that AMF exhibit great activity in 
the mobilization of metals that are bound by soil components (Leyval and 
Joner, 2001; Gadd, 2005; Göhre and Paszkowski, 2006). AMF can also act 
as a «barrier» in the uptake or transport of metals. However, little work has 
been performed to assess the effect of AMF colonization on metal fractio-
nation (metal pools) and labile fractions of metal in soils and mine tailings. 
The chemical form of metals in the hyphae of AMF has received little inves-
tigation. There is no information on the chemical form of many toxic metals 
in AMF. Besides, all physical parameters inherent to binding sites remain to 
be elucidated. Much still remains to be learned about factors determining 
metal uptake by AMF. 

Gonzalez-Chavez et al. (2002a, b) designed a set of experiments to 
investigate the characteristics of sorption and accumulation of Cu by the 
extraradical mycelium (ERM) of different Glomus spp. (Glomus caledonium
BEG133, Glomus claroideum BEG134, Glomus mosseae BEG132) isola- 
ted from a highly Cu-polluted mine soil and grown on sorghum (Sorghum
vulgare L.) under controlled conditions. Copper localization and compart-
mentalization was done using Transmission and Scanning Electron Micro-
scopy equipped with energy dispersive X-ray analysis. They observed that 
ERM of AMF is able to sorb and accumulate Cu. Their experiments demon-
strated and concluded the following: 
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ERM of AMF from polluted soils accumulated Cu in the mucilaginous 
outer hyphal wall zone, cell wall and inside the hyphal cytoplasm. 
The accumulated Cu was mainly associated with Fe in the mucil-
aginous outer hyphal wall zone and in the cell wall. 
Copper was associated with traces of arsenate inside the cytoplasm 
of the ERM of Glomus mosseae BEG134. 
Arsenate may be accumulated inside the cytoplasm in the same way 
as polyphosphates. 
Different Cu and arsenate uptake and accumulation strategies (toler-
ance mechanisms) exist between the three AMF isolated from the 
same polluted soil. 

In another set of experiments with excised mycelium of four Glomus
spp. with different histories of exposure to heavy metals (Cd and Zn), Joner 
et al. (2000) confirmed the capacity of extraradical hyphae of Glomus spp. to 
fix metal ions. The results showed the following sorption features: 

Sorption was fast and sorbed Cd was achieved within 30 minutes.  
Sorption was concentration dependent and, at the highest solution 
concentrations, the amounts sorbed seem too high to obey a mono-
layered Langmuir adsorption model. 
G. mosseae P2 (metal-tolerant strain from soil with a 60-year history 
of industrial metal pollution, and grown on subterranean clover, 
Trifolium subterraneum, c.v. Mount Barker) sorbed significantly more 
Cd than G. lamellosum (from non-contaminated soil, grown on 
ryegrass, Lolium perenne, cv. Barclay) and G. mosseae Gm (non-
metal tolerant strain, BEG 12, grown on ryegrass).  

It would seem likely that AMF behave similarly as ECM and other 
soil filamentous fungi. AMF have metal binding sites and are able to pro-
duce intracellular and extracellular with high affinity for metals. Binding 
sites vary with AMF species. 

Although the mycorrhizal mechanisms for enhancing uptake are not 
entirely known, some of them could be the following (Gadd, 1990, 1993; 
Joner et al., 2000; Gonzalez-Chavez et al., 2004):

Transfer of metals to the hyphae by cation exchange and chelation 
(non-metabolic binding of metals to cell walls).
Interacting with hyphal synthetized products or metabolites that act 
as biosorption agents such as chitin and glomalin, an insoluble glyco-
protein. The thin hyaline layer of the spore wall of Glomus geosporum
AMF is composed mainly of chitin (Sabrana et al., 1995). 
Chelation of metals inside the fungus. 
Intracellular precipitation with phosphate (PO4).
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Uptake of metals is controlled by or depends on different factors 
(Gadd, 1990, 1993; Laheurte et al., 1990; Joner et al., 2000; Leyval and Joner, 
2001), including the following:

AM species 
Metabolite composition
Fungal biomass CEC 
Edaphic and environmental conditions  
Metal pools 
Metal electrochemical properties 
Competition between metals for mycorrhizal surface adsorption sites 
Nature of the host plant 
Root exudation patterns.

3.4   Effects of AMF on growth and uptake of trace metals
by plants

Recent general reviews concerning the transport of metals to plants 
by mycorrhizal fungi have been published elsewhere (see Leyval and Joner, 
2001; Singh, 2006). The following paragraphs provide a synthesis of the 
factors that contribute to the divergent influences of AMF on heavy metal 
status in host plant. As mentioned earlier, an important factor determining 
the phytoavailability of a trace metal is its binding capacity to soil consti-
tuents. Plants readily take up trace metals from soils (or other growth media) 
through the roots, mainly in a soluble form. The specific properties of the 
mycorrhizosphere are known to accelerate the immobilization of metals and 
to accelerate the weathering at the root-soil surface relative to the bulk soil 
(Mench and Martin, 1991; Courchesne et al., 2001). Mycorrhizal fungi can 
affect the transformation of trace metals in the soil in several ways (Leyval 
and Joner, 2001) including: (i) altering the pH of the soil (i.e., acidification), 
(ii) immobilization (by adsorption, chelation, or absorption of free metallic 
species in the soil solution) and (iii) modification of root exudation. It is 
important to note that acidification caused by organic acids secreted by AMF 
facilitates the mobilization of trace metals.  

A number of studies have been carried out on trace metal uptake by 
mycorrhizal plants and the results vary with each experiment and each host 
plant. However, it can be generalized that, as demonstrated for ectomy-
corrhizal and ericoid mycorrhizal fungi, AMF can increase the uptake and 
accumulation of metals in host plants (Davies et al., 2001, 2002; Hovsepyan 
and Greipsson, 2004; Rufyikiri et al., 2002, 2003) even when the metals are 
present at toxic levels. Cheung et al. (2008) found that inoculation of jute 
(Corchotus capsulari, a higher plant) with G. mosseae and G. intraradices
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improved plant growth. However, in other situations, where AM fungi exude 
enzymes that participate in the immobilization process of metals, AMF 
colonization decreases the uptake and accumulation of metals in host plants 
(Joner et al., 2000; Leyval et al., 1997; Weissenhorn et al., 1993). Deram  
et al. (2008) observed that AMF colonization disappeared when Cd con-
centrations in soil increased. Arbuscular mycorrhizae have also been found 
to sequester metals in the roots of plants and prevent translocation to the 
shoot (Burke et al., 2000). In studying the effect of AMF on the accumulation 
and transport of Pb from an anthropogenically-polluted substrate to root and 
shoot biomass of maize plants, Sudová and Vosátka (2007) found that Pb 
concentrations increased in highly colonized root segments, whereas they 
decreased in the shoots of maize. They hypothesized that Pb was immobilized 
in the fungal mycelium due to intraradical fungal structures. AM may also 
protect their host plants from the toxicity of excessive metal or metalloid 
(Zhu et al., 2001; Bai et al., 2008) through: (i) P nutrition by activating P; 
(ii) chemical precipitation in the soil; (iii) tissue dilution due to increased 
plant biomass, (iv) hyphal sequestration of metal; and (v) root immobili-
zation.   

The AMF have variable effects on metal uptake (translocation and 
accumulation in plant tissues) and growth of host plant. Most of these 
variations could be summarized as follows: (i) metal uptake into the host 
plant is enhanced or repressed (Kothari et al., 1990; Li et al., 1991; Ietswaart 

et al., 2002; Bai et al., 2008); (ii) metal accumulation by plant shoots is 
reduced under elevated soil metal concentrations while increased under 
normal metal conditions (Toler et al., 2005); (iii) metal acquisition by plant 
is reduced and plant growth is enhanced (Weissenhorn et al., 1995b); (iv) 
metal concentration in shoots is lower at the highest soil metal concen-
trations (Leyval et al., 1991); (v) metal uptake was either not affected by or 
not enhanced in mycorrhizal plants, depending on the nature of the metal 
(Weissenhorn and Leyval, 1995); and (vi) metal accumulation in root and 
dry matter yield of shoot and root increased (Bai et al., 2008). 

Many factors contribute to the divergences of AMF on metal plant 
uptake, plant growth and plant biomass production (Leyval and Joner, 2001; 
Citterio et al., 2005; Wang et al., 2005; Audet and Charest, 2006; Deram  
et al., 2008; Jansa et al., 2008; Piotrowski et al., 2008). These include: (i) 
fungal genotype; (ii) uptake of metal by plant via AM symbiosis; (iii) root 
length density, (iv) competition of the AMF communities; (v) seasonal varia-
tion in AM; (vi) association with soil microorganisms; (vii) chemical proper-
ties of the soil outside the rhizosphere (pH, CEC, etc.); (viii) the metal itself; 
(ix) concentrations of available metals; (x) soil contamination conditions (con-
taminated or artificially contaminated vs non-contaminated soil); (xi) inter-
actions between P and metals (addition of P fertilizers); (xii) experimental 

et al., 1992; Bürkert and Robson, 1994; Weissenhorn et al., 1995a; Jamal  
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conditions (light intensity, plant growth stage, available N and P); (xiii) litter 
inputs; and (xiv) plant species and plant size. Besides, since AMF cannot be 
grown without a host plant (Leyval and Joner, 2001) and may coexist with 
other microbial communities (Roesti et al., 2005; Toljander, 2006) that can 
tolerate and accumulate metals (Lepp, 1992), this would obscure the inter-
action between AMF and metals in the substrate. 

4   AMF FOR MYCORRHIZOREMEDIATION  
OF CONTAMINATED SOILS AND MINE SITES

4.1  Metal hyperaccumulators

In nature, some plants hyperaccumulate heavy metals. For example, 
Viola calaminaria and Thlaspi calaminare grow over calamine deposits in 
Aachen, Germany and contain over 1% (dry weight) zinc in their tissues. Also, 
some Alyssum species like A. bertolinii grow on serpentine soils in Tuscany, 
Italy and contain over 1% (dry weight) nickel. These species are respectively 
called calamine and serpentine flora. Thlaspi caerulescens from the Brassicaeae
family can also hyperaccumulate both Zn and Cd (Brooks, 1998). As classi-
fied by McIntyre (2003), Zn and Cd hyperaccumulators contain these metals 
at minimal levels respectively of 10,000 and 100 g/g.

Heavy metal complexes in hyperaccumulators plants are mainly 
associated with carboxylic acids like citric, malic and malonic acids. These 
organic acids are implicated in the storage of heavy metals in leaf vacuoles. 
Amino acids like cysteine, histidine glutamic acids, and glycine also form 
heavy metal complexes in hyperaccumulators (Homer et al., 1997). These 
complexes are more stable than those with carboxylic acids. They are mostly 
involved in heavy metal transport through xylem. Moreover, hyper-accumulator 
plants can increase availability of metals like Fe and also Zn, Cu and Mn by 
releasing chelating phytosiderophores. Hyperaccumulation mechanisms may 
then be related to rhizosphere processes such as to the release of chelating 
agents (phytosiderophores and organic acids) and/or to differences in the 
number or affinity of metal root transporters (Lombi et al., 2001). 

Although hyperaccumulator plants are widely used in phytoextr-
action, they are generally of low biomass, inconvenient for phytoremediation. 
However, arbuscular mycorrhizae fungi (AMF), especially Glomus intra-
radices, colonized Festuca and Agropyron species have shown higher heavy 
metal (Zn, Cd, As and Se) content than non-colonized controls (Giasson  
et al., 2006). As for hyperaccumulators, fungi can synthesize cysteine-rich 
metal binding proteins called metallothioneins (Gadd and White, 1989). AMF 
might therefore be directly implicated in heavy metal hyperaccumulation in 
plants.
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4.2  Mycorrhizosphere and phytoextraction of metals 

Phytoremediation has already proven its potential in numerous 
applications around the world (Baker et al., 1988; Kumar et al., 1995; Giasson 
and Jaouich, 1998; Salido et al., 2003). There are several processes associated 
with phytoremediation of heavy metal polluted soils. Phytostabilization is 
the reduction of the mobility, bioavailability and/or toxicity of the pollutant 
in the rhizosphere, while the process of phytoaccumulation is the sequestra-
tion, by plant roots, of the contaminants, typically heavy metals, and then 
translocation to their aerial parts. The most common heavy metals found in 
polluted soils are Pb, As, Cr, Cd, Ni and Zn. In phytoremediation, the 
contaminant mass is not destroyed but ends up in the plant shoots and leaves, 
which can then be harvested and disposed of safely. 

The relatively low potential cost of phytoremediation allows for the 
decontamination of many sites that cannot be treated with currently available 
methods. In addition, it has aesthetic advantages and long term applicability: 
it preserves the topsoil and reduces the amount of hazardous materials gene-
rated during cleanup (Schnoor, 1997; Ensley, 2000). However, research in this 
field must be pursued to enhance biomass and heavy metals accumulation 
in plants. In this way, mycorrhizal fungi may be very helpful (see Fig. 1). 

Since the early eighties, many researchers have shown that mycorrhizal 
colonization can have an impact on heavy metal assimilation by plants 
(Bradley et al., 1981; Gildon and Tinker, 1983a, b). Dehn and Schüepp (1989) 

in lettuce roots but not in shoots. However, Angle et al. (1988), Lambert and 
Weidensaul (1991), and Jamal et al. (2002) have shown that mycorrhizae 
enhance heavy metal accumulation in legume shoots like soybeans, alfalfa 
and lentils. Killham and Firestone (1983), Hetrick et al. (1994), Mohammad 
et al. (1995), Burke et al. (2000), and Bi et al. (2003) have found similar 
results with grasses. In the case of cesium (Cs) and strontium (Sr), Entry  
et al. (1999) have indicated that mycorrhizal plants produce higher biomass 
and higher Cs and Sr content in plant tissues than non-mycorrhizal plants.  

Moreover, Turnau and Mesjasz-Przybylowicz (2003) have found that 
Berkheya coddii, a hyperaccumulator from the Asteraceae family, cultivated 
with well-developed mycorrhization, which includes arbuscule formation, 
increased not only the shoot biomass of the plant but also strongly increased 
the Ni content of shoots. Ni shoot content of B. coddii colonized with Glomus
intraradices was 1.3% of dry weight, while in nonmycorrhizal plants it was 
below 0.5%. 

In a glasshouse experiment, Giasson et al. (2006) studied four 
commonly found AMF species well adapted to North American soils: Glomus
intraradices, Glomus mossae, Glomus etunicatum, and Gigaspora gigantea.
Glomus spp. and Gigaspora spp. are AMF species identified in metal rich 

have found that mycorrhizal infection enhances heavy metal accumulation 
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soils (Chaudry et al., 1999). A grass mixture of Festuca rubra and F. eliator
(70%), Agropyron repens (25%), and Trifolium repens (5%) was used. This 
vegetation mix is used in land reclamation in Eastern Canada to revegetate 
mine tailings. Festuca species like F. rubra are considered characteristic 
species on metalliferous soils and can accumulate excessive amounts of 
metals (Smith and Bradshaw, 1979; Pichtel and Salt, 1998). Also, this grass 
mixture can be harvested several times per year because the articulated 
stubble can renew itself constantly (Marie-Victorin, 1964). In this study, 
AMF mycorrhizal root infection varied from 30% to 70% for all heavy metal 
treatments. Relative arbuscular richness varied from 38% to 84%. Arbuscules 
are the internal structures in the root cells that facilitate nutrient exchange 
between the fungus and the host plant. Well developed mycorrhization, which 
includes arbuscule formation, has shown to increase the metal content in 
shoots (Turnau and Mesjasz-Przybylowicz, 2003). Absence of arbuscular 
structures can indicate altered host physiology and carbon allocation, or can 
be a sign of stress in the mycorrhizal fungus. In their glasshouse study, 
Giasson et al. (2006) found the following results regarding heavy metal 
extractions by AMF colonized vegetation: 

There is interspecific variation between AMF regarding translocation 
of metals to plants.
Arbuscule relative richness in Zn treatment was the highest (75%) vs 
other metal treatments. 
Zn, Cd, As, and Se extractions by Glomus intraradices colonized 
plants are generally higher than in non-mycorrhizal plants, depend-
ing on the metal concentration in the soil and whether this heavy 
metal interacts with other metals in that soil.
Grasses colonized by Glomus intraradices had greater Zn, Cd, As, 
and Se mass extracted than for non inoculated vegetation because of 
higher plant biomass. 
When in interaction with other metals in the soil, Se is extracted more 
readily by AMF colonized plants. With time, however, Se in plants 
is lost in part by volatilization of the dimethyl diselenide form.  
For all four metal treatments (Cd, Zn, As and Se), there is a positive 
linear correlation between metal in plant tissues and metal content  
in soils. When soil metal content is increased tenfold metal in plant 
tissues is also increased by 10, for both colonized and control treat-
ments. 
Metal extraction reaches a plateau after 80 days showing no further 
phytoaccumulation or sometimes slightly diminishes because of either 
phytovolatilization (As and Se) or necrosis in plants (Zn) caused by 
high heavy metal levels. This observation suggests that G. intra-
radices colonized perennial grasses may be harvested after a two-month 
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period allowing for two to three harvests per year in Canadian lati-
tudes. In this way, phytoremediation can be accelerated two- to 
threefold.

Lasat (2002) observed that the effect of AMF associations on metal 
root uptake appears to be metal and plant specific. Greater root length 
densities and presumably more hyphae enable plants to explore a larger soil 
volume thus increasing access to cations (metals) not available to non-
mycorrhizal plants (Mohammad et al., 1995). 

As related by other studies (Shetty et al., 1994), AMF alters the 
pattern of Zn translocation from root to shoot in Festuca arrundinaceae.
Zinc hyphal uptake and translocation are known to be similar to P transport 
(Cooper and Tinker, 1978; Weissenhorn et al., 1995a). In their in vitro experi-
ment, Giasson et al. (2005b) observed that zinc adsorption at spore pro-
pagules was weak – approximately 9.6 g of Zn per gram of spore in the 500 

g/g Zn treatment because mycorrhizal hyphae vacuoles and arbuscules 
contain phosphorus in the form of polyphosphate. Additionally, Zn is trans-
ferred to the plant host though AMF hyphae and arbuscules. Arbuscules are 
involved in this transfer by providing a considerable increase in fungus and 
plant contact surface area (Smith and Read, 1997). Frequent degeneration of 
fungal arbuscules in the root thus allows Zn content to be transferred directly 
into the host cell (Gildon and Tinker, 1983a) reducing Zn concentrations in 
fungi. Turnau and Mesjasz-Przybylowicz (2003) found that well-developed 
mycorrhization, containing arbuscule formations, increased the metal content 
in plant shoots. Zn can then be accumulated in leaves as a citrate complex in 
the vacuole (Salt et al., 1999). 

Phosphate is central to mycorrhizal symbiosis. In P deficient soils, 
plant roots exude chemical signals to attract AMF. In such environments, 
AMF have developed an active phosphate transporter (Meharg et al., 1994). 
Arsenate (As(V)) is chemically similar to phosphate and can enter cells via 
arsenite (As(III)) translocating ATP’ase (Jun et al., 2002). The presence of 
AMF can therefore enhance both phosphate and arsenate uptake in such 
conditions (Martin et al., 2007) 

Also, at high levels of P, mycorrhizal colonization may be reduced 
with consequent reductions in uptake and cause deficiencies of essential 
metals like Cu and Zn. Interactions such as these may be involved in the 
apparent alleviation of Zn toxicity in polluted sites (Dueck et al., 1986). If 
the sites are P deficient, then mycorrhizal P uptake can result in increased 
growth and dilution of Zn in the tissues (Smith and Read, 1997).

In an in vitro study using transformed carrot roots (Daucus carota 
L.) growing in a phytagel (M media), Giasson et al. (2005b) found that even 
without pressure, AMF hyphae passed from the proximal to the distal side of 
the Petri dish into the M media containing low and high concentrations of Zn 
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and Cd. The hyphal network was well developed and sporulation was high in 
the low heavy metal level side (100 g/g Zn and 5 g/g Cd). More than 
16,000 spores per half Petri plates were counted for the low Cd and Zn 
treatments.

In the same experiment, Giasson et al. (2005b) observed that at high 
heavy metal levels in the media (500 g/g Zn and 20 g/g Cd), hyphal 
network was less developed (taking spiral shapes) and sporulation was weaker. 
The spore population was approximately 1,500 per half Petri plates for the 
20 g/g Cd treatment and 1,300 for the 500 g/g Zn treatment. The results 
are revealing. Essential cation (Zn) and nonessential cation (Cd) translocation 
from substrate (phytagel) to plant occurred through mycorrhizae hyphae, 
even at high (toxic) heavy metal concentrations. This is in accordance with 
Chen et al. (2003), who found that Zn is taken up and transferred to a host 
plant via extraradical hyphae. Root over growth media accumulation factors 
reached 5:1 and 18:1 for Zn and Cd, respectively. With over 90 g/g
cadmium and 550 g/g zinc found in the roots, the presence of G. intraradices 
caused carrots to become cadmium hyperaccumulators and Zn accumulators. 

Cadmium, like other nonessential metals, is generally of low abund-
ance in the biosphere and should therefore not compete with specific transport 
systems for essential metals (Gadd and White, 1989). However, as a result of 
human activities, nonessential metals are concentrated in certain areas at 
very high levels. Toxic and nonessential metals, such as Cd, generally bind 
more strongly to ligands compared with essential metals thereby displacing 
essential metals from their normal sites, and exerting toxic effects by binding 
to other sites (Hughes and Poole, 1989). 

Furthermore, Cd (0.97 Å) has a similar ionic radius to calcium (Ca) 
(0.99 Å), and so there is the possibility of metal-for-metal substitution in the 
predominantly oxygen-containing ligand sites preferred by Ca. Also, because 
of cadmium’s position in the Periodic Table (Group IIB), it bears a chemical 
resemblance to Zn. Competition among Cd, Ca, and Zn ions for adsorption 
sites on AM hyphae seem to favour Cd over Ca and Zn (Joner et al., 2000). In 

appears to enter via the Mn transport system and is rapidly diffused from 
resistant cells, via antiporter genes, exchanging cadmium for hydrogen and 
cation-translocating ATPase (Silver et al., 1989).

Cadmium will also bind at sites normally occupied by Zn containing 
either a soft ligand, like sulphur (for example, cysteine or metallothionein) 
or a hard ligand, like nitrogen (for example, histidine) and oxygen (Rayner 
and Sadler, 1989). A common metal-induced response in fungi is the intra-
cellular synthesis of cysteine rich metal-binding proteins called metallothio-
neins (MT), which have functions in metal detoxification and also in the 
storage and regulation of intracellular metal ion concentrations (Gadd and  

microbes, Cd competes with both Mn and Zn transport systems. Cadmium 
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White, 1989). Fungal cells have certain mechanisms to maintain metal homeo-
stasis and prevent metal toxicity. Glutathione (GSH), metal-binding peptides, 
metallothionein-like peptides, and sulphide ions play a role in such mechanisms. 
Cellular metal stress triggers the biosynthesis of some of these molecules, 
regulated via intracellular metal sensors (Singh, 2006). 

There are also small peptides called phytochelatins (PC) in microbes 
and plants that bind metals such as Cd via cysteinyl residues. These peptides 
protect plant cells from metal poisoning (Baker et al., 1988). Joner and 
Leyval (1997) suggested that sequestration of Cd in fungal structures could 
be responsible for the retention of Cd in the roots. It is likely however that 
the extent of this retention mechanism is restricted due to the relatively small 
biomass of the fungi. Giasson et al. (2005b) found Cd adsorption on spore 
propagules to be at concentrations below the detection limit of a chromato-
graph detector (HPLC). According to Colpaert (1998), once Cd saturation 
occurs in the fungi, increased translocation to shoots is thought to occur. 
Hughes and Poole (1989) found that some heavy metals appear to enter cells 
directly, possibly through a lesion in the cell membrane, as a result of the 
strong binding of the cation. 

In an in vitro study, Giasson et al. (2005b) found that heavy metal 
accumulation by colonized carrot roots seemed to reach a plateau: 550 g
Zn/g and 90 g Cd/g, independently of the initial growth media heavy metal 
concentrations. This could be explained by heavy metal saturation in vege-
tation after a two-month exposure period (Giasson et al., 2006). Furthermore, 
Rayner and Sadler (1989) demonstrated that when cadmium levels are 
increased, adaptation results thereby in increasing the growth rate and 
reducing the extent of cadmium accumulation from the medium.

These conclusions are worth considering for phytoremediation of 
heavy metal–contaminated soils enhanced by mycorrhizal inoculation. 

4.3  Mycorrhizostabilization of metals

Phytostabilization and mycorrhizostabilization reduce the mobility, 
bioavailability and/or toxicity of the pollutant in the rhizosphere. Mycorrhizal 
fungi can enhance soil structure by secreting a glycoprotein slime called 
glomalin. Fungi glomalin production enhances aggregate formation and may 
also create larger pores for better growth of hyphae (Thomas et al., 1993; 
Jastrow et al., 1998). A lack of large pores can restrict fungal growth in soils, 
however glomalin production was found to be higher in small pores (0.1 
mm) than in large ones allowing for more indirect fungal contact with soil 
(Brady and Weil, 2008). Glomalin can sequester heavy metals such as Cu, 
Cd, Pb and Mn in polluted soils. Gonzalez-Chavez et al. (2004) found that 
glomalin from hyphae of an isolate of Gigaspora rosea sequestered up to 28 
mg Cu/g in vitro media. 
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Mycorrhization can also improve plant resistance towards heavy 
metal phytotoxicity by biosorption (Dueck et al., 1986; Weissenhorn et al.,
1995a). Turnau et al. (1993) suggested that sequestration of metals like Cd, 
titanium (Ti) and barium (Ba) by polyphosphate in fungal structure might be 
important in minimizing transfer to the plant. Fungal sorption of heavy 
metals is a passive mechanism of ion immobilization on the surface of micro-
bial cells including processes like adsorption, ion-exchange, complexation, 
precipitation, and crystallization on and within what may often be a multi-
laminate, microfibrillar cell wall rich in negatively charged ligands such as 
phosphoryl, carboxyl, sulfhydryl, hydroxyl, and phenolic groups (Leyval and 
Joner, 2001).

Lead has low mobility in soil (less than Cd and Zn) (Orlowska et al.,
2002) and it seems to form organic complexes with soil organic matter con-
sidering it is unavailable for plants. Also, plants have mechanisms to pre-
cipitate Pb in highly insoluble forms in the rhizosphere, such as the PbSO4
(Brooks, 1995). Furthermore, sequestration of Pb in roots was found to be 
correlated with an increase in the number of fungal vesicles in highly colo-
nized species. Fungal vesicles may be involved in storing toxic compounds 
and, thereby, could provide an additional detoxification mechanism (Göhre 
and Paszkowski, 2006). 

4.4  Mycorrhizae and phytovolatilization of metals

A number of the elements in subgroups II, V and VI of the Periodic 
Table, like Hg, As and Se, form volatile hydrides or methyl derivatives that 
can be liberated in the atmosphere, probably as a result of the action of bac-
teria or soil fungi (Brooks, 1998). Metals can also be mycotransformed by 
such mechanisms as reduction, methylation and dealkylation.  

Metalloids and some metals (e.g., As, Se, Hg, Sn, Pb) can be trans-
formed by fungi into their methylmetal form which causes their volatilization 
in soil gazes and eventually in the atmosphere. In a greenhouse study, Giasson 
et al. (2006) suggested that phytoaccumulation of As and Se can slightly 
diminish because of phytovolatilization.

As showed by Zayed et al. (2000) and Giasson et al. (2006), Se may 
be lost in part by phytovolatilization in the dimethyl diselenide (CH3SeSeCH3)
form. Dimethyl arsenic (AsO(CH3)2(OH)), methyl mercury (CH3Hg+) and 
tetramethyl lead (Pb(CH3)4) are the most common methylated forms of As, 
Hg and Pb that can also be phytovolatilized. 

4.5  Mycorrhizoweathering of soil rocks and minerals

Bioavailability and toxicity of heavy metals in soils depend on their 
form rather than on total amounts. The availability of the eight metal fractions 
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can be divided into three groups: (1) easily extractable and exchangeable, 
including water-soluble, exchangeable, and bound to reducible Fe and Mn 
oxides fractions; (2) potentially extractable and exchangeable, including 
strongly bound to minerals or weakly bound to organic matter (OM), strongly 
chelated by OM, bound to or occluded by carbonates, and bound to or occlu-
ded by sulphides fractions; and (3) nonextractable and nonexchangeable, 
found in residue fraction (Tessier et al., 1979; Ma and Rao, 1997; Dinel  
et al., 2000).

Heavy metals bound to or occluded by carbonates are more difficult 
to extract by vegetation. Carbonates can be the dominant heavy metal sink in 
a particular soil. Heavy metals may co-precipitate with carbonates incur-
porated in their structure, or may be sorbed by oxides (mainly Fe and Mn) 
that were precipitated onto the carbonates or other soil particles (Kabata-
Pendias and Mukherjee, 2007). On the other hand, accumulation of heavy 
metals – Zn, Cd, As and Se – in plants can be enhanced by inoculation of 
roots by arbuscular mycorrhizal fungi (AMF) (Giasson et al., 2006). Fungi 
produce protons, organic acids, phosphatases, and other metabolites for solu-
bilization and complexation of metal cations (Singh, 2006).  

Moreover, mycorrhizal fungi are able to acidify the rhizosphere by 
releasing organic acids like citric and oxalic acids (see Fig. 1) (Leyval and 
Joner, 2001). Oxalic acid is a leaching agent for a variety of metals, such as 
Al, Fe and Li, forming soluble metal oxalate complexes (Singh, 2006). The 
most important mechanisms for regulating heavy metal behavior by car-
bonates are related to variations in soil pH. Carboxylic acids released by 
AMF can solubilize heavy metals bound to carbonates and enhance their 
phytoaccumulation (Giasson et al., 2005a). 

Zinc and Cd speciation concentrations measurements from con-
taminated soil near a zinc smelter in Canada show that the metal fraction 
distribution is similar for Zn and Cd. In fact, the easily extractable and 
exchangeable fractions represent less than 27% for both Zn and Cd, which is 
not interesting for a phytoremediation technology. On the other hand, the 
two first metal fraction groups, consisting of easy and/or potentially extrac-
table and exchangeable fractions including carbonate fraction, regroup around 
86% of the metal total concentration for both Zn and Cd. 

To determine if mycorrhizal fungi play a role in the speciation of 
heavy metals (biochemical weathering), Giasson et al. (2005a) used in vitro
compartmented systems to study the mechanisms implicated in heavy metal 
(essential and non-essential) absorption by AMF colonized plant roots. The 
goal of their experiment was to determine whether mycorrhizal hyphae are 
directly involved in sequestration and uptake of essential Zn and non-essential 
Cd by plant roots, while these heavy metals were present in toxic concen-
trations in the Petri media. They wanted to verify the effects of endo-
mycorrhizal (Glomus intraradices) hyphae on speciation of essential (Zn) 
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and nonessential (Cd) heavy metals in order to change this water-insoluble 
carbonate form to a soluble and phytoavailable form. 

Their results indicate that there is a solubilization of ZnCO3 by 
hyphae and translocation to roots. Zinc saturation was reached in the G.
intraradices colonized roots at approximately 400 g/g, independently of 
initial ZnCO3 concentrations. In the cadmium treatment, Cd saturation was 
not reached. In the lower Cd treatment, the plant to media metal ratio was 
3:1, and in the higher treatment, the ratio was 1:1 (Giasson et al., 2005a). In 
fact, mycorrhizal fungi are able to acidify the rhizosphere by releasing 
organic acids like citric and oxalic acids (Leyval and Joner, 2001). These 
organic acids can form coordination compounds or complexes with metals.

If the organic acids (e.g., citric and oxalic acids) contain two or more 
electron donor groups so that ring-like structures are formed, then the resulting 
complexes are metal chelates (Gadd, 2000). Berthelin et al. (2000) showed 
that releases of organic acids by ectomycorrhizae are efficient in weathering 
and solubilization of minerals by the following complexation dissolution 
processes:

 M+ (Mineral)– + HL  H+ (Mineral)– + ML  (1) 

HL + LM L2M + H+                                     (2) 

where L = organic ligands and M+ (Mineral)– are carbonates, phosphates, 
silicates and so on. 

Because P availability is strongly controlled by dissolution of mineral 
P that can constitute a considerable portion of the available P, soil pH is a 
major factor in determining the relative importance of mycorrhizae in P 
uptake. Mineral phosphorous has greatest availability at slightly acid to near-
neutral pH. At low pH, phosphorous solubility is limited by the low 
solubility of Fe and Al phosphates, whereas at alkaline pH phosphorous 
forms insoluble Ca and Mg phosphate minerals (Crowley and Alvey, 2002). 

The availability of Cd from rock and mineral phosphates (apatite) 
can be enhanced with the release of organic acids such as tartaric acid by 
ectomycorrhizal fungi. Suillus granulatus was more efficient than Pisolithus
tinctorius in that matter (Leyval and Joner, 2001). Mycorrhizoweathering of 
soil minerals (silicates, carbonates, phosphates) can enhance the availability 
of metals in the rhizosphere thereby enhancing plant uptake. 

4.6  AMF and plant stress alleviation on mine sites

One of the main objectives in mine site reclamation is revegetation. 
This mining environment is characterized by poor physical and chemical 
conditions, poor nutrient (N, P) and organic matter contents, very low or 
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very high pH, drought and high surface temperatures. Mycorrhizal coloni-
zation could improve vegetation establishment and survival particularly in 
such adverse conditions. 

Young seedlings have to be protected from extremely high surface 
temperatures to prevent heat girdling of stems (Danielson, 1985). By coloni-
zing the roots, the fungus enhances plant growth by making soil elements 
more accessible (George et al., 1992; Nadian et al., 1997; Gregory, 2006) 
and by improving water absorption (Sweat and Davis, 1984; Cui and Nobel, 
1992). Accordingly, mycorrhizal colonization improves vegetation establish-
ment and survival particularly in adverse conditions such as low fertility and 
arid soils (Jasper et al., 1989; Allen et al., 1996; Smith et al., 1998).

Mine spoils may be extremely acidic or alkaline. Acid mine drainage 
(AMD) is very frequent, especially in sulphide metal ore tailings, where rain 
water reacts with sulphide to form sulphuric acid (H2SO4). Leachate pH 
exiting from the tailings could be as low as 1. Plant roots can be colonized 
with mycorrhizae at pH values as low as 2.7, the critical pH for 95% maxi-
mum colonization of cassava roots varying with species from 4.4 to 4.8 
(Ballen and Graham, 2002). 

Hyphae of AMF may extend 8 cm from the root surface, but rhizo-
morphs of Pisolithus may extend 4 m into the soil, a result that suggests 
ectomycorrhizae are better adapted to long-distance transport than AMF 
(Danielson, 1985). Relatively few species of ectomycorrhizal symbionts 
have been identified as occurring on mine wastes, and of those, even fewer 
have been properly quantified with respect to their actual importance. To 
determine the degree of fungal symbiont adaptation to mine waste condi-
tions, infection levels of each species must be quantified (Danielson, 1985). 
Ectomycorrhizae Pisolithus tinctorius, Telephora terrestris, and Cenococcum 
geophilum have been successfully field tested on spoils and tailings.

In their experiment, Chen et al. (2007) provided evidence for the 
potential use of local plant species in combination with AMF for ecological 
restoration of metalliferous mine tailings. It appears that considerable strain 
differences exist among AMF, and it would be profitable to screen isolates 
for adaptability to mine spoils. Old mine spoils with established vegetation may 
prove to be valuable sources of inoculum of adapted strains (Danielson, 1985). 

5    CONCLUSION 

Although usually considered important primarily for P uptake, AMF 
can improve assimilation of other non metallic nutrients such as N, K, S, B 
as well as of metallic nutrients (Zn, Cu, Mn, and others), particularly in 
unpolluted soils of low nutrient status. It has been suggested that mycorrhizae 
may benefit plant growth by increasing the availability of P from non-labile 
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sources. The response to AMF colonization may vary among the different 
plant species. However, it should be considered to introduce mycorrhizae 
inoculums tolerant to metallic nutrients (e.g., Zn, Cu, Mn or others) into 
low-input agricultural soils in order to facilitate the recycling of organic, 
industrial and urban wastes on agricultural fields that would otherwise be 
extremely dangerous to agricultural ecosystems (Weissenhorn et al., 1995c). 
For environmental considerations, mycorrhizal associations should be 
managed to attenuate the possibility of contaminating the soil and surface 
water (Jeffries et al., 2003).

In order to exploit microbes as biofertilizers, biostimulants and bio-
protectants against pathogens and heavy metals, ecological complexity of 
microbes in the mycorrhizosphere needs to be taken into consideration and 
optimization of rhizosphere/mycorrhizosphere systems need to be tailored 
(Khan, 2006). There is interspecific variation between AMF regarding trans-
location of metals to plants. As observed by Lasat (2002), effect of AMF 
associations on metal root uptake appears to be metal and plant specific. 
Greater root length densities, and presumably more hyphae, enable plants to 
explore a larger soil volume thus increasing access to cations (metals) not 
available to nonmycorrhizal plants (Mohammad et al., 1995). 

6    FUTURE RESEARCH 

Arbuscular mycorrhizal fungi have great potential in the remediation 
of disturbed land and low fertility soil but the use of these mycorrhizae, and 
other beneficial microbial communities, by farmers in their fields is still 
lacking. Further experiments are needed to assess the ability of AMF to 
continue growing in the presence of multiple toxic metal or metalloid cations, 
either alone or in combination.  

The understanding of interactions occurring between AMF and its 
biotic and abiotic environment is still in its infancy. The characterization of 
the composition of AMF exudates and the effects of these compounds on 
soil microbial community, plant nutrition, metal accumulation in plant shoots 
and shoot biomass production have implications for sustainable soil man-
agement and land rehabilitation. 
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Abstract:          With population increase, urban sprawl on some of the best agricultural 
soils and the interest for biofuels, serious pressures have been created on 
grain and oilseeds production in North America. Fertilizers are the main 
expense in intensive agricultural management practices. P fertilization is 
often closely related with soil degradation and contamination of surface 
water, causing eutrophication and accumulation of blue-green algae in 
certain locations of Canada. Arbuscular mycorrhizal (AM) symbioses have 
been shown to benefit plant growth in large part due to the very extensive 
hyphal network development in soil, exploiting nutrients more efficiently 
and improving plant uptake. AM symbiosis also increases resistance to stress 
and reduces disease incidence, representing a key solution in sustainable 
agriculture. Appropriate management of mycorrhizae in agriculture should 
allow a substantial reduction in chemical use and production costs. This 
chapter will review the effects of various fertilization practices on AMF 
community structure and crop productivity in major North American grain 
productions (i.e., corn, soybean, wheat, barley), and their reaction to other 
common management practices (i.e., tillage, rotation, pesticide use). 

Keywords:             Arbuscular mycorrhizal fungi; intensive agriculture; grain production.

1         INTRODUCTION 

With population increase, urban sprawl on some of the best agri-
cultural soils and growing interest for biofuels, serious pressures have been 
created on grain and oilseeds production in North America. However, 
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agriculture still occupies an important part of North American territory and 
remains an important part of the economy (Table 1).  

Many forms of crop management have been used systematically by 
farmers since many decades with the aim of rapidly increasing crop produc-
tivity. Among them mineral fertilizers now represent one of the main expenses 
in intensive agricultural management practices (Heffer and Prud’homme, 
2006). Organic fertilizers such as manures and composts are easily available 
for most farmers but their nutrient content is often uneven and unpredictable 
from year to year. No matter which form of fertilizer is applied, conventional 
farming generates large nitrogen (N) and phosphorus (P) surplus, which can 
lead to both N and P leaching (Brady and Weil, 2002). Not only is there a 
cost for farmers associated to this loss, but the phenomenon has also been 
related to soil contamination, and can be a major threat for aquatic systems 
through surface and groundwater degradation (Kirchmann and Thorvaldsson, 
2000). The role of P in anthropogenic eutrophication of water bodies is well 
known since many decades (Imboden, 1974). More recently, fertilizer runoff 
from agricultural fields was emphasized among the causes of excessive 
cyanobacteria growth and increasing of potentially harmful blooms leading 
to restricted access to lakes in certain locations of Canada and United States.  

Table 1. North American cereal cropping importance according to the number of cultivated 
hectares (ha) and tonnes harvested in 2003. (FAO, 2004; Statistics Canada, 2007; USDA, 2007; 
http://www.fao.org/statistics/yearbook/vol_1_1/index.asp; http://www40.statcan.ca/l01/ cst01 
/prim11a.htm; http://www.nass.usda.gov/About_NASS/index.asp)

Crops Canada Mexico USA 
ha 49,894,000 N.A. 2,000,000 Barley
tonnes 12,327,600 1,109,424 6,011,080 
ha 1,226,100 7,780,880 28,789,240 Maize 
tonnes 9,587,300 19,652,416 256,904,560 
ha 10,528,000 N.A. 29,000,000 Soybean
tonnes 2,268,300 75,686 65,795,340 
ha 10,467,400 626,517 21,383,410 Wheat 
tonnes 23,552,000 3,000,000 63,589,820 

N.A. = data not available 

Arbuscular mycorrhizal fungi (AMF) are estimated to associate with 
over 90% of vascular plants, including most agricultural crops (Read et al.,
1976; Smith and Read, 1997). Their extensive soil hyphal network develop-
ment has been largely studied. These obligatory symbionts have been demon-
strated to benefit the growth of numerous plant species by improving their 
nutrient uptake as well as increasing their resistance to abiotic stresses and 
reducing damages caused by pathogenic microorganisms (Smith and Read, 
1997; Clark and Zeto, 2000; Barea et al., 2002; Schloter et al., 2003; St-Arnaud 
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and Vujanovic, 2007). A more appropriate management of mycorrhizae in 
agriculture is expected to allow a substantial reduction in the amount of 
minerals used without losses in productivity, whereas permitting a more 
sustainable production management. This chapter will review the AMF 
contribution to crop productivity and effects of various fertilization practices 
on AMF community structure in major North American grain productions 
(i.e., corn, soybean, wheat, barley), and their response to other common 
management practices (i.e., tillage, rotation, fallow). 

2       ARBUSCULAR MYCORRHIZAE CONTRIBUTION 
TO GRAIN PRODUCTION 

Several studies have been conducted to confirm AM symbiosis posi-
tive influence on major edible plants (Table 2). A survey published in 1988 
reported that in 78 field trials, increased AMF colonization resulted in an 
average yield increase of 37% (McGonigle, 1988). A more recent meta-
analysis of 290 field and greenhouse studies published between 1988 and 
2003 confirmed this relation between colonization extent and crop producti-
vity, and determined that increased colonization resulted in an overall 23% 
yield increase (Lekberg and Koide, 2005). It has been concluded that soybean, 
maize, barley and wheat yields were all increased by AMF colonization in 
greenhouse trials (Karagiannidis and Hadjisavvazinoviadi, 1998; Ilbas and 
Sahin, 2005; Lekberg and Koide, 2005; Nourinia et al., 2007).

nutrient uptake meaning that the ones with roots that cannot seek P efficiently 
receive the most benefit from mycorrhizal symbiosis. Other factors such as 
root surface area, root hair abundance and length, growth rate, response to 
soil conditions and exudations can be related to the plant dependency on AM 
symbiosis for nutrient uptake. Some crops are considered as facultative 
mycotrophs, while others are seen as obligate mycotrophs (Smith and Read, 
1997). Various plants, such as leek or corn, are highly dependent on mycor-
rhizae to meet their basic P requirements, while others like wheat, barley and 
oat, benefit from the symbiosis but are less dependent (Plenchette, 1983; 
Ryan and Angus, 2003). Ryan et al. (2005) even noticed that high coloni-
zation by AMF was associated with reduced growth of winter wheat in low-
P condition, strengthening the hypothesis that different plant species do not 
benefit equally from AMF because some of them acquire more nutrients 
from the symbiosis than others (Smith and Read, 1997). Screening of maize 
inbred lines to study their tolerance to low-P stress conditions has brought 
evidence that there are genetic variations in P uptake efficiency (Da Silva and  

AM Fungi Communities 
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Table 2. Recent studies showing beneficial impacts of AMF on various edible plants 
cultivated in North America. 

Type of 
 plant 

Conclusions References 

Citrus Enhanced drought tolerance of tangerine 
Increased citrus P, Zn, and Cu contents 
Increased root length of lemon 

(Fidelibus et al.,
2001; Ortas et al.,
2002; Wu and Xia, 
2006)

Cereals Enhanced growth of corn in compacted soil 
Increased biomass production of corn in low P soil
Increased K, Ca, Mg uptake of corn 
Enhanced growth of millet 
Alleviated the adverse effects of chlorothalonil on 
rice 
Exerted protective effects against toxicity of Cu, 
Zn, Pb, and Cd in contaminated soil on rice 

(Bagayoko et al.,
2000; Liu et al.,
2002; Zhang et al.,
2005, 2006; 
Miransari et al.,
2007)

Legumes Reduced the development of pea root-rot
Increased growth and yield of peanut 
Decreased incidence of peanut pod rot

(Abdalla and 
Abdel-Fattah,

Quilambo et al.,
2005)

Vegetables Enhanced development of pepper plants  
 Reduced Phytophthora blight in green pepper 
Decreased Fusarium wilt incidence in cucumber 

(Hao et al., 2005; 
Ozgonen and 
Erkilic, 2007)

Gabelman, 1992). Many experiments conducted on North America intensively  
grown crops have also showed that responsiveness to mycorrhizal colonis-
ation changes with plant cultivars (Baon et al., 1993; Khalil et al., 1994; Zhu
et al., 2001).

Studies have been conducted to investigate the effects of AMF on 
plant competition to support the hypothesis that the presence and abundance 
of such fungi can influence plant species dominance or mediate coexistence 
(Hamel et al., 1992; West, 1996; Marler et al., 1999; Hart et al., 2003; Yao
et al., 2005). For example, Feldmann and Boyle (1998) found that the AMF 
benefits to maize yield come from maintaining a diverse weed cover crop.  

A winter wheat cover crop was compared to a dandelion cover and 
found that dandelion produced higher AMF colonization, P-uptake and yield 
in the following maize crop showing that in some cases, weeds may provide 
an effective support to AMF between cropping periods (Kabir and Koide, 
2000). Jordan et al. (2000) hypothesized that specific AMF could reduce the 
prevalence of non-host species in weed communities. Some studies have high-
lighted the capability of some AMF to strongly change the relative abundance 
of some important agricultural weeds. In fact, it has been reported that early 
growth rate of non-host weedy species were reduced in the presence of AMF 
(Francis and Read, 1994; Johnson, 1998). Conversely, there are also some 
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indications that non-mycorrhizal plants may actively antagonistize AMF, 
e.g. via inhibitory compounds released into soil (Fontenla et al., 1999). It is 
thus interesting to note that many common North American agricultural weeds 
belong to families that appear to be predominantly non-host (Francis and 
Read, 1994; Jordan et al., 2000).  

Data also support the idea that the influence of AM associations on 
plant competition is dependent not only on the presence but also on the 
identity of AMF (van der Heijden et al., 2003; Vogelsang et al., 2006). As 
the symbiosis between plants and AMF is non-specific, plant response to 
mycorrhizal colonization also varies according to the organism they are in 
symbiosis with. Therefore, biomass and P acquisition depend on the specific 
plant-AMF combination (Klironomos et al., 2000; Smith et al., 2004; 
Scheublin et al., 2007). To illustrate this, a greenhouse study conducted on 
wheat demonstrated an increase in plant growth 42 days after inoculation 
with Scutellospora calospora but a significant decrease after inoculations 
with Glomus spp. or Gigaspora decipiens, under low-P condition (Graham 
and Abbott, 2000).  

However, the whole dynamics of field soils in such plant production 
brings many more variables that should be taken into consideration. In fact, 
the degree to which AMF increase yields is greatly dependent on various 
factors such as soil type, nutrient status, crop, management practices, and 
soilborne microorganisms (Karagiannidis and Hadjisavvazinoviadi, 1998). 
Agricultural management practices, soil nature, abiotic stresses and other soil 
microorganisms are factors impacting plants and, thus, influencing AMF 
development and/or colonization, or vice versa.

3          ALLEVIATION OF MAJOR ABIOTIC STRESSES 

AMF can adapt to a wide range of environments. They are found in 
soils with very different water regimes including very arid habitats. In these 
regions, low level of soil moisture can sometimes be compensated by incre-
ased root system area for water uptake through hyphal ramification in the 
soil (Khan et al., 2003). It has been shown that mycorrhizal fungi can 
improve water use efficiency and sustain drought stress in wheat (Al-Karaki
et al., 2004), oat (Khan et al., 2003), and corn (Subramanian and Charest, 
1995, 1999; Subramanian et al., 1995, 1997). Colonized soybeans had higher 
leaf water potential and relative water content than non-mycorrhizal plants 
under water stress conditions (Aliasgarzad et al., 2006). AMF colonization 
also increased onion yield under water deficit condition (Bolandnazar et al.,
2007). In fact, mycorrhizal plants have, in general, higher water uptake due 
to hyphal extraction of soil water (Bethlenfalvay et al., 1988; Ruiz-Lozano
et al., 1995; Al-karaki, 1998) and higher root hydraulic conductivity than 
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non-mycorrhizal plants (Augé and Stodola, 1990). Some results also suggest 
that AM association enhances N assimilation by maize which enables the 
host plant to more efficiently withstand drought conditions and recover after 
stress is relieved (Subramanian and Charest, 1998).

There are also some evidences in the literature that AMF coloni-
zation can protect crops such as barley, cotton and lettuce against the negative 
effects of salt (Ruiz-Lozano and Azcón, 2000; Tian et al., 2004; Nourinia  
et al., 2007). Moreover, in acidic soil conditions, growth and mineral acquisition 
of maize has been positively associated with AM root colonization (Clark, 
1997; Alloush and Clark, 2001). Similarly, in alkaline soil, an experiment 
performed on durum wheat inoculated with Glomus mosseae also showed 
greater grain yields in mycorrhizal plants than in controls (Al-Karaki and Al-
Omoush, 2002). Soil compaction is another important soil characteristic that 
greatly affects crop yields. Soil compaction can rapidly lead to reduced root 
density which can result in decreased water and nutrient uptake (Pardo et al.,
2000). Corn growth was increased by AM colonization in compacted soil, 
though the effectiveness of AMF-derived growth increase varied with the 
level of soil compaction, the AMF strain, and interaction with other soil micro-
organisms (Miransari et al., 2007). 

4         EFFECT OF AMF ON PLANT PATHOGENS  

AMF may impact crop growth by affecting some soil microbial 
populations also present in the agroecosystems. Many researches focused on 
these relationships, showing that interactions between AMF and other soil 
microorganisms can be either detrimental or favourable to plant pathogens, 
other rhizosphere microbes, AMF or to mycorrhizal plants (Meyer and 
Linderman, 1986a, b; Paulitz and Linderman, 1989; Calvet et al., 1992; St-
Arnaud et al., 1995; Rousseau et al., 1996; Filion et al., 1999; Vigo et al.,
2000; Elsen et al., 2001; Talavera et al., 2001; Gryndler et al., 2002; St-
Arnaud and Elsen, 2005). The effect of plants on soil biota may be related to 
the amount and quality of root exudates released in the soil. Ability to access 
and metabolize different nutrient sources vary from one microbial species to 
the other (Baudoin et al., 2003). Plant root exudation pattern and therefore 
its impact on soil biological environment can be greatly modified by my-
corrhizal colonization (Linderman, 1992). It has often been demonstrated 
that changes in the amount, quality or pattern of release of root exudates by 
mycorrhizal colonization could influence the other microorganisms present 
in the rhizosphere (Filion et al., 1999; Graham, 2001; Sood, 2003; de Boer
et al., 2005; Lioussanne, 2007).

Several studies have investigated the changes occurring in the bac-
terial communities of mycorrhizal plants’ rhizosphere. There are numerous 
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reports of AMF influencing bacterial growth rate (Christensen and Jakobsen, 
1993; Marschner and Crowley, 1996a, b; Marschner et al., 1997). Experi-
ments also demonstrated that mycorrhizal associations could be related to 
qualitative, quantitative and spatial shifts in those populations (Meyer and 
Linderman, 1986b; Linderman and Paulitz, 1990; Posta et al., 1994; Andrade
et al., 1997). AM colonization can influence the species composition of the 
soil microbial community by increasing some groups and decreasing others 
(Christensen and Jakobsen, 1993; Vazquez et al., 2000).

Such an important influence on soil microorganisms has rapidly 
raised interest on the possible role of AMF in bioprotection. Consequently, 
the number of research works conducted on the interactions between AMF 
and pathogens in diverse agricultural systems has exploded in the last decade. 
Even if mycorrhizal inoculation was sometimes associated with neutral effects 
(Bødker et al., 2002) or enhanced disease symptoms, with some AMF 
isolates (Garmendia et al., 2004), in most studies AMF inoculation reduced 
pathogen damages revealing the potential of AMF as a biological control 
agent (Selim et al., 2005; Li et al., 2007). It is also important to mention that 
although most studies have reported a decrease in fungal or nematode-
induced root diseases severity in mycorrhizal treatments (Borowicz, 2001; 
Graham, 2001; Matsubara et al., 2001; Castillo et al., 2006; St-Arnaud and 
Vujanovic, 2007), there are only very few reports of such behaviour associ-
ated to most North American agronomic crop plants. For example, Cochlio-
bolus sativus, currently one of the dominant pathogen of barley in Canada 
(Ghazvini and Tekauz, 2007), has been shown to be suppressed by various 
AMF independently of P availability and water stress (Boyetchko and Tewari, 
1988, 1990; Rempel, 1989), as was transmission of B. sorokiniana in aerial 
parts of barley plants in Sweden (Sjöberg, 2005). Severity of take-all caused 
by Gaeumannomyces graminis var. tritici in wheat was also reduced by 
AMF inoculation in P-deficient soil but was not affected at a higher P level 
(Graham and Menge, 1982). Conversely, stem rust was more severe in 
mycorrhizal wheat plants inoculated with Puccinia graminis urediospores at 
the two-leaf stage, compared to non-mycorrhizal plantlets (Rempel, 1989). 
Despite its great potential to be used as a key component of sustainable 
agriculture, AMF effectiveness as disease control agents depends on many 
other factors, such as temperature, soil nutrient and water contents, time of 
mycorrhizal inoculation, amount of mycorrhizal inoculum, pathogen virulence, 
parameters which are all very difficult to study, not to mention control,  
in the field. On the other hand, management of soil microbial components, 
including AMF, definitely represents a promising direction toward the control 
of plant diseases.  
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5  EFFECT OF AMF ON PLANT BENEFICIAL 
MICROORGANISMS 

Several types of microorganisms like N2-fixing bacteria (de Varennes 
and Goss, 2007; Powell et al., 2007), P-solubilizing bacteria and fungi 
(Barea et al., 2002), antagonist of plant pathogens (Budi et al., 1999) and 
soil aggregating bacteria (Rillig et al., 2005) are associated with the rhizo-
sphere of mycorrhizal plants. These organisms are generally grouped under 
the name ‘plant growth promoting rhizosphere microorganisms’ (PGPR) 
because they are able to exert beneficial effects on plant growth. Many legu-
minous plants have the ability to create a symbiosis with rhizobia, which can 
fix atmospheric nitrogen (N2) and hence increase plant access to N sources. 
Various studies suggested that a specific interaction that influences both the 
nodulation and mycorrhizal colonization processes occurs between AMF and 
the N2-fixing rhizobia in legumes (Ibijbijen et al., 1996; Saxena et al., 1997; 
Xavier and Germida, 2002, 2003). Growth and productivity of the legumes 
were always dependent on the combination of selected AMF and rhizobia, 
revealing that positive interactions between compatible symbionts could 
significantly increase growth and yields. Pot experiments done with soybean 
demonstrated that under controlled environment conditions, N2-fixation in 
mycorrhizal plants is generally greater than in non-mycorrhizal plants, with 
more nodules and greater nodule dry weight (Goss and de Varennes, 2002). 
However, it seems that under field conditions N2-fixation is not always 
promoted even if the tripartite symbiosis formed by indigenous arbuscular 
mycorrhizae, Bradyrhizobium and soybean is established (Antunes et al.,
2006).

Synergistic effect of associative diazotroph bacteria on AMF activity 
has often been reported (Barea et al., 2002; Sala et al., 2007). Inoculation of 
barley with Glomus mosseae or G. fasciculatum together with Azospirillum
brasilense produced a synergic effect on dry matter and grain yield, in a 
greenhouse study (Subba Rao, 1985). Biró et al. (2000) also noted a bene-
ficial effect on soybean of co-inoculation with Azospirillum brasilense, Rhi-
zobium meliloti and Glomus fasciculatum, while Russo et al. (2005) con-
cluded after pot and field tests that an indirect effect of Azospirillum on 
mycorrhization can be assumed on corn and wheat plants as a consequence 
of the positive effect on root growth. Co-inoculation of wheat with strains of 
Pseudomonas and Glomus clarum have also shown a positive dry matter 
response (Walley and Germida, 1997). However, in this study, inoculation did 
not result in any increase in root dry weight or length. Another greenhouse 
trial conducted on maize inoculated with a biofertilizer containing Glomus,
Azotobacter and Bacillus strains resulted in a significant increase of plant 
growth (Wu et al., 2005). Inoculation also improved soil properties, such as 
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organic matter content and total N in soil as well as it increased the nutri-
tional assimilation of plant (total N, P and K).  

Higher nutrient assimilation can often be related to the beneficial 
effects of P- and K-solubilizing bacteria (Rodriguez and Fraga, 1999). They 
may indeed enhance mineral uptake by plants through solubilizing insoluble 
forms of P and K, and making them available in soil to plant roots. Many
microorganisms are thus able to improve plant growth by solubilizing rock 
phosphate into plant available P form (Rodriguez and Fraga, 1999; White-
law, 2000; Reyes et al., 2002). Among reports that showed synergistic inter-
actions between P-solubilizing microorganisms and AMF (Villegas and 
Fortin, 2001, 2002; Hamel, 2004; Artursson et al., 2006), a few studies have 
been conducted on wheat plants. In field trials performed in southern Egypt, 
the highest significant effect on Triticum aestivum L. yield and P content was
observed when seeds were inoculated with a mixture of Glomus constrictum
and two fungal isolates (Aspergillus niger and Penicillium citrinum), which 
are known as phosphate rock-solubilizing fungi (Omar, 1998). A recent 
work proposed by Babana and Antoun (2006) also showed that by inocul-
ating wheat seeds with phosphate rock-solubilizing microorganisms and 
Glomus intraradices under field conditions, it is possible to obtain grain yields 
comparable to those produced by using diammonium phosphate fertilizer. 

However, the application of microbial fertilizers has not resulted in 
constant effects. The mechanisms and interactions among crops, microbes 
and abiotic factors are still not well understood but there are great expect-
ations regarding the fact that biofertilizers may complement mycorrhizal 
activities in sustainable agricultural systems. 

6 IMPACT OF LAND USE ON AMF ABUNDANCE 
AND DIVERSITY 

Crop management practices such as tillage, pesticide application, crop 
rotations and fertilization can impact the AM association, both directly, by 
damaging the AMF network, and indirectly, by modifying soil conditions 
essential to their survival and development. In general, agricultural practices 
affect the occurrence of AMF, with resulting effects on soil biological activity 
(Johnson et al., 1992; Johnson and Pfleger, 1992; Helgason et al., 1998; 
Menendez et al., 2001). These impacts have raised a large interest in the 
scientific community.

A major effect of conventional crop management in field studies was 
the reduction of AMF biodiversity. To illustrate this, less than 10 different 
AMF species were identified in conventional agricultural soils (Talukdar and 
Germida, 1993; Cousins et al., 2003), while more than 20 were found in 
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grassland (Bever et al., 1996) using trap cultures, both in Canada and USA. 
Oehl et al. (2005) recently supported this fact in Switzerland by demonstrating 
a significant difference between the number of species found in intensively 
managed maize fields and grasslands. Many studies have indeed indicated 
that AMF abundance and effectiveness are declining upon agricultural 
intensification (Douds and Millner, 1999; Oehl et al., 2003; Gosling et al.,
2006). In major cropping systems, the diversity of host plant is by far lower 
than in an undisturbed ecosystem. Monoculture, which is very common in 
grain production, seems to create a selective pressure on AMF species 
leading to both a spore population decrease and a shift in the community 
(Johnson et al., 1992; Rao et al., 1995; Oehl et al., 2003). For example, 
Bedini et al. (2007) reported that no more than six AMF spore morphotypes 
were detected in a maize monoculture. Only spores related to the genus 
Glomus were recovered, confirming data on its predominance in managed 
soils. Several studies reported prevalence of Glomus spp. in cropped soils, in 
contrast to rich AMF communities containing Gigaspora spp., Scutellospora 
spp. and Acaulospora spp. in uncultivated soils (Blaszkowski, 1993; Talukdar 
and Germida, 1993; Hamel et al., 1994; Helgason et al., 1998).

Long fallow periods or non-mycorrhizal crop plants have a profound 
effect on AMF activity and diversity. For example, a study conducted by 
Karasawa et al. (2002) indicated an increase in AMF colonization and growth 
of maize following a sunflower crop as compared to maize following mustard, 
a non-mycorrhizal crop. Earlier, Gavito and Miller (1998) observed a delay 
of more than 60 days in AMF colonization of corn following canola, a non-
AMF host species, as compared to a previous crop of bromegrass and alfalfa 
(both mycorrhizal). However, similar AMF spore numbers were detected in 
wheat field whether the previous crop was corn or canola (Jansa et al., 2002). 
Hamel et al. (2006a), also reported that cropping frequency did not influence 
AMF abundance in a wheat-based rotation in Canadian prairies, according to 
PLFA analysis.

During fallow periods, the viable AMF hyphal network decreases 
over time leading to a lower mineral uptake and growth of the subsequent 
mycorrhizal crop (Kabir et al., 1999). It has been demonstrated that AM 
colonization and P uptake decrease with increasing length of a preceding 
fallow (Kabir et al., 1999; Kabir and Koide, 2000). In fact, Kabir et al.
(1999) have shown that a 90-day fallow in maize decreases AMF active 
hyphae by 57%, root colonization by 33%, and P, Zn, and Cu uptake by 
19%, 54%, and 61% respectively. Another study conducted on maize and 
soybean has shown that AMF spore number increased after three years of 
continuous cropping. Under fallow, spore number declined during the first 
year, and then stabilised at a low level (Troeh and Loynachan, 2003). In
some cases the adverse effect of fallow periods on AMF inoculum potential 
can be avoided by growing a cover crop. For example, Boswell et al. (1998) 
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found that growing winter wheat in comparison to fallow could increase AM 
inoculum potential and the growth and yield of maize. Authors have suggested 
that the absence of host plant during fallow negatively impacts AMF through 
energy source exhaustion. Moreover, in some part of North America, soil 
freezing and thawing during winter can directly disrupt extraradical hyphae 
(Boswell et al., 1998).

More than a decade ago, it has been suggested that tillage disturb 
mycorrhizal activity in soil and therefore, plants nutrient uptake (Miller
et al., 1995; Boddington and Dodd, 2000; Mozafar et al., 2000). Soil disturbance 
has often been shown to reduce the density of AMF spores, species richness 
and the length of extraradical mycelium of AMF relative to undisturbed soil 
(Boddington and Dodd, 2000). In a study conducted by Jansa et al. (2002) 
on wheat plants, it has been observed that AMF community composition was 
affected by tillage treatments. Fifteen AMF species were detected in the no-
till fields, 14 in those under chisel treatments and 13 under conventional 
tillage conditions. Also, significantly more AMF spores were observed in 
soil from the no-tilled plots than from the tilled plots (when in rotation with 
canola). In this case, other factors, such as weed roots may have supported 
AMF development because canola is a non-mycorrhizal plant. Other research 
showing that soil disturbance by tillage in maize fields causes physical 
disruption of the fungus mycelium and therefore decreases the absorptive 
abilities of the mycorrhizae, have been summarized by Miller (2000). In 
reduced tillage systems, heavy P fertilization may not be as necessary as in 
heavily tilled systems because the intact mycorrhizal network increases the 
effective surface area for crop P uptake (Miller et al., 1995; Miller, 2000). 

7  IMPACT OF FERTILIZERS ON AMF 

The addition of nutrients to the soil is a common practice in every 
intensive grain production in North America. In intensively managed agri-
cultural systems, soil is often fertilized with N, P and K, and much of the 
plant biomass is harvested and not returned to the soil at the end of the 
growing season, which contributes to create very unique types of ecosystems. 
Various forms of fertilizer effectively increase crop yields (Schmidt et al.,
2001; Lithourgidis et al., 2007). Mineral fertilizers are largely applied but 
several forms of more ‘natural’ fertilizers are also used. Mineral fertilizers 
are expensive and in some occasions, application of organic amendments to 
cultivated field reduces their necessity (Singer et al., 2004). The nutrient 
content of organic amendments is not as consistent as the one of mineral 
fertilizers, which is less practical. Studies have been conducted with dozens 
of different types of manure or compost as well as mineral fertilizers on 
major agronomic plants. For example, swine bedding materials (Liebman
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et al., 2004), crushed cotton gin compost (Tejada and Gonzalez, 2006), and 
urban refuse compost (Bazzoffi et al., 1998) have been tried in corn produc-
tion. In Canada, swine liquid compost application have been shown to 
benefit both barley and soybean in a crop rotation (Carter and Campbell, 
2006). Both mineral and organic fertilizers bring to soil nutrients essential 
either to plants or soil microorganisms. It is a well known fact that AMF are 
important for the efficient uptake of nutrients, such as P and N (Smith and 
Read, 1997). Many authors have stressed increased P and N uptake by 
mycorrhizal plants but mostly under limiting availability conditions (Cruz
et al., 2004; Kanno et al., 2006; Li et al., 2006; Schreiner, 2007).  

Fertilizer-AMF interactions are complex and difficult to predict.
While in some cases manure addition leads to an increase of AM colonization 
(Tarkalson et al., 1998), Ellis et al. (1992) found greater AM colonization in 
sorghum plants when neither manure nor fertilizer was added to soil. It 
appears from the literature that AMF directly affect N absorption and N 
assimilation (Barea et al., 1987), particularly in neutral to slightly alkaline 
soils (Azcón et al., 2001). The ability of mycorrhizal plants to better exploit 
soil N resources can occur directly through the uptake of organic molecules 
by AMF or, as stated before in this chapter, through different interactions 
with other soil microorganisms (i.e., competition with heterotrophic microbes 
for mineral N, enhancement of mineralization, better N2-fixation, etc.). The 
arbuscular mycorrhizal symbiosis can both enhance decomposition of, and 
increase nitrogen capture from complex organic material in soil. Increased 
hyphal growth of the fungal partner was noted in the presence of the organic 
material, independently of the host plant (Hodge et al., 2001). Feng et al.
(2002) have also demonstrated that mycorrhizal fungi had significantly 
increased nitrogen uptake derived from soil in mycorrhizal cotton plants, 
while no significant influence on uptake of N derived from fertilizer was 
observed. Colonization also increased the amount of soil available N after 
fertilization treatment meaning that AMF may facilitate plant acquisition of 
nitrogen from sources which are otherwise not or less available to non-
mycorrhizal plants. However this contribution of AMF to plant nutrition and 
growth would likely be more significant in organic farming systems or in 
unfertilized soil-plant systems than in highly N-fertilized agricultural fields. 

Similarly, several reports have established the potential of arbuscular 
mycorrhizas to increase uptake of P by crops in otherwise P-deficient soils 
(Powell, 1981; Mohammad et al., 2004). Plants with a moderate stress related 
to nutrient deficiency tend to release more soluble carbohydrate in their root 
exudates than unstressed plants (Schwab et al., 1991). A selective pressure is 
then exerted on AMF strains that are more aggressively acquiring plant 
carbohydrates. But in North America, cereal crop plants are rarely under such 
stress as most growers are unwilling to risk low production and largely 
fertilize their fields.
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Although it has been reported that the ability of AMF to improve 
plant P uptake is largest when the P source is organic (Feng et al., 2003), 
which could be explained by the fact that much of the P applied to the soil 
through mineral fertilizers is rapidly fixed into insoluble forms, demonstration 
has been made that AMF from fertilized soils produce fewer hyphae and 
arbuscules than fungi from unfertilized soils (Johnson, 1993).  Moreover, 
AM colonization is generally severely limited by the high P-inputs used in 
vegetable production systems (Ryan and Graham, 2002). However, in a 
large-scale survey of 40 asparagus fields conducted in eastern Canada, PLFA 
16:1 5 in soil, used as an estimation of extraradical AM fungal development, 
was positively correlated with soil available P (Hamel et al., 2006b). This 
may be related to the higher plant growth and higher plant-derived C therefore 
available to sustain AMF hyphal network development. Nevertheless, at the 
moment in intensive crop productions, unless P-supply is balanced carefully 
with plant requirements, management practices favouring AM fungal activity 
may risk crop growth depression and profits reduction. Low-input agricultural 
systems have gained attention in many industrialized countries due to rising 
interest for the conservation of natural resources, reduction of environmental 
degradation, and escalating price of fertilizers. Conventional farming systems 
with lower application of fertilizers and pesticides have been developed (Mader
et al., 2002). Under these conditions, plants are more dependent on an effec-
tive AMF symbiosis (Scullion et al., 1998; Galvez et al., 2001). AMF com-
munities were generally impoverished in species composition in intensively 
managed agricultural lands (Johnson and Pfleger, 1992; Galvez et al., 2001; 
Jansa et al., 2002; Oehl et al., 2003, 2004), supporting the idea that organic 
farming could rely on a higher soil microbial biodiversity. 

As P and N availability in agricultural systems is not as limiting to 
plant productivity as in other soil-plant systems, the main impacts of AMF 
may also be different. Hamel (2004) suggested that ‘under these conditions, 
the major impact of AMF, which are root extensions and regulators of 
photosynthesis-derived C input to soil, could well be on microbial processes 
and soil quality.’ 

8  CONCLUSION 

Since most intensively cultivated crops in North America are my-
corrhizal, all possible interactions influencing plant growth must be considered. 
As conventional farming are now definitely high inputs agricultural systems 
generating large N and P surplus, the main benefit of AMF in the rhizosphere 
may not so much be related to nutrient uptake. AMF, by their interactions 
with soil particles and other organisms, represent an important component of 
soil quality. A better understanding of soil system would probably lead to a 
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better management of AMF contribution to soil fertility and, may be, to a 
more sustainable agriculture, even in high yielding grain productions. 
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Abstract:      Beneficial microorganisms associated with roots are of paramount importance 
and contributes for sustainable agriculture. Of the various microorganisms 
colonizing the rhizosphere, arbuscular mycorrhizal (AM) fungi occupy a unique 
ecological position as they are partly inside and partly outside the roots. They 
constitute a major portion of soil biomass and link the biotic and geochemical 
parts of the ecosystem. This symbiosis occurred in vast diversity of climate 
and soil-types. AM fungi enable plants to cope up with abiotic stresses by 
alleviating mineral deficiencies, overcoming the detrimental stresses of salinity 
and drought. Their association improves the adaptation of nursery raised and 
micropropagated seedlings to cope up with sudden stress  due to change in 
environmental conditions and shift from in vitro to in vivo conditions. The 

stability, reclamation, rehabilitation and establishment of micropropagated 

Keywords:     Plant-microbe interactions; mycorrhizosphere; AM diversity; soil quality;     

1         INTRODUCTION 

The basic objective of agriculture is to produce food for the popu-
lation. The ever-burgeoning human and animal population in the past decades 
not only found the food production inadequate but also degrade the whole 
agro-ecosystem. Further, the traditional agriculture system apparently 

micropropagation.

plantlets is also discussed. 

contribution of AM fungi with respect to plant nutrition, water relations, soil 
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sustainable at low productivity and at low population, pressure is breaking 
down under the onslaught of high human and animal population pressure. 
The intensification of agriculture as an inevitable consequence of the com-
pulsion to produce more compounded with rapid and uncontrolled industria-
lization has put an enormous burden on the natural ecosystem. Although, the 
benefits of green revolution continue to accrue today but simultaneously the 
issues of sustainability once again has become increasingly prominent. Such 
concerns and problems posed by modern-day agriculture gave birth to new 
concepts in farming, such as organic farming, natural farming, biodynamic 
agriculture, do-nothing agriculture, eco-farming etc. The essential feature of 
such farming practices imply, i.e., back to nature. The problem has been 
further aggravated by shrinkage of the arable land due to soil degradation 
and deterioration of water quality which has now assumed global dimensions. 
Sustainable agriculture is the only proponent which encompasses soil and 
crop productivity by integration of agricultural management technology at 
the same time maintaining and enhancing the farm profitability and environ-
mental quality. The production and productivity growth rate of major crops 
are also stagnated or even declined during this green revolution era (Table 1). 

Table 1. Production and productivity growth rates (% per annum) of major crops. 

Crops
1980–89 1990–99 2000–02 1980–89 1990–99 2000–02 

Rice 3.62 1.09 (–)5.60 3.19 1.27 (–)0.72 
Wheat 3.57 3.81 (–)0.28 3.10 2.11 0.73 
Pulses 1.52 0.61 0.99 1.61 0.96 (–)1.84 
Food
grains

2.85 1.94 (–)3.73 2.74 1.52 (–)0.69 

Oilseeds 5.20 2.13 (–)5.30 2.43 1.25 (–)3.83 
Non-food
grains

3.77 2.78 (–)2.21 2.31 1.04 (–)1.02 

All major 
crops

3.19 2.28 (–)3.13 2.56 1.31 (–)0.87 

Plant microbe interactions are the interesting events that contribute 
for the sustainable agriculture. Microbial world in particular the beneficial 
microbes associated with plant roots are of paramount importance in agri-
culture and crop productivity which include nitrogen fixers, ‘P’ solubilizers, 
growth enhancers, biocontrol agents, microbes important in industry and 
medicine, and mineral transporters besides helping in increasing soil binding 
and soil stability. Microbes have more capability to adapt to different environ-
ments like plants. Soil is a dynamic medium to nourish different microbial 
communities like bacteria, actinomycetes, fungi, algae, protozoan etc. which 
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play significant role in cycling of plant nutrient elements, biological conver-
sions, humus formation, ecosystem sustenance, geo-chemical cycling, and 
others besides supporting plant life and plant productivity. Among the 
microbial communities, arbuscular mycorrhizae are a mutualistic association 
between the roots of most plant species and fungi. Bidirectional movement 
of nutrients characterizes these symbionts where carbon flows to the fungus 

plant.

2  THE MYCORRHIZOSPHERE  

Traditionally, rhizosphere activity and mycorrhizal symbioses have 
been studied as if they represented separate ecosystem components, but they 
occur concurrently on many plant roots rather than as distinct entities. In all 
soil systems a growing plant will develop some sort of microbial plant inter-
action termed as a rhizosphere, similarly majority of higher plants are 
mycorrhizal. Thus, we cannot conclude that all rhizospheres are mycor-
rhizospheres, but it is also evident that most of the data collected from field 
studies of rhizosphere populations must have resulted from evolution of 
mycorrhizosphere. This conceptual oversight is gradually being corrected. 
From an environmental or soil community consideration the fungal-plant as-
sociations in mycorrhizal symbioses can be viewed on a gradient of incre-
asing association of the plant and soil community (Table 2). 

In evaluating the quantities of exudates and their chemical substi-
tuents, quantification of the intensity of the mycorrhizal associations is 
necessary. The phenomenon “Mycorrhiza” comprises all symbiotic associ-
ations of soil-borne fungi with roots or rhizoids of higher plants and was first 
introduced into the literature by Frank (1885). Allen (1991) described the 
fungal-plant interaction from a more neutral or microbially oriented aspect: 
“A mycorrhizae is a mutualistic symbiosis between plant and fungus loca-
lized in a root or root-like structure in which energy moves primarily from 
plant to fungus and inorganic resources move from fungus to plant”. The 
group of fungi and plants, which are involved in the interaction, determines 
the type of mycorrhiza they form (Molina et al., 1992). The physical associ-
ation of mycorrhizal fungi with plant roots has been extensively described 
and serves as the primary basis for the classification of mycorrhizae. The 
different kinds of mycorrhiza are: Ectomycorrhizae; Arbuscular mycorrhizae; 
Ectendomycorrhizae; Arbutoid mycorrhizae; Monotroid mycorrhizae; Ericoid 
mycorrhizae and Orchid mycorrhizae. Arbutoid and monotropoid ecten-
domycorrhizae, as well as ericoid and orchidoid endomycorrhizae, can only 
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and inorganic nutrients get transported through mycorrhizal network to the 
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be found in a few plant species and are, therefore, restricted to certain eco-
systems. In contrast, ectomycorrhizas are established between a great variety 
mostly in Basidiomycota and the roots of many woody plants. This sym-
biosis is very common in forest ecosystems in the temperate zone and can be 
applied to plant production systems in tree nurseries (Munro et al., 1999). 
The most widespread type, however, is represented by the Arbuscular 
mycorrhizae, and this chapter concentrates on this type of symbioses, because 
the plant hosts include the most important crops used in agriculture and horti-
culture. 

Table 2. Comparison of properties of non-rhizosphere, rhizosphere, and mycorrhizosphere 
soils. 

Non-rhizosphere Rhizosphere Mycorrhizosphere 
–All biogeochemical cycle 

–Nutrients may be leached to 
root tissue or ground waters 

–Nutrients may be directly 
incorporated directly into 
biomass

–Microbial biomass limited 
by carbon and energy re-
sources
–Note that non-rhizosphere 
soil metabolic activity is not 
affected directly by rhizo-
sphere interactions

–Maximum biogeochemical 

available for plant biomass as 

–Microbial biomass synthesis 
is controlled by plant producti-

production

–All biogeochemical cycles 
are supported-controlled by 
both plant inputs and soil 
humus contents 
–Nutrients incorporated into 
fungal biomass and trans-

–Biomass controlled by plant 
productivity and transfer of 
photosynthates to the fungus. 
–Mycorrhizal fungi may enter 
in non-rhizosphere soil and 
catalyze biogeochemical 
processes

3    DIVERSITY OF ARBUSCULAR MYCORRHIZAL 
FUNGI

Arbuscular mycorrhizal (AM) fungi are ancient microorganisms ap-
peared between 460 and 400 million years ago (Simon et al., 1993; Redecker 
et al., 2000) as plants started to colonize the land. AM fungi are of worl-
dwide distribution. The AM root colonization is a dynamic process which is 
also influenced by several edaphic factors such as nutrient status of soil, 
season, AM strains, soil temperature, extent of soil pollution, soil pH, host 
cultivar susceptibility to AM colonization, feeder root condition at the time 
of sampling etc. The quality and type of AM propagules also affected the 
dynamics of root colonization, which are increased by increasing the age of 
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synthesis 

–Nutrientsmineralized directly 

well as microbial biomass ported to plant tissue 

vity and rate of root exudates 

matter (humus) availability  
rates limited by organic cycle
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plant (Chandra and Jamaluddin, 1999). These mycorrhizal associations are 
in the form of chlamydospores, zygospores and azygospores and have been 
recovered from the soils of different habitats e.g., nutrient deficient soils, 
sand dunes and deserts, industrial wastes, sodic soils, polluted sites, sewage, 
eroded sites and others like forests, open wastelands, scrubs, savanna, heaths, 
grasslands, coal waste etc. The fungus infects the root system of most 
cultivated crops and usually it invades several layers of the outer root cortex 
by penetration of hyphae in individual cells and form arbuscules within cells.

The AM fungal associations occur widely throughout the plant king-
dom including most of the agricultural and horticultural crops (Gerdemann, 
1968). Nowadays they are integral components of most terrestrial ecosystems 
and some 80% of terrestrial, vascular plant families act as hosts for the 
fungal endosymbionts (Harley and Harley, 1987; Brundrett, 2004). AM 
fungi were placed in Zygomycotina but recent studies have recognized the 
new fungal phylum namely Glomeromycota with a single class Glomero-
mycetes, containing 150 described species allover the world (Cavalier-Smith, 
1998). Although, the separation of species within a genus is a difficult task but 
recently molecular techniques have been employed to examine intergeneric 
relationship by some workers (Kim et al., 1999; Hiremath and Podila, 2000). 
The small number of different fungal species might suggest that their biodi-
versity is limited but the variation at the morphological, physiological, and 
genetic levels is rather high which results in a functional diversity that has an 
important impact for ecology and application in plant production systems 
(Table 3). Morton and Redecker (2001) based on concordant molecular and 
morphological characters discovered two new families, Archaeosporaceae
and Paraglomaceae with two new genera Archaeospora and Paraglomus
respectively.

4    ECOLOGY OF ARBUSCULAR MYCORRHIZA 

Ecology is the study of the relationship of organisms to their environ-
ments. This environment includes all abiotic and biotic factors affecting the 
cell. Biotic properties of an ecosystem include not only those traits commonly 
classified as “natural” but also any consequences of anthropogenic inter-
ventions or interaction with the site. However, the nature, activity and future 
of any soil microbial community are determined by the capacity of  the organi-
sms  to  adapt  to  or  modify  negative soil properties. 
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Table 3. Variation among AM fungi (Summarizing genotype as well as phenotype variation 
and changes in biodiversity). (Franken and George, 2004.) 

Between 
species 

Between 
isolates

Between nuclei 

Genotype variation 
Genome size 
rRNA
Genes encoding 
Chitin synthase 
Translation elongation factor 
Actin

-tubulin
Glutathione S-transferase 
Binding protein 

15–1,000 Mb 
+

+
+
+
+
Nd
Nd

Nd
+

+
Nd
Nd
Nd
Nd
Nd

Nd
+

Nd
 – 

+(In introns) 
Gene family 
Gene family 

+
Phenotype variation 
Morphology
Spore size, shape, and colour 
Presence of BLOs 
Germination
Auxillary cells 
Arbuscule type 
Vesicles
Branching promoting factor 
Nutrient exchange 
Phosphate
Nitrogen
Iron
Carbohydrates
Stress tolerance 
Heavy metales 
Drought
Root pathogens 
Enzymatic parameters 
Various enzymes 
Superoxide dismutase 
RNA accumulation 
Fungal general pattern 
Fungal b-tubulins 
Plant general pattern 
Plant chitinase 
Plant glucanase 
Plant sucrose synthase 
Plant phosphate transporters 

+
+
+
+
+
+
+

+
+
+
+

+
+
+

+
+

+
+
+
Nd
Nd
+
+

–
–
Nd
–
Nd
–
Nd

Nd
+
Nd
+

+
+
Nd

Nd
Nd

Nd
Nd
Nd
+
+
+
Nd

Biodiversity in ecosystems 
Influenced by 
Plant species 
Soil management 

+
+

+
+
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+ = differences detected; – = no difference detected; nd = not determined 
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Some organisms best equipped to cope with the ecological stresses 
are active, while more stringent organisms succumb. Although, the ultimate 
fate depends upon the genetic diversity of the organisms and the severity of 
the stress imposed as well as the time allowed for recovery. 

 The arbuscular mycorrhizal fungi are ubiquitous in nature, but little 
is known about the natural ecology of these fungal-plant association and the 
effects of certain soil amendments with natural waste products. The conven-
tional agronomic practices may adversely affect the efficiency as well as the 
potential impact of these micro-symbionts (Table 4). AM fungi are also 
conditioned by soil factors. It is found that pH plays an important role in the 
distribution of AM fungi. Acidic to neutral soils have a large number of AM 
fungi. Hayman (1974) described the effect of light on AM fungi. Soil moisture 
exerts influence on mycorrhizal association (Redhead, 1977). Species and 
strains of AM fungi differ in their ranges to soil physico-chemical properties 
(Abbott and Robson, 1982). Soil factors not only influence soil fertility but 
affects mycorrhizal inoculum. The soil conditions like salinity, water logging, 
erosion, soil types, water holding capacity, soil porosity and fertility status, 
vegetations etc. appreciably influences the AM fungal association, distribution, 
composition and activity (Manoharachary, 2004). Therefore, in general one 
may conclude that conventional agricultural management prac-tices reduce 
AM fungal population while organically low- input system would be a viable 
proponent to increase their activity as well as for sustainable agricultural de-
velopment. For a comprehensive review on mycorrhizae in natural eco-
systems the reader is referred to Brundrett (1991), Fitter (1991) and Read 
(1991).

4.1  Plant nutrition and water relations 

 A substantial biomass component in many ecosystems is resultant 
influence of mycorrhizal associations (Allen, 1991). Mycorrhizae tend to be 
the largest component in the ecosystem primarily because both the fungi and 
the associated roots are turned over rapidly. Mycorrhizae as well dictate 
nutrient cycling rates and patterns by altering host plant resource acquisition 
and plant production. Odum and Biever (1994) have catalogued six main 
pathways in ecosystems through which the nutrients are recycled from plants, 
viz. grazing, seed consumption, feeding on nector, loss of soluble exudates, 
active extraction by parasitic and mutualistic organisms, and decomposition 
of plant structures. In this background, mycorrhizae play a vital role in last 
three categories in capturing nutrients (Jalali, 2001). Mycorrhizae therefore 
link the biotic and geochemical parts of the ecosystem. Their contribution in 
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 sustainable ecosystem is well recognized. With this recognition, the manage-
ment of symbiotic fungal populations would become a potential tool for 
overall crop health and resultant sustainability.

Table 4. Summary of some of the potential effects of agricultural management practices on 
AM fungi in the field. (Atkinson et al., 2002). 

Potential effect on Factors
Effectivity of 
symbiosis 

Host
pressure 

Spore
populations 
and viability 

Extra
radical 
hyphae

Crop choice –  – – 
Variety choice  – – 
Sequence (rotation) 
Tillage –  – 
Fallow period –  – 
Organic farming systems 

Inoculants  –  – 
Fumigants
pH changes  – 
Phosphorus  – – – 

 – – – 

Mycorrhizal fungi are clearly instrumental in augmenting plant nutrient 
availability particularly in nutrient stressed ecosystems. A wide range of data 

nutrient transfer to the plant tissue through the augmentation of the absorb-
ing surface of roots by extension of the fungal mycelium into non-rhizosphere 
soil. Gains in phosphate, nitrogen, sulphur, potassium, calcium, zinc, iron, 
copper and water transfers are most commonly reported. The extensive liter-
ature documented these benefits has been reviewed by Allen (1991), Gupta 
(1991) and Mukerji et al. (1991). Besides this, mycorrhizal fungi may not 
only enhance soil-plant transfer of nutrient, but may also be instrumental in 
movement of nutrients between plants (Eason et al., 1991). Read et al. (1989) 
demonstrated through the use of 14CO2 that carbon moves freely between 
plants connected by mycorrhizal mycelium. This plant-plant bridging by the 
fungal hyphae occurs between host plants of the same or different species. 
Arbuscular mycorrhizae were noted to connect the root systems of neighbors 
of different species and considered to have mediated the nutrient transfer. 
These workers suggested a competitive advantage of this bridging in plant 
groupings where mycorrhizal inoculum is limited. Panwar et al. (2007) 
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found that the hyphal front may advance at a rate of 2.0–4.3 cm d–1 in soil.
Plants developing in a less desirable portion (e.g., a shaded site) of the 
ecosystem may gain benefits of the photosynthetic activity of the less stressed 
members of the community as well as the gains from nutrient production of 
the mycorrhizal function through an interconnected root system. Mycorrhizal 
inoculation enhances nodulation in legumes (Carling et al., 1978). A combi-
nation of legumes, rhizobia and mycorrhizal fungus brings a significant 
improvement in plant growth through increased availability of phosphorus, 
sulphur and micronutrients with higher nitrogen fixation in soil. Thus, this 
combination may prove the cheapest way to enrich tropical soil with nitrogen. 

 Arbuscular mycorrhizal fungi play an important role also in the water 
economy of plants. These associations improve the unsaturated hydraulic 
conductivity of the roots either by modifying root morphology and root 
anatomy or indirectly by hormonal and structural changes in the host plant. 
These improvements are the factors contributing towards better uptake of the 
water by the plants. It has been suggested that the AM fungi help the plants 
in better absorption of water by the roots resulting on a better performance 
(Kehri and Chandra, 1990) and by exploring water in wider zones of soil 
(Safir et al., 1971, 1972). It has been noted that the mycorrhizal plants show 
a better survival than non-mycorrhizal ones in extremely dry condition (Allen 
et al., 1981). It appears that the most established benefits from mycorrhizal 
fungus to the host plant is through the widespread mycelial network which 
penetrates deeper and wider in the soil in search of water and nutrients 
thereby widening the zone of activity.  

4.2    Improved soil quality

Plant health and productivity are rooted in the soil, and the quality 
of soil depends on the viability and diversity of its biota which determine the 
structures that support a stable and healthy agro-ecosystem (Doran and Linn, 
1994). The importance of soil is now recognized not only as an agricultural 
resource base, but as a complex, fragile and yet dynamic system that must be 
protected as well as managed to ensure its long term stability and producti-
vity. The goals of sustainability in agriculture could be viewed broadly as 
“maximum plant production with a minimum of soil loss”. In this scenario 
of balanced agro-system inputs and outputs, the relevance of mycorrhizal 
endophytes has been described as that of a fundamental link between plant 
and soil (Miller and Jastrow, 1994). They have shown how the affinity bet-
ween mycorrhizae and soil aggregates vary with root characteristics, with 
the intensity of root colonization, and with the quantum of soil mycelium 
associated with the root system.  
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 4.3   Soil aggregation 

 The contribution of mycorrhizal associations in soil aggregate for-
mation would be catalogued as: 

Hyphal growth into the soil matrix forms the skeletal structure that 
holds the primary soil particles together through physical entanglement 
(Miller and Jastrow, 1994). 
Roots and hyphae together create the physical and chemical environ-
ment to produce organic and amorphous materials (Tisdall, 1991) 
for the binding of particles. 
Hyphae and root enmesh microaggregates into macroaggregate struc-
tures, which accelerate the capacity for carbon and nutrient storage 
and provide microhabitats for soil microbes (Cambardella and Elliott, 
1994).
Secretion of glomalin that helps in aggregate stability by arbuscular 
mycorrhizal fungi (Wright and Upadhyaya, 1998). 

Miller and Jastrow (1992) proposed that AM hyphae form and stabi-
lize aggregates of soil through three distinct processes: (1) The AM hyphae 
physically entangle primary particles of soil; (2) roots and AM hyphae create 
conditions that enable microaggregates to form in soil; and (3) roots and AM 
hyphae enmesh and bind microaggregates and smaller macro-aggregates into 
larger macroaggregates. Therefore, mycorrhizal fungi are able to bind soil 
into semi-stable and stable aggregates, thus improving the structure of the 
soil. This improvement in soil structure has a direct impact on the indigenous 
microbial community through aeration and moisture infiltration, and an in-
direct effect via stimulation of plant root growth. This may make mycor-
rhizal plants particularly useful for reclamation of soils with problems of 
surface crusting and unstable structures like sand dunes as well as enhance 
host root development in disturbed soils. Clearly, it is well documented that 
this augmentation of root development increases the quantities of fixed 
carbon by reaching the soil microbial community. Because conceptually, the 
arbuscules presents a large area of close contact between the symbionts, and is 
assumed to be the interface over which carbon would be transferred and 
accumulated in the soil on sloughed off the hyphal network.  Burns and 
Davis (1986) concluded that a holistic approach to the joint study of 
mycorrhizal host plant and soil responses would be vital if the microbial 
dynamics of rhizosphere and the resultant improvement of soil structure is 
an evolutionary mechanism that confers competitive advantage to plants. 

 Glomalin, a glycoprotein, produced in copious amounts by AM 
fungal hyphae plays a major role in aggregate stabilization (Wright and 
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Upadhyaya, 1998). A strong relationship between soil aggregate stability 
and glomalin as well as glomalin-related soil proteins (GRSPs) has been 
demonstrated (Wright and Anderson, 2000; Rillig, 2004). As a result of this 
relationship, glomalin has been credited with enhanced ecosystem producti-
vity, improved soil aeration, drainage and microbial activity (Lovelock et al.,
2004). Because of its role in soil particle aggregation, glomalin is thought to 
significantly reduce organic matter degradation by protecting labile com-
pounds with in soil aggregates thus enhancing carbon sequestration in soil 
ecosystems (Wright et al., 2000; Rillig, 2004).

4.4  Soil microbial biomass 

 A variety of elegant studies of soil enzymes and respiratory activity 
in relationship to soil physical and chemical properties and biological 
interactions have conducted, but evaluation of the role of mycorrhizal fungi 
in these soil functions is rarely considered. This omission of a consideration 
of these important trophic interactions occurs in spite of the knowledge that 
mycorrhizal fungi constitute a major portion of soil biomass and that these 
fungi extend throughout the soil profile-far beyond the regions classified as 
rhizosphere soil. Fogel and Hunt (1983) in a study of Douglas fir Pseudot-
suga menziesii stand found that mycorrhizae constituted 6% of the total 
standing crop. Furthermore, they found that roots and mycorrhizae contained 
larger reserves of nitrogen, phosphorus, potassium, and magnesium than did 
the forest floor or soil fungi. Fine roots and mycorrhizae contributed between 
84% and 78% of the total tree organic matter to the soil. Read (1984) sug-
gests that mycorrhizal fungal biomass may be the largest microbial biomass 
component of many forest soils. Allen (1991) states that “mycorrhizal fungi 
may be the single largest consumer group of net primary production in 
many, if not most terrestrial biomes.” Arbuscular fungal hyphae have been 
quantified at densities of up to 38 m  cm–3 (Allen and Allen, 1986). 

 From these observations, a number of benefits of mycorrhizal de-
velopment to the total soil microbial community can be delineated. Foremost 
among the contribution to the soil community is the capacity to cycle nutri-
ents- that are, mineralize accumulated biomass. Although the bulk of the 
research efforts have been directed at quantifying mineral nutrient transfer 
from fungal biomass or soil to plant tissue, it is reasonable to assume that a 
portion of the metabolic products of this fungal activity will be released to 
the soil microbial community. For example, mycorrhizal fungi have been 
shown to mineralize soil organic phosphate through synthesis of phosphatase 
(Dighton, 1983; Tarafdar and Marhsner, 1994). 
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4.5   Resilience of problematic soils  

Since the advent of civilization, the fertile top soil has been degrading 
due to various environmental and ecological factors like saline and sodic 
soils, eroded soils, industrial waste lands, soils from mining regions, degraded 
forest lands, sand dunes and deserts etc. In these soils the native vegetation 
and animal communities scarred to endangered. Therefore, rehabilitation of 
these soils is a global problem and the afforestation and other agricultural 
activities are in progress but only limited success has been achieved. The 
importance of AM fungi in regeneration of these lands has been investigated 
by many workers (Danielson et al., 1979; Pfeiffer and Bloss, 1988; Rao and 
Tak, 2001; Giri et al., 2004). The greenhouse experiment conducted by 
Jasper et al. (1987) indicated that after four to five years of re-vegetation, the 
number of infective propagules appears to be restored to a level equivalent to 
that of undisturbed soil and they have given emphasis on investigating the 
possibility of improving re-vegetation by increasing the inoculum potential 
of disturbed sites. So far combined effects of mycorrhizal fungi on re-veget-
ation of disturbed sites have been reported by various workers. Also AM 
fungi had been found to grow up-to salinity of 12 dSm–1 electricalconducti-
vity and increased the uptake of P, N, S and micronutrients in crops (Hirrel 
and Gerdemann, 1980). The AM infection counteracts adverse soil factors. 
They increase the tolerance of the crop to high acidity and temperature (Pond 
et al., 1984; Poss et al., 1985).

 AM fungi isolates can decrease the heavy metal concentration in 
shoot or in root, or decrease translocation from root to shoot (Diaz et al.,
1996). The latter could be due to the high metal sorption capacity of these 
fungi, which could ‘filter’ metal ions during uptake (Joner et al., 2000). The 
high concentration of heavy metals in the intracellular hyphae of a heavy 
metal tolerant AM fungi colonizing maize roots (Kaldorf et al., 1999) 
strengthen the hypothesis of sequestration of metals by AM fungi structures. 
However, the competivity of such metal tolerant AM fungi in the field is 
often unknown and should be investigated. Potential of AM fungi for biore-
mediation of radionuclides (Ebbs et al., 2000; Berreck and Hasel-wandter, 
2001) and polycyclic aromatic hydrocarbons polluted soils (Binet et al.,
2000; Joner and Leyval, 2001) has well been reported.

5   ENVIRONMENTAL CONSIDERATIONS

The statement by Allen (1991) that “mycorrhizae represents one of 
the least understood, most widespread, and most important biological sym-
bionts on earth” cannot be more appreciated than when application of our 
understanding of this fungal-plant interaction to ecosystem problems is 
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considered. Although, commonly considered from an industrial polluted soil 
view point, reclamation management to improve soil quality is being more 
frequently related to “exhausted” agricultural soil system i.e. those cultivated 
in some cases for a long period by methods designed to maximum crop 
yields, at times at the sacrifice of maintaining soil quality. Traditionally, this 
soil management includes procedures that encourage development of a soil 
structure conducive to aboveground plant community development (Tate, 
1987) and establishment of stable population of organisms involved in 
biogeochemical cycling (Tate, 1985). Due to their ability to improve longe-
vity and productivity of aboveground plant communities, mycorrhizal associ-
ations are a critical component in soil reclamation management of even these 
“exhausted” agricultural soils. 

 Plant community gains from management of mycorrhizal associ-
ations for soil quality improvement are derived from both the soil structural 
enhancement resulting from the fungal contributions to soil aggregation and 
the improved availability of essential plant nutrients. Although, rapid and 
somewhat long-lasting benefits are accrued from amendment of degraded 
soil with a variety of organic matter sources and fertilizers but for minimi-
zation of anthropogenic intervention, a stable soil microbe-plant interactive 
community must be developed. Mycorrhizal associations are developed best 
under stressed conditions. Therefore, for rapid and enduring development of 
a degraded ecosystem, AM fungal propagules should be insured for recla-
mation of target site, for implementation of plant nutrient management 
procedures that will not prevent mycorrhizal development, and for successful 
reforestation to establish the aboveground plant community.

6  ESTABLISHMENT OF NURSERY  
AND MICRO-PROPAGATED SEEDLINGS  

Mycorrhizal inoculations stimulate rooting and growth, and thereby 
transplant survival of cuttings and seedlings raised in sterilized nursery 
media, which is essential for the establishment of plant cover on mine soils, 
eroded soils, industrial waste, where the plant cover is difficult to establish 
(Hall and Armstrong, 1979; Hall, 1980). The inoculation with appropriate 
endomycorrhizal fungi has given excellent results in plants like Liqui-
damber, Ampelopsis, Yew, Lilac, Berberis, Chamaecyparis, Asparagus, Onion 
and Leek (Gianinazzi et al., 1989). Successful endomycorrhizal establish-
ment has been reported in a variety of rooting media at nursery level  
containing sand, gravel, peat, expended clay, pumice, perlite, bark, sawdust, 
vermiculite or mixture of all these (Menge, 1983; Denhe and Backhaus, 
1986).
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 Mycorrhizas, through their role in increasing the natural resistance 
of plants to abiotic and biotic stresses and in rendering their underground 
organs more efficient in exploiting soil resources, have opened interesting 
possibilities for the production of high-quality micropropagated plants with 
low inputs (Gianinazzi et al., 1990). AM fungi inoculation has been found to 
improve growth and nutrient uptake in a large variety of plants propagated 
in-vitro (Lovato et al., 1996; Sharma and Adholeya, 2004; Fortunato and 
Avato, 2008). There is a considerable interest in studying, not only the 
impact of AM fungi on plant grown but also that obtained by coupling AM 
fungi with other beneficial rhizospheric microorganisms in binary or multiple 
combinations (Cordier et al., 2000). The ability of the microorganisms to 
develop together without negative interactions opens the possibility of creating 
a given diversified microbial-rich environment around roots, beneficial for 
microplant development and therefore increasing the levels of tolerance of 
microplants for a large spectrum of biotic and abiotic stresses, linked to their 
transplantation into the field (Vestberg et al., 2002).

7    FUTURE LINES OF RESEARCH 

Strengthening of identification and classification through molecular 
methods, multiplication and inoculum production of indigenous efficient AM 
fungal isolates, establishing germination of AM fungi on synthetic media, 
multiplication and commercialization of efficient fungi, identification of 
marker genes and genetic mechanisms for effective nutrient transport for 
increasing efficiency and adaptation to increase vigour and yield, establishing 
center for conservation of AM fungi, biotechnological application of AM 
fungi, technical and commercial point of view of mycorrhizal inoculation of 
micropropagated plants, development of protocol for INM and IPM for sus-
tainable agriculture are some of the major lines of future research with 
respect to arbuscular mycorrhizal fungi. 

 As plants and microbial strains differ in the effectiveness of the 
symbiosis, the selection of adequate symbiotic consortia is bound to be of 
particular value, ensuring better chances for survival of plants. More research 
is needed to select those AM fungi strains which are most efficient and can 
survive the competition with spontaneously appearing or indigenous fungi. 
There is also a need to protect the diversity of AM fungi and vegetation, to 
ensure a robust plant community in abandoned agricultural lands.    

Panwar et al.172



REFERENCES 

Abbott, A.K., and Robson, A.D., 1982, Infectivity of vesicular arbuscular mycorrhizal fungi 
in agricultural soils. J. Agric. Res. 33: 1049–1059. 

Allen, E.B., and Allen, M.F., 1986, Water relations of xeric grasses in the field: Interactions 
of mycorrhizae and competition. New Phytol. 104: 559–571. 

Allen, M.F., 1991, The Ecology of Mycorrhizae. Cambridge University Press, NewYork, pp. 184. 
Allen, M.K., Smith, W.K., Moore, Jr., T.S., and Christensen, M., 1981, Comparative water 

relations and photosynthesis of mycorrhizal and non-mycorrhizal Boutelova gracilis H. B. 
K. Lag ex Steud. New Phytol. 88: 683–693. 

Atkinson, D., Baddeley, J.A., Goicoechea, N., Green, J., Sánchez-Diaz, M., and Watson, 
C.A., 2002, Arbuscular mycorrhizal in low input agriculture. In: Gianinazzi, S., Schiiepp, 
H., Barea, J. M., and Haselwandtar, K. (Eds.), Mycorrhizal Technology in Agriculture: 
From Genes to Bioproducts. Birkhäuser Verlag, Basel, pp. 211–222. 

Berreck, M., and Haselwandter, K., 2001, Effect of arbuscular mycorrhizal symbiosis upon 
uptake of cesium and other cations by plants. Mycorrhiza 10: 275–280. 

Binet, P., Portal, J.M., and Leyval, C., 2000, Fate of polycyclic aromatic hydrocarbons (PAH) 
in the rhizosphere and mycorrhizosphere of ryegrass. Plant Soil 227: 207–213. 

Brundrett, M.C., 1991, Mycorrhizas in natural ecosystem. Adv. Ecol. Res. 21: 171–313. 
Brundrett, M.C., 2004, Diversity and classification of mycorrhizal fungi. Biol. Rev. 79: 473–

495.
Burns, R.G., and Davies, J.A., 1986, The microbiology of soil structure. Biol. Agric. Hort. 3:

95–113.
Cambardella, C.A., and Elliott, E.T., 1994, Carbon and nitrogen dynamics of soil organic 

matter fractions from cultivated grassland soils. Soil Sci. Soc. Am. J. 58: 123–130. 
Carling, D.E., Riehle, W.G., Brown, M.F., and Tinker, P.B., 1978, Effects of vesicular-

arbuscular mycorrhizal fungus on nitrate reductase and nitrogenase activities in nodulating 
and non-nodulating soybeans. Phytopathololgy 68: 1590–1596. 

Cavalier-Smith, T., 1998, A revised six kingdom system of life. Biol. Rev. 73: 203–260. 
Chandra, K.K., and Jamuluddin,1999, Distribution of vesicular-arbuscular mycorrhizal fungi 

in coalmine overburden dumps. Indian Phytopath. 52: 254–258. 
Cordier, C., Lemoine, M.C., Lemanceau, P., Gianinazzi-Pearson, V., and Gianinazzi, S., 2000, 

The beneficial rhizosphere: A necessary strategy for microbial production. Acta Hortic.
530: 259–268. 

Danielson, R.M., Zak, J., and Parkinson, D., 1979, Plant growth and mycorrhizal development 
in amended coal spoil material. In: Wali, M. K. (Ed.), Ecology and Coal Resource 
Development. Pergamon, New York, pp. 912–919. 

Dehne, H.W., and Backhaus, G. F., 1986, The use of vesicular-arbuscular mycorrhizal fungi 
in plant protection. I. Inoculum production. Z. Pflkrankh. Pflschutz 93: 415–424. 

Diaz, G., Azcon-Aguilar, C., and Honrubia, M., 1996, Influence of arbuscular mycorrhizae on 
heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides.
Plant Soil 180: 241–249. 

Dighton, J., 1983, Phosphatase production by mycorrhizal fungi. Plant Soil 71: 455–462. 
Doran, J.W., and Linn, D.M., 1994, Microbial ecology of conservation management systems. 

In: Hatfield, J. L. and Stewart, B. A. (Eds.), Soil Biology: Effects on Soil Quality. Lewis, 
Boca Raton, FL, pp. 1–57. 

Eason, W.R., Newman, E.I., and Chuba, P.N., 1991, Specificity of interplant cycling of 
phosphorus: The role of mycorrhizas. Plant Soil 137: 267–274. 

Ebbs, S., Kochian, L., Lasat, M., Pence, N., and Jiang, T., 2000, An integrated investigation 
of the phytoremediation of heavy metal and radionuclide contaminated soils: From the 
laboratory to the field. In: Wise, D. L., Trantolo, D. J., Cichon, E. J., Inyang, H. I., and 

Arbuscular Mycorrhizae:A Dyanamic Microsymbiont 173



Stottmeister, U. (Eds.), Bioremediation of Contaminated Soils. Dekker, New York, pp. 
745–769.

Fitter, A.H., 1991, Costs and benefits of mycorrhizas: Implications for functioning under 
natural conditions. Experimen. 47: 35–355. 

Fogel, R., and Hunt, G., 1983, Contribution of mycorrhizae and soil fungi to nutrient cycling 
in a Douglas-fir ecosystem. Can. J. Forest. Res. 13: 219–232. 

Fortunato, I.M., and Avato, P., 2008, Plant development and synthesis of essential oils in 
micropropagated and mycorrhiza inoculated plants of Origanum vulgare L. ssp. hirtum
(Link) Ietswaart. Plant Cell Tiss. Organ Cult. 93:139–149.

Frank, B., 1885, Ueber die auf Wurzelsybiose beruhende Ernährung gewisser Bäume durch 
unterirdische Pilze. Bericht der deutschen Gesellschagt 3: 128–148. 

Franken, P., and George, E., 2004, Diversity of arbuscular mycorrhizal fungi. In: Benckiser, 
G. and Schnell, S. (Eds.), Biodiversity in Agricultural Production Systems. Taylor & 
Francis Group, Boca Raton, FL/London, pp. 189–203. 

Gerdemann, J.W., 1968, Vesicular-arbuscular mycorrhizae and plant growth. Ann. Rev. 
Phytopathol. 6: 397–418. 

Gianinazzi, S., Trouvelot, A., and Gianinazzi-Pearson, V., 1989, Conceptual approaches in 
agriculture for the rational use of VA-endomycorrhizae in agriculture: Possibilities and 
limitations. Agric. Ecosys. Environ. 29: 153–161. 

Gianinazzi, S., Trouvelot, A., and Gianinazzi-Pearson, V., 1990, Role and use of mycorrhizas 
in horticultural crop production. XXIII International Horticulture Congress Plenary 
lecture, Italy, pp. 25–30. 

Giri,B., Kapoor, R., Agarwal, L., and Mukerji, K.G., 2004, preinoculation with arbuscular 
mycorrhizae helps Acacia auriculiformis grow in degraded Indian waste land soil. Comm.
Soil Sc. and Plant Anal. 35: 193–204. 

Gupta, R.K., 1991, Drought response in fungi and mycorrhizal plants. In: Arora, D. K., Rai, 
B., Mukerji, K. G., and Kundson, G. R. (Eds.) Handbook of Applied Microbiology. Vol. I,
Soil and Plants. Dekker, New York, pp. 55–75. 

Hall, I.R.,1980, Growth of Lotus pedunculatus cav. in an eroded soil containing soil pellets 
infested with endomycorrhizal fungi. New Zeal. J. Agric. Res. 23: 103–105. 

Hall, I.R., and Armstrong, P., 1979, Effect of vesicular-arbuscular mycorrhizas on growth of 
white clover, lotus and ryegrass in some eroded soils. New Zea. J. Agric. Res. 22: 558–
608.

Harley, J.L., and Harley, E.L., 1987, A check list of mycorrhiza in British flora. New Phytol.
105: 1–102. 

Hayman, D.S., 1974, Plant growth responses to vesicular arbuscular mycorrhiza. VI. Effect of 
light and temperature. New Phytol. 73: 71–80. 

Hiremath, S.T., and Podila, G.K., 2000, Development of genetically engineered mycorrhizal 
fungi for biological control. In: Podila, G. K. and Douds, D. D. (Eds.), Current Advances 
in Mycorrhizae Research. APS, St. Paul, MN pp. 179–187. 

Hirrel, M.C., and Gerdemann, J.W., 1980, Improved growth of onion and bellpepper in saline 
soil by two VAM fungi. Soil Sc. Soc. Am. J. 44: 654–655. 

Jalali, B.L., 2001, Mycorrhiza and plant health- need for paradigm shift. Indian Phytopath.
54: 3–11. 

Jasper, D.A., Robson, A.D., and Abbott, L.K., 1987, The effect of surface mining on the 
infectivity of vesicular-arbuscular mycorrhizal fungi. Austr. J. Bot. 35: 641–652. 

Joner, E.J., and Leyval, C., 2001, Arbuscular mycorrhizal influence on clover and ryegrass 
grown together in a soil spiked with polycyclic aromatic hydrocarbons. Mycorrhiza 10:
155–159.

Joner, E.J., Briones, R., and Leyval, C., 2000, Metal binding capacity of arbuscular mycorrhizal 
fungi. Plant Soil 226: 227–234. 

Panwar et al.174



Kaldorf, M., Kuhn, A.J., Schröder, W.H., Hildebrandt, U., and Bothe, H., 1999, Selective 
element deposits in maize colonized by a heavy metal tolerance conferring arbuscular 
mycorrhizal fungus. J. Plant Physiol. 154: 718–728.

Kehri, H.K., and Chandra, S., 1990, Mycorrhizal association in crops under sewage farming. 
J. Indian Bot. Soc. 69: 267–270. 

Kim, S.J., Hiremath, S.T., and Podila, G.K., 1999, Cloning and identification of symbiosis-
regulated genes from the ectomycorrhizal Laccaria bicolor. Mycol. Res. 103: 168–172. 

Lovato, P.E., Gianinazzi-Pearson, V., Trouvelot, A., and Gianinazzi, A., 1996, The state of art 
of mycorrhizas and micropropagation. Adv. Horti. Sc. 10: 46–52. 

Lovelock, C.E., Wright, S.F., Clark, D.A., and Ruess, R.W., 2004, Soil stocks of glomalin 
produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J. Ecol.
92: 278–287. 

Manoharachary, C., 2004, Biodiversity, taxonomy, ecology, conservation and biotechnology 
of arbuscular mycorrhizal fungi. Indian Phytopath. 57: 1–6. 

Menge, G.A., 1983, Utilization of vesicular-arbuscular mycorrhizal fungi in agriculture. Can.
J. Bot. 61: 1015–1024. 

Miller, R.M., and Jastrow, J.D., 1994, Vesicular-arbuscular mycorrhizae and biogeo-chemical 
cycling. In: Pfleger, F. L. and Lindermann, R. G. (Eds.), Mycorrhizae and Plant Health.
APS, St. Paul, MN pp. 189–212. 

Miller, R.M., and Jastrow, J.D., 1992, The role of mycorrhizal fungi in soil conservation. In: 
Bethlenfalvay, C. J. and Linderman, R. G. (Eds.), Mycorrhizae in Sustainable Agriculture. 
Crop Science Society and Soil Science Society of America, Madison, WI, pp. 29–44. 

Molina, R., Massicotte, H., and Trappe, J.M., 1992, Specificity phenomena in mycorrhizal 
symbiosis: Community-ecological consequences and practical implecations. In: Allen, M. 
F. (Ed.), Mycorrhizal Functioning: An Integrative Plant-Fungal Process. Chapman & 
Hall, New York, pp. 357–423. 

Morton, J.B., and Redecker, D., 2001, Two new families of Glomales, Archaesporaceae and 
Paraglomaceae, with two new genera Archaespora and Paraglomus, based on concordant 
molecular and morphological characters. Mycologia 93: 181–195. 

Mukerji, S., Mukerji, K.G., and Arora, D.K., 1991, Ectomycorrhizae. In: Arora, D. K., Rai, 
B., Mukerji, K. G., and Kundson, G. R. (Eds.), Handbook of Applied Microbiology. Vol. I 
Soil and Plants. Dekker, New York, pp. 187–215. 

Munro, R.C., Wilson, J., Jefwa, K.W., and Mbuthia, K.W., 1999, A low-cost method of 
mycorrhizal inoculation improves growth of Acacia tortilis seedlings in the nursery. For. 
Ecol. Managm. 113: 51–56. 

Odum, E.P., and Biever, L.J., 1994, Resource quality, mutualism and energy partitioning in 
food chaons. Am. Natur. 124: 360–376. 

Panwar, J., Tarafdar, J.C., Yadav, R.S., Saini, V.K., Aseri, G.K., and Vyas, A., 2007, 
Technique for visual demonstration of germinating AM spore and their multiplication in 
pots. J. Plant Nutr. Soil Sci. 170: 659–663. 

Pfeiffer, C.M., and Bloss, H.E., 1988, Growth and nutrition of guayule (Parthenium
argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and 
phosphorus fertilization. New Phytol. 108: 315–321. 

Pond, E.C., Menge, J.A., and Jarrell, W.M., 1984, Improved growth of tomato in salinized 
soil by vesicular-arbuscular mycorrhizal fungi collected from saline soils. Mycologia 76:
74–84.

Poss, J.A., Pond, E., Menge, J.A., and Jarrel, W.M., 1985, Effect of salinity on mycorrhizal 
onion and tomato in soil with and without additional phosphate. Plant  Soil 88: 307–319. 

Rao, A.V., and Tak, R., 2001, Influence of mycorrhizal fungi on the growth of different tree 
species and their nutrient uptake in gypsum mine spil in India. App. Soil Ecol. 17: 279–
284.

Arbuscular Mycorrhizae:A Dyanamic Microsymbiont 175



Read, D.J., 1984, The structure and function of the vegetative mycelium of mycorrhizal roots. 
In: Jennings, D. H. and Rayner, A. D. M. (Eds.), The Ecology and Physiology of the 
Fungal Mycelium. Cambridge University Press, New York, pp. 215–240. 

Read, D.J., 1991, Mycorrhizas in ecosystem. Experientia 47: 376–391. 
Read, D.J., Francis, R., and Finlay, R.D., 1989, Mycorrhizal mycelia and nutrient cycling in 

plant communities. In: Fitter, A. E. (Ed.), Ecological Interactions in Soil: Plants, 
Microbes, and Animals. Blackwell Scientific, Boston, MA, pp. 193–217. 

Redecker, D., Kodner, R., and Graham, L.E., 2000, Glomalean fungi from the Ordovician. 
Science 289: 1920–1921. 

Redhead, J.F., 1977, Endotrophic mycorrhizas in Nigeria: Species of the Endogonaceae and 
their distribution. Trans. Brit. Mycol. Soc. 69: 275–280. 

Rillig, M.C., 2004, Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci.
84: 355–363. 

Safir, G.R., Boyer, J.S., and Gerdemann, J.W., 1971, Mycorrhizal enhancement of water 
transport in soybean. Science 172: 581–583. 

Safir, G.R., Boyer, J.S., and Gerdemann, J.W., 1972, Nutrient status and mycorrhizal 
enhancement of water transport in soybean. Plant Physiol. 49: 700–703. 

Sharma, M.P., and Adholeya, A., 2004, Effect of arbuscular mycorrhizal fungi and phosphorus
fertilization on the post vitro growth and yield of micropropagated strawberry grown in a 
sandy loam soil. Can. J. Bot. 2: 322–328. 

Simon, L., Bousquet, J., Levesque, R.C., and Lalonde, M., 1993, Origin and diversification of 
endomycorrhizal fungi and coincidence with vascular land plants. Nature 363: 67–69. 

Tarafdar, J.C., and Marschner, H., 1994, Phosphatase activity in the rhizosphere and hypho-
sphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil
Biol. Biochem. 26: 387–395. 

Tate, R.L., 1987, Soil Organic Matter: Biological and Ecological Effects. John, New York, p. 
291.

Tate, R.L., 1985, Microorganisms, ecosystem disturbance and soil formation processes. In: 
Tate, R. L. and Klein, D. A. (Eds.), Soil Reclamation Processes: Microbiological Analyses 
and Applications. Dekker, New York, pp. 1–33. 

Tisdall, J.M., 1991, Fungal hyphae and structural stability of soil. Aus. J. Soil Res. 29: 729–743. 
Vestberg, M., Cassells, A.C., Schubert, A., Cordier, C., and Gianinazzi, S., 2002, Arbuscular 

mycorrhizal fungi and micropropagation of high value crops. In: Gianinazzi, S., Schüepp, 
H., Barea, J. M., and Haselwandter, K. (Eds.), Mycorrhizal Technology in Agriculture 
from Gene to Bioproducts. Birkhäuser Verlag, Basel, Switzerland, pp. 223–233. 

Wright, S.F., and Anderson, R.L., 2000, Aggregate stability and glomalin in alternative 
croprotations for central Great Plains. Biol. Fert. Soils 31: 249–253. 

Wright, S.F., and Upadhyaya, A., 1998, A survey of soils for aggregate stability and glomalin, 
a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198: 97–107. 

Wright, S.F., Rillig, M.C., and Nichols, K.A., 2000, Glomalin: A soil protein important in 
carbon sequestration. In: Proceedings of American Chemical Society Annual Meeting 
Symposium,  pp. 721–725. 

Panwar et al.176



Chapter 7 

INDIRECT CONTRIBUTIONS OF AM FUNGI 
AND SOIL AGGREGATION TO PLANT 
GROWTH AND PROTECTION

KRISTINE A. NICHOLS 
USDA-ARS-Northern Great Plains Research Laboratory, Mandan, ND 58554, USA

Abstract:    Ecological and biological engineering contribute indirectly to the fitness of the 
soil environment and promote plant growth and protection. This engineering 
modifies soil physical, chemical, and biological attributes to enhance nutrient 
cycling, increase soil organic matter, and improve soil quality. Arbuscular 
mycorrhizal (AM) fungi, under most conditions, improve plant growth directly 
by providing greater and more efficient access via fungal hyphae for absorp-
tion of nutrients, especially P, and delivery of these nutrients to the plant. The 
AM symbiosis also augments disease resistance in host plants and suppresses 
the growth of non-mycorrhizal weeds. When plants moved from an aquatic to 
a terrestrial environment, mycorrhizal fungi were an integral part of their 
success by providing efficient nutrient absorption from the low organic matter 
mineral soil. In addition, AM fungi stabilize soil aggregates and promote the 
growth of other soil organisms by exuding photosynthetically-derived carbon 
into the mycorrhizosphere. Glomalin is a glycoprotein produced by AM fungi 
which probably originated as a protective coating on fungal hyphae to keep 
water and nutrients from being lost prior to reaching the plant host and to 
protect hyphae from decomposition and microbial attack. This substance also 
helps in stabilizing soil aggregates by forming a protective polymer-like lattice 
on the aggregate surface. AM fungal growth and biomolecules engineer well-
structured soil where the distribution of water-stable aggregates and pore spaces 
provides resistance to wind and water erosion, greater air and water infiltration 
rates favorable for plant and microbial growth, nutrients in protect micro-sites 
near the plant roots, and protection to aggregate-occluded organic matter.

Keywords:     Glomalin; soil aggregation; water-stable aggregates. 

1 INTRODUCTION 

The soil environment is a critical component to plant health because 
soils regulate root growth, water infiltration, aeration, the filtering and 
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buffering of pollutants, and nutrient cycling and storage. To perform these 
functions, the physical, chemical, and biological components of soils need to 
interact on an intimate level. Soil organisms evolved mechanisms that result 
in the modification of their physiochemical environment to enhance plant 
growth (Rillig and Steinberg, 2002; Janos, 2007; Jordan et al., 2008). These 
mechanisms, such as the formation of water-stable soil aggregates, created 
habitats and a ready food supply for continued biological growth.   

Arbuscular mycorrhizal (AM) fungi are arguably one of the most 
dominate and important organisms in the soil, comprising 5–50% of the total 
microbial biomass in soils (Olsson et al., 1999), and obligately-associated 
with the majority of vascular plants (Brundrett, 2002; Millner and Wright, 
2002). These fungi receive carbon (about 12–27%) from the plant host in the 
form of simple hexose sugars, which are used for fungal growth and exuded 
into the mycorrhizosphere (Tinker et al., 1994). Root and mycorrhizal exu-
dates attract soil organisms, which use these exudates to transform organic 
matter and soil minerals into plant-available nutrients.  

The AM symbiosis played an integral role in helping plants to live 
when they moved from an aquatic to a terrestrial environment. Thread-like 
fungal hyphae fan out into the soil to scavenge even highly immobile nutrients, 
such as P. In addition to being able to grow out further into the soil than plant 
roots, the fine threads of hyphae have a much larger surface area to volume 
ratio than roots, and the fungal cell membrane is capable of concentrating 
solutes against a gradient (George et al., 1992). Rapid growth of fine, 
ephemeral hyphae occurs in microsites containing high concentrations of 
nutrients such as P, N, Fe, Cu and Zn (Clark and Zeto, 1996; Pawlowska  
et al., 2000) to deliver these nutrients to the plant for the lowest carbon 
‘cost’. In the environment of early Earth, mycorrhizal fungi assisted in the 
formation of soil aggregates. Soil aggregates are pellets of different shapes 
and sizes which contain a conglomeration of soil minerals (sand, silt, and 
clay); organic matter, such as plant debris; inorganic compounds like iron and 
aluminum oxides; roots; fungal hyphae; and other microbes (Chenu et al.,
2000; Six et al., 2001). Roots and AM fungal hyphae act like a ‘net’ collecting 
soil minerals, organic matter, etc. Root and microbial exudates such as poly-
saccharides and glomalin (a glycoprotein produced on AM hyphae) provide 
the ‘glue’ to stick soil debris to the ‘net’ (Miller and Jastrow, 1990; Rillig and 
Mummey, 2006). In addition to helping to ‘glue’ aggregates together, glo-
malin appears to form a hydrophobic lattice around aggregates to keep them 
water-stable (Nichols and Wright, 2004). When present within aggregates, 
minerals and organic matter are less susceptible to wind and water erosion. 
Intra-aggregate organic matter is slowly decomposed by microbes and 
converted into plant-available nutrients. Soil aggregates create and maintain 
soil pores providing air and water infiltration rates favorable for plant growth.  
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Agricultural management influences aggregate formation and stabi-
lity by its impacts on the physical destruction of soil aggregates and hyphal 
networks, and the allocation of photosynthetically-derived carbon below-
ground. Minimum or no tillage production systems reduce the physical 
impacts on aggregates while the use of continuous cover in the form living 
plants increases the amounts of photoassimulated carbon. Continuous cover 
may include removing fallow periods from annual cropping systems or using 
cover or perennial crops. 

2 EVOLUTION OF AM SYMBIOSIS

About 500–600 Myear ago, algae and fungi were likely the first 
terrestrial associations between fungi and photosynthetic organisms (Redecker 
et al., 2000; Brundrett, 2002). These early land colonizers, present before the 
evolution of higher plants, developed mechanisms for foraging mineral 
nutrients in the harsh environment of early Earth and in the process would 
have ‘engineered’ soil by biomineralization (Brundrett, 2002; Rillig and 
Steinberg, 2002; Schüßler, 2002; Janos, 2007; Jordan et al., 2008). To effi-
ciently forage nutrients, fungal hyphae formed fine threads to disperse 
widely throughout the soil, respond quickly to temporary, localized nutrient 
sources, compete successfully with other organisms, and produced enzymes 
to obtain mineral and organic nutrients (Brundrett, 2002). In this process, 
soil fungi would have increased their absorption of mineral nutrients beyond 
those required for immediate use as insurance against future shortages 
(Brundrett, 2002). Simultaneously, algal growth increased the atmospheric 
oxygen levels to the point where the ozone layer, which provides UV radi-
ation protection, would have been formed (Pirozynski and Malloch, 1975). 
Under high CO2 conditions and with little competition for sunlight, these 
protected algae quickly evolved more complex structures similar to modern-
day bryophytes with few leaves or branches and underdeveloped roots 
(Pirozynski and Malloch, 1975; Schwartzman and Volk, 1989; Brundrett, 
2002). These early plants exploited their photosynthetic capability and 
produced large amounts of carbon compounds to feed soil fungi which had 
abundant mineral nutrient resources. The mycorrhizal symbiosis sub-
sequently evolved to where the symbiotic partners avoided conflicts over 
limited resources by utilizing materials each partner had in excess making 
the costs of production/acquisition balance against the benefits of mycorrhizal 
associations (Redecker et al., 2000; Brundrett, 2002).  

In 1993, the BEG (European Bank of Glomeromycota) stated: “The 
study of plants without their mycorrhizas is the study of artifacts; the majority 
of plants, strictly speaking, do not have roots—they have mycorrhizas” 
(Schüßler et al., 2007). The fossil records show that the fungal structures 
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found in the roots of Devonian plants, at least 400 million years ago, are 
almost exactly the same as the structures found in the roots of modern plants 
(Brundrett, 2002; Redecker et al., 2000; Schüßler, 2002). The first exchange 

cells of the endophytic fungus evolved to become more permeable and increase 
leakage of their contents (Brundrett, 2002; Redecker et al., 2000; Schüßler, 
2002). Selection pressures would have induced changes in membrane func-
tions and wall structures by the host and fungus resulting in the formation of 
a specialized interface structure (i.e., the arbuscule) to provide a suitable 
habitat for AM fungi where carbon and nutrient exchange would be maxi-
mized to support more complex aboveground structures (Gensel and Andrews, 
1987; Schwartzman and Volk, 1989; Brundrett, 2002; Schüßler, 2002).  

By exploiting this mutually beneficial relationship, explosive inno-
vations in plant development occurred during the Devonian Period, where 
the number of genera increased from 1 to 28 (Gensel and Andrews, 1987; 
Schwartzman and Volk, 1989) and plants grew from tiny creeping structures 
to a diverse array of 0.5–9 m high structures with leaves, roots, reproductive 
systems, and secondary growth (Gensel and Andrews, 1987). Roots, which 
began as subterranean stems, progressed from coarse dichotomous branches 
to roots with highly organized cell layers and branching to support more and 
larger above-ground structures, propagate the plant, serve as storage organs, 
and form conduits to distribute water and nutrients. Plants also developed 
mechanisms to control the extent of mycorrhizal formation by confining 
them in certain cell layers and controlling the timing of their formation and 
turnover. These control mechanisms resulted in slow evolutionary changes 
among mycorrhizal fungi (Redecker et al., 2000; Brundrett, 2002). However, 
to continue to receive C from the plant, AM fungi had to constantly adapt to 
their growing environment. Selection pressures based on the soil environ-
ment probably stimulated more evolutionary changes in AM fungi, espe-
cially in the growth and function of extraradical hyphae. As an example, the 
‘engineering’ of an environment favorable for plant and mycorrhizal growth 
may vary with different plant hosts, in different soil types and in response to 
different environmental conditions, but the process continued to evolve in 
the direction of maximizing the efficiency and productivity of the system. As 
a consequence, an active rhizosphere and mycorrhizosphere, containing a suite 
of biomolecules (such as polysaccharides, humic substances, and glomalin) 
possessing the requisite combination of hydrophilic, acidic, complexing, and 
sorptive properties, was formed (Johnson et al., 2005; Rillig and Mummey, 
2006; Schüßler et al., 2007).

process probably began in the diffuse interface within the plant where certain
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3 THE MYCORRHIZOSPHERE 

On an annual basis, a major part of ecosystem C flux is the transfer 
of C from plants to fungi and from the fungi to the soil (Johnson et al., 2005; 
Schüßler et al., 2007). The result of this carbon transfer was the formation of 
a zone of intense microbial growth in the area surrounding AM colonized 
roots and extraradical hyphae (i.e. the mycorrhizosphere) greater than in the 
bulk soil (Andrade et al., 1998; Johnson et al., 2005; Rillig and Mummey, 
2006) (Fig. 1). In the mycorrhizosphere, AM fungi influence bacterial, fungal, 
and microarthropod communities by providing them substrates in the forms 
of decomposing fine, ephemeral hyphae and the deposition of hyphal bio-
molecules, and by influencing soil structure (i.e. microbial habitats within 
aggregates and pore spaces) (Andrade et al., 1998; Rillig and Mummey, 
2006). Abiotic and biotic factors (such as soil pH, soil chemical composition, 
root and hyphal exudation, and soil microflora) change in the mycorrhizosphere 
according to the interactions of the plant, fungus, soil, and soil microbes 
(Filion et al., 2003; Johnson et al., 2005; Rillig and Mummey, 2006). Hyphal 
morphology (i.e. wall thickness, width, branching patterns, and turnover), 
function (i.e. nutrient absorption, plant protection, and soil aggregate for-
mation and stabilization), and longevity vary greatly across and within 
native and agricultural systems due to changes in the mycorrhizosphere (Rillig 
and Mummey, 2006). 

Various microorganisms in the mycorrhizosphere may act as posi-
tive, mycorrhization helper organisms (i.e. organisms that promote AM root 
colonization or production of plant-available nutrients) or negative organisms 
(i.e. organisms that compete for resources or are fungal grazers or parasites) 
(Rillig, 2004). Positive organisms include Mn-oxidizing and reducing bacteria 
(i.e. Streptomyces, Arthrobactor, Variovorax and Ralstonia; Nogueira et al.,
2007), phosphate-solubilizing bacteria (such as Enterobacter sp. and Bacillus
subtilis; Toro et al., 1997), nitrogen-transforming microbes (autotrophic 
ammonium oxidizers), and bacteria and fungi involved in soil aggregation. 
Also, the growth of the antagonistic bacterium Paenibacillus sp. strain B2 
has resulted in the reduction of soilborne pathogens (including Aphanomyces,
Chalara, Fusarium, Phytophthora, Pythium, Rhizoctonia, and Verticillium)
(Budi et al., 1999; Filion et al., 2003; Selim et al., 2005). Negative organisms 
include soil mesofauna (such as Collembola; Johnson et al., 2005). The 
alterations of microbial communities have reduced plant disease susceptibi-
lity (Budi et al., 1999; Filion et al., 2003; Selim et al., 2005); increased the 
biodegradation of polycyclic aromatic hydrocarbons (Binet et al., 2000; 
Corgie et al., 2006); impacted the plant-availability and absorption of Mn 
and Fe (Noguiera et al., 2007); altered hyphal growth and morphology due 
to grazing by soil mesofauna (Johnson et al., 2005); and increased plant-
available nutrients (Toro et al., 1997). 
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Fig. 1. Soil aggregates were ‘bioengineered’ in the mycorrhizosphere, containing AM fungal 
hyphae and colonized millet roots. The millet was planted as part of a cover crop mixture on 
July 7, 2007 following the harvest of a forage pea crop in the semi-arid northern Great Plains 
region of the United States. Roots were collected on August 30, 2007. 

The interactions between the biological, physical, and chemical 
components of soil occur in the mycorrhizosphere (Toro et al., 1997; Rillig 
and Mummey, 2006). In this zone, C is the energy source for a diverse array 
of microorganisms which work in complex symbiotic relationships (some of 
which were identified above) for their own growth (Rillig and Steinberg, 
2002; Janos, 2007; Jordan et al., 2008). A consequence of soil biological 
growth is the increased availability and acquisition of plant nutrients, better 
plant protection, and an ‘engineered’ environment, via the formation of soil 
aggregates which allows for better aeration, water infiltration, water reten-
tion, and plant root growth (Rillig et al., 2007; Jordan et al., 2008). Fungal 
hyphae and biomolecules, such as glomalin, are critically important to soil 
biological processes because of their interactions with the plant, soil, and 
soil microbes. 

3.1 Extraradical fungal hyphae

In the soil, AM fungal hyphae are the thread-like filaments that com-
prise the body of mycorrhizal fungi and are the main functional organs in the 
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mycorrhizal symbiosis. Without extraradical hyphae extending out (up to 8 cm) 
into the soil, the fungus would not be able to obtain the nutrients required to 
‘purchase’ C from the plant (Rillig, 2004; Rillig and Mummey, 2006). Hyphal 
density ranges between 1 and 30 m g–1  of soil (Corgie et al., 2006) and may 
contain 50–900 kg ha–1 of the soil carbon (Rillig, 2004). Olsson et al. (1999) 
found that AM fungal hyphae accounted for 5–50% of the microbial bio-
mass, but more recently Cheng and Baumgartner (2006) estimated hyphal 
biomass at 20–30%. The role and importance of fungal hyphae in nutrient 
acquisition is well known, but the mechanisms of this function are not well 
understood. In studying differences in the architecture and wall thickness of 
extraradical hyphae, two types or morphologies are recognized: (i) the larger 
and thicker, more mellanized hyphae which is part of the ‘permanent’ fungal 
network and acts as ‘conduit’ or runner hyphae, and (ii) the thin-walled, very 
fine, ephemeral hyphae which is the ‘absorptive’ hyphae and will fan out into 
nutrient-rich microsites in the soil (Friese and Allen, 1991; Abbott et al.,
1992). The ephemeral hyphae are decomposed in days or weeks while the 
turnover of runner hyphae may be years (Rillig, 2004; Tresder et al., 2007). 

To support this resistance to decomposition and to keep nutrients 
from being lost to the soil environment prior to reaching the plant roots, a 
protective coating on hyphae is speculated. Glomalin (80% of which is bound 
tightly to the hyphal wall; Driver et al., 2005) is speculated to provide this 
coating (Nichols and Wright, 2004; Purin and Rillig, 2008). The localization 
of glomalin in the hyphal wall indicates that this molecule may be important 
in mediating the interaction of the biotic and abiotic environment and in 
defending fungal hyphae against grazers by reducing hyphal palatability 
(Nichols and Wright, 2004; Driver et al., 2005; Purin and Rillig, 2008).

Hyphal growth, and production of biomolecules, such as glomalin, is 
dependent upon how C received from the plant is allocated (Whitbeck, 2001; 
Tinker et al., 1994). However, other growing conditions, such as soil texture, 
temperature, pH, or water-content, and signals from the plant, may cause 
differential fungal growth patterns (Bethlenfalvay et al., 1999; Whitbeck, 
2001; Steinberg and Rillig, 2003). Soil aggregates formed and stabilized by 
contributions from AM fungi help to buffer some of these adverse growing 
conditions.

3.2 Glomalin

Glomalin (a reddish-grown AM fungal glycoprotein) was first 
identified using immunological techniques with a monoclonal antibody 
(MAb32B11) (Wright et al., 1996). Using indirect immunofluorescence with 
this antibody, glomalin was revealed on AM fungal hyphae, colonized roots, 
organic matter, soil particles, horticultural or nylon mesh, glass beads, and 
arbuscules within root cells (Wright et al., 1996; Wright and Upadhyaya, 1999; 
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Wright, 2000). The gene (GiHsp 60) for glomalin production has been 
identified and shows genetic similarities to heat shock proteins indicating glo-
malin production may responded to stress (Gadkar and Rillig, 2006). Immuno-
electron microscopy (Purin and Rillig, 2008), in vitro cultures (Driver et al.,
2005), and amino acid sequencing (Gadkar and Rillig, 2006) have indicated 
the majority (ca. 80%) of glomalin produced was localized in hyphal walls. 
Although glomalin is localized in the hyphal wall, studies indicate hyphal 
length and glomalin values are not related (Rillig and Steinberg, 2002; Bedini 
et al., 2007). Therefore, it is theorized that glomalin is not present in the fine, 
ephemeral ‘absorptive’ hyphae (as was seen in immunofluorescence assays) 
making any relationship between glomalin and hyphal length difficult (Bedini 
et al., 2007; Nichols and Wright, 2004).  

Glomalin resists enzymatic and chemical decomposition in the soil 
and laboratory (Rillig and Steinberg, 2002; Steinberg and Rillig, 2003; 
Nichols and Wright, 2004) and has a turnover rate of 6–42 years (Rillig et al.,
2001; Harner et al., 2007) and possibly up to 92 years (Preger et al., 2007). 
The difficulties in solubilizing glomalin (requires repeated 1-hour intervals 
of autoclaving at 121oC in a neutral to slightly alkaline sodium salt solution; 
Wright et al., 1996; Nichols and Wright, 2004) and the interactions of glo-
malin with metals, organic matter, and clay minerals (Nichols and Wright, 
2004, 2005; Rosier et al., 2007) are theorized to contribute to its stability. 
Atomic absorption analysis for iron indicated glomalin contained 0.2–8.8% 
with lower percentages in glomalin extracted from hyphae collected from a 
root-free zone in axenic sand:coal pot cultures (Wright and Upadhyaya, 
1998; Nichols and Wright, 2005). 

 Glomalin extracted from soil is very similar to glomalin extracted 
from single-species pot cultures according to SDS-PAGE (Wright et al.,
1996; Wright and Upadhyaya, 1996; Rillig et al., 2001), NMR (Rillig et al.,
2001), capillary electrophoresis (CE) (Wright et al., 1998), crossed immuno/ 
lectin affinity electrophoresis followed by LC/MS (Bolliger et al., 2008), 
and C, H, N analysis by combustion (Rillig et al., 2001). The C, N and H 
concentrations in glomalin extracted from soil averaged 36%, 3%, and 4%, 
respectively, while glomalin extracted from hyphae averaged 40%, 6%, and 
7%, respectively (Rillig et al., 2001; Lovelock et al., 2004; Nichols and 
Wright, 2005; Tresder et al., 2007). These values were used to calculate 
glomalin’s contribution to soil organic C, which ranged from 1% to 31% 
with higher values from undisturbed, temperate soil where the mass value 
used was based on gravimetric weight of freeze-dried material (Nichols and 
Wright, 2005) and lower values from disturbed and undisturbed tropical and 
temperate soils where mass values were based on BRSP weight (Rillig et al.,
2001; Lovelock et al., 2004; Tresder et al., 2007). In addition, 1H NMR 
spectra showed glomalin to be the most abundant and best characterized 
compound in crude extracts from soil and hyphal samples (Rillig et al.,
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2001; Nichols and Wright, 2004). Peak location and size showed glomalin 
was most abundant in aliphatic groups with some carbohydrate and aromatic 
signatures. The low carbohydrate signatures also were found for glomalin 
samples by Schindler et al. (2007), but they found aromatic groups to be 
higher than aliphatic groups and much similarity between the glomalin 
samples and the IHSS Pahokee Peat standard of humic acid. No tannic acids 
peaks were found in 1H NMR spectra of Rillig et al. (2001). Therefore, des-
pite co-extraction of tannic material by the glomalin extraction procedure 
when samples are spiked with tannic acid (Halvorson and Gonzalez, 2008), 
there is no indication that glomalin extracted from soil and partially purified 
by acid precipitation contains a large portion of tannic acids (Rillig et al.,
2001).

Glomalin is, typically, quantified using the Bradford total protein 
assay and enzyme-linked immunosorbent assay (ELISA) using MAb32B11 
(Wright et al., 1996; Rillig, 2004; Nichols and Wright, 2004, 2005, 2006; 
Rillig et al., 2007). Abundant amounts of glomalin (typically, 2–15 mg 
Bradford-reactive protein g–1 soil) have been measured in a wide range of 
soil environments (acidic, calcareous, grassland and cropland) (Wright and 
Upadhyaya, 1998; Wright et al., 1999; Rillig et al., 2001). Because this 
extraction procedure may co-extract other soil proteins (Rosier et al., 2007), 
polyphenolics, such as tannic acids (Halvorson and Gonzalez, 2008), and/or 
other organic matter components, such as humic substances (Nichols and 
Wright, 2005, 2006), Rillig (2004) introduced new nomenclature for the soil 
extracts to be identified as glomalin-related soil protein (GRSP) and the 
Bradford total protein concentration as Bradford-reactive soil protein (BRSP). 
This change in nomenclature exhibits several problems in the area of glo-
malin research. However, despite the lack of information about the structure 
and function of glomalin and a definitive method for quantification, this 
methodology is still being used to measure glomalin in a wide variety of 
ecosystems (Nichols and Wright, 2004; Rillig, 2004; Rillig et al., 2007). As 
these studies illustrate, research in this area continues because of the extremely 
important roles that have been theorized and demonstrated for glomalin 
(Nichols and Wright, 2004, 2005, 2006; Rillig, 2004; Rillig et al., 2007). 

Glomalin is theorized to (a) protect fungal hyphae from microbial 
attack, (b) provide a coating on runner or ‘conduit’ hyphae to prevent loss of 
water and nutrients, and (c) promote hyphal growth in the soil environment 
where turgor pressures vary with wet/dry cycles (Nichols and Wright, 2004; 
Rillig et al., 2007). Saprophytic, pathogenic, and mutualistic, ectomycorrhizal 
fungi produce fungal proteins (called hydrophobins) which play similar 
functional roles to those identified for glomalin (Wessels, 1997; Whiteford 
and Spanu, 2002; Rillig et al., 2007). These proteins have been well charac-
terized and may serve as model proteins to develop methodology for further  
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structural and functional analysis of glomalin. Although glomalin and hydro-
phobins do not appear to share structural similarities, these fungal proteins 
are similar in their location on fungal hyphae, high insolubility, speculated 
functionality, and multi-molecular formations (Wessels, 1997; Whiteford 

growth media and on surfaces, hydrophobins, and possibly glomalin (as seen 
in immunofluorescence assays; Wright, 2000), self-assemble into amphipathic 
films comprised of rodlet-like formations at air-water or water-hydrophobic 
substance interfaces (Wessels, 1997, 1999). Scum formation has also been 
exhibited for hydrophobins, where N2 gas is bubbled through the fungal 
culturing medium (Askolin et al., 2001), and for glomalin (as stated above) 
by washing the potting medium with forced water, which introduced air into 
the water stream, creating air-water interface (Wright, 2000; Nichols and 
Wright, 2004). Similarly, Bradford-reactive soil protein has also been mea-
sured as part of tan-colored foam in rivers in the United States (Harner et al.,
2007).

Glomalin also shares similarities with other biomolecules, such as 
hydrophobic repellents and iron-accumulating transferrins. Repellents are 
similar to hydrophobins in that they contain a number of hydrophobic amino 
acids, but they do not contain the characteristic eight cysteine residues used 
to classify hydrophobins (like glomalin) and do not self-assemble into rodlets 
(unlike glomalin) (Kershaw and Talbot, 1998; Wright, 2000; Whiteford and 
Spanu, 2002; Rillig et al., 2007). The similarities between transferrins and 
glomalin include resistance to proteolysis by trypsin or trypsin-like enzymes 
and high heat (up to ~70oC) (Iyer and Lonnerdal, 1993; Paulsson et al., 1993) 
and hyper-accumulation of iron which produces multiple bands in SDS-PAGE 
depending on iron concentration and/or degree of degradation or deglyco-
sylation (Bolliger et al., 2008; Nagasako et al., 1993; Rillig et al., 2001).

Another functional role for glomalin is the formation and stabilization 
of soil aggregates. Glomalin may contribute to aggregate formation via the 
‘gluing’ action of the oligosaccharides present in the glomalin molecule or 
the bridging of clay minerals and organic matter by iron or other polyvalent 
cations on the glomalin molecule (Wright and Upadhyaya, 1998; Nichols and 
Wright, 2004; Rillig, 2004). Also, the protective barrier glomalin provides to 
the fungal hyphae may protect soil aggregates from slaking (Nichols and 

released during hyphal decomposition forms a lattice-like coating on the 
surface of aggregates (Wright, 2000; Nichols and Wright, 2004; Rillig et al.,
2007). This coating provides small openings for air, CO2, and water exchange 
between the pores within the aggregate and the surrounding soil environment. 
When the glomalin barrier is not present, water rushes very quickly into the 
intra-aggregate pore spaces causing the air molecules to condense. Air-pressure 
in the pore space builds until the aggregate explodes. 

and Spanu, 2002; Nichols and Wright, 2004; Rillig et al., 2007). In the 

Wright, 2004; Rillig et al., 2007). Glomalin sloughed from growing hyphae or 
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4 SOIL AGGREGATION 

Loss of topsoil, at a rate of 10 million hectares per year, is a serious 
problem in agroecosystems and has resulted in an estimated loss of nearly 
one-third of the world’s arable land during the last 40 years (Pimentel et al.,
1995). Conservation agriculture has as its goals “to achieve high and sustain-
able productivity, quality and economic viability, while also respecting the 
environment … [by] protecting soil and water” (Jones et al., 2006). The for-
mation and stabilization of soil aggregates appears to increase under conser-
vation practices. Soil aggregates are important for: (1) maintaining soil 
porosity, which provides aeration and water infiltration rates favorable for 
plant and microbial growth, (2) increasing stability against wind and water 
erosion, and (3) storing carbon by protecting organic matter from microbial 
decomposition (Rillig et al., 1999, 2007; Six et al., 2001).

Soil aggregates are comprised of soil minerals (clay particles, fine 
sand and silt), plant roots, fungal hyphae, small plant or microbial debris, 
bacteria, free amorphous organic matter and organic matter strongly associ-
ated with clay coatings (Chenu et al., 2000; Six et al., 2001). The diversity 
of materials within aggregates makes both aggregate formation and stabili-
zation complex processes (Andrade et al., 1998; Miller and Jastrow, 1990). 
In the hierarchical formation of soil aggregates AM fungal hyphae may initiate 
aggregate formation by providing the framework, or ‘net’ upon which soil 
debris and microaggregates formed by the binding of primary particles collect 
(Miller and Jastrow, 1990; Rillig and Mummey, 2006). The efficiency of this 
process is enhanced by biochemical agents such as hydrophobins and glo-
malin, the alignment and grouping of particles due to wet/dry cycles, and the 
enrichment of bacterial communities in the mycorrhizosphere (Andrade et al.,
1998; Rillig and Mummey, 2006). Other fungi contribute to aggregate for-
mation via the decomposition of stubble and mulch litter and the production 
of polysaccharides and mucigels (Chaney and Swift, 1986; Caesar-TonThat 
and Cochran, 2000).These polysaccharides will glue aggregates together 
quickly but do not to contribute to the long-term stability of aggregates, 
because they are water-soluble and easily decomposed (Chaney and Swift, 
1986; Six et al., 2001). Other fungal biomolecules, such as glomalin, hydro-
phobins, and repellents, may contribute to long-term stability by providing a 
hydrophobic barrier on the surface of aggregates (Wessels, 1997; Nichols 
and Wright, 2004). These aliphatic molecules work by increasing the contact 
angle for water penetration and by having very strong attractive forces bet-
ween molecules which keeps them internally stable and induces the formation 
of rodlet-like layers or plaques (Degens, 1997; Chenu et al., 2000; Nichols and 
Wright, 2004). When an aggregate has these layers on its surface, it is pro-
tected from disruption by rainfall due to mechanical dispersion by the kinetic 
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Fig. 2. Dry-sieved soil aggregates (1–2 mm) separated from the same soil type under the 
same climatic conditions in the semi-arid northern Great Plains region of the United States 
look about the same (A), but after the addition of water (such as during a rainfall event) (B), 
these aggregates do not act the same. Concentrations of water-stable aggregates (WSA) and 
glomalin (BRSP) change with management (from left to right): conventionally managed 
cropland, rangeland populated with tame grass species and heavily grazed, and rangeland 
populated with native grass species and rotationally grazed. 

of clays (Degens, 1997; Chenu et al., 2000). Figure 2 shows the interactions 
of glomalin and agroecosystem management on aggregate stability. 

Other chemical (such as the interactions of clay minerals, organic 
matter, and polyvalent cations) and physical (such as drying and wetting 
actions, shrinking and swelling of clays, and freeze-thaw cycles) processes 
contribute to aggregate formation and stability (Chaney and Swift, 1986; 
Degens, 1997; Chenu et al., 2000). These chemical and physical process 
may be more important in microaggregates (<250 um) than in macroaggre-
gates ( 250 um), but the exact mechanisms for the formation and stabilization 
of all aggregates are not well understood (Six et al., 2001; Rillig et al.,
2007).

energy of raindrops, physiochemical dispersion, and the differential swelling  
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5 INDIRECT PLANT GROWTH AND PROTECTION

The interactions of the fungal hyphae in the mycorrhizosphere as 
well as the production of the fungal biomolecule, glomalin, have resulted in 
some indirect methods by which AM fungi may assist in the growth and 
protection of their host plants. In the mycorrhizosphere, a bacteria, Paeni-
bacillus sp. strain B2, produces an antagonistic factor which will suppress a 
number of soilborne plant pathogens (see mycorrhizosphere section above). 
Other microorganisms also interact in the mycorrhizosphere to promote 
disease and weed suppression, as well as the production of plant-available 
nutrients to assist in the mycorrhizal symbiosis. Some mycorrhizosphere 
microbes along with fungal hyphae and glomalin may be used to ‘engineer’ 
soil aggregates to provide a stabilized habitat for further microbial growth 
(see soil aggregation section above). Soil aggregates improve soil structure, 
quality, and fertility. Finally, glomalin itself has been found to indirectly 
reduce the levels of potentially toxic metals, such as Cd, Pb, Mn, and Fe, in 
the plant host by molecularly binding these metals (Gonzalez-Chavez et al.,
2004; Chern et al., 2007). 

6 CONCLUSIONS

Modern agricultural practices have put new pressures on the plant-
mycorrhizal symbiosis. Tillage practices physically disrupt soil aggregates 
and AM hyphal networks resulting in declining soil structure, fertility, and 
nutrient-cycling ability and forcing more C allocation by AM fungi to reesta-
blishing these networks rather than to glomalin formation (Nichols and 
Wright, 2004). No tillage (NT) practices along with continuous cropping 
systems, using mycorrhizal host crops, and reducing synthetic inputs, espe-
cially P, enhance the plant-mycorrhizal symbiotic relationship (Preger et al.,
2007; Roldan et al., 2007; Rillig et al., 2007). These practices also increase 
the percentages of water-stable aggregates within the soil by increasing 
hyphal lengths, root and microbial exudates in the mycorrhizosphere, and 
allocating more C to glomalin production. In addition, higher levels of C 
sequestration are possible in these systems, since not only is C being allo-
cated belowground to hyphal networks and the formation of the highly stable 
glomalin molecule, but organic matter occluded within aggregates appears to 
have a turnover time double free organic matter (Roldan et al., 2007; Rillig, 
et al., 2007; Six et al., 2001).To maintain ecosystem function and a consistent 
food, feed, fiber, and energy supply to a growing global population, effective 
management of soil organisms, especially AM fungi, and agricultural sys-
tems needs to be developed and implemented.  

Indirect Contributions to Plant Growth and Protection 
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ARBUSCULAR MYCORRHIZAE AND THEIR 
ROLE IN PLANT RESTORATION IN NATIVE 
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Abstract: There is high plant biodiversity in southern Florida, due to the floristic mixing 
of warm temperate Southeastern North America and tropical Caribbean. 
Arbuscular mycorrhizal (AM) fungi were found in the roots of native plants in 
the families Anacardiaceae, Arecaceae (Palmae), Cactaceae, Convolvulaceae, 
Cycadaceae, Euphorbiaceae, Fabaceae, Lauraceae, Rubiaceae, Simarubaceae 
and Smilacaeae that grow in the coastal maritime and inland hammocks of 
southern Florida. Seedlings of the following genera: Amorpha, Coccothrinax,
Gymnanthes, Hamelia, Jacquemontia, Licaria, Nectandra, Opuntia, Picramnia,
Psychotria, Rhus, Sabal, Serenoa and Zamia inoculated with AM fungi showed 
enhancement of growth and phosphorus uptake on local sandy, nutrient poor 
soils. Most native species were depend on AM fungi under natural conditions 
of poor or no soils, phosphorus limitations and often water stress. Restoration 
of endangered species of Amorpha (Fabaceae), Jacquemontia (Convolvulaceae), 
Opuntia (Cactaceae) and Pseudophoenix (Arecaceae) was considered using 
AM fungi. The symbiotic relationship between AM fungi and native plants is 
important in the low P ecosystem and also useful for restoration of native plants. 

Keywords: Arbuscular mycorrhizae; native ecosystem; endangered plants; Everglades 
restoration; phosphorus. 

1 INTRODUCTION 
In southeastern Florida, much of the subtropical vegetation grows on 

coastal uplands (the Miami rock ridge), which are situated between the 
Atlantic Ocean on the east and the Everglades wetlands on the west. These 
upland sites have either of two subtropical forest types: pine rockland and 
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hardwood hammock (Wunderlin and Hansen, 2000). Because of urbani-
zation (metropolitan Miami) and agriculture, these two subtropical forest 
types are highly threatened by habitat loss with less than 5% remaining 
outside of Everglades National Park. Federal, state and local land managers 
are working to protect the few remaining fragments of these habitats. They 
seek to restore numerous endemic plants as part of a multi-species recovery 
plan for the greater Everglades region (U.S. Fish and Wildlife Service, 
1999). Restoration of keystone species and introduction of rare species on 
degraded sites will require detailed biological information on the separate 
component species.   

An important aspect of seedling establishment and survival on these 
shallow sandy soils is the relationship between their roots and soil micro-
organisms, particularly mycorrhizal fungi, which are ubiquitous and are sig-
nificant biotic variables in many habitat restorations elsewhere (Smith and 
Read, 1997). However, surprisingly little information on mycorrhizal asso-
ciations in the two South Florida vegetation types have been published, 
considering the national commitment of money and effort being placed on 
conservation and restoration issues in the Greater Everglades region. These 
upland plant communities bound and interdigitate the more widely known 
wetlands of the Everglades. Arbuscular mycorrhizal (AM) fungi were reported 
in wetland species by Aziz et al. (1995) and Jayachandran and Shetty (2003), 
and AM fungi in three pine rockland species (Fisher and Jayachandran, 
1999, 2002; Fisher and Vovides, 2004). It is not surprising that AM fungi 
were found since the native flora consists of many widespread genera that 
have been verified as mycorrhizal elsewhere or are members of families that 
are known to be mycorrhizal.  

Our goal was to answer the following questions: (1) Do native upland 
plant species (Table 1) form mycorrhizae and what types of mycorrhizae are 
present; (2) Does AM fungi affect seedling growth on native low nutrient 
soils; and (3) What levels of additional phosphorus (P) are equivalent to growth 
promoting affects of AM fungi? Our experimental results give land managers 
and native plant propagators information on the relative AM fungi depen-
dency and the effectiveness of AM fungi compared to additions P fertilizer. 
Successful propagation of native plants for habitat restoration will require an 
understanding of the dependency of these plants to mycorrhizal fungi. 

2  AM FUNGI COLONIZATION IN NATIVE PLANTS 
UNDER FIELD CONDITIONS

Majority of the native species tested showed AM fungi colonization. 
Some roots, especially those of palms, were difficult to clear and stain because 
of thick, lignified walls of epidermis and hypodermis. For these plant species, 
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AM fungi could only be observed reliably in thick transverse or oblique 
longitudinal sections that were processed like whole root fragments or after 
longitudinal splitting and dissection of the root cortex. Ultimate short fine 
roots of palms, Zamia, and several dicots were brittle and easily detached 
during digging and removal of soil. This was particularly apparent when 
roots of these plants were initially excavated in the field. Few fine roots 
possessing AM fungi were collected directly from naturally shallow, rocky 
soils. Occasionally, we found a proliferation of fine roots in a small pocket 
of humus or in deep crevices in the limestone substrate. In these sites, AM 
fungi were abundant but absent in roots of the same plant extracted elsewhere.  
For these reasons, we relied on pot (also called trap) cultures as the most 
reliable way to verify presence of AM fungi colonization. Since the ultimate 
feeder roots were difficult to extract from the limestone rock, we planted 
sterile seedlings in nurse culture pots, similar to those used for AMF ino-
culum, in order to examine the presence and type of AMF colonization. This 
use of seedlings was similar to the method of Brundrett and Abbott (1991).

Most seedlings growing in pots with AM fungi inoculum showed 
AM fungi colonization after eight weeks or longer. Each root sample was 
cleared in KOH, bleached with ammoniated H2O2, and stained with trypan 
blue or chlorazol black E in acidic glycerol (Brundrett et al., 1996) to deter-
mine presence of AMF. The basic morphology of the AMF colonization was 
classified as Acorus- or Paris-type, following the scheme of Smith and Smith 
(1997).

2.1     Dicotyledons

The presence of root hairs was variable (Table 1). In most cases, 
features that are typical of Acorus-type (Smith and Smith, 1997) coloni-
zation were found. Arbuscules were mainly found in younger regions of 
roots, typically one per cortical cell. Non-septate hyphae were mostly found 
in the longitudinal intercellular spaces of the root cortex. Intercellular hyphae 
proliferated in deeper layers of cortex and not in the epidermis or peripheral 
layers that were adjacent to the region of hyphal penetration. Vesicles were 
found in older regions of roots. 

Four dicot species had fungal coils in adjacent cortical cells typical 
of Paris-type (Smith and Smith, 1997). Only Annona glabra consistently 
had cortical parenchyma cells with multiple hyphal coils within each cell. 
The other three dicots had a mix types of AM fungi. One root of Licaria 
triandra was seen with Paris-like, highly coiled hyphae (several coils per 
cell) in the periphery of the cortex in one region, yet another region of the 
same root formed a longitudinal intercellular network with individual arbus-
cules per cell, typical of the Acorus-type. Picramnia pentandra similarly for-
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tomentosa var. truncata had features of both Acorus- and Paris-types in 
different regions. 

 Hyphal coils were also observed rarely and inconsistently in Ocotea
coriaceae, Psychotria nervosa, Simaruba glauca, and Tetrazygia bicolor,
but were not sufficiently common to classify them as Paris-type (Table 1).

Table 1. List of taxa with their families, plant community type, and observations on AM fungi 
colonization.

Taxon Statusa AM fungi description

 AM 
hyphae

Coils Vesi
cles

Arbu
scules 

Root
hairs

AM
type

Acoelorrhaphe
wrightii (Griseb. 
and H. Wendl.) H. 
Wendl. ex Becc.

T + None + + None Acorus

Annona glabra L.  + + None None None Paris 
Bourreria
cassinifolia (A.
Rich.) Griseb. 

E + + Few + +? +
Short

Acorus

Coccothrinax
argentata (Jacq.)
L.H. Bailey

T + + (Near 
epidermis) 

None + None Acorus

Consolea
corallicola Small 
(Opuntia
spinosissima Mill.)

E + None + None + Long 
(0.5
mm)

Acorus
?

Erithalis fruticosa
L.

T + + Rare + + + Acorus

Gymnanthes lucida 
Sw.

 + None None + + Acorus

Hamelia patens 
Jacq.

 + + Rare + + + Acorus

Harrisia fragrans
Small ex Britton 
and Rose 

US + Rare None None None + Long 
(0.8–
1.2
mm)

Acorus
?

Ocotea
(Nectandra)
coriacea (Sw.) 
Griseb.

 + Rare None + None None Acorus

Opuntia tricanthos 
(Willd.) Sweet

E +? None None None ? (+) Acorus
?

Picramnia
pentandra Sw.

 + Few 
inter-
cellular 

+ + 
With
in
cell

+ + Acorus
+
Paris 
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Polygala smallii 
R.R. Sm. and D.B. 
Ward

US + None + + None Acorus

Pseudophoenix
sargentii H. 
Wendl. ex Sarg. 

E + 
Dense
networ
k

None + + + Rare Acorus

Psychotria nervosa 
Sw.

 + + Rare + None + 
Short,
rare

Acorus

Rhus copallinum L.  + None + + + Acorus
Sabal palmetto
(Walter) Lodd. ex 
Schult. and Schult. 
f.

 + + Rare + + None Acorus

Serenoa repens
(W. Bartram) 
Small

 + + Near 
epidermis 

+ + None Acorus

Smilax havanensis 
Jacq.

T + + 
Multiple

None + + Short Paris 

Sophora tomentosa 
L. var. truncata 
Torr. and A .Gray

 + + + + + Acorus
+
Paris? 

Tephrosia
angustissima var.
corallicola (Small)
Isely

E + None + + + Acorus

Tetrazygia bicolor 
(Mill.) Cogn.

T + + Rare + + + Rare, 
long

Acorus

Thrinax morrisii H.
Wendl.

E + None + + None Acorus

Trema micranthum 
(L.) Blume

 + None + + + Acorus

Zamia pumila L.  + None + + + Acorus
aEndangered status: E – State of Florida endangered; T – State of Florida threatened (Coile, 2000); US – 
federally endangered (Fish and Wildlife Service, 1999) 

2.2    Cacti  

All species (Consolea corallicola, Harrisia fragrans, and Opuntia
tricanthos) had noticeably long root hairs (0.5–1.2 mm long) that clung to 
sand particles and made a sand sheath around the roots. Although root 
surfaces had both septate and non-septate hyphae, only rarely were hyphae 
found in longitudinal intercellular spaces and appeared to be non-septate.  
We conclude that these species had questionable AM fungi when grown in 
pots. (Thus, the AM fungi type is noted with a question mark in Table 1)  
We were unable to collect and observe roots from wild plants. 
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2.3     Palms  

All six species had lignified, rough, thick-walled epidermal cells that 
made staining and clearing difficult. They were best observed in thick trans-
verse or longitudinal sections of ultimate roots. Root hairs were not found. 
All ultimate fine roots were brittle and easily detached during excavation and 
cleaning. Coccothrinax argentata had a dense network of intercellular hy-
phae in the cortex. Both intercellular and intracellular coils formed in the 
many layered hypodermis, and single arbuscules and vesicles were found. 
Sabal palmetto and Serenoa repens had dense intercellular hyphae in the 
cortex periphery with arbuscules and vesicles, but they also had coils in the 
epidermis and hypodermal cells. A more detailed description for Serenoa
is given by Fisher and Jayachandran (1999). Coils were not observed in 
Acoelorrhaphe wrightii, Pseudophoenix sargentii, and Thrinax morrisii.

2.4   Other monocotyledons

Smilax havanensis had cortical cells filled with multiple hyphal coils 
without obvious intercellular hyphae. Cells with coils were connected by a 
single hypha that passed through the common wall. Occasionally, arbuscules 
were found one or two cells distant from coils, rarely adjacent to coils. These 
arbuscules were simple, with a single trunk hypha and were not definitely 
associated with the coils. Smilax displayed the classic Paris-type.

2.5   Cycad

Zamia pumila had typical Acorus-type AM fungi with longitudinal 
intercellular hyphae and arbuscules concentrated in the outer cortex. Vesicles 
formed in older roots, especially after secondary growth was present. The 
structure is described in greater detail by Fisher and Vovides (2004). 

 Of the 26 species exposed to AM fungi in pot culture and one 
(Polygala) only from the field, 24 formed clearly defined arbuscular mycor-
rhizae (AM) and three cacti (Consolea, Harrisia, Optuntia) had poorly 
developed or questionable AM. The lack of clear AM fungi structures in 
these cacti was unexpected since AM fungi colonization was reported in 
other cacti (Allen et al., 1998; Barredo-Pool et al., 1998; Carrillo-Garcia  
et al., 1999) and also increased growth and P uptake (Pimienta-Barrios et al.,
2002; Rincón et al., 1993). Although, Pimenta-Barrios et al. (2003) found 
that when a fungicide was applied to eliminate mycorrhizal colonization in 
natural plants of Opuntia robusta, physiological processes were unaffected. 
Interestingly, our three cacti had noticeably long root hairs that formed sand 
sheaths which required extra effort in freeing roots from soil particles. Other 
species had few or no root hairs (Table 1). This observation supports the 
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loose relationship between AM and relatively thick feeder roots with short or 
no hairs, so-called magnolioid roots (Smith and Read, 1997). 

Many of these 24 species were found with AM fungi in nature. We 
presume that those roots which did not have clear AM fungi in nature or had 
very low rates of colonization were, at least in part, artifacts of the difficulty 
in extracting fine feeder roots from the rocky substrate. Mycorrhizal status of 
other species growing in the same substrate, in which roots tend to proli-
ferate in rock crevices and at great distances from the shoot, are best deter-
mined with trap cultures. We found that feeder roots containing AM fungi 
are easily lost during extraction or missed when roots proliferate at localized 
nutrient-rich or moist sites. Olsson et al. (2002) showed that humus-rich soil 
or organic matter promote or enhance mycorrhizal proliferation. This is the 
likely reason that the first survey of mycorrhizae in South Florida plants did 
not find AM fungi in many of these same species (Meador, 1977). Later 
investigations did find AM fungi in wetland plants of the Everglades (Aziz 
et al., 1995; Jayachandran and Shetty, 2003), plants of the pine rocklands 
(Fisher and Jayachandran, 2002; Fisher and Vovides, 2004), and plants of 
coastal dunes (Fisher and Jayachandran, 2002; Sylvia et al., 1993).

 The two main structural types of AM in host roots were reviewed by 
Smith and Smith (1997): the Arum-type with intercellular hyphae in the root 
cortex; and the Paris-type with intracellular hyphal coils and no intercellular 
hyphae. Our survey found that 21 species formed the Arum-type and expands 
the categorization of AM according to colonization type as reviewed in 
Smith and Smith (1997). We observed that many of the species had some 
intracellular hyphal coils in the epidermis and hypodermis, but most hyphae 
occur in intercellular spaces deeper in the cortex. This variation has been 
reported widely in the literature and was classified as the Arum-type by 
Smith and Smith (1997) but may be the cause of some apparent conflicting 
reports of Arum- versus Paris-types depending upon interpretation of the 
intracellular hyphal coils that occur in the outer cortex. Within the inner 
cortex of the same roots, extensive networks of intercellular hyphae formed 
arbuscules and vesicles. Since Smith and Smith’s review, Wubet et al. (2003) 
found Arum-type in all 11 indigenous trees in Ethiopia, although they report 
rare hyphal coils near the points of new infection. More typical Arum-type
hyphae in the intercellular spaces of inner cortex may be poorly developed 
or not yet present in a particular root being observed. Among plants in a 
mangrove community, Sengupta and Chaudhuri (2002) reported 12 Arum-,
27 Paris-, and 13 with both-types.  

Two species in our study (Annona and Smilax) formed only intra-
cellular coils typical of the Paris-type colonization. We confirm the descri-
ption of AM fungi in Smilax by Bedini et al. (2000) and Maremmani et al.
(2003), where free arbuscules form in cells adjacent to cells filled with hyphal 
coils. Maremmani et al. (2003) found that two species of Glomus, which 
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produce Arum-type AM in other plant species, form Paris-type in Smilax.
Growth was also increased by AM fungi colonization. Their finding supports 
the general assumption that the host root mainly determines the type of AM 
structure, not the fungus (Smith and Smith, 1997). 
   Three species (Licaria, Picramnia, and Sophora) formed both Arum-
and Paris-types of AM within roots of the same plant using the same mixed 
inoculum as with all the other species. However, we do not know how many 
different AM fungi are associated with the different types of colonization, 
nor if the same or different AM fungi species cause the mixed Arum-Paris-
types in the same root system. We cannot state that these three species are 
“near-Paris” or “intermediate types” (Smith and Smith, 1997) because of the 
possibility that more than one AM fungi is involved in each symbiosis. It is 
generally assumed that the AM fungi structure is in great part regulated by 
the plant; each plant species has a particular type of colonizing fungal mor-
phology, as seen in the findings of Bedini et al. (2000) described above. 
However, in tomato the AM fungi-type varied depending upon the AM fungi 
species, indicating fungal control of morphology (Cavagnaro et al., 2001). 
Future inoculation with cultures of single AM species will clarify this point 
in the species we surveyed. If two or more AM fungi species are involved in 
these examples of mixed types, it will also be interesting to document whether 
they compliment one another in their benefit to the plant’s nutrition as has 
been suggested (Sanders, 2002) and recently documented using two Glomus
species in the same host (Drew et al., 2003). The speed and amount of 
colonization of plant roots by AM fungi also varies with the fungal species 

2002). Future research must clarify the identity of the AM fungi species 
involved in South Florida soils. 

3   EFFECT OF AM FUNGI ON SEEDLING GROWTH  

In 12 native species tested, seedlings inoculated with AM fungi grew 
more than those growing without AM fungi. Only Serenoa and one experi-
ment with Coccothrinax showed no significant difference in total dry mass, 
although AM fungi promoted shoot growth in both of these experiments 
when shoot and root dry mass were analyzed separately. Most commonly, 
AM fungi increase the biomass of plants grown on nutrient poor soils, due 
mainly to enhanced uptake of P from soils in which available P is limiting 
(Smith and Read, 1997). We previously reported that AM fungi caused 
significantly more P uptake in an endangered Fabaceae (Amorpha crenulata 
Rydb.) of the pine rocklands and an endangered Convolvulaceae (Jacquem-
ontia reclinata House ex Small) of the back dune-coastal hammock in South 
Florida (Fisher and Jayachandran, 2002). In the present study, we presume 
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that enhancement of seedling dry mass by AM fungi inoculation is due to 
enhanced nutrient uptake. In most species, the promotion of growth by AM 
fungi was equivalent to additions of 10 or 20 mg/kg P. Only Hamelia showed 
no response to additions of P when AM fungi was absent, strongly indicating 
that Hamelia may be an obligate mycorrhizal plant. The non-AM plants had 
intensely red pigmented blades, a feature common in P deficient plants. 
Alternatively, perhaps P was not limiting growth, but rather uptake of another 

(2003) showed that the effect of AM fungi on the shoot and root mass of a 
liliaceous native plant was equal to additions of 8 and 24 mg/kg P, respec-
tively. The native soil in their study had 6.6 mg/kg bicarbonate extractable P 
(Bray and Kurtz, 1949), similar to the soil in our study. The AM fungi in 
their study formed Paris-type AM and had an effect similar to those with the 
more widely studied Arum-types referred in their paper. In our experimental 
growth studies, only Picramnia formed the Paris-type (as well as Arum-
type), and the results were similar. 

 Inoculation with AM fungi has promoted growth of seedlings or 
plantlets of other species that are related to the species in our study. Growth 
was increased in palms (Blal et al., 1990; Morte and Honrubia, 2002;  
Ravolanirina et al., 1989) and crop species related to wild species we 

et al., 2003), Rubiaceae (Vaast et al., 1996; Kyllo et al., 2003), and Lauraceae 
(Vidal et al., 1992). 

 A complicating factor in tests for AM fungi effectiveness on growth 
is variation due to origin of the AM fungi and the host plant (Graham and 
Eissenstat, 1994; Henkel et al., 1989; Schultz et al., 2001). For coastal sea 
oats, Sylvia et al. (2003) found that effectiveness of the community pot 
cultures of AM fungi from widely separated sites varied in the same host 
plant genotype (or ecotype). Their results indicated a level of specificity 
between the local fungal community and the resident plant ecotype. Caravaca 
et al. (2003) showed that an inoculum of eight native AM fungi was more 
effective on growth and colonization than a single species inoculum. We 
used a mixture of native AM fungi derived from a single natural site. Some 
but not all seeds used in our research came from this location, although all 
seed sources grew in similar vegetation and soil types within 22 km. The 
limited colonization in our three cacti or degree of effectiveness in other 
species could be due to a sub-optimal combination of host plant and AM 
fungi inoculum. 

  Root/shoot (R/S) ratios of AM fungi inoculated plants were 
consistently smaller than or the same as non-AM fungi controls with or 
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surveyed, e.g., Anacardiaceae (Caravaca et al., 2003), Fabaceae (Caravaca  

limiting nutrient was enhanced by AM fungi colonization. Cavagnaro et al.

has been shown previously in some species (Vaast et al., 1996),
without additions of P. Such a decrease in R/S ratio in AM fungi plants

although there was considerable variability (Allen, 1991; Corkidi and



Rincón, 1997; Janos et al., 2001). In species of Psychotria, Kyllo et al.
(2003) found a complex relationship between R/S ratio (which they measured 
as root dry mass/leaf area) and light levels. They found that AM fungi 
colonization caused increased R/S ratio in light demanding species and 
decreased R/S ratio in shade tolerant species. Many of the species in our 
study thrive in open, high light habitats as adults, but as seedlings all appear 
to require shaded micro-sites to survive. 

4  RELATIVE MYCORRHIZAL DEPENDENCY

Using the average dry mass of entire plants (root + shoot), the relative 
mycorrhizal dependency (RMD) of plants were calculated as percentage  
increase due to AM fungi. The results indicate highest dependency for Hamelia
and wide variations between replicate experiments for Psychotria, Coccothri-
nax and Tephrosia (Table 2). 

Table 2. Relative mycorrhizal dependency (RMD) of plants. Ranked from highest to lowest 
percentage increase in average dry mass of entire plant; (Treatment 2 – Treatment 1)/ 
Treatment 1. Each line = one experiment. 

Taxon RMD (%)
Hamelia patens 21,275
Hamelia patens 17,143
Psychotria nervosa 1,167
Tephrosia angustissima 697
Rhus copallinum  444
Coccothrinax argentata 253
Picramnia pentandra 196
Rhus copallinum  185
Gymnanthes lucida 172
Erithalis fruticosa 142
Ocotea coriacea  126
Sabal palmetto 109
Psychotria nervosa 104
Acoelorrhaphe wrightii 77
Sabal palmetto 77
Zamia pumila 77
Zamia pumila 45
Coccothrinax argentata 21
Serenoa repens 8
Tephrosia angustissima 4
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5  SIGNIFICANCE FOR CONSERVATION  
AND RESTORATION ACTIVITIES

 All the species examined (with some uncertainty for the three cacti) 
were colonized by AM fungi (Table 1), which was expected in these natural 
habitats with shallow, sandy, and nutrient poor soils. We found that growth 
of all 13 plant species tested, when grown on native soil, was enhanced by 
AM fungi colonization compared to seedlings without AM fungi. Koske and 
Gemma (1995) reported improved growth of cuttings and seedlings of en-
dangered Hawaiian plants grown on various artificial soils mixes in the 
greenhouse. Thus, addition of AM fungi can improve the propagation of native 
tropical species and is an important factor to consider in conservation horti-
culture. 

In South Florida, P is a limiting nutrient in native soils, as was shown 
in the native Jacquemontia reclinata and Amorpha crenulata (Fisher and 
Jayachandran, 2002), presumably because of the improved P uptake and 
growth promotion facilitated by AM fungi. Gemma et al. (2002) found that 
four species of Hawaiian plants responded similarly to AM fungi (a single 
Glomus species) when they were grown on native soils that were low in P. 
The Hawaiian soil used in their pot experiments had soil-solution P = 0.005 
mg/L, but some field samples had <0.001 mg/L. We found similar low levels 
of soil-solution P in South Florida native soil = 0.002 mg/L and in our 
experimental pot soil = 0.003 mg/L as determined by the method of Olsen 
and Summers (1982). Gemma et al. (2002) suggested that this type of res-
ponsiveness to AM fungi under very low natural soil P levels should be 
referred to as “ecological mycorrhizal dependency” and we concur. 

In other habitats, AM fungi inoculation of plants can aid in restor-
ations, e.g. arid habitats (Requena et al., 2001; Caravaca et al., 2003), grass-
lands (Richter and Stutz, 2002), and coastal dunes (Gemma and Koske, 
1997). In an experimental planting of two native grasses, root colonization 
by AM fungi of the two grasses were significantly different 14 weeks after 
sowing seeds but after 68 weeks were not significantly different (Salyards  
et al., 2003). The results also indicated that fresh top soil (with numerous 
AM fungi species) was more effective than commercial inoculum (with only 
one AM fungus species) in the short term, but that with time all roots were 

facilitate AM fungi colonization and growth of a native Salix transplanted 
within the grasses (Salyards et al., 2003).

In addition to promoting plant growth, other studies found that AM 
fungi enhanced competitive ability of native species against invasive species 
in potted plant experiments (Pendleton and Pendleton, 2003; Pendleton  
et al., 2004) and promoted native species in field experiments (Smith et al.,
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1998). AM fungi inoculation also promoted natural community development 
in a seeded tall grass prairie restoration (Smith et al., 1998). All show that 
AM fungi should be considered as an important variable in native plant 
restoration and may improve restoration success. 

We assume that natural seedling establishment depends upon AM 
fungi colonization. In certain situations in South Florida, where natural AM 
fungi inoculum could be absent or only present in low propagule numbers 
(e.g., cleared roadsides, sites where top soil was removed, reclaimed urban 
landscapes, or where soil from non-vegetated sources is added as in canal 
waste or coastal areas “enriched” with marine dredgings), the resulting soil 
environment would be similar to the classical low AM fungi habitats: mine 
tailings, strip mining disturbance, or volcanic eruption (Allen, 1991). In such 
cases, natural regeneration or active restoration could be limited or slowed 
by lack of natural AM fungi colonization.  

Therefore, we suspect that restoration projects in highly disturbed 
sites of the Greater Everglades region of South Florida would benefit from 
introduced AM fungi, especially during nursery production of seedlings. The 
Florida Department of Forestry now routinely grows pine seedlings with 
ectomycorrhizae in its nursery as an aid to successful transplanting. Native 
Florida sea oats (Uniola paniculata L.) have benefited by pre-inoculation 
with AM fungi before outplanting in beach restoration (Sylvia, 1989; Sylvia 
et al., 1993, 2003). Gemma and Koske (1997) showed that even nursery 
plants that already possessed AM fungi colonization benefited from addition 
of AM fungi inoculation at the time of planting in coastal dunes.  

Because the Everglades hammocks and pine rocklands are naturally 

major concern for land managers (U.S. Fish and Wildlife Service, 1999). 
The horticultural use of AM fungi inoculum would promote native plant 
growth without the need of additional of P in situations where natural AM 
fungi are limiting in the field. Under nursery conditions, AM fungi inoculation 
of plants should promote plant growth without need of P fertilization and 
possible resulting P pollution in run off water. In the case of field restorations, 
we might wish to plant early pioneer plants which might not have high AM 
fungi dependency. However, all the lower dependent plants tested (Table 2) 
were slow growing palms and Zamia. The taller, sun tolerant woody plants, 
which are most useful for initial restorations (Erithalis, Gymnanthes, Hamelia,
Ocotea, Psychotria, Rhus), have relatively high dependency. We must test 
other trees for AM fungi dependency in order to make sounder recommend-
ations. Also, we must still document the potential benefits of AM fungi ino-
culation in native plant restorations and urban horticulture, namely: increased 
survivorship and long-term establishment of outplanted seedlings in field sites. 
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Abstract:      Arbuscular mycorrhizal (AM) fungi and beneficial saprophytic mycoflora like 
plant growth promoting fungi (PGPF) are capable of promoting plant growth 
and may suppress several plant diseases. The interaction of these micro-
organisms in the plant rhizosphere may affect plant growth and microbial 
community composition. Mixtures of these microorganisms generally increase 
the genetic diversity in the rhizosphere microorganisms that may persist longer 
and utilize a wider array of mechanisms to increase plant growth. In particular, 
combinations of AM fungi and PGPF may provide protection at different 
times, under different conditions, and occupy different or complementary niches. 
In this chapter, the consequences of co-inoculation of the AM fungi and bene-
ficial saprophytic mycoflora in terms of plant growth promotion, root coloni-
zation and disease suppression are discussed and its implication to sustainable 
agriculture is considered.  

Keywords:     Disease control; interaction; mycorrhizae; plant growth; saprophytic fungi. 

1 INTRODUCTION

Most higher plants are known to form one of the most intricate 
fungal-root associations with a special group of microorganisms known as 
arbuscular mycorrhizal (AM) fungi. AM fungi are included in the phylum 
Zygomycota, order Glomales (Redecker et al., 2000) but now they are 
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placed in the phylum ‘Glomeromycota’ (Schussler et al., 2001). The asso-
ciation of AM fungi with plants is intimately beneficial for both partners. 
Significant alterations in the root physiology occur (Linderman, 1992) when 
plants become mycorrhizal and this association also alters root exudation. 
An altered root exudation may effect the composition of rhizosphere 
microorganisms (Linderman, 1988, 1992).  

AM fungi interact with almost all organisms in the mycorrhizo-
sphere including beneficial, plant pathogenic, saprophytic and even 
predatory microfauna (Bagyaraj, 1984). Much efforts have been geared to 
elucidate microbial interactions between AM fungi and other soil micro-
organisms of the rhizosphere but researches are mainly focused on the 
relationship of AM fungi with plant growth promoting rhizobacteria (Andrade 
et al., 1997; Siddiqui, 2006) and soil-borne pathogens (Jalali and Jalali, 1991; 
Siddiqui and Mahmood, 1995). Few studies were done on its interaction with 
beneficial saprophytic fungi (Calvet et al., 1992, 1993; Green et al., 1999). 
Saprophytic fungi live on the rhizoplane (McAllister et al., 1996; Garcia-
Romera et al., 1998) and mycorrhizosphere of plants; generally procure their 
nutritional requirements from organic matter and other elements in the soil 
(Garcia-Romera et al., 1998). Saprophytic fungi form the largest group of 
fungi. These fungi have enzymes that work to digest the cellulose and lignin 
found in the organic matter, with the lignin being an important source of 
carbon for many organisms. Out of saprophytes, plant growth promoting 
fungi (PGPF) are non-pathogenic soil inhabitants (Hyakumachi, 1994; 
Chandanie et al., 2006b) and known to promote growth of several plants 
including cucumber (Meera et al., 1994, 1995; Shivanna et al., 2005), wheat 
(Shivanna et al., 1994, 1996), and soybean (Shivanna et al., 1996). These 
fungi can control several plant diseases like cucumber anthracnose (Chandanie 
et al., 2005a, 2006a, b), Fusarium crown and root rot in tomatoes (Horinouchi 
et al., 2007), take-all disease of wheat, Pythium and Rhizoctonia damping 
off, Pythium foliar blight, Sclerotium blight, Fusarium wilt, and brown patch 
diseases (Hyakumachi, 1994; Hyakumachi and Kubota, 2004a) and may be 
used in the management of plant diseases. Interaction of these two groups of 
microorganisms may be beneficial for both plant growth and plant disease 
control. 

2 INTERACTION BETWEEN AM FUNGI  
AND BENEFICIAL SAPROPHYTIC MYCOFLORA

A number of studies on the interaction of AM fungi with wide variety 
of soil microorganisms (Bagyaraj, 1984; Linderman and Paulitz, 1990; 
Linderman, 1992; Gryndler, 2000) exist under various conditions. Effects of 
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these interactions may be exploited for the benefit of sustainable agriculture. 
Since both are beneficial microorganisms, their synergistic or additive effect 
could be more beneficial for increasing growth and yield and also for the 
control of various plant diseases. Effects of interaction between AM fungi 
and beneficial saprophytic fungi is reviewed and presented in Table 1. Since 
the soil contains extremely rich pool of microbial entities with highly diver-
sified and complex relationships, this characteristic of soil may sometimes 
contribute difficulty to reproduce similar results (Gryndler, 2000). There-
fore, interactive effects of these microorganisms should be studied under 
different soil types and in various environmental conditions before their use 
for plant growth promotion and disease control.

2.1  In vitro interactions

The interactions of AM and saprophytic fungi in vitro experiments 
generally have stimulatory, inhibitory or no effect on the germination of 
spores, conidia and growth of hyphae of one or both species. For instance, 
Calvet et al. (1992) in the interaction study of G. mosseae and some sapro-
phytic fungi isolated from organic substrates found that germination rate of 
G. mosseae was hastened and development of mycelia from germinated 
spores were enhanced in the presence of Trichoderma spp. Conversely, the 
presence of Penicillium decumbens and Aspergillus fumigatus inhibited spore 
germination of G. mosseae. They suspected that these two fungi might have 
produced antibiotic-like substances affecting spore germination of G.
mosseae under axenic condition. Likewise, McAllister et al. (1996) observed 
that soluble and volatile substances produced by Alternaria alternata and 
Fusarium equiseti inhibit the spore germination of G. mosseae. On the other 
hand, Calvet et al. (1989) found that germination of G. mosseae resting 
spores on water agar was not affected by the presence of Trichoderma spp. 
and the inoculation of any of the isolates strongly enhanced the production 
of vegetative spores. Filion et al. (1999) noted that conidial germination of 
Trichoderma harzianum was stimulated in the presence of the AM fungal 
extract while germination of F. oxysporum f. sp. chrysanthemi conidia was 
reduced. The measured effects were directly correlated with extract concen-
tration.

Martinez et al. (2004) in vitro experiments paired several strains of 
Trichoderma pseudokoningii with spores of G. mosseae and Gigantea rosea. 
Some strains of T. pseudokoningii resulted in the inhibition of spore germi-
nation of both AM fungi while others had no effect on germination. The 
soluble exudates and volatile substances produced by the saprophytes may 
have resulted in the inhibition of spore germination of AM fungi. The effect 
of genus Trichoderma on AM spore germination may differ with the species 
used (Rousseau et al., 1996; Siddiqui and Mahmood, 1996; Green et al.,
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1999). The interaction of AM fungi with other beneficial microorganisms 
apart from saprophytic fungi tested in vitro had almost similar effects. For 
example, Fracchia et al. (2003) demonstrated that the presence of the yeast 
Rhodotorula mucilaginosa increased the hyphal length of G. mosseae and G.
rosea spores. Saprophytic fungi mainly influence AM fungi when the latter 

AM fungi both positively and negatively (Martinez et al., 2004). 

Table 1.  Interaction effects of arbuscular mycorrhizal (AM) fungi with beneficial saprophytic 
mycoflora. 

AM fungus PGPF Interaction effects Reference 
Gigaspora
rosea

Rhodotorula
mucilaginosa

Increased AMF root colonization; 
SDW and RDW increased when 
PGPF inoculated earlier than AMF 
on red clover 

Fracchia  
et al., 2003 

Gigaspora
rosea

Trichoderma
pseudokoningii
(several strains) 

Root colonization by AMF 
decreased; no effect on the CFU
of PGPF; root and shoot dry weights 
of soybean were decreased 

Martinez  
et al., 2004 

Glomus
coronatum 

F. oxysporum Enhanced AMF colonization;  
no effect on the growth of tomato; 
no effect on nematode control 

Diedhiou
et al., 2003 

G. deserticola F. oxysporum Increased AMF colonization; no 
effect on CFU of PGPF; increased 
SDW and RDW of pea 

Fracchia  
et al., 2000 

G. deserticola T. harzianum  No effect on AMF or PGPF 
colonization; no effect on the 
growth of maize 

Mar Vázquez
et al., 2000 

G. etunicatum Gliocladium virens Effects of PGPF on AMF 
colonization were variable on 
cucumber depending on medium 
used

Paulitz and 
Linderman,
1991

G. intraradices A. niger No effect on AMF colonization; 
increased shoot biomass of lettuce 

Kohler et al.,
2007

G. intraradices Clonostachys rosea Reduced AMF root colonization; 
reduced CFU of PGPF; increased 
growth of tomato 

Ravnskov
et al., 2006 

G. intraradices T. harzianum Adverse effect on SDW; (+) effect 
on RDW; reduced root colonization 
by AM fungus 

Green et al.,
1999

G. intraradices T. harzianum Stimulated conidial germination
of PGPF in axenic culture 

Filion et al.,
1999

G. intraradices T. harzianum Significant decrease in severity  
and incidence of disease on tomato 

Datnoff et al.,
1995

G. mosseae T. harzianum 

G. mosseae V.chlamydosporium 

Negative or no effect on root coloni-
zation of AMF; increased SDW and 
height of pigeon pea; reduced nema-
tode population and wilting index 

Siddiqui and 
Mahmood,
1996

et al., 1994; Garcia-Romera et al., 1998) and affected the spore germination of 
are in the presymbiotic phase of the symbiosis development (McAllister 
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G. mosseae T. harzianum 

G. mosseae P. oxalicum 

Enhanced AMF growth in dual 
cultures; increased PGPF population 
in rhizosphere soil; increased growth 
of Geranium; reduced root-rot

Haggag and 
Abd-El latif, 
2001

G. mosseae T. harzianum  No effect on AMF or PGPF 
colonization; no effect on maize 
growth

Mar Vázquez 
et al., 2000 

G. mosseae G. virens Reduced AMF colonization on 
cucumber when peat moss-Czapek 
inoculum was used 

Paulitz and 
Linderman,
1991

G. mosseae T. koningii 

G. mosseae F. solani 

Variable effects on AMF 
colonization; PGPF population in 
soil and plant dependent on time of 
inoculation on lettuce and maize 

McAllister  
et al., 1994 

G. mosseae T.  
pseudokoningii
(several strains) 

Variable effect on soybean growth, 
AMF spore germination and root 
colonization ; no effect on CFU of 
PGPF

Martinez  
et al., 2004 

G. mosseae T. aureoviride Increased AMF root colonization on 
marigold ; enhanced dry weight and 
foliar area 

Calvet et al.,
1993

G. mosseae T. aureoviride 

G. mosseae T. harzianum 

G. mosseae A. fumigatus 
G. mosseae P. decumbens 

T. aureoviride and T. harzianum
enhanced germination rate of AMF 
spores on axenic culture while no 
effect on AMF or PGPF 
colonization and plant growth; A. 
fumigatus and P. decumbens
inhibited spore germination of AMF  

Calvet et al.,
1992

G. mosseae T. harzianum 

G. mosseae T. aureoviride 

No effect on germination of AMF 
resting spores; enhanced production 
of AMF vegetative spores in axenic 
culture 

Calvet et al.,
1989

G. mosseae F. concolor  
G. mosseae F. equiseti  
G. mosseae F. graminearum  
G. mosseae F. lateritium  
G. mosseae F. moniliforme  
G. mosseae F. oxysporum 
G. mosseae F. solani 
G. mosseae F. stilboide 

No effect on AMF colonization and 
soybean growth except when F. 
oxysporum, F. solani were co– 
inoculated with G. mosseae
increased AMF root colonization 
and SDW

Garcia-
Romero  
et al., 1998 

G. mosseae F. equiseti 

G. mosseae A. alternata 

Reduced AMF spore germination; 
varied effect on maize growth and 
CFU of PGPF depending on time  
of inoculation 

McAllister  
et al., 1996 

G. mosseae F. oxysporum Increased AMF colonization; no 
effect on CFU of PGPF; increased 
SDW and RDW of pea 

Fracchia  
et al., 2000 

G. mosseae Rhodotorula  
mucilaginosa

Increased AMF root colonization; 
Increased SDW and RDW of 
soybean when PGPF inoculated 
earlier than AMF 

Fracchia  
et al., 2003 

( continued)
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G. mosseae Phoma sp No effect on AMF colonization; 
reduced isolation frequency of 
PGPF in roots; increased SDW of 
cucumber; reduced level of disease 
protection compared to AMF alone 

Chandanie  
et al., 2005a, 
b, 2006a 

G. mosseae P. simplicissimum No effect on AMF or PGPF 
colonization and growth of 
cucumber; induced resistance 
against anthracnose and
damping-off

Chandanie  
et al., 2006a, 
b

SDW = shoot dry weight;  RDW = root dry weight;  AMF = arbuscular mycorrhizal fungi; 
CFU = colony forming unit; PGPF = plant growth promoting fungi

2.2  Effect of co-inoculation on AM colonization 

The effects of saprophytic fungi on AM colonization differ widely 
as in case of in vitro experiments. Inoculation of G. mosseae or G. des-
erticola with F. oxysporum resulted in an increased colonization of the roots 
by AM fungi (Fracchia et al., 2000). Similarly, Haggag and Abd-El latif 
(2001) observed an increased root colonization of G. mosseae in geranium 
when inoculated with T. harzianum and P. oxalicum. Diedhiou et al. (2003) 
reported that combined application of G. coronatum and the non-pathogenic 
Fusarium oxysporum enhanced mycorrhization of tomato roots while dual 
inoculation with G. mosseae and strains of Fusarium sp. led to increase in 
AM colonization of soybean (Garcia-Romera et al., 1998). However, Mar 
Vázquez et al. (2000) found that none of the microorganisms used showed 
negative effects on AM establishment but mycorrhizal colonization induced 
qualitative changes in the bacterial population depending on the combination 
of inoculants involved. 

Chandanie et al. (2005b, 2006b) demonstrated that the percent root 
length colonized by G. mosseae was not adversely affected by the existence 
of Phoma or Penicillium while presence of Trichoderma enhanced mycorrhizal 
colonization. Siddiqui and Mahmood (1996) reported that T. harzianum has 
an adverse effect on root colonization by G. mosseae while Ravnskov et al.
(2006) found that Clonostachys rosea and G. intraradices were mutually 
inhibitory, although their combination promoted plant growth. In addition, 
C. rosea reduced root colonization caused by G. intraradices. Similarly, G.
intraradices adversely affected C. rosea population in the soil. 

2.3  Effect of co-inoculation on saprophytic fungi

The effect AM fungi on root colonization of the saprophytic  
co-inoculants was measured by counting the population of the co-inoculants 
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(2001) noted that in the presence of G. mosseae, population and survival of 
T. harzianum and P. oxalicum increased even after 90 days after inoculation. 
Conversely, Garcia-Romera et al. (1998) demonstrated that the dual inocu-
lation with G. mosseae and some strains of Fusarium sp. did not influence 
the colony forming units (CFU) of Fusarium in the rhizosphere soil, while 
Ravnskov et al. (2006) found that inoculation of G. intraradices decreased 
CFU of C. rosea by 78% and 58% suggesting that C. rosea and G. intra-
radices were mutually inhibitory. 

Chandanie et al. (2005b, 2006b) observed that root colonization abi-
lity of Phoma sp. was significantly reduced by the inoculation of G. mosseae 
in cucumber plants. Root colonization by T. harzianum was also slightly 
reduced in the presence of G. mosseae. On the contrary, AM fungus had no 
significant effect on colonization of Penicillium simplicissimum both in the 
rhizosphere and roots of cucumber. The interaction effects between indivi-
dual saprophytic fungi and AM fungi differ according to the species of AM 
fungi or saprophytic fungi involved. For instance, AM fungi adversely affec-
ted the population development of some saprophytic fungi in the roots; it has 
slight or no effect on populations of other saprophytic fungi. On one hand, 
the presence of some saprophytic fungi in the soil exerted no influence on AM 
colonization in roots while others when combined with G. mosseae seemed 
to promote AM formation in the host roots.

The interaction of AM fungi and saprophytic fungi may be con-
tradictory between species of the same genus of the saprophytic fungus and 
even within the strains of the same species of the AM fungus and saprophytic 
fungus (Martinez et al., 2004). For example, McAllister et al. (1994) repor-
ted a synergistic interaction between G. mosseae and T. aureoviridae while 
Calvet et al. (1993) observed the antagonistic interaction between G. mosseae
and T. koningii. Green et al. (1999) and Rousseau et al. (1996) observed 
antagonistic interaction between G. intraradices and T. harzianum while 
synergistic reaction was observed by Datnoff et al. (1995).

Mycorrhizal plants are capable of producing compounds which can 
interfere with rhizosphere microorganisms and modify microbial community 
around the mycorrhizal roots (Linderman, 1988; Linderman and Paulitz, 
1990). In addition, although not well documented, the extraradical mycelium 
of AM fungi might also impact strongly on the microbial population around 
the mycorrhizal roots (Filion et al., 1999). For instance, it was observed that 
substances released by the extraradical mycelia of G. intraradices either 
stimulated or inhibited conidial germination of non-pathogenic T. harzianum
and root pathogen F. oxysporum chrysanthemi. The reduction in root colo-
nization of Phoma sp. and T. harzianum might be related to the exudates 
secreted by the mycorrhizal roots and/or the extraradical mycelia of G.
mosseae (Chandanie et al., 2006b). On the other hand, the strong sporulation  

in the rhizosphere soil. Under natural condition, Haggag and Abd-El latif 
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ability of P. simplicissimum under natural conditions and the inherent char-
acteristics related to the species may explain the tolerance of the fungus to 
such exudates.  

2.4  Effect of interaction on plant growth

The interaction effect of AM fungi and other beneficial soil micro-
organisms on plant growth have been demonstrated. Fracchia et al. (2000) 
found that dual inoculation of G. mosseae or G. deserticola and F. oxysporum 
led to enhanced growth of plants. Similarly, combined inoculation of Tricho-
derma aureoviride and G. mosseae had a synergistic effect on the growth of 
marigold plants (Calvet et al., 1993). Haggag and Abd-El latif (2001) found 
that combined inoculation of G. mosseae and T. harzianum or P. oxalicum
enhanced growth of geranium plants. A field study of Diedhiou et al. (2003) 
showed that combined application of G. coronatum and the non-pathogenic 
strain of Fusarium oxysporum did not increase plant growth. Garcia-Romera 
et al. (1998) noted that dual inoculation with G. mosseae and some strains of 
Fusarium sp. led to enhanced growth of soybean plants. The shoot dry weight 
of soybean plants cultivated in non-sterilized soils or soils inoculated with G.
mosseae were not negatively affected by the presence of Fusarium. Ravnskov 
et al. (2006) found that Clonostachys rosea and G. intraradices were mutu-
ally inhibitory, but promoted plant growth with some alteration in soil micro-
bial communities. 

Chandanie et al. (2005b, 2006b) noted that plant growth was stimu-
lated when Trichoderma was combined with AM fungus; no stimulation was 
observed when Penicillium was combined with AM fungus. However, use of 
Phoma with AM fungus was found inhibitory to growth but stimulated growth 
when applied alone. They also noted that plants treated with G. mosseae
alone did not increase shoot dry weight or root dry weight compared to the 
controls. PGPF generally increase plant growth through mineralization, sup-
pression of deleterious microorganisms, and hormone production (Hyakumachi 
and Kubota, 2004b). Hyakumachi (2000) has demonstrated that amendment 
of soil with PGPF-infested barley grains showed increased production of 
NH4-N and NO3-N. Moreover, it was pointed out that the total amount of 
nitrogen in PGPF infected-barley grains remains the same despite different 
PGPF isolates were used, but NH4-N amount varies depending on the iso-
late. Hyakumachi (2000) illustrated correlations between reduction of barley 
grain weight and cellulase activity, degradation activity of starch, and the 
dry weight of bent grass. Results suggest that the plant-growth promoting 
effect of PGPF is related to the mineralization of organic substrates because 
PGPF provide necessary mineral nutrients to plant in easily assimilated form. 
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Plant growth promotion by PGPF was also attributed to the suppres-
sion of indigenous pathogenic Pythium spp. in the soil (Hyakumachi, 1994) 
which resulted to a notable growth promotion of field-grown cucumbers.  
In addition, some fungal species are capable of producing growth hormone 
in axenic culture (Ram, 1959). Some strains of Phoma sp. for instance have 
been found to produce abscisic acid which is reported to promote plant 
growth (Hyakumachi and Kubota, 2004b). The disease inhibition by AM fungi
might be related to the increase in phosphorus content but increase in phos-
phorus may not be a sole reason of disease inhibition. In addition to changes 
in nutrient uptake in the root system, a mycorrhizosphere effect and activa-
tion of plant defense mechanisms are thought to be responsible for disease 
inhibition by AM fungi (Linderman, 1994; Demir and Akkopru, 2005).
Moreover, the use of Glomus sp. is also reported to increase phenylalanine 
and serine in tomato roots (Suresh, 1980); these amino acids have an inhibi-
tory effect on plant pathogens (Reddy, 1974). 

2.5   Effect of interaction on air-borne diseases

Studies on the effects of AM fungi and beneficial soil microorganisms 
on disease suppression is scanty, as most studies were done on the direct 
interaction of AM fungi with the pathogen itself (Krishna and Bagyaraj, 
1983; Caron et al., 1986; Kaye et al., 1984; Trotta et al., 1996; Garcia-Garrido 
and Ocampo, 1988; Bødker et al., 2002; Karagiannidis et al., 2002; Rosendahl 
and Rosendahl, 1990). Chandanie et al. (2005b, 2006b) observed that inocu-
lation of PGPF (Phoma sp., P. simplicissimum, or T. harzianum) into the root 
system of cucumber provided considerable protection against the anthracnose 
pathogen Colletotrichum orbiculare. Although the treatment of G. mosseae
had no significant effect on the disease development, combined inoculations 
of G. mosseae with Phoma sp. reduced the level of disease. However, the 
level of protection induced by P. simplicissimum or T. harzianum was not 
altered by combining it with G. mosseae.

The resistance against the C. orbiculare was achieved when there 
was no direct contact between the pathogen and the inducer within the plant. 
The induction of systemic resistance is implicated as the mechanism of 
disease suppression (Chandanie et al., 2006b).This is in agreement with the 
results of Meera et al. (1994) and Hyakumachi and Kubota (2004a). PGPF-
mediated ISR has been demonstrated by increased lignin deposition at the 
point of penetration by the pathogen C. orbiculare in the epidermal tissues 
of cucumber hypocotyls (Hyakumachi and Kubota, 2004a) and also con-
spicuous superoxide generation by culture filtrates of respective PGPF 
isolates (Koike et al., 2001). Biochemical analysis have revealed systemic 
accumulation of salicylic acid and increased activities of chitinase, ß-1,3-
glucanases and peroxidase in cucumber plants induced by PGPF (Hyakumachi 
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and Kubota, 2004a; Yedidia et al., 1999). Hossain et al. (2007) hypothesized 
that multiple defense mechanisms are involved in P. simplicissimum-mediated
ISR in Arabidopsis plants. Additional studies on the expression of pathogenesis-
related genes and the signaling pathways involved in PGPF-mediated ISR 
are required. 

Plants treated with G. mosseae showed a tendency to intensify deve-
lopment of leaf disease symptoms and this has been correlated to improved 
nutrition and higher physiological activities compared to non-AM plants 
(Dehne, 1982). However, Chandanie et al. (2006b) did not observed any 
significant intensification or reduction of disease development in plants 
inoculated with AM fungus compared to uninoculated cucumber plants. The 
result suggests that G. mosseae in cucumber roots could not induce positive 
or negative systemic effect against C. orbiculare. This finding corroborates 
the results observed that AM symbiosis formed by G. intraradices in 
cucumber plants had no systemic influence on development of powdery 
mildew colonies in the shoot portion caused by the fungus Podosphaera
xanthii (Larsen and Yohalem, 2004).

2.6  Effect of interaction on soil-borne diseases

Using the commercial formulations of G. intraradices and T.
harzianum on tomatoes, Datnoff et al. (1995) demonstrated that G. intra-
radices with T. harzianum reduce both the incidence and severity of Fusarium 
crown and root rot under field conditions. Similarly, Haggag and Abd-El latif 
(2001) noted that the application of G. mosseae with T. harzianum or P. 
oxalicum reduced Geranium root rot caused by Fusarium solani and Macro-
phomina phaseolina both in artificially and naturally-infested  soils. 

Chandanie et al. (2005b, 2006b) tested P. simplicissimum and
T. harzianum against Rhizoctonia damping-off. They pre-treated cucumber 
seedlings for 7 and 12 days with AM fungus and Trichoderma or Penicillium
and transplanted plants into soil infested with pathogen R. solani. Prior 
inoculation of P. simplicissimum, T. harzianum or G. mosseae to the rhizo-
sphere and/or roots of cucumber seedlings protected plants from the damp-
ing off disease caused by R. solani. Combined inoculations of a PGPF isolate 
with the AM fungi were highly effective for the control of R. solani com-
pared to single inoculation of each PGPF species. The degree of protec- 
tion provided by seven days pre-treatment of seedlings with G. mosseae
increased when the duration of treatment was increased to 12 days, but such 
an increase was not found with P. simplicissimum or its combined treatment 
with G. mosseae. The levels of protection were dependent on the pathogen 
inoculum potential. Treatments were less effective at high population density 
of the pathogen. The degree of protection achieved by G. mosseae was 
highly dependent on the duration of pre-inoculation time before pathogen 
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pre-inoculation time may be due to pre-establishment of the AM fungi in or 

biotrophic, their mode of establishment and competition with root pathogens 
seems to differ from saprophytic PGPF (Chandanie et al., 2006b). Only a 
well established AM fungi symbiosis could reduce damage caused by root 
pathogens (Cordier et al., 1996; Kloepper et al., 2004;) but simultaneous 
addition of AM fungi with pathogen could reduce severity of some root 
diseases as well (Rosendahl and Rosendahl, 1990). Reason for discrepancies 

nate well and establish faster, it may be effective in the control of already 
existing pathogen in the soil. Moreover, the pathogen inoculum potential and 
its virulence may also have an impact on the results. The protective capa-
bility of pre-inoculated G. mosseae could be a result of combined mechanisms 

changes in the root system and activation of plant defense mechanism 
(Azcón-Aguilar and Barea, 1996; Pozo et al., 1998, 1999, 2002).

have been discussed and reviewed in detail (Dehne, 1982; Bagyaraj, 1984; 
Paulitz and Linderman, 1991; Hooker et al., 1994; Hyakumachi, 1994; 
Linderman, 1994; Azcón-Aguilar and Barea, 1996; Xavier and Boyetchko, 
2002; Hyakumachi and Kubota, 2004b) and has been thought to be due to 
several mechanisms, although much of these mechanisms are still poorly 

actions of hyperparasitism, antibiosis and competition although PGPF iso-
lated from zoysia grass (Chandanie et al., 2005b, 2006b) did not show 
hyperparasitism and antibiosis against other fungi (Hyakumachi and Kubota, 
2004b). Another important mechanism is the induction of systemic resis-
tance (Hyakumachi and Kubota, 2004b).   

3 CONCLUSIONS AND RELEVANCE  
TO SUSTAINABLE AGRICULTURE

The effects of saprophytic fungi and AM fungi may vary depending 
on the inherent characteristic of saprophytic and AM fungi. Results may be 
contradictory within species of the same genus and even within strains of 
the same species. Biocontrol of plant pathogens is considered as a major 
practice in sustainable agriculture and is regarded as a directed and accurate 
management of common ecosystems components to protect plants against 

The disease suppression capability of AM fungi and the PGPF 

introduction. The enhanced disease protection observed with the longer 

understood. It is generally accepted that antagonistic capability includes the 

including competetion, altered root exudation, anatomical and morphological 

on roots. Moreover, unlike the PGPF, G. mosseae was ineffective when
supplied simultaneously to roots with the pathogen. Since AM fungi are

inoculum contains lots of healthy viable non-dormant spores which germi-
in results includes differences in AM fungal inoculum potential. If the 
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pathogens (Azcón-Aguilar and Barea, 1996). Since interactions of biocontrol 
agents with beneficial organisms in the rhizosphere might stimulate bio-
control in an agro ecosystem (Calvet et al., 1993; Paulitz and Linderman, 
1991; Brimmer and Boland, 2003), it is important to study interactions of 
biocontrol agents with non-target beneficial organisms in the soil to ensure 
the successful development, commercialization and usage of biocontrol stra-
tegies. There is very limited knowledge about interactions between AM fungi 
and biocontrol agents (Paulitz and Linderman, 1991). 

AM fungi are key components of sustainable plant-soil ecosystems 
(Jeffries and Barea, 2001). Most plants of agricultural importance are vastly 
benefited from AM associations to overcome biotic and abiotic stresses 
(Linderman, 1994; Nelson, 1987; Tisdall, 1994), and AM fungi are very 
significant among groups of beneficial microorganisms. Additionally, these 
fungi are ubiquitous components of both natural and agricultural ecosystems 
(Smith and Read, 1997) and their associations are effective in reducing 
root diseases caused by various soil-borne pathogens (Dehne, 1982; Hooker  
et al., 1994; Azcón-Aguilar and Barea, 1996). Since AM symbiosis is known 
to alter microbial population composition in the rhizosphere (Linderman, 
1988; Linderman and Paulitz, 1990), testing the interaction of AM fungi and 
saprophytic fungi like the PGPF is useful to understand the possible additive 
or synergistic effects. A thorough understanding of the AM fungi-beneficial 
saprophytic fungi interactions is indispensable for their successful utilization 
for biocontrol and for increasing growth and yields of crops without in-
organic fertilizers and pesticides. 
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THE MYCORRHIZOSPHERE EFFECT:
A MULTITROPHIC INTERACTION COMPLEX
IMPROVES MYCORRHIZAL SYMBIOSIS
AND PLANT GROWTH
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Méditerranéennes (LSTM), Montpellier, France 

Abstract: Mycorrhizal fungi are essential components of sustainable soil–plant systems. 
Hyphae of arbuscular mycorrhizal (AM) fungi play important role in the for-
mation and stability of soil aggregates and contribute to the composition of 
plant community structures. Mycorrhizal symbiosis generally increases root 
exudation and influences rhizosphere microbial communities. Mycorrhizal hyphae 
exude chemical compounds that have a selective effect on the microbial com-
munities in the rhizosphere and in the soil.  These microbial compartments are 
commonly named “mycorrhizosphere” and there has been increasing evidence 
that the mycorrhizosphere communities have an important role in plant growth 
and soil fertility. For instance, it has been demonstrated that mycorrhizal fungi 
had a selective effect on bacteria potentially beneficial to the symbiosis and  
to the plants. Hence, mycorrhizal symbiosis provides a microbial complex 
regulated by multitrophic interactions. This fungal symbiosis had an indirect 
effect on plant growth through its selective pressure on mycorrhizosphere 
communities in addition to its classical direct effect. This chapter presents 
highlights on multitrophic interactions and its importance in sustainable agri-
culture, especially in tropical and mediterranean countries.

Keywords:   Bacteria; mycorrhizosphere effect; functional diversity; pseudomonads; soil 
fertility. 
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1 INTRODUCTION 

Symbiotic mycorrhizal fungi such as arbuscular mycorrhizal (AM) 
fungi or ectomycorrhizal (EC) fungi are ubiquitous component of most eco-
systems throughout the world and form a key component of soil microbiota 
influencing plant growth and uptake of nutrients (Bethlenfalvay and 
Linderman, 1992; Van der Heijden et al., 1998). The mycorrhizal symbiosis 
mobilizes and transports nutrients to roots (Smith and Read, 1997). It is well 
known that AM fungi improved nutrient uptake, especially nitrogen and 
phosphorus, by increasing the abilities of the host plants to explore a larger 
volume of soil than roots alone and to mobilize phosphate from a greater 
surface area (Jakobsen et al., 1992; Joner et al., 2000). It also reduces water 
stress (Augé, 2001) and improves soil aggregation in eroded soils (Caravaca 
et al., 2002). Mycorrhizal fungi affect the diversity of plant communities 
(van der Heijden et al., 1998; Klironomos et al., 2000; O’Connor et al.,
2002) and influence relationships between plants (West, 1996; Marler et al.,
1999; van der Heijden et al., 2003). Mycorrhizal plants transfer more assimi-
lates to the roots than non-mycorrhizal ones. These fungi effect mainly results 
of the carbon demand of the fungal symbiont which may assimilate 10% of 
the carbon allocated to the roots (Fitter, 1991) and of the higher respiration 
rate of mycorrhizal roots compared with non mycorrhizal roots (Kucey and 
Paul, 1982). Moreover, mycorrhizal fungi alter root exudation both quanti-
tatively and qualitatively (Rambelli, 1973; Leyval and Berthelin, 1993), as 
they catabolise some of the root exudates and modify root metabolic func-
tions. The microbial communities of the soil surrounding mycorrhizal roots 
and extrametrical mycelium are different from those of the rhizosphere of 
non mycorrhizal plants and the bulk soil (Katznelson et al., 1962; Garbaye 
and Bowen, 1987, 1989; Garbaye, 1991). Hence, the rhizosphere concept 
has been widened to associate this fungal effect, resulting in the introduction 
of terms “mycorrhizosphere” and “hyphosphere” (Rambelli, 1973; Linderman, 
1988). The mycorrhizosphere named the zone influenced by both the root 
and the mycorrhizal fungus whereas the hyphosphere is the zone surrounding 
individual fungal hyphae (Linderman, 1988). Specific relationships occur 
between mycorrhizal fungi and mycorrhizosphere microbiota and there is 
abundant literature attesting that mycorrhizal symbiosis is largely influenced 
by soil microorganisms (Rambelli, 1973; Bowen, 1980; De Oliveira, 1988; 
De Oliveira and Garbaye, 1989). However, these interactions have been 
mainly focused on the effects of mycorrhizosphere microbial communities 
on the mycorrhizal formation (extent of mycorrhizal colonization) and on the 
mycorrhizal efficiency on the host plant growth. Recently, it has been pro-
posed that mycorrhizal symbiosis is a component of a microbial complex 
regulated by multitrophic interactions (Frey-Klett et al., 2005). In addition 
to their known direct effect on plant growth, mycorrhizal symbionts could 
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positively act on host plant development through a selective effect on bacterial 
communities involved in soil functioning and soil fertility. This new concept 
of the mycorrhizal symbiosis is of particular importance in tropical and medi-
terranean areas subjected to desertification. Desertification process usually 
results from degradation of natural plant communities (population structure, 
succession pattern and species diversity) and of physico-chemical and bio-
logical soil properties (nutrient availability, microbial activity, soil structure, 
etc.) (Garcia et al., 1997; Requena et al., 2001). In addition, the loss or reduc-
tion of the activity of mycorrhizal fungi was often detected (Bethlenfalvay 
and Schüepp, 1994). Hence, the management of soil mycorrhizal potential in 
tropical and mediterranean environments is of great importance since mycor-
rhizal symbiosis determines plant biodiversity, ecosystem variability and 
productivity directly from its influence on plant mineral nutrition but also 
indirectly from its impact on soil microbial functioning. The natural role of 
mycorrhizosphere microorganisms has been marginalized in intensive agri-
culture and forest management but, due to the increased environmental aware-
ness, particular interest has been done on low-input cropping systems. In 
low-input, sustainable agrosystem production, natural activities of microbes 
contribute to the biocontrol of pathogens and improve supply of nutrients.     

This chapter will focus on the interactions between mycorrhizal fungi 
and specific groups of microorganisms potentially beneficial to the plant 
growth (Rhizobia, Plant Growth Promoting Rhizobacteria) and the influence 
of the mycorrhizal symbiosis on the functioning of soil microbial commu-
nities. The review will highlight the aspects of the interactions in the 
mycorrhizosphere which may have practical applications in afforestation 
programs in tropical and mediterranean soils. 

2  EFFECTS OF MYCORRHIZAL FUNGI ON 
NODULATION AND N2 FIXATION BY LEGUMES 

Mycorrhiza formation is known to enhance nodulation and N2 fixation 
by legumes (Reddell and Warren, 1986; Amora-Lazcano et al., 1998; André 
et al., 2005). Mycorrhizal and rhizobial symbioses often act synergistically 
on infection rate, mineral nutrition and plant growth (Amora-Lazcano et al.,
1998). The positive fungal effect on plant P uptake is beneficial for the func-
tioning of the nitrogenase enzyme of the rhizobial symbiont leading to a 
higher N2 fixation and, consequently to a better root growth and mycorrhizal 
development (Johansson et al., 2004). The fungal effect on rhizobial deve-
lopment is dependant to the mycorrhizal extent along the root systems but 
also to the fungal symbiont. Testing the effect of the ectomycorrhizal fungus, 
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                                      Ectomycorrhizal colonization (%) 

Ectomycorrhizal colonization (%) 

Fig. 1. Correlation between ectomycorrhizal colonization of Acacia holosericea seedlings 
with Pisolithus albus and the number of rhizobial nodules per plant after eight month’s 
culture in a not disinfected sandy soil. 

                   Ectomycorrhizal colonization (%) 

Fig. 2. Correlation between ectomycorrhizal colonization of Acacia holosericea seedlings 
with Pisolithus albus and the total nodule biomass per plant after eight month’s culture in a 

Pisolithus albus strain IR100, on the growth of Acacia holosericea (a fast 
growing Australian Acacia species) and on the nodulation formation, it has 
been found that the number of nodules per plant and their total biomass 
were significantly correlated with the ectomycorrhizal root colonization 
(Fig. 1 and 2 ). This fungal effect was also dependent of the mycorrhizal 
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symbiont (Fig. 3 and 4) (Duponnois and Plenchette, 2003). However, the 
influence of the mycorrhizal symbiosis on nodule development is not limited 
to a quantitative effect and the fungi can modify the structure of rhizobial 
bacteria along the root system. For instance, the arbuscular mycorrhizal 
fungus, Glomus intraradices, induced different dynamics of two rhizobia, 
Sinorhizobium terangae strain ORS 1009 and Mesorhizobium plurifarium
strain ORS 1096, co-inoculated to Acacia tortilis ssp. raddiana (André et al.,
2003) (Fig. 4). Mycorrhizal infection increases the competitiveness of 
ORS1009 (Fig. 4). This result suggests that more specific relationships could 
occur during the development of the tripartite symbiosis, at physiological 
and molecular level (Van Rhijn et al., 1997; Blilou et al., 1999). More 
recently, it has been demonstrated that below-ground diversity of AM fungi 
was a major factor contributing to the maintenance of plant diversity and to 
ecosystem functioning (van der Heijden et al., 1998). This fungal diversity 

Scleroderma verrucosum
              S. dictyosporum 
        Pisolithus tinctorius 
              Pisolithus albus 
              Pisolithus albus 
              Pisolithus albus 
              Pisolithus albus 
              Pisolithus albus
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Number of nodules per plant 

Scleroderma verrucosum
              S. dictyosporum 
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              Pisolithus albus 
              Pisolithus albus

                3B 
                    Total nodule weight per plant (mg dry weight) 

Fig. 3. Influence of different ectomycorrhizal fungal strains on rhizobial development (A: 
number of nodules per plant; B: total nodule weight par plant) with Acacia holosericea after 
four month’s culture under glasshouse conditions. 
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     With Glomus intraradices With out Glomus intraradices
                     
Fig. 4. Identification of rhizobial strains (Sinorhizobium terangae strain ORS 1009 and 
Mesorhizobium plurifarium strain ORS 1096) from nodules collected along Acacia tortilis
root system inoculated with both rhizobial strains with or without the arbuscular mycorrhizal 
fungus Glomus intraradices after four month’s culture in a disinfected sand (From André et

has also a beneficial effect on the nodulation process. In greenhouse, the 
influence of six different ectomycorrhizal fungi isolates and of a combination 
of these six ectomycorrhizal symbionts was measured on the nodulation  
of Acacia mangium seedlings with Bradyrhizobium sp. isolate AUST 13C. 
After four month’s culture, the results show that the number of nodules per 
plant was linked with the number of inoculated fungal strains (Fig. 5).

3  FLUORESCENT PSEUDOMONAD FUNCTIONAL 
DIVERSITY

Numerous studies have shown that the mycorrhizosphere effect 
exerted a significant stimulating effect on the populations of fluorescent 
pseudomonads in the soil. For instance, this quantitative influence of the 
mycorrhizal symbiosis has been reported with several plant species such as 
Douglas fir (Frey et al., 1997), hybrid larch, Sitka spruce (Grayston et al.,
1994), hazel trees mycorrhized with truffles (Mamoun and Olivier, 1989), a 
fast growing Australian Acacia species, Acacia holosericea (Founoune et al.,
2002). More recently, Ramanankierana et al. (2006) compared the abundance 
of fluorescent pseudomonads and their functional diversity in different com-
partments (rhizosphere, mycorrhizosphere, hyphosphere and bulk soil) 
resulting from the ectomycorrhization of Uapaca bojeri, an endemic Eup-
horbiaceae of Madagascar. Their results showed that the number of fluore-
scent pseudomonads was significantly higher in the hyphosphere soil than in 
the rhizosphere and mycorrhizosphere soil (Fig. 6). The lowest abundance  

et al., 2003). Results are expressed as percentages of each rhizobial strain from each treatment. 
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Fig. 5. Effect of ectomycorrhizal fungus – species richness on the number of nodules per 
Acacia mangium seedlings after four month’s culture in glasshouse conditions. 

Soil compartments 

Fig. 6. Number of fluorescent pseudomonads in soil compartments (Bulk soil, BS; Rhizosphere 
soil, RS; Mycorrhizosphere soil, MS; Hyphosphere soil, HS) resulting from the ecto-
mycorrhization of Uapaca bojeri in glasshouse conditions. Columns indexed by the same 
letters expressed data that are not significantly different according to the Newman-Keul’s test 
(p < 0.05).
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Soil compartments 
Soil compartments

  7 (A) 
                            Soil compartments 

 7A Soil compartments 

7B Soil compartments

Fig. 7. Distribution of the fluorescent pseudomonad according to their functional abilities  
(A: phosphate solubilizing fluorescent pseudomonads; B: lipase producing fluorescent 
pseudomonads) in soil compartments (Bulk soil, BS; Rhizosphere soil, RS; Mycorrhizosphere 
soil, MS; Hyphosphere soil, HS) resulting from the ectomycorrhization of Uapaca bojeri in 
glasshouse conditions. Columns indexed by the same letters expressed data that are not 
significantly different according to the Newman-Keul’s test (p < 0.05).

was recorded in the bulk soil (Fig. 6). Functional abilities (lipasic and phos-
phate solubilizing activities) of fluorescent pseudomonads have been also 
determined in each soil compartment. It has been found that the percentages 
of phosphate solubilizing and lipase producing fluorescent pseudomonads 
were significantly higher in the hyphosphere soil than in the other soil 
compartments (Fig. 7). These results showed that the ectomycorrhizal my-
celium increased the multiplication of fluorescent pseudomonads differently 
than that recorded from the ectomycorrhizosphere effect. The hyphae of 
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ectomycorrhizal fungi could be the sources of carbon to the soil microbial 
communities from fungal exudates (Sun et al., 1999) and/or from following 
senescence of hyphae (Bending and Read, 1995) that could be used by 
fluorescent pseudomonads. In addition to this quantitative effect, the 
ectomycorrhizal symbiosis has also modified the distribution of phosphate 
solubilizing and lipase producing fluorescent pseudomonads, especially in 
the hyphosphere soil compartment. It is known that extramatrical mycelium 
can absorb and then translocate to the host plant, soluble phosphorus from 
mineral and organic matter, trough the excretion of organic acids and 
phosphatase, respectively (Landeweert et al., 2001). In addition, most of the 
fluorescent pseudomonads isolated from the hyphosphere compartment were 
able to solubilize inorganic phosphate (tricalcium orthophosphate) compared 
to those from the bulk soil (Fig. 7). These results corroborate those of Frey-
Klett et al. (2005) who demonstrated that phosphate solubilizing fluorescent 
pseudomonads were more abundant in the hyphosphere than in the bulk soil. 
The mycorrhizal effect in not limited to the phosphorus solubilization 
process but can also interest organic matter degradation. Lipases are a group 
of enzymes that catalyse the hydrolysis of triacylglycerols to diacylglycerols, 
monoacylglycerols, fatty acids and glycerol (Thompson et al., 1999). Lipase 
activity is also involved in the soil humification processes (Lähdesmäki and 
Piispanen, 1988).   

4  THE MYCORRHIZAL EFFECT AND SOIL 
MICROBIAL FUNCTIONALITIES 

Culture-independent methods such as fatty acid extraction (Cavigelli 
et al., 1995; Ibekwe and Kennedy, 1999) and PCR-DGGE (Ferris et al.,
1996; Muyzer and Smalla, 1998; Assigbetse et al., 2005) are increasingly 
used for the analysis of soil microbial community structure. In contrast little 
is known of the importance of the functional diversity of soil microbial com-
munities (Pankhurst et al., 1996) resulting from a limited access to suitable 
techniques. The functional diversity of microbial communities includes the 
range and relative expression of activities involved in decomposition, nutrient 
transformation, plant growth promotion, etc. (Giller et al., 1997). The diver-
sity of decomposition functions performed by heterotrophic microbes is one 
component of microbial functional diversity. Hence to directly measure the 
diversity of decomposition functions, an assay has been developed to provide 
a measure of a component of the catabolic functional diversity in soil. This 
assay gives catabolic response profiles (patterns of in situ catabolic potential, 
ISCP) by measuring the short-term utilization of a range of readily available 
substrates added to soils (Degens and Vojvodic-Vukovic, 1999). Patterns of 
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ISCP provide a real time measure of microbial functional diversity since they 
give a direct measurement of substrate catabolism by microbial communities 
in soils without prior culturing of microorganisms. This methodological ap-
proach has been widely used to describe the mycorrhizal effect on the 
functional diversity of soil microbial communities. 

Table 1 summarizes the effects of mycorrhizal inoculation on the 
catabolic evenness of soil microbial communities following mycorrhizal ino-
culation in different experimental and environmental conditions. The catabolic 
evenness, E, representing the variability of a substrate among the range of 
tested substrates, was calculated using the Simpson–Yule index, E = 1/p2i
with pi = respiration response to individual substrates/total respiration activity 
induced by all substrates for a soil treatment (Magurran, 1988). These results 
show that mycorrhizal inoculation significantly enhances the catabolic even-
ness of soil microbial communities. It has been hypothesized that increases 
in the microbial catabolic diversity will enhance the resistance of soils to 
stress or disturbance (Giller et al., 1997). Hence, it shows that the extent of 
mycorrhizal plant and soil colonization is an important component in soil 
functioning more particularly in the context of global change.  

Table 1. Effect of mycorrhizal inoculation on catabolic evenness in different experimental and 
environmental conditions. 

Plant species Fungal symbiont E   
AM fungal inoculation 

Cupressus atlantica Control 12.0 a (1) Ouahmane et al.,
Glomus intraradices 12.2 b 2007 

   
Sorghum bicolor Control 4.3 a Dabire et al., 2007 

Glomus intraradices 6.5 b  
   

Eucalyptus camaldulensis Control 17.8 a Kisa et al., 2007 
Glomus intraradices 20.7 b  

   
Acacia holosericea Control 12.9 a 

Glomus intraradices 16.5 b 
   

Ectomycorrhizal 
inoculation
Acacia holosericea 

Scleroderma dictyosporum 18.3 b 
   

Uapaca bojeri Control 4.7 a Ramankierana
Scleroderma sp. 6.9 b et al ., 2007 

For each reference, data in the same column followed by the same letters are not significantly 
different according to the Newman-Keul’s test (p < 0.05).

References

Control 15.2 a

unpublished data, 2008
Duponnois, R.

unpublished data, 2008
Duponnois, R.



The Mycorrhizosphere Effect: A Multitrophic Interaction 237

5   CONCLUSION

All these results show the importance of the mycorrhizal symbiosis 
in soil biofunctioning and in the development of some specific groups of 
microorganisms known to play a key role in soil fertility and ecosystem 
productivity. In addition several studies have underlined the importance of 
mycorrhizal fungus diversity to the maintenance of plant diversity and to eco-
system functioning. These results emphasize the need to protect mycorrhizal 
fungi and to consider these symbiotic fungi in ecosystem and agrosystem 
management practices. Recent results on the influence of plant nurses on 
ecosystem functions have to be taken in account in the future more parti-
cularly in the rehabilitation practices of mediterranean and tropical eco-
systems.
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Chapter 11 

ECTOMYCORRHIZAE AND THEIR
IMPORTANCE IN FOREST ECOSYSTEMS 

KAZUYOSHI FUTAI, TAKESHI TANIGUCHI AND RYOTA KATAOKA 
Graduate School of Agriculture, Kyoto University, Sakyo-ku 606-8502, Kyoto, JAPAN 

Abstract: Ectomycorrhizal (ECM) associations involve the most diverse category of 
myocrrhizae. The diversity derives from the fungal partners; more than 5,000 
species of fungi, mainly Basidiomycetes, with a limited number of Ascomycetes 
and Zygomycetes, make the relationship very diverse. On the contrary, however, 
relatively few families of plants such as Fagaceae, Pinaceae, Betulaceae, and 
Dipterocarpaceae are involved in the ECM associations. These plants, however, 
are distributed over wide areas of temperate and boreal forests, and are there-
fore economically important. ECM fungi make associations with plants by 
forming a sheath (mantle) around fine root tips with hyphae that grow inward 
between root cells of the cortex and make Hartig net, and emanate outward 
through the soil, increasing the surface area to absorb nutrients and water. 
Thus, the mycorrhizal fungi gain photosynthates and other essential substances 
from the plant and in return help the plant take up water and minerals. Pine 
wilt disease (PWD) is a globally serious forest disease, and also shows the 
importance of ectomycorrhizal relationships. Pine trees planted on a mountain 
slope were killed by PWD, but some trees survived at the top of the slope, 
where mycorrhizal associations developed far better than on lower slopes. 
ECM associations, beside fertilization, also increase the supply of water to the 
pines, and elevate host resistance against disease and parasites. Moreover, 
inoculation of pine seedlings with ECM fungi under laboratory conditions con-
firmed the increase in their resistance to PWD. Pine seedlings can tolerate the 
adverse effects of environmental stress such as acid mist when infected with 
ECM fungi. These fungi can also make a significant contribution to forest 
ecosystems by increasing biomass and creating a network among trees through 
which nutrients may transported. ECM fungi also improve the growth of host 
plants at the seedling stage. Many pioneer plants in wastelands are facilitated 
in their establishment by ECM. This association has been successfully applied 
to reforestation programs in tropical forests by inoculating mycorrhizae on to 
nursery seedlings.

Keywords:    Basidiomycetes; forest ecosystem; networks; succession.
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1 INTRODUCTION 

Ectomycorrhizal symbiosis is the most diverse of all mycorrhizal 
associations. The diversity arises primarily from the fungal partners including 
about 5,000 to 6,000 species, mostly Basidiomycetes, some Ascomycetes, 
and a few Zygomycetes. The roots of ectomycorrhizal trees and shrubs 
including Pinaceae, Cupressaceae, Fagaceae, Betulaceae, Salicaceae, Diptero-
carpaceae, and Myrtaceae support a great species richness of fungal symbionts. 
This limited group of plants constitutes a large component of temperate 
forest dominant trees; therefore, ectomycorrhizal symbiosis is economically 
important.

Ectomycorrhizal fungi form a symbiotic relationship with a plant by 
forming a sheath around its root tip. The fungus then penetrates the root 
along the middle lamellae between cell walls by inward growth of hyphae, 
thereby form a Hartig net, a complex network of fungal hyphae that is the 
site of nutrient exchange between the fungus and the host plant. The fungi 
and the plant essentially fuse walls, and nutrient exchange appears to take 
place across these walls. The fungus gains carbon and other essential organic 
substances from the tree and in return helps the trees take up water, mineral 
salts and metabolites with increased surface area of hyphae emanating through 
the soil. Ectomycorrhizal fungi also protect host trees from attack by parasites, 
predators, nematodes and other soil pathogens. Thus, most forest trees are 
highly dependent on their fungal partners and could possibly not exist without 
them in areas of poor soil quality.

2 SPECIFICITY AND DIVERSITY
OF ECTOMYCORRIZAE

2.1 Specificity 

Molina and Trappe (1982) in early specificity experiments examined 
the specificity of 27 fungi in ECM formation with seven Pacific Northwest 
conifers, and indicated that the fungi varied widely to form mycorrhizae with 
the various conifers. These can be classified into three groups:

Fungi with wide ECM host potential, low specificity, and sporocarps 
usually associated with diverse hosts in the field  
Fungi with intermediate host potential yet specific or limited in 
sporocarp-host associations, and  
Fungi with narrow host potential, only form ECM with a specific 
host species or species within a genus and likewise limited in their 
sporocarp association  

242 Futai et al. 



Ectomycorrhizae and their Importance 

The fruiting body assessments and long-term fungal community 
collections suggest a range of specificity patterns from generalist to specia-
list for both fungal species and vascular plants. In mixed spruce and hard-
wood forest communities in the northeastern United States, hardwoods and 
spruce shared only 8 of 54 fungal species while 19 were associated only with 
spruce (Bills et al., 1986). In greenhouse experiments, Molina and Trappe 
(1994) examined host specificity between fungal and plant partners, and also 
studied the influence of neighboring plants on ECM development using seed-
lings of 6 coniferous trees grown in monoculture and dual culture inoculated 
with spore slurries of 15 species of ECM hypogeous fungi (11 Rhizopogon
species, and each of 4 other genera). None of the fungal species had broad 
host range affinities. A variety of specificity responses were exhibited by  
the different fungal taxa, ranging from genus-restricted to intermediate host 
range. In dual culture, 9 of the 11 Rhizopogon species examined formed 
abundant ECM on Pinus ponderosa, and formed some ECM on secondary 
hosts such as Abies grandis, Tsuga heterophylla, Pseudotsuga menziesii and
Picea sitchensis. None of the fungi tested, however, developed ECM on these 
secondary hosts in monoculture, which suggests potential interplant linkages 
and community dynamics. 

The specificity found under laboratory culture conditions is not 
always consistent with that in nature, because field conditions alter specifi-
city patterns indicated in culture experiments. To determine plant species 
associating with a fungus, there is the need to trace single hyphae through 
the soil; however, this procedure is almost impossible due to the fragile 
nature of individual hyphae. The use of molecular methods has enabled 
researchers to identify accurately in situ both fungi and plants that form 
ECM in the field, thereby facilitating the investigation of ECM specificity 
patterns in mixed-tree-species forests. Many studies have been conducted  
to assess ECM specificity patterns in the field using molecular methods. 
For instance, Horton and Bruns (1998) investigated ECM associations in a 
mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus
muricata). They identified fungi directly from field-collected ECM root tips 
using PCR-based methods and found sixteen species of fungi, out of which 
twelve were associated with both hosts. Rhizopogon parksii was specific to 
Douglas fir; three other species colonized only one of the hosts, but were too 
infrequent to draw conclusions about specificity. By evaluating the biomass 
of ECM root tips sampled in the stand, the authors concluded that multiple-
host fungi dominated on mycorrhizal roots and colonized the roots of com-
peting plant hosts.  

Horton et al. (1999), using molecular methods, assessed patterns of 
ECM between an angiosperm and a conifer and concluded that sharing  
of ECM fungi by Arctostaphylos sp. and P. menziesii facilitated the esta- 
blishment of the conifer in sites dominated by the angiosperm. They further 
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confirmed the results of vegetation surveys and seedling survival assays 
which suggested that Pseudotsuga establishes only in Arctostaphylos. Because 
of the importance of ECM specificity to ecosystem function, and the con-
flicting results of laboratory and field experiments, using molecular methods 
is the best way to ascertain specificity in the field. 

Because ECM associations are essential for many plants for their 
growth and survival, ECM specificity is thought to be a crucial determinant 
of ecosystem function and which benefits both plant and fungal partners. 
Cullings et al. (2000) suggested that ECM specificity may limit the ability of 
some plants to migrate and become established, and thus influence the rates 
and directions of ecosystem change. Therefore, assessment of ECM specifi-
city patterns is critical to ecosystem function. 

However, there are great differences both between and within fungal 
species in terms of forming mycorrhiza and promoting growth of the host 
plant. Lamhamedi et al. (1990) examined the ability of 28 monokaryons and 
78 reconstituted dikaryons of Pisolithus tinctorius to form ECM on Pinus
pinaster and Pinus banksiana and found a marked difference in the ability to 
form mycorrhiza and promote growth of P. pinaster both between and within 
monkaryons and dikaryons. Some monokaryons and dikaryons failed to 
form ECM. Monokaryons formed fewer ECM on P. pinaster than di-karyons. 
The heterokaryotic state was necessary for the full expression of ECM form-
ing ability. Growth of P. pinaster was more strongly correlated with ECM 
formation by dikaryons than by monokaryons. 

In a review of the current state of knowledge of interactions between 
Pisolithus tinctorius and its hosts, Cairney and Chambers (1997) demonstrated 
that this ECM fungus displays much intraspecific heterogeneity of host 
specificity, physiology, and the benefits the fungus can impart upon the host 
plant. It is not clear at present how far such heterogeneity reflects systematic 

The variation within ribosomal DNA (rDNA) genes of 19 isolates  
of Pisolithus from different geographic origins and hosts was examined  
by PCR-RFLP analysis. Cluster analysis based on the restriction fragments 
grouped the isolates into three distinct groups: group I contained isolates 
collected in the northern hemisphere, except Pt 1, group II contained those 
collected in Brazil and group III contained isolate Pt 1. Additional analysis of 

(Gomes et al., 2004). 
As mentioned above, recent molecular methods allowed for the 

examination of ECM diversity on plant seedlings. For example, ECM fungi 
on root tips of introduced Eucalyptus robusta and Pinus caribea as well  
as the endemic Vateriopsis seychellarum and indigenous Intsia bijuga in the 
Seychelles were identified by anatomotyping and rDNA sequencing (Tedersoo 
et al., 2007). Sequencing revealed 30 species of ECM fungi on root tips of  
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segregation within P. tinctorius.

other rDNA regions, IGS, 17S and 25S rDNA, resulted in similar groupings



V. seychellarum and I. bijuga, with three species overlapping. Eucalyptus
robusta shared five of these taxa, whereas P. caribea hosted three unique 
species of ECM fungi that were likely co-introduced with containerized 
seedlings. The low diversity of native ECM fungi is attributed to defores-
tation and the long-term isolation of the Seychelles. Native ECM fungi 
associate with exotic eucalypts, whereas co-introduced ECM fungi persist in 
pine plantations for decades. 

Facilitation of seedling establishment by ECM appears to be deter-
mined by the affinity between plants and ECM species, which reflects long-
term relationships. A great diversity of plants and fungi engage in mycorrhizal 
associations. In natural habitats, and in an ecologically meaningful time span, 
these associations have evolved to improve the health of both plant and 
fungal symbionts. In systems managed by humans, mycorrhizal associations 
often improve plant productivity, but this is not always the case. Mycorrhizal 
fungi might be considered to be parasitic on plants when the net cost of the 
symbiosis exceeds net benefits. Parasitism can be developmentally induced, 
environmentally induced, or possibly genotypically induced (Johnson et al.,
1997).

2.2   Diversity 

In a field survey of a Swedish boreal forest, between 60,000 and 1.2 
million ectomycorrhizae were found in one square meter of forest soil and 
95% of the root tips examined formed ectomycorrhizae (Jonsson, 1998). 
Bruns (1995) reported that 13 to 35 species exist in about 0.1 ha and the 
ECM fungal diversity is very high. Individual ECM fungal species were 
reported to possess different physiological features (Hung and Trappe, 1983; 
Abuzinadah and Read, 1986; Samson and Fortin, 1986) and functional roles 
to their host trees (Cairney, 1999; Koide et al., 2007). High ECM diversity 
suggests that there is a potential for significant community-level effects of 
these associations on host plant performance. Jonsson et al. (2001) reported 
that biomass production of birch seedlings (Betula pendula) was greater when 
inoculated with eight ECM fungal species than with single species under  
low fertility conditions, but not under high fertility. Baxter and Dighton 
(2001) reported that ECM diversity per seedling was a better determinant of 
improved nutrient status of birch (B. populifolia) than species composition 
or colonization rates. The ECM diversity increases plant productivity and 
improves nutrient uptake of the host plant to a greater degree under nutrient 
limiting conditions. 

Baxter and Dighton (2005) examined the effect of ECM diversity on 
P. rigida in unsterilised field soils. After one growing season, growth and 
nutrient uptake of P. rigida seedlings increased with increasing ECM diver-
sity on tree root systems, and this effect was not considered to be due to 
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fungal species composition. This result suggests that multiple inoculations of 
ECM fungi into host plants may achieve a successful outcome in affores-
tation efforts. In order to use this multiple inoculation successfully, further 
trials to select the number and composition of ECM fungal species and to 
develop methods of multiple inoculation of ECM species are needed. 

3 THE ECTOMYCORRHIZAL RHIZOSPHERE 

The rhizosphere is characterized by increased microbial activity stimu-
lated by leakage and exudation of organic substances from the root (Grayston 
et al., 1998). Root exudates have been regarded as messengers that commu-
nicate and initiate biological and physical interactions between roots and 
soil-born organisms (Walker et al., 2003) and roots themselves are now under-
stood to be rhizosphere ambassadors that facilitate communication between 
participants (Bais et al., 2006). On encountering a challenge, roots typically 
respond by secreting two classes of compounds. Small molecules such as 
amino acids, organic acids, sugars, phenolics, and other secondary metabolites 
account for much of the diversity of root exudates, whereas high-molecular 
weight compounds such as mucilage (polysaccharides) and proteins are less 
diverse but often comprise a larger proportion of the root exudates (Stintzi 
and Browse, 2000; Stotz et al., 2000; Bais et al., 2006). Plant roots seem  
to communicate with soil-borne organisms, although some can be positive 
(symbiotic) and others can be negative (parasitic or pathogenic) to the plant. 

In positive associations root secretions may play symbiotic roles, 
depending on the other elements involved in the association (Walker et al.,
2003). For instance, flavonoids in root exudates of legumes are well known 
to play an important role in activating Rhizobium meliloti genes responsible 
for the nodulation process (Peters et al., 1986). Akiyama et al. (2005) iden-
tified strigolactone, 5-deoxy-strigol, a group of sesquiterpenes from Lotus 
japonicus root exudates as an activating factor which triggers hyphal bran-
ching in dormant mycorrhizal fungi, Gigaspora margarita.

The growth rate of ectomycorrhizal fungi is promoted by pine root 
exudates, though different fungal species often react differently (Melin, 1963). 
Both palmitic acid and a cytokinin, isopentenylaminopurine are able to func-
tion as growth promoting factors (Sun and Fries, 1992). Horan and Chilvers 
(1990) investigated the ability of mycorrhizal fungi to penetrate membranes 
of plant roots, and suggested that there is a selective chemotropic attraction 
of these mycorrhizal fungi to substances diffusing from compatible host root 
apices. Such chemotropism could provide the signal that initiates the ecto-
mycorrhizal infection process.

In negative plant-soil borne organism associations root exudates may 
function to defend plant roots. To survive continual attack by pathogenic 
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and/or parasitic organisms, the delicate and physically unprotected root 
cells must depend on secretion of phytoalexins, defense proteins etc. (Flores 
et al., 1999). For instance, when elicited by fungal cell wall extracts from 
Phytophthora cinnamomi, or by in situ challenge with Pythium ultimum, basil 
roots exude rosmarinic acid that has antimicrobial activity against an array 
of soil microorganisms (Bais et al., 2002). 

4  WATER AND NUTRIENT SUPPLY 

4.1  Water supply 

Hypotheses to explain mycorrhizal enhancement of root hydraulic 
conductivity are based on work with arbuscular mycorrhizae (AM), and water 
use has been found to be greater for AM plants than for non-mycorrhizal 
plants. AM and ectomycorrhizae are different in many respects, so they may 
alter host plant water uptake via different mechanisms. Coleman et al. (1990) 
examined hydraulic conductivity of Douglas fir (Pseudotsuga menziesii)
seedlings inoculated with Laccaria bicolor or Hebeloma crustuliniforme,
and non-inoculated seedlings infected naturally with Thelephora that were 
grown under three low levels of P fertilization (1, 10 and 100 M P). 
Seedling morphology, tissue P levels, hydraulic conductivity and plant growth 
substance levels in xylem sap were measured after 9 months growth. Increased 
tissue P and decreased root/shoot ratio correlated with increased hydraulic 
conductivity in each of the mycorrhizal treatments. When adjusted for the 
effect of these two factors, hydraulic conductivity of Laccaria and Hebeloma
seedlings was still lower than that for the Thelephora seedlings. In a subse-
quent experiment the hydraulic conductivity of seedlings with Hebeloma and 
Rhizopogon vinicolor mycorrhizae was compared to that of non-mycorrhizal 
seedlings (grown at 100 mM P) and no differences were found among 
treatments. The lack of an ectomycorrhizal effect on hydraulic conductivity 
is quite different from the enhancement of host hydraulic conductivity by 
AM fungi.

Nardini et al. (2000) investigated the physiological impact of ecto-
mycorrhizal infection on the association between Tuber melanosporum  
and Quercus ilex. They compared a number of physiological parameters on  
2-year-old seedlings inoculated for 22 months to those of non-inoculated 
plants. Inoculated seedlings had a 100% infection rate in root tips compared 
to a 25% infection rate in root tips of non-inoculated seedlings. Inoculated 
seedlings had higher values of net assimilation and stomatal conductance than 
non-inoculated seedlings. Root hydraulic conductance per unit root surface 
area of inoculated seedlings was reduced to 0.44% that of non-inoculated  
seedlings but had 2.5 times more fine root surface area than non-inoculated 
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seedlings. When root conductance was scaled by leaf area, the inoculated 
seedlings had 1.27 times more the root conductance per unit leaf area com-
pared to non-inoculated seedlings. Inoculated seedlings also had significantly 
higher hydraulic conductance of shoots with leaves, of shoots without leaves 
and lower leaf blade hydraulic resistances. Thus, the seedlings of Quercus
ilex clearly suffered a disadvantage of lower hydraulic conductance of roots 
per unit root surface area due to the infection of Tuber melanosporum. This, 
however, seemed to be compensated by the increase in the amount of root 
(mass of fine roots and surface area) to provide a sufficient water supply to 
shoots.

4.2  Water stress

Bogeat-Triboulot et al. (2004) inoculated Pinus pinaster seedlings 
grown in a sandy dune soil with Hebeloma cylindrosporum and left others to 
natural colonisation. Six months later, they subjected half of the seedlings of 
both treatments to 3-weeks moderate drought. Root colonisation analysis 
showed that root tips were colonised to almost 100% independent of the 
inoculation. DNA determination of the ectomycorrhizal morphotypes showed 
that inoculated seedlings were extensively colonised by H. cylindrosporum
(more than 75%) whereas non-inoculated seedlings were colonised by the 
exotic species Thelephora terrestris (50%) and Laccaria bicolor (30%) and 
to a lesser extent by H. cylindrosporum (20%). Drought did not affect these 
frequencies. Total plant biomass was not affected by the mycorrhizal status 
or by drought but the root/shoot biomass ratio as well as the root/leaf 
surface area ratio were much lower in seedlings extensively colonised by 
H. cylindrosporum. Root hydraulic conductivity was higher in plants mainly 
colonised by H. cylindrosporum, showing that this fungus improved the 
water uptake capacity of the root system as compared to T. terrestris and/or 
L. bicolor. This positive effect was also found, to a lesser extent, under 
drought conditions.

When inoculated with reconstituted dikaryons of Pisolithus sp. 
growth parameters (shoot length, shoot/root ratio and leaf area), nutrition 
and physiological indicators (transpiration rate, stomatal conductance and 
xylem water potential) of maritime pine (Pinus pinaster) seedlings were 
influenced during drought and in recovery from drought (Lamhamedi et al.,
1992). Seedlings colonized with certain dikaryons were more sensitive to 
water stress and showed less mycorrhiza formation under water stress than 
seedlings colonized with other dikaryons. Non-inoculated seedlings were 
significantly smaller than those inoculated with dikaryons. Transpiration rate, 
stomatal conductance and xylem water potential varied among mycorrhizal  
treatments during the water stress and recovery periods. After rewatering,  



Ectomycorrhizae and their Importance 249

the controls and seedlings inoculated with dikaryon 34 × 20 had a weaker 
recovery of transpiration rate, stomatal conductance and xylem water poten-
tial than the other treatments and experienced damage due to the water stress. 
Concentrations of various nutrient elements differed in shoots of Pinus 
pinaster colonized by the various dikaryons. Based on their results, Lamhamedi 
et al. (1992) expected that breeding of ectomycorhizal fungi could constitute 
a new tool for improving reforestation success in arid and semi-arid zones. 
Their results also suggest that the effects on water relation of host trees 
provided by ECM must be different not only between different fungal species 
but also between different dikaryons of the same species.  

Pine wilt disease (PWD) is a serious forest epidemic which is caused 
by a nematode Bursaphelenchus xylophilus that is carried from dead pines  
to healthy pines by a sawyer beetle, Monochamus species. This disease has 
been spreading from one forest to another. It has been found, however, when 
a stand located on slopes is devastated by PWD, some pine trees survive on 
the ridge. Pines seem to survive better on the upper part of a slope than on 
the lower part. To compare growth conditions between various provenan- 
ces of Japanese black pine, Pinus thunbergii and Japanese red pine, Pinus
densiflora, approx. 4,000 pine seedlings of 23 families were planted on a 
slope in 1973. The area of the stand was ca. 1.4 ha, the slope is at an incline 
of 25 degrees, and the height of the slope is about 50 m. Since 1979, PWD 
spread into this stand and by the end of 1993, pine wilt damage became 
severe, with more than 70% of the trees killed (Fig. 1a). However, some of 
the provenances, even at the end of 1993 such as provenance No. 236 and 
241 shown as the framed area in Fig. 1a, survived in a higher ratio. As 
shown in Table 1, the survival ratio of either provenance was apparently 
higher at the upper part, followed by middle and lowest at the lower part of 
the slope. 

The quantity of mineral nutrients and water content are generally 
poor at the upper part of a slope compared with the lower part. Water stress 
seems more severe at upper parts than at lower parts of a slope. Similarly 

 No. 241 No. 236 
Upper part 74  65 
Middle part 54  39 
Lower part 35  17 

Table 1. Survival ratio (%) of pine trees on a slope.
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Fig. 1a. Decrease in surviving pine trees since 1989 to 1993 on a slope area in a red square 
served for mycorrhizal ratio measurement (Courtesy of Dr. Nakai, I.). 
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Fig. 1b. Mycorrhizal ratio in three depths of soil collected from different sites at the slope. 

4.3   Nutrient supply

Marschner and Dell (1994) examined nutrient uptake in mycorrhizal 
symbiosis for three groups of mycorrhizae; the ectomycorrhizae (ECM), the 
ericoid mycorrhizae (EM), and the arbuscular mycorrhizae (AM). They argued 
that mycorrhizal infection may affect the mineral nutrition of the host plant 
directly by enhancing plant growth through nutrient acquisition by the fungus, 
or indirectly by modifying transpiration rates and the composition of rhizo-
sphere microflora. ECM capacity for the external hyphae to take up and 
deliver nutrients to the plant has been demonstrated for P, NH4

+, NO3
– and K, 

but not for Ca, SO4
2–

Upper
most 

upper
middle 

lower  
middle 

Lower
most 

Heights on a slope 
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pine wilt is typically more severe at upper slopes, because pine wilt is 
exaggerated by drought. However, findings here are contrary due to mycor-
rhizal symbiosis. Species of Pinus are well-known ectomycorrhizal plants 
which obtain a proportion of their mineral nutrients and water from fungal 
symbionts. Under conditions of low nutrients and water, mycorrhizal relation-
ships mitigate the deficiency of nutrients and drought stress. The mycorrhizal 
density was examined at four different heights of the slope (Akema and 
Futai, 2005). As shown in Fig. 1b, mycorrhizal ratios were higher at the 
higher part of the slope than at the lower part. The pines on the upper slope 
are continually under combined stresses of drought and nutrient deficiency. 
These plants mitigated their stress to drought and nutrient deficiency by 
well-developed mycorrhizal symbiosis, even when they were exposed to 
summer drought which damaged other pine trees grown at lower sites of the 
slope.

, Cu, Zn and Fe. Knowledge of the role of ECM in the  
uptake of nutrients other than P and N is limited (Table 3). ECM fungi produce
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ectoenzymes that provide host plants with the organic N and P that are 
normally unavailable to AM fungi or non-mycorrhizal roots.

ECM fungi Host plant References 

Culture experiment 

Boletus edulis, Cenococcum geophilum,
Hebeloma crustuliniforme, Laccaria
bicolor, Laccaria laccata, Lactarius
controversus, Lactarius rufus, Leccinum
auruntiacum, Rhizopogon vinicolor,
Suillus albidipes, Suillus brevipes,
Suillus caerulescens, Suillus granulatus,
Suillus lakei, Suillus luteus, Suillus
ponderosus, Suillus sibiricus, Tricholoma
focale 

Coleman and Bledsoe, 
1989

Cenococcum graniforme, Gomphidius 
viscidus, Suillus luteus 

Bingyun and Nioh, 
1997

Cenococcum graniforme, Suillus luteus,
Thelephora terrestris 

Culture experiments 
examined the ability 
of each ECM fungus 
to tolerate imposed 
water stress with 
polyethylene glycol 
etc. in pure culture, 
and host plant was 
not used in the 
experiments. 

Mexal and Reid, 1973 

Effect of pre-inoculation of ECM fungi 
into plants in field 
Pisolithus albus, Scleroderma
dictyosporum

Acacia holosericea Duponnois et al.,
2005

Pisolithus tinctorius Quercus velutina Dixon et al., 1983 
Scleroderma verrucosum Cistus albidus,

Quercus coccifera 
Caravaca et al., 2005 

Effect of ECM fungi on plants in 
laboratory 
Hebeloma crustuliniforme, Laccaria 
laccata, Rhizopogon vinicolor 

Pseudotsuga
menziesii

Dosskey et al., 1991 

Hebeloma longicaudum, Laccaria
laccata, Paxillus involutus, Pisolithus 
tinctorius

Picea mariana, Pinus 
banksiana

Boyle and 
Hellenbrand, 1991 

Gomphidius viscidus, Suillus luteus Pinus tabulaeformis Bingyun and Nioh, 
1997

Laccaria laccata, Rhizopogon vinicolor,
Pisolithus tinctorius 

Pseudotsuga
menziesii

Parke et al., 1983 

Pisolithus tinctorius Pinus taeda Svenson et al., 1991 

Rhizopogon occidentalis, Rhizopogon
salebrosus, Rhizopogon vulgaris 

Pinus muricata Kennedy and Peay, 
2007

Suillus mediterraneensis Pinus halepensis Morte et al., 2001 

Table 2. The effect of ECM fungi on water stress tolerance of plants.
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Plant nutrients, with the exception of nitrogen, are ultimately derived 
from weathering of primary minerals. Traditional theories about the role of 
ectomycorrhizal fungi in plant nutrition have emphasized quantitative effects 
on uptake and transport of dissolved nutrients. Qualitative effects of the sym-
biosis on the ability of plants to access organic nitrogen and phosphorus 
sources have also become increasingly apparent. Recent research suggests 
that ectomycorrhizal fungi mobilize other essential plant nutrients directly 
from minerals through excretion of organic acids. This enables ectomycor-
rhizal plants to utilize essential nutrients from insoluble mineral sources and 
affects nutrient cycling in forest systems (Landeweert et al., 2001).

Wallander et al. (2004) inoculated pine (Pinus sylvestris) seedlings 
with indigenous ectomycorrhizal fungi using forest soil with four levels of 
wood ash addition (0, 1, 3 and 6 t ha– 1), and estimated the demand for P and 
K by seedlings grown in the different soils by measuring the uptake of 32P
and 86Rb in a root. Utilisation of P from apatite was also tested in a labora-
tory where uptake by the ectomycorrhizal mycelium was separated from 
uptake by roots. The demand for P and K in the seedlings was similar 
regardless of the ash treatment. Uptake of P from apatite was on average 
23% of total seedling P and was not related to the fungal biomass (ergosterol) 
in roots. The improved P uptake from apatite by ECM fungi found in earlier 
studies is probably not a general phenomenon among ECM fungi.

Martin et al. (1987) reviewed the metabolism of carbon and nitrogen 
compounds in ectomycorrhizal associations of trees. The absorption and 
translocation of mineral ions by mycelia require an energy source and a 
reducing agent which are both supplied by respiratory catabolism of carbo-
hydrates produced by the host plant. Photosynthates are also required to 
generate the carbon skeletons for amino acid and carbohydrate syntheses 
during the growth of the mycelia. Competition for photosynthates occurs 
between the fungal cells and the various vegetative sinks in the host tree. 
The nature of carbon compounds involved in these processes, their routes of 
metabolism, the mechanisms of control and the partitioning of metabolites 
between the various sites of utilization are poorly understood.  

The ability of ectomycorrhizal fungi to utilize organic nitrogen 
sources has been intensively investigated (Chalot and Brun, 1998). The fate 
of soil proteins, peptides and amino acids has been studied from a number  
of perspectives. Exocellular hydrolytic enzymes have been detected and 
characterized in a number of ectomycorrhizal and ericoid fungi. Studies  
on amino acid transport through the plasma membrane have demonstrated  
the ability of ectomycorrhizal fungi to take up the products of proteolytic 
activities. Investigations on intracellular metabolism of amino acids have 
allowed the identification of the metabolic pathways involved. Further 
translocation of amino acids in symbiotic tissue has been established by  
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experiments using isotopic analysis. For instance, alanine metabolism in the 
ectomycorrhizal fungus Paxillus involutus was investigated using [15N] alanine 
(Chalot et al., 1995). Short-term exposure of mycelial discs to [15N] alanine 
showed that the greatest flow of 15N was to glutamate and to aspartate. 
Levels of enrichment were as high as 15–20% for glutamate and 13–18% for 

15

Utilization of organic nitrogen by ectomycorrhizal fungi was exa-
mined by Tibbett et al. (1998), who grew arctic and temperate strains of 
Hebeloma spp. in axenic culture on glutamic acid, alanine, lysine and NH4

+

as sole sources of nitrogen (N), with excess carbon (C) or deficient C 
(supplied as glucose). All strains tested had the capacity to assimilate amino 
acids and generally utilized alanine and glutamic acid more readily than 
NH4

+. Some strains were able to utilize amino C when starved of glucose  
C, and could mineralize amino-N to NH3-N. Arctic strains, in particular, 
appeared to be pre-adapted to the utilization of seed protein N and glutamic 
acid N, which is often liberated in high concentrations after soil freezing. 

In relation to nitrogen uptake, the effects of Collembola grazing 
activities on ectomycorrhizal symbiosis were studied by Ek et al. (1994). 
Using laboratory microcosms, Pinus contorta seedlings in association with 
Paxillus involutus were grown in sandy soil and the collembola Onychiurus
armatus was added in different densities. To study effects on nutrient uptake 
by the extramatrical mycorrhizal mycelium, cups containing 15NH4

+ – and 
phytin-amended soil were evenly distributed in the microcosms. These cups 
were covered with a net that allowed the mycelium to penetrate but not 
collembola or plant roots. Extramatrical hyphal growth was impeded at a 
high density of O. armatus, while low densities of O. armatus increased 
extramatrical hyphal growth, colonization rate of side plants, and the bio-
mass of P. involutus. However, the amount of P. involutus on/in the plant 
roots was not affected. Thus, low densities of collembolans induced a shift 
towards a larger proportion of P. involutus growing extramatrically. The 
presence of O. armatus in low numbers enhanced uptake and transfer of 15N
by P. involvus to the plants by up to 76%. 

in the amino-N of glutamine and in serine and glycine, although at lower levels.
aspartate, whereas that of alanine reached 30%. Radiolabel was also detected 

Pre-incubation of mycelia with amino oxy acetate, an inhibitor of transami-
nation reactions, resulted in complete inhibition of the flow of the label to
glutamate, aspartate, and amino-N of glutamine, whereas [15N] alanine rapidly 
accumulated. This evidence indicates the direct involvement of alanine amino- 
transferase for translocation of N from alanine to glutamate. Alanine may 
be a convenient reservoir of both nitrogen and carbon. 



ECM fungi Host plant Nutrient References 
Paxillus involutus, Suillus 
luteus, Suillus bovinus,
Thelephora terrestris 

Pinus sylvestris P Colpaert et al., 1999 

Cenococcum geophilum, 
Pisolithus tinctorius 

Pinus taeda P Rousseau et al., 1994 

Laccaria bicolor, Pisolithus 
tinctorius, Paxillus involutus 

Pinus rigida P Cumming, 1996 

Descolea maculata, Pisolithus 
tinctorius, Laccaria laccata 

Eticalyptus
diversicolor

P Bougher et al., 1990 

Paxulus muelleri, Cortinarius 
globuliformis, Thaxterogaster 
sp., Hysterangium inflatum, 
Hydnangiurn carneum, 
Hymenogaster viscidus, 
Hymenogaster zeylanicus, 
Setchelliogaster sp.,  Laccaria 
laccata,
Scleroderma verrucusom 
Amanita xanthocephala 
Descolea maculata 

Eucalyptus 
globulus

P Burgess et al., 1993 

S. variegatus and unkonown 
ECM

Pinus sylvestris P Wallander, 2000 

Indigenous ectomycorrhizal 
fungi

Quercus robur,
Betula pendula 

N, P, K Newton and Pigott, 
1990

Indigenous ectomycorrhizal 
fungi

Pinus sylvestris P, K Wallander et al., 2005 

Paxilus involtus Picea abies
Betua pendula 

P, Ca Andersson et al., 1996 

Laccaria laccata Picea mariana N Quoreshi and Timmer, 
2000

A. rubescens, L. deterrimus Pinus sylvestris N Taylor et al., 2004 
Hebeloma crustuliniforme, 
Amanita muscaria, Paxillus 
incolutus  

Betula pendula N Abuzinadah and Read, 
1986

P. tinctorius Pinus resinosa N Wu et al., 2003 
Rhizopogon roseolus, Suillus 
bovinus,  Pisolithus tinctorius,
Paxillus involutus

Pinus sylvestris N Finlay et al., 1988 

T. terrestris, unidentified 
ECM

Pinus contorta N Finlay and 
Söderström, 1992 

Indigenous ectomycorrhizal 
fungi

Picea engelmannii N Grenon et al., 2004 

Indigenous ectomycorrhizal 
fungi

Fagus sylvatica N Geßler et al., 2005 

Pisolithus arhizus Pinus sylvestris N Högberg, 1989 
Piloderma croceum,
Piloderma spp., unidentified 
fungus

Picea abies N, P, K, 
Ca

Mahmood et al., 2003 
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Table 3. ECM fungi increase the nutrient supply for plants.
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The organic soil horizons of heathland and temperate forest eco-
systems are characteristically rich in phenolics, which present barriers to 
organic N availability to soil microflora. The abilities of ectomycorrhizal,, 
ericoid mycorrhizal and wood decomposing saprotrophic fungi to degrade 
model compounds representing the insoluble phenolic lignin, and soluble 
phenolics, which provide physical and chemical barriers respectively to 
organic N availability, were compared (Bending and Read, 1997). No clear 
relationship was found between ability to degrade lignin and soluble phenolics. 
The presumptive assays indicated that most mycorrhizal fungi have only low 
abilities to degrade these compounds relative to the wood decomposing 
fungi.

5  FACILITATION OF SEEDLING ESTABLISHMENT 
AND GROWTH PROMOTION

To develop an effective production system of mycorrhizal seedlings 
for afforestation or reforestation, significant efforts have been undertaken. 
There have been several problems, however, including inoculation techni-
ques, survival of early developmental stages, specificity between host-ECM 
fungi, and environmental factors. Each of these issues is discussed below. 

 5.1  Inoculation technique  

Pisolithus tinctorius has been used in forestry inoculation programmes 
(Cairney and Chambers, 1997), and a number of inoculation protocols were 
developed for this fungus. Marx et al. (1982) examined the effectiveness of 
P. tinctorius in forming ectomycorrhizae on container-grown seedlings of 
ten pine species, Douglas fir, western hemlock, and bur oak. Their results 
were as follows.

Inocula of P. tinctorius was mixed into rooting media before sowing 
of seed. A medium of vermiculite and 5–10% by volume peat moss 
with nutrients was best for growing mycelial inoculum. Peat moss, 
which contains humic acids, was used for keeping pH of the inoculum 
below 6.0 at which range it was the most effective. Inoculum was 
also most effective after leaching with water to remove nutrients. 
No single inoculum characteristic, such as number of P. tinctorius
propagules in large and small particles, microbial contamination, 
residual glucose, bulk density, and moisture content, as well as 
results of a fast assay for ectomycorrhizal development on loblolly 
pine seedlings, was consistently correlated with effectiveness of  
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inoculum in forming P. tinctorius ectomycorrhizae on seedlings in 
containers.
A captan drench after seeding significantly improved effectiveness 
of inoculum that was initially low in effectiveness. (captan is a 
fungicide used until the end of 1980s in the United States).  
Seedling growth was correlated with P. tinctorius ectomycorrhizal 
development in only a few tests. The probable cause for lack of 
growth stimulation of seedlings by P. tinctorius ectomycorrhizae is 
photosynthate drain on the juvenile seedlings by P. tinctorius.
Jack pine seedlings grown in a medium containing high levels of N, 
P, and K formed about half as many P. tinctorius ectomycorrhizae as 
similarly treated seedlings grown at about half this level of fertility. 
The seedlings grown at high fertility status were, however, larger 
regardless of ectomycorrhizal treatment.  

In the basic pure-culture technique, Chilvers et al. (1986) grew ecto-
mycorrhizal fungi on stiff absorbent paper over Potato Dextrose Agar. The 
paper was subsequently removed aseptically and laid, fungus-side down, on 
to a two-dimensional array of roots of seedlings grown axenically on filter 
paper over a mineral salts agar medium. With the high inoculum potential 
achieved by this technique, ectomycorrhizae formed within 1 week of ino-
culating Pisolithus tinctorius or Paxillus involutus on to Eucalyptus globulins
sub.sp. bicostata, and over 50% of root apices were colonized by ectomycor-
rhizae within 2 weeks. The paper-based inoculum has also been applied 
successfully to convert peripheral roots of seedlings grown in peat moss 
within clay pots. 

To prevent secondary infection with native fungi, Teste et al. (2006) 
conducted greenhouse experiments using Douglas fir (Pseudotsuga menziesii
var. glauca) seedlings where chemical methods (fungicides) or physical methods 
(mesh barriers) were used. They partly succeeded in reducing ectomycor-
rhizal colonization by approximately 55% with the application of tiazole 
fungicide. Meshes with pore sizes of 0.2 and 1 m were effective in preven-
ting the formation of mycorrhizae via hyphal growth across the mesh barriers.  

To compare the suitability of substrate for mycorrhizal Norway
spruce seedlings, Repá  (2007) examined Sphagnum peat, spruce bark compost, 
peat + perlite (1:1, v:v) and compost + perlite (1:1, v:v) by inoculating seed 
with a vegetative alginate-bead inoculum of Hebeloma crustuliniforme,
Hygrophorus agathosmus or Paxillus involutus or left uninoculated prior to 
seed addition. Growth and percentage of mycorrhization of bare root seed-
lings cultivated in the greenhouse were evaluated after the first growing 
season. Seedlings grown in peat-based substrates had significantly larger 
aboveground and total dry weight, but significantly lower mycorrhization 
percentage than those grown in compost-based substrates. There were no 
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significant differences between fungal treatments (including control) for  
both the percentage of mycorrhization and growth of seedlings. Growth para-
meters were negatively correlated with the extent of mycorrhization, indica-
ting allocation of host photosynthates to the fungi. Based on these results the 
authors concluded that the artificially introduced fungi were not efficient in 
mycorrhizal formation, because naturally occurring fungi were common in 
all treatments. Operational inoculation of specific tree seedlings with the test 
fungi was proposed. 

5.2  Early development of seedlings 

To compare the symbiotic function of ECM fungus with amendment 
formulations, Walker (2001) examined shoot growth and root growth in terms 
of mass and total length, of containerized sugar pine (Pinus lambertiana)
and Jeffrey pine (Pinus jeffreyi ) seedlings treated with two nutrient formu-
lations, and those with ECM inoculation with pelletized basidiospores of 
Pisolithus tinctorius. Overall, results of experiments indicate that the high 
rate of amendment formulation produced the most favorable array of attri-
butes in both sugar and Jeffrey pine, but that P. tinctorius is likely a more 
promising mycobiont for inoculation of the latter species than the former. 

Pisolithus tinctorius has increased plantation survival and growth in 
Nevada and in the southeastern United States. When bare-root stock of 
Douglas fir, lodgepole pine, white fir, and grand fir, was inoculated with  
P. tinctorius and handled by standard procedures, performance was no better 
than for stock which was naturally infected with indigenous flora in a 
nursery in southwestern Oregon (Castellano and Trappe, 1991). Climate, 
planting sites and nursery practices in the Pacific Northwest differ drastically 
from those in the southeastern United States. Thus, the reaction of each 
ECM fungus to each phase of the nursery and planting process must be 
carefully analyzed before any ECM fungus can be introduced for nursery 
inoculation.

If we select the incorrect ECM fungus and/or use the incorrect 
procedure for host plants without careful analysis, the inoculation may 
decrease the survival ratio of the seedlings. For instance, when plants were 
inoculated with three ECM fungi, Hebeloma crustuliniforme, Paxillus involutus
and Thelephora terrestris in a peat/vermiculite mixture during the transition 
period from in vitro to glasshouse conditions, survival of inoculated plants 
was generally lower than that of uninoculated controls. Lowest survival (60%) 
was observed in the presence of T. terrestris. This fungus, however, gave the 
highest frequency of root infections, a significant increase in shoot height 
and a doubling of shoot dry weight. The content of N, P and K in plants with 
ECM was higher than for uninfected control plants (Heslin and Douglas, 
1986).
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Nutrient uptake rates in mycorrhizal roots may influence the growth, 
vigor and survivability of the seedling. Under controlled conditions in a 
semi-hydroponic culture system with quartz sand as substrate and a percola-
ting nutrient solution, Eltrop and Marschner (1996) compared growth, nitrogen 
uptake and mineral nutrient concentrations in plant tissue between mycor-
rhizal and non-mycorrhizal Norway spruce (Picea abies) seedlings. The culture 
system allowed the determination of nutrient uptake rates in mycorrhizal 
root systems with an intact extramatrical mycelium. Among three ECM 
fungi examined, the infection rate of the roots by P. tinctorius and Laccaria
laccata was high but the infection rate by Paxillus involutus was low.

When nitrogen was supplied with ammonium nitrate, dry weight of 
roots and shoots was significantly lower in mycorrhizal than in non-mycorrhizal 
plants. Depletion of ammonium in the external solution was more rapid than 
was depletion of nitrate. When plants were supplied with ammonium but not 
nitrate as the N source, dry weight was lower in mycorrhizal plants infected 
with P. tinctorius than it was in non-mycorrhizal plants. Therefore, N uptake 
rates were increased in mycorrhizal plants with P. tinctorius only when they 
were supplied with ammonium but not with nitrate.

Uptake rates of N, P, K, Ca and Mg was not significantly different 
between non-mycorrhizal and mycorrhizal plants. This finding indicates that 
the extramatrical mycelium may play an important role in nutrient uptake 
only when spatial nutrient availability is limited. The decreased growth of 
mycorrhizal plants is attributed to the demand of the mycorrhizal fungus for 
photosynthates, i.e., source limitation. Eltrop and Marschner (1996) examined 
the possible reasons for this growth depression in mycorrhizal plants. Based 
on the results of several experiments, they concluded that increased root 
respiration was mainly responsible for the growth reduction in mycorrhizal 
compared with non-mycorrhizal plants, whereas the production of fungal 
biomass in the extramatrical mycelium of mycorrhizal plants was of minor 
importance.

By placing a layer of pine or oak litter on the surface of the nursery 
bed soil to mimic natural litter cover, Au ina et al. (2007) studied the effects 
of pine and oak litter on species composition and diversity of mycorrhizal 
fungi colonizing 2-year-old Pinus sylvestris seedlings grown in a bare-root 
nursery in Lithuania. Oak litter appeared to be most favorable to seedling 
survival, with a 73% survival rate in comparison to the untreated mineral 
bed-soil (44%). This field experiment provides preliminary evidence that 
changes in the supply of organic matter through litter manipulation may have 
far-reaching effects on the chemistry of soil, thus influencing the growth and 
survival of Pinus sylvestris seedlings and their mycorrhizal communities.  
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5.3  Environmental factors

Mycorrhizal associations generally benefit vascular plants in nutrient- 
poor conditions because symbiotic fungi increase the absorptive surface of 
roots and offer to their host plants better access to soil mineral nutrients 
(Koide, 1991). Some mycorrhizal fungi are also able to utilize soil organic 
nitrogen and phosphorus pools. However, mycorrhiza also impart a consi-
derable cost to the host plant, as mycorrhizal roots may consume a 2.5-fold 
greater amount of host carbon compared with non-mycorrhizal roots (Jones 
et al., 1991). Therefore, non-mycorrhizal plants are common in high arctic 
and alpine areas, which are often poor in nitrogen and phosphorus. The 
relative proportion of mycorrhizal plants has been found to decrease along 
with increasing altitude, suggesting that the advantage of mycorrhizal sym-
biosis may change along an altitudinal gradient. This effect may be related  
to the environmental factors that possibly constrain the amount of photo-
synthesized carbon to be shared with mycorrhizal fungi (Ruotsalainen et al.,
2002).

The widespread decline in dominant tree species may occur world 
wide by the introduction of invasive insects and pathogens, and lead to 
cascading effects on other tree species and microorganisms including ECM 
fungi (Lewis et al., 2004). In the eastern USA, for example, eastern hemlock 
(Tsuga canadensis) is declining because of infestation by the hemlock woolly 
adelgid (Adelges tsugae). Northern red oak (Quercus rubra) is a common 
replacement species in declining hemlock stands, but reduced mycorrhizal 
inoculum potential in infested hemlock stands may cause oak to grow more 
slowly compared with oak growing in oak stands. We grew red oak seedlings 
for one growing season in declining hemlock-dominated stands infested with 
hemlock woolly adelgid (HWA) and in adjacent oak-dominated stands. 
Ectomycorrhizal root tip density and morphotype richness in soil cores were 
63% and 27% less, respectively, in declining hemlock stands than in oak 
stands. Similarly, ectomycorrhizal percent colonization and morphotype 
richness on oak seedlings were 33% and 30% less, respectively, in declining 
hemlock stands than in oak stands. In addition, oak seedlings in the hemlock 
stands had 29% less dry mass than did seedlings in oak stands. Analysis of 
covariance indicated that morphotype richness could account for differences 
in oak seedling dry mass between declining hemlock stands and oak stands. 
Additionally, oak seedling dry mass in declining hemlock stands signifi-
cantly decreased with decreasing ectomycorrhizal percent colonization and 
morphotype richness. These results suggest that oak seedling growth in 
declining hemlock stands is affected by reduced ectomycorrhizal inoculum 
potential. Further, the rate of forest recovery following hemlock decline 
associated with HWA infestation may be slowed by indirect effects of HWA 
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on the growth of replacement species, through effects on ectomycorrhizal 
colonization and morphotype richness. 

Mycorrhizal fungi might be considered to be parasitic on plants 
when net cost of the symbiosis exceeds net benefits (Johnson et al., 1997). 
Parasitism can be developmentally induced, environmentally induced, or 
possibly genotypically induced. Morphological, phenological, and physio-
logical characteristics of the symbionts influence the functioning of mycor-
rhizae at an individual scale. Biotic and abiotic factors at the rhizosphere, 
community, and ecosystem scales further mediate mycorrhizal functioning. 
Despite the complexity of mycorrhizal associations, it might be possible to 
construct predictive models of mycorrhizal functioning. These models will 
need to incorporate variables and parameters that account for differences in 
plant responses to, and control of, mycorrhizal fungi, and differences in 
fungal effects on, and responses to, the plant. Developing and testing quanti-
tative models of mycorrhizal functioning in the field requires creative 
experimental manipulations and measurements. Such work will be facilitated 
by recent advances in molecular and biochemical techniques. A greater 
understanding of how mycorrhizae function in complex natural systems is a 
prerequisite to managing them in agriculture, forestry, and site restoration.  

6  DISEASE RESISTANCE AND RESPONSE  
TO ATMOSPHERIC POLLUTANTS

6.1   Disease resistance 

inhibit diseases requires attention. Whipps (2004) suggested four major modes 
of actions by which mycorrhizal fungi increase the disease resistance of 
host species: (1) direct competition or inhibition, (2) enhanced or altered 
plant growth, nutrition and morphology, (3) biochemical changes associated 
with plant defence mechanisms and induced resistance, and (4) development 
of an antagonistic microbiota. Mode (1) includes competition for nutrients, 
particularly carbon compounds derived from phytosysthesis. This pheno-
menon has been studied as a potential mode of action for pathogen control in 
arbuscular mycorrhizal (AM) plants, but has thus far been neglected in ECM 
plants, and further studies are needed (Whipps, 2004). In addition, mode (1) 
includes the production and release of antibiotics and the physical sheathing 
of the mantle of ectomycorrhiza (Marx, 1969; Duchesne et al., 1988a, b; 
Branzanti et al., 1999). Oxalic and other organic acids have been reported  
to function as antibiotics (Duchesne et al., 1988b, 1989; Rasanayagam and 

Disease protection by mycorrhizal fungi has been demonstrated to be
important in the field (Table 4); however, mechanism(s) by which ECM fungi
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Jefferies, 1992). An example of mode (2) may be the mycorrhizal resistance 
effect for pine trees to infection by the pinewood nematode, Bursaphelenchus 
xylophilus, a pathogen involved in Pine Wilt Disease. The inoculation of 
Japanese red pine Pinus densiflora, with ectomycorrrhizal fungi Suillus 
lubens and Rhizopogon rubescens improved growth of seedlings, thereby 
decreasing seedling mortality caused by pinewood nematode (Kikuchi et al.,
1991). Mode (3) occurs during plant resistance responses including production 
of phenolics and phytoalexins; formation of structural barriers to prevent 
pathogen ingress; production of numerous pathogenesis related (PR) proteins; 
production of enzymes that degrade the cell wall, such as chitinases; and 
production of enzymes associated with production of phenolics, phytoalexins, 
and structural barriers, including phenylalanine amminia lyase, chalcone 
synthase, chalcone isomerase, and superoxide dismutase (Guenoune et al.,
2001; Guillon et al., 2002). The induced resistance created by inoculation 
with ECM fungi prior to challenges by pathogens was studied, and it was 
revealed that infusion of phenolic compounds and production of terpenes  
led to plant resistance to the pathogens (Krupa and Fries, 1971; Strobel  
and Sinclair, 1991a, b). Mode (4) seems to be realized by the improvement 
of mycorrrhizal formation and enhancement of plant growth by several 
bacteria (Bending et al., 2002; Duponnois and Garbaye, 1991). In addition, 
rhizosphere bacteria directly inhibit the growth and sporulation of pathogenic 
fungi thus inhibiting disease (Schelkle and Peterson, 1996; Pedersen and 
Chakravarty, 1999).  

A high rate of fertilizers (N/P/K) and fungicides were applied to 
maintain seedlings in forest nursery (Lilja et al., 1997); however, these 
treatments generally reduced the ectomycorrhiza-host symbiosis (Tammi  
et al., 2001). Sen (2001) examined the suppressive effects of forest-adapted 
mycorrhizal fungi and nursery-adapted ones on Rhizoctonia sp. under condi-
tions of low nitrogen. Wilcoxina mikorae, which is adapted for nursery 
growth, did not suppress the disease caused by Rhizoctonia sp., while Suillus
bovines, which is adapted to forest ecosystems, suppressed the disease. 
Moreover, Pseudomonas sp. and Bacillus sp. were isolated from the surroun-
ding soil of Suillus bovines-mycorrhiza. Sen (2001) suggested that inter- 
actions between these bacteria and the suppressive effect of mycorrhizal 
fungi may be occurring.

Interactions between mycorrhizal fungi and other microorganisms 
are important for control of plant disease under natural conditions. Pseudomonas
fluorescens, which can suppress pathogenic fungi such as Rhizoctonia spp., 
Fusarium spp., Phytophthora spp., and Heterobasidion spp. had a higher 
population density in the mycorrhizosphere soil of Douglas fir-L. bicolor
than in other soil (Frey-Klett et al., 2005). Moreover, some strains have been 
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Table 4. ECM fungi reduce severity of various fungal diseases of plants. 

ECM fungi Host plant Pathogenic fungi References 
Clitocybe claviceps,
Laccaria bicolor,
Paxillus involutus 

Picea glauca,
Pinus contorta,

Fusarium
moniliforme,
F. oxysporum 

Chakravarty et al.,
1999

Hebeloma
crustiliniforme,
Laccaria laccata,
Pisolithus tinctorius 

Pinus sylvestris  F. moniliforme,
Rhizoctonia solani 

Chakravarty and 
Unestam, 1987b 

Hebeloma
crustiliniforme,
Hebeloma sinapizans,
Laccaria laccata,
Paxillus involutus 

Castanea sativa Phytophthora 
cambivora,
P. cinnamomi

Branzanti et al.,
1999

Laccaria bicolor,
Laccaria laccata 

Picea abies, 
Pseudotsuga
menziesii

Fusarium oxysporum Sampangi et al.,
1986

Laccaria bicolor Pseudotsuga 
menziesii

Fusarium oxysporum Strobel and 
Sinclair, 1991b 

Laccaria laccata,
Pisolithus tinctorius 

Pinus sylvestris Cylindrocarpon 
destructans

Chakravarty and 
Unestam, 1987a 

Laccaria laccata Pseudotsuga 
menziesii

Fusarium oxysporum Sylvia, 1983 

Paxillus involutus Picea mariana Cylindrocladium 
floridanum

Morin et al., 1999 

Paxillus involutus Pinus banksiana Fusarium 
moniliforme 

Hwang et al., 1995 

Paxillus involutus Pinus contorta F. moniliforme,
 F. oxysporum 

Pedersen et al.,
1999

Paxillus involutus Pinus resinosa F. moniliforme,
F. oxysporum 

Chakravarty et al.,
1991

Paxillus involutus Pinus resinosa Fusarium oxysporum Duchesne et al.,
1988b

Paxillus involutus Pinus resinosa Fusarium oxysporum Duchesne et al.,
1989

Paxillus involutus Pinus resinosa Fusarium oxysporum Farquhar and 
Peterson, 1991 

Paxillus involutus,
Suillus bovines,
Wilcoxina mikolae 

Pinus sylvestris Rhizoctonia sp. Sen, 2001 

reported as mycorrhiza helper bacteria; Bacillus subtilis MB3, Pseudomonas
spp. (BBc6 and Bc13) (Schelkle and Peterson, 1996) and Streptomyces spp. 
(Becker et al., 1999; Maier et al., 2004; Schrey et al., 2005) are reported to 
have suppressed plant pathogens. Streptomyces AcH505 particularly showed 
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fungal specificity, which suppressed the growth of the plant pathogen while 
it enhanced the growth of mycorrhizal fungi (Schrey et al., 2005). Thereafter, 
three compounds (Auxofuran, WS-5995 B and C) induced by Streptomyces
AcH505 were identified, and it was revealed that auxofuran enhanced the 
growth of mycorrhizal fungi and WS-5995 B and C suppressed the growth 
of the plant pathogen (Riedlinger et al., 2006).

6.2  Response to atmospheric pollution 

Dighton and Jansen (1991) reviewed the effects of pollutants on 
mycorrhizae, primarily ectomycorrhizae. The authors had to conclude that 
the effects of pollutants on mycorrhizae are not clear. For instance, some 
damage to roots and mycorrhizal fungi by pollutants result from the toxicity 
of increased Al availability and imbalances in Ca: Al ratios. But quantita-
tive information on the degree to which the functioning of the mycorrhizal 
association is impaired had been lacking. The effects of pollutants on the 
rate of photosynthesis and subsequent allocation of carbohydrates to main-
tenance of mycorrhizae are also possible mechanisms for damage due to 
pollution. Thus, the methods used in experiments, levels of pollutants used 
and relationships between studies on seedlings to those of a mature forest do 
not suggest consistent models of pollution effects.  

Stankevi ien  and Pe iulyt  (2004) studied ectomycorrhizae (ECM) 
and soil microfungi in soil cores obtained from seven unequally polluted 
forest plots spaced at different distances from a fertilizer factory in Lithuania. 
To evaluate the ECM state they chose the following three criteria: (1) number 
of ectomycorrhizal root tips in 100 cm of soil, (2) length of ectomycorrhizal 
roots in 100 cm3 of soil, and (3) diversity of ectomycorrhizal morphotypes in 
the soil. Abundance of ECM roots and soil microfungi was visibly different 
in separate investigation plots. Average numbers of ECM root tips during the 
investigation period (2000–2002) in different forests ranged from 134 to 
1,017/100 cm3 of soil and the length of ECM roots ranged from 12.2 to 79.8 
cm/100 cm3. Total numbers of viable soil fungi varied from 1.5 to 566.6 
thousands CFU/g dry weight soil. The forest farthest from the factory exhi-
bited the highest ECM abundance and diversity of ECM morphotypes, while 
the abundance of soil microfungi was lowest. The lowest diversity of ECM 
morphotypes was detected in forests characterized by the highest concen-
tration of heavy metals and lowest concentrations of nutrients (N, P), and the 
highest microfungal abundance was in forests with the highest nutrient con-
centrations. It was concluded that microfungi and ECM can act as important 
evaluation criteria in soil monitoring for afforestation purposes due to their 
significant reaction to pollution-induced chemical soil changes. 

To determine the effect of acid precipitation on Japanese black pine 
(Pinus thunbergii) with and without mycorrhizae (Pisolithus tinctorius),
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1-year-old seedlings were exposed to simulated acid mist (SAM), pH 3.0, for 
10 min per day twice a week for 3 or 4 months. To estimate the effect of 
SAM and that of ECM, the following criteria were measured: (1) fresh weight 
of roots, shoots, and whole seedlings, (2) chlorophyll a and b contents,  
(3) transpiration rate, (4) extractable phosphorus content in shoots or roots, 
and (4) percentage of mycorrhizal root tips and dichotomous root tips. SAM 
adversely affected the weight of whole seedlings and the transpiration rate, 
and decreased the extractable phosphorus content of seedlings. These adverse 
effects were partly compensated with ECM inoculation. SAM, however, 
retarded mycorrhiza formation (Maehara et al., 1993).

7 ECTOMYCORRHIZAL FUNGI
AS BIOREMEDIATION AGENTS 

Persistent organic pollutants (POPs) such as DDT (dichlorodiphenyl 
trichloroethane) and polycyclic aromatic hydrocarbons (PAHs) have histori-
cally been serious environmental and public health problems, because of 
their long distance mobility, high organism accumulation and persistence. 
ECM fungi may have the ability to grow in, and possibly decompose such 
compounds because these fungi, associated with the host plant, are distri-
buted throughout the soil and provided with a long-term supply of photo-
synthetic carbon from their plant hosts. In addition, ECM fungi may enhance 
the activites of indigenous soil microorganisms. To date, the ability of ECM 
fungi to degrade lignin and soluble phenolics (Bending and Read, 1997), has 
given rise to the possibility of applying ECM to bioremediation of aromatic 
pollutants (Donnelly et al., 1994). Out of the 42 species of ECM fungi 
screened thus far, 33 have been shown to degrade one or more classes of 
chemicals (Meharg and Cairney, 2000). Moreover, Braun-Lullemann et al. 
(1999) isolated 16 genera (27 strains) via screening of those strains superior 
for degradation of PAHs. Amanita excelsa, Leccinum versipelle, Suillus 
grevillei, S. luteus, and S. variegates could remove up to 50% of PAHs, 
including very recalcitrant compounds such as benzo[ ]pyrene from solution 
culture. Meharg et al. (1997) demonstrated that isolates of Suillus variegafus
and Paxillus involutus mineralize 2, 4-dichlorophenol both in axenic culture 
and in symbiosis with Pinus sylvstris.

Ectomycorrhizal fungi impart a protective effect to plants via pre-
vention of translocation of heavy metals into the host (Galli et al., 1993; 
Tam, 1995). For example, Turnau et al. (1994) revealed that heavy metals 
like Cd, Cu and Fe accumulated mainly in electron opaque granules and in 
the outer pigmented layer of the cell wall, both characterized by the presence 
of polysaccharides and cystein-rich proteins. On the other hand, some studies 
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report that ectomycorrhizal fungi do not limit heavy metal concentration in 
their hosts (Godbold et al., 1998; Bucking and Heyser, 1994). Sell et al.
(2005) showed that P. involutus significantly enhanced total Cd extraction 
by P. canadensis. Several fungal species reduced Zn accumulation in pine 
seedlings; Thelephora terrestris, however, increased Zn concentration in its 
host plants (Colpaert and Van assche, 1992).  

Organic acids can bind heavy metals, and thus serve as detoxifi-
cation agents. Ahonen-Jonnarth et al. (2000) studied the action of low mole-
cular weight organic acids produced by mycorrhizal Pinus sylvestris exposed 
to elevated aluminium and heavy metal concentrations. The production of 
acid-bound substances led to enhanced absorption of heavy metals which 
combined with phosphate in soil (Fomina et al., 2006). 

Ectomycorrhizal fungi may indirectly influence degradation or uptake 
of soil contaminants in the rhizosphere via mycorrhizosphere effects (Meharg 
and Cairney, 2000). There may be several advantages to using a combined 
plant-mycorrhiza-bacteria system for biodegradation of soil pollutants. Inter-
actions between ECM fungi and other soil microbes are complex and are 
currently poorly understood; however, it is known that bacterial communi-
ties can be markedly altered in the mycorrhizosphere compared to the rhizo-
sphere of non-mycorrhizal roots (Rambelli, 1973). Cellular interactions and 
catabolic activities of mycorrhizal root associated non-sporulating bacteria 
were investigated in a simplified phytoremediation simulation involving a 
woody plant species (Sarand et al., 1998). The tolerance and degradation of 
m-toluate by Pinus sylvestris, a symbiotic Suillus bovinus and Pseudomonas 
fluorescens strains was determined (Sarand et al., 1999). It may be difficult, 
however, to separate the role and/or interaction of each organism. 

8 VEGETATION SUCCESSION  
AND ECTOMYCORRHIZAL FUNGI 

The development of a biological community by the action of vegeta-
tion on the environment leading to the establishment of new species is 
termed succession. Primary succession is the term used when this pheno-
menon occurs on a new, sterile area, such as that uncovered by a retreating 
glacier or created by an erupting volcano. Most successional processes are 
secondary successions, i.e., the recovery of disturbed sites by fire, disease, or 
human-induced land clearing processes (Clements, 1916; Begon et al.,
1996). Succession has been mainly explained by changes in environments 
and resource competition between plants (Connell and Slatyer, 1977; Tilman, 
1985). However, it has been revealed that mycorrhizal fungi also play an 
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important role in vegetative succession (Smith and Read, 1997; van der 
Heijden et al., 1998). 

In the early stages of primary succession at a severely disturbed site, 
non-mycorrhizal and facultative mycorrhizal plants tend to occur and domi-
nate (Allen et al., 1987; Allen, 1988, 1991). These are followed by obligately 
arbuscular mycorrhizal plants, and later by ectomycorrhizal and ericoid 
mycorrhizal species (Read, 1989, 1992).  

In early stages of succession, ECM fungi inoculum is limited. In an 
early succession volcanic desert, ECM colonization of Salix reinii seedlings 
strongly depended on nearby established S. reinii shrubs. Growth and nitrogen 
content of seedlings increased significantly with number of associated ECM 
fungal species and ECM root tips (Nara and Hogetsu, 2004). In addition, 
ECM fungi on S. reinii contributed to tree succession from S. reinii to Betula
ermanii and Larix kaempferi (Nara, 2006b). These results suggest that infec-
tion by ECM fungi is important in early forest succession, where ECM 
fungal inoculum is limited. 

In Australia an introduced tree, P. radiate, did not regenerate 
naturally because native fungal partners were absent (Tommerup et al., 1987). 
Inoculation of ECM fungi improved the establishment of pine seedlings.  
In natural tropical forests, about 95% of tree species are endomycorrhizal 
(Le Tacon et al., 1987) and the seedlings of introduced non-native tree 
species (pines, eucalypts and casuarinas) were stunted and chlorotic when 
ECM fungi was not inoculated. However, inoculation of ECM fungi into the 
seedlings improved growth.  

In secondary succession, nitrogen is a limiting nutrient and a key 
plant growth factor (Odum, 1960; Golley, 1965; Tilman, 1987). The nitrogen 
status of the ecosystem changes from which inorganic nitrogen predomi- 
nates, to the condition in which plant residues sequester nitrogen largely in 
organic form. Abuzinadah and Read (1986) reported that the ability of ECM 
fungal species to utilize peptides and proteins differed. Laccaria laccata and 
Pisolithus tinctorius had little ability to grow on peptides or proteins, but 
Suillus bovinus and Rhizopogon roseolus grew vigorously on both com-
pounds. L. laccata and P. tinctorius were frequently observed in environ-
ments in which inorganic nitrogen predominated, whereas S. bovinus and  
R. roseolus were frequently observed in environments in which organic 
nitrogen predominated. ECM colonization with the fungi, which are adaptive 
and can acquire nitrogen, may increase the nitrogen uptake and adaptation  
of the host plants.  

Some works reveal that nitrogen is saturated in polluted forests by 
anthropogenic factors such as deposition of atmospheric pollutants (Aber  
et al., 1989; Harrison et al., 1995) and presence of exotic invasive species 
(Taniguchi et al., 2007). Deposition of nitrogen in forests may induce 
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limitations or imbalances of other nutrients such as phosphorus and potassium 
(Mohren et al., 1986; Aber et al., 1989; Harrison et al., 1995). Taniguchi  
et al. (2008) reported that phosphatase activity of dominant ECM fungal 
species was higher in a nitrogen-rich forest than in a nitrogen-poor forest. 
Therefore, the ability of ECM fungal species to take up phosphorus or 
potassium may be significant in nitrogen-saturated forests. 

Table 5. ECM fungi act as bioremediation agents. 

ECM fungi Host Plant Pollutants References 
Thelephora terrestris, 
Laccaria laccata 

Pinus sylvestris PAHs Genney et al., 2004 

Suillus bovinus,
Hebeloma
crustuliniforme

Pinus sylvestris PAHs Joner et al., 2006 

Paxillus involutus,
Suillus bovinus 

Pinus sylvestris benzoic acid,
4-hydroxybenzoic 
acid

Dittmann et al., 2002 

Paxillus involutus,
Suillus variegatus 

Pinus sylvestris 2,4-dichlorophenol Meharg et al., 1997 

Suillus bovinus Pinus sylvestris m-toluene Sarand et al., 1998 
Paxillus involutus,
Pisolithus tinctorius 

Salix viminalis, 
Populus canadensis 

Cd Sell et al., 2005 

Rhizopogon roseolus Pinus sylvestris Cd, Al Turnau et al., 1996 
Paxillus involutus,
Suillus variegatus 

Pinus sylvestris Cd, Zn Hartley-Whitaker et al.,
2000

Suillus bovinus Pinus sylvestris Zn Bucking and Heyser, 
1994

Thelephora terrestris,
Paxillus involtus,
Amanita muscaria 

Pinus sylvestris Zn Colpaert and Van 
assche, 1992 

Suillus variegatus, 
Rhizopogon roseolus,
Paxillus involtus 

Pinus sylvestris Al, Cd, Cu, Ni Ahonen-Jonnarth et al.,
2000

Laccarius thiogalus,
Lactarius rufus,
Paxillus involtus 

Picea abies Al Hentschel et al., 1993
Jentschke et al.,
1991a, b 

Laccaria bicolor Pinus sylvestris Ni, Cd Ahonen-Jonnarth and 
Finlay, 2001 

Lactarius rufus,
Lactarius hibbardae,
Laccaria proxima,
Scleroderma
flavidum

Betula papyrifera Ni Jones and Hutchinson,
1986

Thelephora terrestris,
Paxillus involtus,
Amanita muscaria 

Betula papyrifera Zn Brown and Wilkins,
1985

Paxillus involutus Pinus sylvestris Zn Fomina et al., 2006 
Suillus bovinus Pinus sylvestris Zn Adriaensen et al., 2003 
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Fig. 2. ECM community on pine seedlings in subplot I (P. thunbergii-dominated subplot), II 
(P. thunbergii-dominated subplot mixed with a few R. pseudoacacia), III (R. pseudoacacia-
dominated subplot mixed with a few P. thunbergii) and VI (R. pseudoacacia-dominated
subplot).

In secondary succession the selection of ECM fungal species is 
important due to possible competing effects. When Douglas fir seedlings 
were inoculated with Hebeloma crustuliniforme and Laccaria laccata in 
harsh dry sites, the fungi did not compete successfully with native fungal 
species and the inoculation did not increase seedling growth and survival 
(Bledsoe et al., 1982). McAfee and Fortin (1986) examined the effect of pre-
inoculation with L. bicolor, P. tinctorius and R. rubescens into P. banksiana
seedlings. After transplanting natural pine stands, colonization by L. bicolor
and P. tinctorius declined significantly whereas that of R. rubescens increased 
modestly. R. rubescens was observed in a late stage of succession and might 
adapt to this environment and become competitive with indigenous mycor-
rhizal fungi. L. bicolor and P. tinctorius are early-stage fungi and may fail  
to compete with indigenous mycorrhizal fungi. These results suggest that  
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Fig. 3. Ectomycorrhizas formed by (a) Cenococcum geophilum, (b) Russula sp. 1, (c) unidenti-
fied ECM T01, (d) Tomentella sp. 1, (e) Tomentella sp. 2 and (f) Amanita sp. Bars: 1 mm 

adaptations of ECM fungi to a new environment are needed in order to 
sustain their effect in the site.

Colonization of ECM fungi seems to be determined by compatibility 
of ECM fungi to host plants, adaptation and tolerance of ECM fungi to an 
environment, and interactions among ECM fungi and soil microorganisms 
(Jumpponen and Egerton-Warburton, 2005). Taniguchi et al. (2007) examined 
the ECM community on pine (P. thunbergii) seedlings along a P. thunbergii
to a Robinia pseudoacacia gradient. ECM of C. geophilum and Russula sp. 1 
dominated in a P. thunbergii-dominated area, while these ECM were not 
observed in a R. pseudoacacia-dominated area (Fig. 2). ECM of Tomentella
spp. dominated in a R. pseudoacacia-dominated area, whereas ECM of these 
fungi were rarely observed in a P. thunbergii-dominated area. These differ-
ences in dominant ECM fungi seem to depend on environmental conditions 
(e.g., light and soil nitrogen) and physiology of host plants (Fig. 3). Recently, 
ECM fungal community structures in various forests and the function of 
individual ECM fungal species have been studied. In the future, it may be 
possible to achieve stable and successful afforestation by examining the 
environment where the ECM fungi are applied and introducing adaptive 
ECM fungi.
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9 ECTOMYCORRHIZAE AND FOREST
ECOSYSTEMS

Extraradical mycelia of mycorrhizal fungi are normally the “hidden 
half ” of the symbiotic relationship with plants (Leake et al., 2004). These 
extraradical mycelia are the main organs for nutrient uptake in many woody 
plants, often connect seedlings to mature trees, and influence biogeochemical 
cycling and the composition of plant communities in a forest ecosystem. To 
consider the role of ECM in forest ecosystem, two aspects of ECM, the 
carbon cycle and mycorrhizal mycelial networks, are discussed below.  

9.1   Carbon cycle 

 The widespread occurrence of mycorrhizae in nature and their 
importance in the mineral nutrition of plants has been extensively docu-
mented; however, mycorrhizae have not been included in nutrient cycling 
studies of forest ecosystems (Fogel, 1980). The functions of mycorrhizal 
fungi, particularly their roles in carbon dynamics, are different from those of 
saprotrophic microorganisms involved in decomposition processes. Biomass 
or surface area of mycorrhizae must be measured before information on ion 
absorption by mycorrhizae can be applied to forest ecosystems. Mycorrhizal 
mycelial networks receive as much as 10–20% of the net photosynthates  
of their host plants (Hobbie, 2006). The networks often constitute 20–30% 
of total soil microbial biomass. Mycorrhizal mycelia, often exceeding tens of 
meters per gram of soil, provide extensive pathways for carbon and nutrient 
fluxes through soil. Leake et al. (2004) consider the degree of photosynthate 
“power” allocated to these mycelial networks and how this is used in fungal 
respiration, biomass, and growth and in influencing soil, plant, and eco-
system processes.

For more accurate estimates of soil carbon flow in natural eco-
systems, further quantitative studies are needed (Satomura et al., 2006a). 
Based on an equation given by Vogt et al. (1998), Satomura et al. (2006a) 
suggested that the following four questions must be solved: (1) Where is the 
organism living? (2) How many (how much) organisms are there? (3) How 
much carbon is contained per unit biomass of the organism? and (4) How 
many times does the carbon in the organism turn over per unit time? When 
applying this concept to assess the role of ECM fungi in carbon dynamics in 
forests, the following answers were provided: (1) The mycorrhizal asso-
ciation can be divided into four components, i.e., plant tissue, fungal tissue 
(fruiting body, sclerotium and spore), plant-fungal interface (mycorrhiza), 
and soil-fungal interface (extraradical mycelium). To answer question (2), it 
is necessary to estimate the biomass of individual symbiotic partners, i.e., 
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plant or mycorrhizal fungi in the above-mentioned components. It has been, 
however, very difficult to estimate the biomass of ECM fungi in the latter 
two components. To evaluate fungal biomass in the plant-fungal interface 
(mycorrhiza), it is necessary to determine the fungal content of ectomycor-
rhizal fine roots and that in the soil. The fungal component in the ectomycor-
rhiza is termed ‘intraradical mycelium’ or ‘internal mycelium’, while that in 
the soil is termed ‘extraradical mycelium’ or ‘external mycelium’. Hobbie 
(2006) surveyed allocation patterns in 14 culture studies and five fields of 
ectomycorrhizal plants, and estimated the allocation to ectomycorrhizal fungi 
to range from 1% to 21% of total net primary production. The fungal content 
of ECM fine roots is closely correlated to the biomass of ectomycorrhizal 
fine roots (Schneider et al., 1989). The amount of ECM fine roots and their 
fungal content could be altered by the photosynthetic activity of the plants, 
the carbon allocation strategy of plants, size of trees and tree density.  

To estimate the fungal content of mycorrhizal fine roots, three methods 
have been used: (1) dissection, (2) round sliced section image analysis, and (3) 
biochemical indicator analysis. In the third method, a fungal-specific sterol, 
ergosterol, is used as an indicator. The compound is extracted and quantified 
by HPLC. The quantity of the ergosterol is converted to fungal weight. 

Using the dissection method, Harley and McCready (1952) found a 
40% fungal content of beech (Fagus sp.) ECM fine root. Vogt et al. (1982), 
also obtained the same value (40% fungal content) in Abies amabilis stands 
but measured 20% fungal content in Pseudotsuga menziesii stand at a low 
altitude by an image analysis method. However, such high values of fungal 
content may not be applicable to whole ectomycorrhizal plants. For instance, 
Kårén and Nylund (1996, 1997) measured a low fungal content of ectomycor-
rhizal fine roots (2.9–3.8%) in Picea abies stands using a fungal biochemical 
indicator, ergosterol. Satomura et al. (2003) also found a low fungal content 
of ectomycorrhizal fine roots (1.2–6.9%) in a Pinus densiflora stand.

In summary, a number of variables must be determined to quantify 
the role of ectomycorrhizal fungi in forest carbon cycling: fungal biomass in 
ECM fine roots (plant–fungal interface), biomass of ectomycorrhizal fungi 
in soil, the biomass of fungal tissues such as fruiting bodies and sclerotia, 
and information about their turnover frequency (Satomura et al., 2006b). 

In stand-level estimates, the biomass of ectomycorrhizal fungi in 
fine roots differ among forest types, ranging from 1000.9 g m–2 ground area 
as the highest value obtained from a Pseudotsuga menziesii forest (Fogel 
and Hunt, 1979) to 2.0 g m–2 as the lowest value obtained from a Pinus 
densiflora forest (Satomura et al., 2003). The biomass of ectomycorrhizal 
fine roots was also much higher in the P. menziesii forest (2502.3 g m–2)
compared with the P. densiflora forest (91.0 g m–2).  

Using ergosterol analysis, Wallander et al. (2001, 2004) reported a 
pioneering stand-level estimation of the biomass of extraradical mycelia of 
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ECM fungi penetrating into sandy soil kept in mesh bags. The biomass of 
ECM fungi in the soil measured about four times that in the fine roots. In 
other words, a large proportion of the biomass of ECM fungi (about 80%) 
existed in the soil in the form of external mycelia. 

To evaluate the role of ECM fungi in forest carbon cycling, fre-
quency of turnover must be determined both for ECM fine roots and extra-
radical mycelia of ECM. Using a database of 190 published studies, Gill and 
Jackson (2000) estimated turnover of roots at 0.1–1.2 year  (average = 0.56 
year–1). As for the turnover time of mycelia of ECM fungi, Finlay and 
Söderström (1992) assumed 1 week during the 6-month growing season for 
ECM fungi (turnover is 26 year–1). Carbon content in both fine roots and 
mycelia of ECM fungi was assumed to be 45% (Satomura et al., 2006b). 
Based on these assumptions, Satomura et al. (2006b) estimated the total 
biomass of fungi in ECM fine roots and soil to be only 10.0 g m–2 (Table 2). 
The production of plant tissue in ECM fine roots, fungi in ECM fine roots, 
and ECM fungi in soil were estimated to be 71.2, 52.0, and 208.0 g m–2 year–1,
respectively (Table 2). The amounts of carbon consumed by fine roots, 
ECM fungi in fine roots, and ECM fungi in soil were estimated to be 32.0, 
23.4, and 93.6 g C m–2 year–1, respectively. The P. densiflora forest investi-
gated by Satomura et al. (2003) is characterized by a very small biomass of 
ectomycorrhizal fine roots and their fungal partners (91.0 and 10.0 g m–2,
respectively), compared with the total biomass of the below-ground parts  
of plants at the study site (3932.0 g m–2). However, the estimated production 
of ectomycorrhizal fine roots and their fungal partners are considerably high.  

9.2  Mycorrhizal mycelial networks 

Mycorrhizal mycelial networks are the most dynamic and functionally 
diverse components of the symbiosis, and recent estimates suggest they are 
empowered by receiving as much as 10% or more of the net photosynthate 
of their host plants. The costs and functional “benefits” to plants linking to 
these networks are fungal-specific and, because of variations in physiology 
and host specificity, are not shared equally; some plants even depend exclu-
sively on these networks for carbon. 

Ectomycorrhizal (ECM) mycelia radiating from ECM function as 
primary organs for absorption of nutrients in many host plants (Leake et al.,
2004), and many woody plants in forest ecosystems are dependent on ECM 
fungi for their growth and survival. In addition, ECM mycelia radiating from 
a plant function as a source of ECM infection for neighbouring host plants, 
and form common mycorrhizal networks (CMNs) that connect a number of 
different host plants (Newman, 1988; Read, 1997). Some in vitro experi-
ments have shown that carbon and nutrients are shared among connected  

–1
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host plants (Finlay and Read, 1986a, b; Arnebrant et al., 1993; He et al.,
2004). Therefore, CMNs presumably affect the growth of host plants in the 
field (Simard and Durall, 2004).  

There is limited information on the role and effect of CMNs of ECM 
fungi in the field. In forests, the majority of ECM fungi are shared among 
different canopy trees (Horton and Bruns, 1998; Cullings et al., 2000); 
canopy trees and understory plants (Horton et al., 1999; Kennedy et al.,
2003); and mature and juvenile plants (Jonsson et al., 1999; Matsuda and 
Hijii, 2004). CMNs may therefore be widespread. However, sharing of the 
same ECM fungal species by different hosts does not necessarily indicate a 
direct connection among the host plants. In most ECM habitats, genetically 
different units, or genets, of the same ECM fungal species usually exist in 
proximity (Redecker et al., 2001). Different genets of the same ECM fungal 
species may therefore colonize neighbouring hosts. In addition, even if the 
mycobionts on neighbouring hosts belong to the same genet, the genet may 
be isolated physiologically by fragmentation (Wu et al., 2005).To minimize 
complicated contamination by cohabitants, Nara et al. (2003) selected a 
volcanic desert on Mount Fuji as their experimental site, where the vege-
tation is still in the early stages of primary succession, and thus lacking 
inoculum of ECM fungi. The vegetation is patchily distributed, forming vege-
tation islands in a sea of volcanic desert. Nara (2006a) determined the effects 
of each ECM fungal species on plants in their natural environment. Mycelia 
spreading from ECM mother trees infected neighbouring seedlings by forming 
CMNs in all fungal species examined. Thus, CMNs are not restricted to 
specific groups of fungal taxa, and may occur in all ECM fungal taxa. 

10 CONCLUSION

In forest nursery management, it is well known that pine seedlings 
could not be replanted from nursery to any other place once they start to 
expand new lateral roots in spring, though it is incredibly easy to replant 
them in winter. From mycorrhizal viewpoint, this can be attributed to the 
damage of mycorrhizal association to newly developed lateral roots and 
mycorrhizal fungi in spring. Thus mycorrhizal association is crucial and 
essential for pine seedlings. Generally we ignore the importance of the mycor-
rhizal relationship, because mycorrhizae occur underground and invisible. 
When trees are exposed to the biotic or abiotic stresses, the importance of 
the mycorrhizal association was noticed as the case of the Pine Wilt disease. 
More than 90% of land plants are associated with mycorrhizal fungi, and 
two thirds of them are arbuscular mycorrhizae. But tree species predomi-
nant in temperate forests such as Pseudotsuga, Picea, Pinus, Abies, Salix,
Quercus, Betula and Fagus are ectomycorrhizal. Why have ECM fungi 
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established the special mycorrhizal relationship with such trees? Does the 
ECM relationship bring about the prosperity of the trees, or does the pros-
perity of the trees ensure the establishment of ECM associations? Still there 
are many questions to be solved on ECM relationship but the beneficial 
effect of ECM on these trees is the established fact.
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Chapter 12 

ECTOMYCORRHIZAL ASSOCIATIONS 
FUNCTION TO MAINTAIN TROPICAL 
MONODOMINANCE

KRISTA L. MCGUIRE 
Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
USA

Abstract:  Tropical rain forests are the epicenters of tree diversity. Nonetheless, tropical 
monodominance should be defined as >60%, rather than >50% of the tree 
species, co-occur in matrices of high-diversity, mixed rain forest. Several 
alternative mechanisms could produce this pattern, but one frequently cited 
observation is that most tropical monodominant trees form ectomycorrhizal 
(ECM) associations. The majority of other trees in mixed rain forest form 
arbuscular mycorrhizal (AM) associations, suggesting that ECM associations 
provide advantages to their monodominant trees; however, the mechanisms 
underlying this hypothesis have not been fully explored. This chapter will 
explore recent research in the tropical forests that has revealed evidence for 
positive feedbacks between ECM fungi, ECM monodominant trees and con-
specific ECM seedlings. These positive feedbacks provide advantages to the 
ECM hosts that are not observed with AM and non-mycorrhizal trees. These 
advantages include linkages of seedlings to common ECM networks and 
interactions between ECM fungi and other saprotrophic microorganisms in 
forest soil that provide the ECM host with preferential access to limiting soil 
nutrients. These positive-feedback mechanisms may explain the local mono-
dominance of an ECM tree species within the matrix of a typical high-
diversity, predominantly AM rain forest community. Since tropical rain forests 
are currently threatened by human activities such as logging, development and 
industrial agriculture, understanding how mycorrhizal fungi function in main-
taining tree diversity patterns is critical for managing and restoring these 
valuable ecosystems.

Keywords: Dicymbe corymbosa; ectomycorrhiza; mycorrhizal fungi; monodominance; 
tropical rain forest. 
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1 INTRODUCTION 

Mycorrhizal fungi are known to influence plant diversity patterns in 
a variety of ecosystems around the world (van der Heijden et al., 1998; 
Hartnett and Wilson, 1999; Klironomos, 2002). However, the contribution of 
mycorrhizal fungi to the maintenance of plant diversity in tropical rain forests 
is poorly known. Tropical rain forests contain mosaics of plant diversity rang-
ing from extraordinarily high diversity (>300 sp. Ha–1) (Gentry 1992; Valencia 
et al., 1994), to very low diversity, where monodominance should be defined 
as >60%, rather than >50% of the trees. Although many hypotheses exist to 
explain variations in tropical tree diversity (Leigh et al., 2004), few studies 
have addressed the role of mycorrhizal fungi in maintaining tropical tree 
diversity patterns. 

Of the seven types of mycorrhizae described (arbuscular, ecto, 
ectendo-, arbutoid, monotropoid, ericoid and orchidaceous mycorrhizae), 
arbuscular mycorrhizae and ectomycorrhizae are the most abundant and wide-
spread in forest communities (Smith and Read, 1997; Allen et al., 2003). 
Arbuscular mycorrhizal (AM) fungi are the most common mycorrhizal asso-
ciation and form mutualistic relationships with over 80% of all vascular plants 
(Brundrett, 2002). AM fungi are obligate mutualists belonging to the phylum 
Glomero-mycota and have a ubiquitous distribution in global ecosystems 
(Redecker et al., 2000). Ectomycorrhizal (ECM) fungi are a more recently 
evolved association (approximately 125 million years ago) and despite their 
widespread distribution, associate with only 3% of vascular plant families 
(Smith and Read, 1997). Almost all ECM fungi belong to the Ascomycota 
and Basidiomycota phyla and the ECM mutualism is thought to have been 
derived several times independently from saprophytic lineages (Hibbett et al.,
2000).

Global patterns in the distributions of AM and ECM associations 
among trees can be generalized. Boreal forests are dominated by ECM trees, 
temperate forests contain both ECM and AM trees and tropical rain forests 
have mostly AM trees (Janos, 1983, 1985). However, despite this generalized 
pattern, examples of ECM trees in tropical rain forests can be found in Asia, 
Africa and the neotropics. There is also a strong correlation between the ECM 
association in tropical trees and the occurrence of monodominance. Tropical 
monodominant forests can be found across the tropics and researchers have 
suggested that the ECM association contributes to the dominance of these 
tropical trees (Connell and Lowman, 1989; Torti and Coley, 1999). The 
rationale for this hypothesis derives from the biological and physiological 
differences between AM and ECM fungi. ECM fungi are thought to be 
better competitors for nutrients in soils with very slow decomposition. 
Unlike AM fungi, ECM fungi are derived from saprotrophs (Hibbett et al.,

288  McGuire 
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2000) and retain some ability to decompose organic material (Trojanowski  
et al., 1984; Abuzinadah and Read, 1986; Dighton et al., 1987). Since tropical 
soils are often nutrient-poor, ECM trees are predicted to have a competitive 
advantage compared to neighboring AM trees with respect to nutrient acqui-
sition. Over time, this could lead to the maintenance of ECM dominance in a 
tropical rain forest.  

To what extent do ECM associations contribute to the maintenance 
of ECM tree dominance in tropical forests? I explored this question in a 
system in Guyana, South America. In central Guyana, the ECM tree Dicymbe
corymbosa Spruce ex Benth. (Caesalpiniaceae) forms extensive stands of 
monodominant forest, comprising >80% of the canopy tree species (Zagt and 
Werger, 1997b; Henkel, 2003). The monodominant forest exists in mosaics 
with higher diversity, mixed forest, where individuals of D. corymbosa cannot 
be found. Since D. corymbosa is one of the only ECM associates in this area 
(McGuire et al., 2008), it provides an ideal system in which to test ECM-
mediated hypotheses of monodominance.  

2 MONODOMINANCE IN DICYMBE CORYMBOSA 

2.1 Site description 

To test hypotheses related to how D. corymbosa maintains its domi-
nance, I established 6 ha plots in two sites (Ayanganna and Kaibarupai)  
in monodominant, mixed and transitional forest (Fig. 1) in Guyana, South 
America. All trees 10 cm circumference ( 3.2 cm diameter at breast height) 
were tagged, identified and mapped to coordinates. In the transitional forest, 
the monodominant forest abruptly changes to mixed forest with no apparent 
geographic or edaphic change. Transitional forest plots were intentionally 
laid out so that the transition from mixed to monodominant forest occurred 
around 50 m. Ten composite soil samples were collected from each plot  
to get an estimate of nutrient levels across forest types. I also estimated 
understory diversity by sampling four smaller transects (2 × 100 m) in each 
plot. Smaller size classes were divided as follows: seedlings (<1 m height), 
saplings (<3 m height) and poles (>3 m height, but <10 cm circumference at 
breast height). 

Data from the transects revealed a high level of dominance of  
D. corymbosa in the monodominant forest in terms of basal area (Figs. 1, 
2), as has been reported previously (Henkel, 2003). There were no notable 
differences in soil chemistry parameters across forest types, suggesting  
that differences in soils cannot explain the distribution and dominance of 
D. corymbosa (Table 1). Dicymbe corymbosa seedlings, saplings and poles  
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also dominate the understory in the monodominant forest, suggesting that this  
forest is regenerating and maintaining its dominance (Fig. 3). Understory 
surveys were taken before (Fig. 3a) and after a mast-fruiting event of 2003 
(Fig. 3b). In both cases, there was significant dominance of D. corymbosa in 
all size classes, although the seedling dominance was much more extreme 
directly following the masting event in 2003 (note the difference in scale). 

(a)

 McGuire 



291

(b)

Fig. 1. Bubble graphs illustrating the relative (not absolute) basal area of trees in the mixed, 
transitional and monodominant forest at the (a) Ayanganna site and (b) Kaibarupai site. Black 
circles represent mixed tree species and white circles represent Dicymbe corymbosa trees. 
Mixed (first row of plots), transitional (second row of plots), and monodominant (third row of 
plots) forest. 

Species accumulation curves were generated for both sites in the 
monodominant and mixed forests (Fig. 4) using Estimate S (Gotelli and 
Colwell, 2001). At both sites, the total number of tree species was signi-
ficantly lower in the monodominant forest compared to the mixed forest,  
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but overall, the species richness was higher at the Kaibarupai site. When 
analyzing all plots together, the total number of tree species is significantly 
lower in the monodominant forest, but generic and familial diversity do not 
differ between forest types (Fig. 5).  

Forest pH OM% P(ppm) Ca(ppm) Mg(ppm) 

Mixed 4.7(0.03)  9.9(0.88) 12.3(1.3) 235(130) 30.3(1.8) 
Mono 4.8(0.03) 10.1(0.12) 12.0(1.0) 169(95) 26.3(0.33) 
Transitional 4.7(0.07) 8.9(0.56) 10.7(1.2) 76(11) 27.7(3.2) 
Forest K(ppm) Na(ppm) Al(ppm) NO3 (ppm) NH4 (ppm)
Mixed 21.3(2.4) 16.70(0.88) 1211.3(29.9) 6.70(1.17) 15.73(2.44) 
Mono 21.7(0.87) 14.3(0.88) 1220.3(58.9) 4.83(0.55) 12.33(0.84) 
Transitional 19.3(0.88) 13.7(0.67) 1206.4(19.4) 3.73(1.25) 10.67(0.75) 
Forest Fe(ppm) Mn(ppm) Cu(ppm) Zn(ppm) 
Mixed 129.00(2.65) 1.67(0.33) 3.45(2.16) 1.67(1.14) 
Mono  95.33(2.85) 2.33(0.33) 6.04(4.83) 2.47(2.04) 
Transitional 126.33(6.77) 1.67(0.33) 10.24(9.12) 5.57(5.08) 

Fig. 2. Basal area of adult Dicymbe corymbosa (D. cor) and non-dominant (Mixed) trees in 
the monodominant forest plots.

Table 1. Nutrient analysis data (  SE) for the mixed, monodominant and transitional forests.

+–
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Fig. 3. Total numbers of individuals per hectare of seedlings, saplings and poles in the 
monodominant forest. Dicymbe corymbosa individuals (D. cor) are separated from all other 
non-dominant species (Mixed). 

2.2 ECM-mediated mechanisms in adult trees 

In the Dicymbe corymbosa system, there is evidence for several 
mechanisms by which ECM associations contribute to the maintenance of 
monodominance at each life history stage of the tree (Fig. 6). As adults, D. 
corymbosa trees dominate resources and space in terms of total basal area 
(Figs. 1, 2). In addition to achieving incredibly large sizes, these trees  
form coppices, or epicormic shoots, that enable their persistence over time 
(Woolley et al., 2008). Thus, when one stem of the tree dies, another living 
stem can take its place in the canopy, enabling same-species replacement at 
the level of the stem. All of this woody biomass demands very high levels of 
carbohydrates and nutrients. The ability of this species to accumulate such 
nutrients likely comes from the ECM association, especially since the soils 
in this region are nutrient-poor.  

Fig. 4. Species accumulation curves for the Ayanganna plots (Ayan) and Kaibarupai plots 
(Kaib). Black circles and squares represent mixed forest plots (Mix) and open circles and 
squares represent monodominant forest plots (Mono). 
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Fig. 5. Total richness of tree species, genera and families in the monodominant and mixed 
forest across sites. Asterisk indicates significance at the level of P < 0.05. 

At the reproductive stage, adult trees produce synchronized, large 
quantities of seeds every 5–7 years; a reproductive characteristic known as 
‘masting’ (Janzen, 1974; Silvertown, 1980). Dicymbe corymbosa can produce 
more than 150,000 seeds ha–1 during masting years, with very low levels of 
seed loss from predation (Henkel et al., 2005; McGuire, 2007c). This massive 
fruiting episode requires significant nutrient accumulation in the inter-mast 
years, when the trees are producing no or little fruit. There is accumulating 
evidence that masting tree species rely on ECM associations to accumulate 
these requisite nutrients for reproduction during the inter-mast years (Newbery 
et al., 2006). While a direct test of this hypothesis is difficult, correlations 
between resource levels stored in plant tissues, timing of masting, and the 
ECM habit strongly suggests that ECM fungi are pivotal in obtaining the 
nutrients needed for these large, masting trees.

2.3 ECM-mediated mechanisms in seedlings

After a mast-fruiting episode in D. corymbosa, a dense carpet of 
seedlings is created, averaging over 100,000 seedlings ha–1 in 2003 (McGuire, 
2007c). The D. corymbosa seedlings are up to 6,000 times as dense as the 
non-dominant seedlings directly following the masting event. Dynamics at 
the seedling stage are critical for determining the future composition of the 
forest, and ECM-mediated mechanisms are likely operating to give these D.
corymbosa seedlings an advantage over the non-dominant seedlings. When 
D. corymbosa seeds are transplanted into the mixed forest, they lose their 
survival and growth advantages, and show concurrent decreases in percent 
ECM colonization (McGuire, 2007c). In the aforementioned experiment, D. 
corymbosa seeds planted in the monodominant forest had 50% higher rates 
of germination and 70% higher seedling survival after 1 year than seeds 
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Dicymbe corymbosa exhibits
mast-fruiting every 5-7

years, likely triggered by El
Ni–o events. Flowering
occurs in December and

pods form in March - April

Seeds are explosively dehiscent,
triggered by long hours of
sunshine in June - August

Seeds germinate
within 2-3 days of

falling to the ground;
ECM associations
can be observed on
the roots before the

leaves emerge

Adult trees are large (note person
sitting in tree) and form coppices

that contribute to the persistence of
an individual tree over time

Within 1-2 weeks seedlings
have true leaves

Seedling density following the
mast is high

Life history
traits of
Dicymbe

corymbosa

planted in the mixed forest. Seeds from four other AM tree species, on average, 
germinated better in the monodominant forest (24% higher germination), but 
seedling survival after  

1 year was low in both the mixed (19% survival) and the monodomi-
nant forest (20% survival). These results suggest that positive-distance depen-
dent mechanisms are operating to maintain monodominance. After 1 year, D.

corymbosa seedlings planted in the mixed forest had significantly 
lower levels of ECM colonization of roots (14%) compared to D. corymbosa
seedlings planted in the monodominant forest (100%). The lower percent 
ECM colonization of D. corymbosa seedling roots in the mixed forest suggests 
that ECM inoculum may be limiting in this forest type, and may explain the 
low survival of D. corymbosa seedlings in the mixed forest. 

Fig. 6. Images and details are shown for each life history stage of Dicymbe corymbosa in 
which hypotheses of ECM-mediated mechanisms of monodominance were tested. 
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One particular mechanism that is important for D. corymbosa seedling 
growth and survival is connection to a common ECM network (McGuire, 
2007a). Since small seedlings cannot support large, ECM genets, it is possi- 
ble that they can connect their small root systems to ECM networks that 
emanate from larger, nearby adults and receive the benefits of a more exten-
sive ECM mycelium (Simard and Durall, 2004; Nara, 2006). There is also 
evidence from other systems that nutrients such as C, N and P can be trans-
ferred between ECM seedlings through the mycorrhizal networks (Finlay 
and Read, 1986; Simard et al., 1997; Wu et al., 2001; He et al., 2003). It is 
possible that these nutrients can also be transferred from adults to seedlings, 
although a direct test of this hypothesis in the field is not possible with 
current methods. In the D. corymbosa system, when seedlings were planted 
in nylon mesh pots that excluded their roots from accessing the common 
ECM network, their growth and survival was significantly lower than the 
seedlings that had access to the ECM network (McGuire, 2007a). Seedlings 
with access to the common ECM network had 47% greater survival, 55% 
more leaves and 73% increased height after 1 year compared to seedlings 
restricted from access to the common ECM network. After 1 year, all seed-
lings had approximately 100% ECM colonization, regardless of treatment, 
indicating that ECM colonization was not enough for the observed seedling 
advantages in the monodominant forest. The reason why seedlings required 
connections to the common ECM network were not identified, but may be 
due to assimilate transport from ECM adults to seedlings in the monodominant 
understory. In the same study, a survey of newly-germinated D. corymbosa
seedlings at the transitional zone, demonstrated that seedling distribution, 
survival after 1 year and growth after 1 year decreased with increasing 
distance from the edge of the monodominant forest. In contrast, seedling 
mortality after 1 year in transects moving towards the monodominant forest 
was not significantly explained by distance from the edge. These results 
were a reversal of the classic Janzen-Connell hypothesis for the maintenance 
of tropical tree diversity, which predicts that seed and seedling survival 
increases with increasing distance from conspecific adult trees. These results 
suggest that access to the common ECM net near to the monodominant forest 
explains the increased seedling survival near to the monodominant forest. 
With the added benefits derived from connecting to the ECM network, D.
corymbosa seedlings can likely persist in the understory for longer periods 
of time than non-dominant seedlings. This ECM-mediated survival advantage 
for D. corymbosa seedlings is significant, as gap-phase dynamics research in 
tropical rain forests shows that larger seedlings persisting in the forest under-
story for longer periods of time will likely replace the fallen tree species that 
created the gap (Brokaw, 1985; Baraloto et al., 2005). 

In addition to connection to the common ECM network, exploitative 
seedling competition mediated by ECM fungi may also be important for  
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D. corymbosa seedling advantages. If the D. corymbosa adults are bearing the 
carbon cost to support seedlings in their mycorrhizal network, the seedlings 
are receiving the benefits of the ECM association without expending much 
carbon in the light-limited understory. This provides them with associate 
fungi that have superior exploitative capacities in the nutrient-limited soil 
than the neighboring, AM seedlings. In a competitive release experiment, D.
corymbosa seedlings were removed from seedling plots at different densities, 
and the remaining seedlings in the plots were monitored for biomass and 
survival responses. After 1 year we found that non-dominant seedlings had 
greater biomass (in terms of roots, shoots and stems) when D. corymbosa
seedlings were removed, suggesting that the removal released the non-
dominant seedlings from interspecific competition (McGuire and Goldberg, 

2.4 ECM-mediated mechanisms in nutrient cycling 

Leaf litter and woody debris accumulation are significantly greater 
in the monodominant forest compared to the mixed forest. Recent research 
shows that slower decomposition can explain the significant buildup for 
forest floor in the monodominant forest (McGuire, 2007b). After 2 years  
of collecting leaf litter fall in mesh traps, litter fall in the mixed forest  
was higher than leaf litter fall in the monodominant forest. These results 
revealed that higher rates of leaf litter production in the monodominant 
forest could not explain the deeper forest floor. The forest floor turnover 
coefficient was also significantly lower in the monodominant forest (k = 0.66) 
compared to the mixed forest (k = 0.96), supporting the hypothesis that 
slower decomposition, rather than greater leaf litter production, explains the 
deeper forest floor observed in the monodominant forest. We also set out 
reciprocally-planted litter bags to test the effects of leaf litter and forest type 
on decomposition rates. After 2 years of decomposition in the field, leaf 
litter decomposition in litterbags was significantly slower in the monodomi-
nant forest (k = 0.44 year–1) compared to the mixed forest (k = 0.93 year–1),
but there was no effect of leaf litter type (D. corymbosa litter versus mixed 
tree species litter) within each forest. Slower decomposition due to the bio-
chemical composition of D. corymbosa leaf litter, therefore, could not explain 
the deeper forest floor in the monodominant forest.  

Why is there slower decomposition in the monodominant forest? 
One hypothesis pertains to potential antagonistic relationships between sapro-
trophic bacteria and fungi. Due to the saprotrophic abilities of ECM fungi, 

explore this phenomenon during future masting episodes. 

2008, unpublished data). However, we also found evidence for strong intra-
specific seedling competition as a major factor in D. corymbosa seedling 

seedlings that died versus those that survived, but it would be interesting to 
mortality. We did not find notable differences between the D. corymbosa
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but the poor competitive abilities of ECM fungi compared to saprotrophic 
bacteria and fungi, it is possible that ECM fungi are suppressing sapro-
trophs in the monodominant forest to slow decomposition and ‘short-circuit’ 
organically bound nutrients back to D. corymbosa. This is a long-standing 
hypothesis, also known as the ‘Gadgil’ hypothesis (Gadgil and Gadgil, 1971, 
1975). While compelling, this hypothesis is incredibly difficult to test, parti-
cularly under field conditions. In order to provide convincing evidence for 
suppression of saprotrophs by ECM fungi we must show that: (1) decom-
position is not due to abiotic factors or chemical constituents of the mono-
dominant leaf litter; and (2) there is lower biomass, species richness and/or 
abundance of saprotrophs in the monodominant forest compared to the mixed 
forest. Since it appears that the former piece of evidence is supported in 
this system, we are currently attempting to test the second line of required  
evidence. So far we have observed lower microbial biomass in the mono-
dominant forest using phospholipids fatty acid analysis (McGuire, 2007b). 
We also extracted DNA from forest floor samples and selectively amplified 
the fungi using general fungal primers. The DNA analysis showed distinct 
banding patterns between forest types using denaturing gradient gel electro-
phoresis (DGGE), and redundancy discriminate analysis revealed a 78.9% 
separation of fungal community composition by forest type. Together, these 
results support the hypothesis that ECM fungi are suppressing saprotrophic 
fungi. We now need to directly sequence the DNA of the amplified fungi  
to see if there are indeed fewer saprotrophs in the mixed forest. This work  
is currently in progress, and will be the first direct attempt at sequencing 
community-level fungal DNA in a monodominant rain forest. 

3 FUTURE DIRECTIONS AND PRIORITIES  
FOR RESEARCH 

Monodominance research in Africa, Asia, and the Neotropics has 
revealed that ECM associations facilitate the dominance of one tree species 
in otherwise diverse tropical forest. What will happen to the distribution of 
these forests with future global changes? This question should be a priority 
for monodominance research. We know that global changes such as elevated 
levels of atmospheric CO2 are predicted to have dramatic impacts on mycor- 
rhizal fungal community composition and function (Treseder and Allen, 2000; 
Treseder, 2004). However, very little of this research has been conducted  
in tropical forests, and no studies to date have investigated the effects of 
global changes on monodominant, ECM forests. The future dynamics of the 
transitions from mixed to monodominant forest will be important to understand, 
as both forest types are invaluable to both indigenous communities and forest 
managers.  

 McGuire 
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Many monodominant, ECM trees retain the ability to be colonized 
by AM fungi. Increasing evidence from mycorrhizal surveys has revealed 
multiple examples of a single tree species simultaneously utilizing more than 
one mycorrhizal habit, sometimes even on the same rootlet (Chilvers et al.,
1987; Horton et al., 1998; Frioni et al., 1999; Moyersoen and Fitter, 1999; 
Chen et al., 2000). Dual infections of AM and ECM associations are poorly 
understood in monodominant systems, but the ability of an ECM tree to 
retain the capacity to form AM associations may be important in colonization 
events, where ECM inoculum is limiting. The ecological implications for this 
phenomenon are vast, and cannot be overlooked when considering ECM 
monodominant communities. 

There are obvious geographical biases in the distribution of tropical 
monodominant communities, especially towards the Guineo-Congolian regions 
of South America and Africa. This is suggestive of historical influences of 
reduced regional species pools, which would have increased rates of compe-
titive exclusion and allowed for easier establishment of potential monodomi-
nant species. This is also supported by the relatively depauperate nature of the 
African tropics and the Guianas (Zagt and Werger, 1997a; Torti et al., 2001). 
The only Amazonian example of monodominance is Peltogyne gracilipes,
and this forest is situated at the southern flank of the Guiana shield, further 
supporting biogeographical influences. There are also noticeably skewed 
distributions in familial relationships to monodominance. Of the persistent 
monodominant forests described, the majority are members of the family 
Caesalpiniaceae. Analyzing the respective characters of closely related, non-
dominant Caesalpinoids, would be invaluable to understanding the relative 
contributions of current traits to achieving monodominance in regards to 
how historical traits, particularly the mycorrhizal habit, have been modified 
and changed.  

4 CONCLUSION

There is substantial evidence from the D. corymbosa monodominant 
system that ECM-mediated positive feedbacks facilitate the high levels of 
monodominance observed in the central Guyana forests. Mechanisms of ECM-
mediated advantages have been identified at almost every life-history stage 
of this tree species, and new findings continue to highlight the importance 
of the ECM association in this system. While not all tropical monodominant 
trees form ECM associations, in those that do (which is the majority of mono-
dominant trees), it is likely that these ECM-mediated mechanisms are also 
important. Future research in tropical monodominant forests should include 
aspects of global change biology so we can better understand future dyna- 
mics of tropical rain forests. Detailed comparisons with other monodominant 
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forests will provide useful insights in to the abilities of these mechanisms  
to be generalized for ECM, monodominant forests across the tropics. 
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Chapter 13 

THE USE OF MYCORRHIZAL 
BIOTECHNOLOGY IN RESTORATION
OF DISTURBED ECOSYSTEM

ALI M. QUORESHI

the Forest, Université Laval, Québec, G1K 7P4, Canada 

Abstract:      Mycorrhizal fungi play a crucial role in plant nutrient uptake, water relations, 
ecosystem establishment, plant diversity, and productivity of plants. Mycor-
rhizas also protect plants against root pathogens and toxic stresses. The funda-
mental importance of the mycorrhizal association in restoration and to improve 
revegetation of disturbed mined lands is well recognized. However, the use of 
mycorrhizal biotechnology in land reclamation and revegetation of disturbed 
mine sites is not well practiced in many parts of the world. The destruction of 
mycorrhizal fungal network in soil system is the vital event of soil disturbance, 
and its reinstallation is an essential approach of habitat restoration. Successful 
revegetation of severely disturbed mine lands can be achieved by using “bio-
logical tools” mycorrhizal fungi inoculated tree seedlings, shrubs, and grasses. 
This chapter discusses the different types of mycorrhizas, which play an essen-
tial function in altering disturbed lands into productive lands, the mechanisms 
by which disturbed ecosystem benefits through symbiotic associations and their 
interactions in the rhizosphere. The importance of reinstallation of mycorrhizal 
systems in the rhizosphere is emphasized and their impact in landscape rege-
neration and in bioremediation of contaminated soils are discussed. 

Keywords:

1 INTRODUCTION 

Reclamation of severely disturbed lands is a global concern. Mining 
activities and other forms of anthropogenic or human induced disturbances 
can result in massive areas of unproductive land with little or no biological 

  Land reclamation and revegetation; disturbed mined lands; mycorrhizal inocu-
lation; symbiotic association. 
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of soil disturbance, and its re-installation is an essential approach of habitat 
restoration. Severe disturbance alters the composition and activity of 
mycorrhizal fungi as well as the host plants (Allen et al., 2005). The root sys-
tems of most vascular plants (95%) harbour diverse communities of mycor-
rhizal fungi and are found in a wide range of habitats (Read, 1991; Smith and 
Read, 1997). The role of mycorrhizal fungi and other micro-organisms in 
restoration of disturbed soils has been the subject of interest to scientists 
over the decades. Successful establishment of forest plants on reforestation 
sites often depends on different mycorrhizal formation and on the ability of 
seedlings to capture site resources quickly during the early plantation esta-
blishment (Amaranthus and Perry, 1987; Perry et al., 1987; van den Driessche, 
1991; Dunabeitia et al., 2004).

Mining activity affects soil nutrient, pH, toxicity, bulk density, bio-
logical activity, and soil moisture. Besides other factors, low levels of mycor-
rhizal soil inoculum in disturbed sites (Bois et al., 2005; Malajczuk et al.,
1994) frequently delayed in successful restoration of the land as productive 
as previously existing vegetation. Restoration of metals-contaminated environ-
ments requires an efficient microbial community for successful plant com-
munity establishment, soil improvement, nutrient cycling (Moynahan et al.,
2002). The inoculation of plants with arbuscular mycorrhizal (AM) fungi is 
considered a pre-requisite for successful restoration of heavy metal conta-
minated soils (Gaur and Adholeya, 2004). Successful revegetation and recla-
mation of severely disturbed mine lands in various parts of the world has 
been accomplished by using the biological tools (Cordell et al., 1991; Marx, 
1991; Malajczuk et al., 1994). These tools include phytobial remediation 
practices, which consist of planting seedlings inoculated with mycorrhizal 
fungi, nitrogen fixers, actinomycetes, and growth-promoting bacteria. Inocul-
ation of nursery seedlings with appropriate mycorrhizal fungi-host combi-
nations is the most environment friendly approach, particularly for disturbed 
ecosystem. This approach is known to promote uptake of nutrients and water, 
buffer against various stresses, and increase resistance against some patho-
gens, and considered essential to enhance seedling performances (Stenstrom 
et al., 1990, Villeneuve et al., 1991; Smith and Read, 1997; Bois et al., 2005; 
Quoreshi et al., 2008b, in press b). It has been demonstrated that specific 
arbuscular or ectomycorrhizal (ECM) fungi enhance the survival rates and 
early growth performance of various softwood and hardwood species in the 
field (Danielson and Visser, 1989; Smith and Read, 1997; Pera et al., 1999;
Ortega et al., 2004). Ericoid mycorrhizal (ERM) fungi can improve various 
stressful environments including heavy metal toxicity to their host plants 
(Read, 1992), however the mechanisms that help in this increased tolerance 
are not clear.
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2 WHAT IS RECLAMATION

The land reclamation is the process of reconverting disturbed land  
to its land capacity equivalent to the pre-disturbed conditions or any other 
productive uses. The main objective of reclamation is to reclaim disturbed 
land to a stable, biologically self-sustaining state as soon as possible. This 
means creating a landscape with productive capability similar, if not more so, 
to that before it was disturbed. The re-installation of microbiological activities 
to mining sites is known to enhance revegetation and reclamation success.

3    BENEFITS OF MYCORRHIZAS 

Mycorrhizal fungi are essential component of a self-sustaining eco-
system. There are abundant examples of the ability mycorrhizal fungi to en-
hance growth and nutrition of tree seedlings, both in nursery conditions and 
in the field after outplanting (Danielson and Visser, 1989; Kropp and Lan-
glois, 1990; Villeneuve et al., 1991; Browning and Whitney, 1992, 1993; Le 
Tacon et al., 1994; Gagne et al., 2006; Quoreshi et al., 2008b, in pressb).   

ECM fungi can enhance the ability of forest plants to grow in un-
favourable environmental and soil conditions (Jones and Hutchinson, 1988). 
The extraradical mycelia of ECM fungi exploit the greater soil volume and 
can reach micropore areas and absorb nutrients that may otherwise inaccessi-
ble both physically and chemically (Perez-Moreno and Read, 2000). The 
ECM fungi have the ability to provide buffering capacity to plant species 
against various environmental stresses (Malajczuk et al., 1994). It was found 
that some ECM species were able to degrade phenanthrene and fluoran-
threne (Gramss et al., 1999), tolerate the presence of 2% w/v toluene, and 
can grow petroleum hydrocarbon-contaminated soil with no adverse effects 
on plant growth and development (Sarand et al., 1999).

The AM fungi are known as bio-ameliorators of saline soils, potential 
agents in plant protection and pest management, reducing plant mortality, 
improving plant establishment and plant growth (Gould et al., 1996; Sharma 
and Dohroo, 1996; Al-Karaki et al., 2001; Sylvia and Williams, 1992; Azcon-
Aguilar and Barea, 1996). Soil inoculation with Glomus mosseae has signifi-
cantly increased plant growth and biomass production in mine spoil soils 
(Rao and Tak, 2002). The ectendomycorrhizas are often found in conifers and 
mostly confined to the genera Pinus and Larix formed by a small group of 
Ascomycetes fungi (Yu et al., 2001). They are frequently found on the roots 
of plants growing on disturbed lands.
  Ericoid plants tolerate extremely difficult environments and can esta-
blished on various disturbed lands. The fungus enables access to recalcitrant 
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sources of minerals and provides protection from the consequences of the 
adverse soil conditions. Ericoid mycorrhizas have shown a particular role in 
the mineralization of nitrogen (Read et al., 1989). The importance of ERM 
in the nutrient acquisition of heathland plants has been well acknowledged 
(Read, 1991) and can obtain nitrogen from various sources (Peterson et al.,
2004). ERM fungi are found to tolerate and sequester high concentrations of 
heavy metals such as copper and zinc (Bradley et al., 1982; Meharg and 
Cairney, 2000), improve tolerance to alkalinity and improve mineral absorp-
tion in the presence of calcium salts (Leake et al., 1990). Although the incre-
ased nutrient uptake is the most significant single benefit of mycorrhizae, this 
fascinating symbiotic relationship offers numerous benefits to their host plant, 
which can be summarized:

Enhance plant efficiency in absorbing water 
  Reduce fertilizer and irrigation requirements 
  Increase drought resistance 
  Increase pathogen resistance 
  Protect against damage from heavy metals and other pollutants 
  Minimize various plant stresses 
  Improve seedling growth and survival 
  Improve soil structure and contribute to nutrient cycling processes 

4 RECLAMATION OF DISTURBED LANDS  
AND MYCORRHIZAL BIOTECHNOLOGY 

Mycorrhizal inoculation is beneficial for reclamation of variety of 
disturbed sites (Danielson and Visser, 1989; Marx, 1991) and had a great 
potential in the restoration of natural ecosystems (Miller and Jastrow, 1992). 
The lack of mycorrhizal associations on plant root systems is one of the 
major reasons for failure of plantation establishment and growth in various 
forest with low inoculum potential, mined sites, and restoration of disturbed 
areas. Intensive fertilizer and fungicide use in nursery stock culture to increase 
seedling growth in single growing season may inhibit mycorrhizal develop-
ment (Kropp and Langlois, 1990; Quoreshi and Timmer, 1998; Quoreshi, 
2003). Nevertheless, nursery cultural practices often create cultural conditions 
that encourage certain mycorrhizal fungi, such as Telephora terrestris and  
E-strain fungi (Ursic et al., 1997). However, these nursery-adapted fungal 
strains are often ecologically different from those prevailing in the field, 
particularly if the seedlings are aimed to plant in disturbed mined sites. 

  Contribute toward carbon sequestration. 
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Inoculation of nursery seedlings with selected mycorrhizal fungi may reduce 
potential mycorrhizal deficiency in roots and can enhance field performance.  

Several techniques have been developed to inoculate nursery seed-
lings using different types of inoculum (Trappe, 1977; Marx and Kenney, 
1982; Molina and Trappe, 1982, 1984; Marx et al., 1991). Recently, Budi
et al. (1998) provided information concerning mycorrhizal inoculation 
strategies and practices. Pure vegetative inoculum of selected fungi is sug-
gested as the most effective materials for inoculation since harmful organisms 
are excluded (Marx and Kenney, 1982). The pure vegetative inoculum 
production is involved in growing pure vegetative mycelium in vermiculite-
peat mixtures moistened with liquid media produced by either shake flask or 
in fermentor and incubated in dark condition for a certain period. This solid 
inoculum can be produce in huge quantities in autoclavable bag culture pro-
cedure or using fermentor. The colonized solid substrate (vermiculite-peat) 
subsequently used as pure vegetative solid inoculum mixed with a growing 
substrate. The pure vegetative inoculum is also used as liquid mycelial slurry. 
The liquid inocula are grown from selected fungi on suitable liquid media 
using shake flask or fermentor. The suspension usually diluted before inocu-
lation with water to obtain desired concentration of propagules per millilitre 
in the mycelial slurry. The liquid inoculum can be mixed with growing 
substrate at sowing seeds or can be injected at root collar. Inoculation of 
conifer seedlings using liquid mycelial slurry of ECM fungi was equally 
effective as vermiculite-peat solid inoculum (Quoreshi et al., 2005).

Three types of inoculum are currently being used in forest nurseries 
to inoculate seedlings: (1) vermiculite-peat based solid-substrate inoculum; 
(2) liquid/mycelial slurry inoculum, and (3) spore inoculum. There are now 
many examples in using excised and transformed root organ as a tool for 
producing inoculum of various AM species (Bécard and Piché, 1992; Fortin 
et al., 2002). Transformation of roots by Agrobacterium rhizogenes has 
provided a novel way to obtain mass production of axenic roots on artificial 
media in a very short period. A group of research scientists in Canada have 
been working on developing techniques for producing improved ECM 
inoculum by using (i) Agrobacterium rhizogenes-transformed root culture as 
a tool for the production ECM inoculum (Coughlan and Piché, 2005); (ii) 
Chitosan beads for encapsulating fungal mycelia for the production of ECM 

Coughlan and Piché (2005) demonstrated new technique for ECM 
research based on transformed root organ culture, and suggested that root 
organ culture provides a valuable tool for studying mycorrhizal association 
and inoculum production. Several previous studies have shown the progress 
in entrapping living cell in alginate gel and possibility of producing a new 
type of inoculum (Le Tacon et al., 1985; Mauperin et al., 1987). ECM 
Chitosan beads are produced by the axenic liquid culture of fungal mycelia 
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encapsulated within Chitosan beads. Chitosan is chemically similar to cellu-
lose, which is a constituent of plant fibre. Interestingly, chitin is also a con-
stituent of fungal cell wall. Research is in progress using this natural product 
as a tool for encapsulation of ECM mycelia and Frankia within Chitosan 
polymer bead to obtain effective ECM inoculum. 

The AM fungi are obligate biotrophs and require living host plant 
for the completion of life cycle (Fortin et al., 2002; Dalpé and Monreal, 2004). 
AM fungal propagation can take place either by spore germination or by 
mycelium extension through soil and roots (Dalpé and Monreal, 2004). Gener-
ally, AM fungi are propagated through pot culture. In this system, fungal 
spores, and colonized root fragment are used as starter inoculum, and mixed 
with a growing substrate for inoculated seedling production (Brundrett et al.,
1996). Subsequently, colonized substrate and roots can then serve as AM 
fungal inoculum. Root-organ culture system showed an effective means of 
production of AM inoculum that can be used either directly as inoculum or 
as starter inoculum for large-scale production (Fortin et al., 2002). For 
further detail about AM inoculum propagation and commercial production 
can be viewed from the article by Dalpé and Monreal (2004).    

Artificially inoculated mycorrhizal fungi also enhance growth and 
nutrition of tree seedlings, both in nursery conditions and in the field after 
outplanting (Marx et al., 1988; Kropp and Langlois, 1990; Villeneuve et al.,
1991; Browning and Whitney, 1992, 1993; Le Tacon et al., 1994; Gagne  
et al., 2006; Quoreshi et al., 2008b, in press b). The primary purpose for ino-
culating seedlings with mycorrhizal fungi is to provide planting stock with 
adequate mycorrhizas to improve their survival and growth after planting. 
Such approach is particularly essential in revegetation of disturbed sites. The 
soils of degraded sites are frequently low in available nutrients, mycorrhizal 
fungi and other beneficial microorganisms (Cooke and Lefor, 1990). Similar 
to ECM, AM fungi also play a significant role in establishment of plants in 
disturbed and stressed ecosystems (Gould et al., 1996). Soil inoculation with 
Glomus mosseae has significantly increased plant growth and biomass pro-
duction in mine spoil soils (Rao and Tak, 2002). 

5  APPLICATION OF MICROBIAL 
BIOTECHNOLOGY IN RECLAMATION  
OF DISTURBED LAND 

Oil sands reserves are found in several places around the globe. 
Canada has ¾ of the world’s oil sands deposits, which comprises  of the 
world’s known oil reserves. Oil sands are naturally occurring deposits of 
bituminous (petroleum) sands. In northern Alberta, surface mining of bitu-
minous sand generates massive areas of disturbed lands with saline sodic 
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overburden, tailing sands (TS), fine fluid tailings, composite tailings (CT), 
and coke as by-products that require reclamation. These materials are consi-
dered challenging substrate for reclamation and revegetation, because of 
high alkalinity and salinity, low in organic matter, poor nutrition, contains 
residual hydrocarbons, and lack of necessary biological activity (Bois et al.,
2005; Quoreshi et al., 2005). Revegetation of tailing sands (TS) is now routine 
practice in reclamation of oil sands disturbed lands. However, composite 
tailing (CT) is extremely difficult materials to reclaim and still in research 
phase (Khasa et al., 2002). Recently, the oil sand industry has reduced 
generating CT materials considerably by adjusting their extraction process. 
Nevertheless, other soft tailings are still very complex materials to reclaim 
and need extensive research.  

Soil degradation processes alters in the diversity and survival of 
fungal populations (Malajczuk et al., 1994; Koomen et al., 1990). The aim 
of reclamation of disturbed lands is to develop landscape not only with forest 
plants (mostly ECM plants) but also other kinds of vegetation cover for 
quick restoration of lands. Therefore, it is essential to consider potential use 
of ECM as well as AM and ERM mycorrhizal plants for revegetation of 
disturbed areas. Researches have focused on phytotoxicity, plant tolerance to 
heavy metals, mine spoils soils, saline conditions and establishment of soil 
microbial activity, and emphasized soil microbial composition influence 
successful plant growth and establishment (Chan and Wong, 1989; Donnelly 
and Fletcher, 1994; Galli et al., 1994).

Different amending materials have been used to amend the oil sands 
disturbed lands. These materials include deep overburden, LFH, fresh peat, 
and stockpiled peat. These materials are used to stabilized and reconstruct 
the disturbed soil before revegetation (Fung and Macyk, 2000), and reported 
presence of mycorrhizal fungi in these materials used for stabilizing the 
disturbed soil from oil sand tailings (Zak and Parkinson, 1983; Danielson 
and Visser, 1989). However, inoculum potential of these materials is reduced 
during manipulations, stockpiled, and due to long storage time (Bois et al.,
2005). Soil moisture content during stockpiling was also found critical for 
survival of AM fungal propagules. Mycorrhizal biotechnology is aimed at 
re-installation of mycorrhizal networks in disturbed soils. This may be achieved 
by transplanting pre-inoculated seedlings with appropriated fungal strain 
already present with their root system, or by inoculating soils with fungal 
inoculum.

The assessment of inoculum potential of amending materials can 
potentially be beneficial for successful revegetation and reclamation of 
amended lands. In a recent study, Bois et al. (2005) evaluated mycorrhizal 
inoculum (ECM and AM) potentials of reclamation materials and tailing 
sands from Canadian oil sand areas. Results of this study demonstrated that 
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CT was completely devoid of mycorrhizal propagules, while all other 
materials showed some level of inoculum potential. CT and TS were also 
demonstrated devoid of ECM propagules. Controlled inoculation of seedlings 
in the nursery with selected strains could compensate for low natural inoculum 
potential, and could improve host growth and survival (Bois et al., 2005). 
Another important methodology in the application of mycorrhizal biotech-
nology in reclamation or revegetation work is the development of mycorrhizal 
DNA fingerprints. Powerful molecular tools such as micro satellite markers 
are essential to monitor the persistence of individual strains in the reclamation 
site. In the past decade, polymerase chain reaction (PCR) based research has 
been conducted for ECM communities, and population studies. Simple 
sequence repeat (SSR) markers have been developed recently for ECM 
fungal species (Kretzer et al., 2000, 2003; Lain et al., 2003). More recently, 
micro satellite or SSR markers were developed for Hebeloma crustuliniforme
UAMH 5247, Laccaria bicolor UAMH 8232 species for the detection of 
introduced strains and molecular ecology applications (Jany et al., 2003, 
2006).This potent marker can be used as an efficient tool for monitoring the 
persistence of these fungi into the field.  

5.1  Actinorhizal biotechnology for the revegetation  
and reclamation of disturbed lands

Alders are actinorhizal plants that fix atmospheric nitrogen in nodules 
by symbiotic association with actinomycetes of the genus Frankia. Actino-
mycetes is an important microorganism, play a crucial role in successful 
establishment of nitrogen fixing primary successor alder plants on disturbed 
lands, and also have the potential to improve soil quality. Alders can grow in 
ecologically extreme and disturbed sites and have the ability to improve soil 
fertility and stability (Brunner et al., 1990; Hibbs and Cromack, 1990; 
Yamanaka et al., 2002). Many actinorhizal plants are also capable of forming 
ectomycorrhizal (ECM) association as well, thus develop dual symbiosis and 
increased success of these plants under disturbed soil conditions. In a study, 
inoculation of containerized green alder with a pure culture of Frankia was 
feasible under commercial nursery environment (Quoreshi et al., 2007). 
Frankia inoculation in their study resulted in improved seedling production 
for use in revegetation of oil sands disturbed lands. In a recent review, 

nologies for rehabilitation of contaminated soils and discussed the impor-
tance of alders, Frankia, mycorrhizae and their symbioses for the successful 
revegetation and reclamation of disturbed ecosystem. The outplanting perfor-
mance of Frankia-inoculated seedlings on oil sands tailings contaminated 
sites in Alberta showed significant improvement in seedling growth, survival, 
and soil quality two year after initial planting (Quoreshi et al., unpublished 

Sébastien et al. (2007) addressed various aspects of alder-based phytotech-
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data). It appears that use of Frankia-inoculated alders as a promising approach 
for the remediation and revegetation of the oil sands tailings. Further improve-
ment is expected in field performance of alders with saline-alkaline tolerant 
and site adapted Frankia strain. 

5.2  Selection of stressed site adapted mycorrhizal fungi
and its implications 

The sodicity of the anthroponic soils created by the oil sands industry 
is one of the major constrains that hampered revegetation efforts. Another 
pre-requisite of successful inoculation programs is the selection of appropriate 
fungal strains for target plant species and site to be revegetated. A wide range 
of fungi from all groups is found in metal-polluted and various mine spoils 
habitats (Gadd, 1993). Mycorrhizas are considered multifunctional that means 
different fungi show different effect on the same host, but the same fungus 
can exhibit different effects on the same host under different environmental 
conditions (Newsham et al., 1995). Therefore, it is essential to develop selec-
tion procedures for mycorrhizal fungi to be used as inocula in nursery inocu-
lation practices. Dunabeitia et al. (2004) suggested that selection of appropriate 
fungal symbionts and development of methods for large-scale inoculum pro-
duction should be the pre-requisite for the use of ECM inoculation programs. 
In vitro selection of the most promising ectomycorrhizal fungi was reported 
for use in the reclamation of saline-alkaline habitats (Kernaghan et al., 2002). 
In this experiment, pure cultures of several fungal species indigenous to the 
Canadian boreal forest were tested on media containing different levels of 
CaCl2, CaSO4, NaCl, Na2SO4, and on media containing CT release water. 
Among the fungal isolates tested, members of the Boletales, mainly Suillus
brevipes, Rhizopogon rubescens and Paxillus involutus, and Amphinema
byssoides (Aphyllophorales) were most sensitive to alkalinity and their growth 
was completely inhibited by CT release water. However, Laccaria and 
Hebeloma spp. showed tolerance to alkalinity and survived on the medium 
with CT release water. Kernaghan et al. (2002) suggested that inoculating 
seedlings with a combination of fungal species; each with its own beneficial 
characteristics might be suitable for CT sites. Laccaria bicolor is recommended 
for its rapid growth and overall salt tolerance, Hebeloma crustuliniforme is
recommended for its excellent tolerance to the CT release water, as well as 
Wilcoxina mikolae for its tolerance to CaCl2.

Bois et al. (2005) examined salt tolerance capacity of three mycor-
rhizal fungi (Suillus tomentosus, Hymenoscyphus sp., and Phialocephala sp.) 
isolated from sodic site in Alberta. These isolates were then compared with 
Laccaria bicolor and Hebeloma crustuliniforme that were previously recom-
mended for use in salt-affected soil by Kernaghan et al. (2002). The results 
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of the recent study demonstrated that the three isolates tested from the sodic 
site were more resistance to NaCl than L. bicolor UMAH 8232 and H.
crustuliniforme UAMH 5247. The three isolates from sodic site exhibited a 
strategy of toxic ion avoidance compared to a preferential ion accumulation 
tolerance mechanism to osmotic stress found with L. bicolor and H. crustul-
iniforme. Nevertheless, the later two strains showed a high osmotic potential 
that allowed it to maintain its water content.  

Significant progress was made in laboratory and greenhouse experi-
ments for selecting the most promising salt tolerant strains of ECM fungi for 
use in reclamation of oil sands tailings (Kernaghan et al., 2002, 2003; Bois 
et al., 2006). Results from field trials with white spruce and jack pine demon-
strated positive responses after outplanting on two different sites at Canadian 
oil field reclamation sites. The plot volume index (PVI) of ECM inoculated 

tation of disturbed lands. It is suggested that certain species of mycorrhizal 
fungi may provide unique tolerance abilities to the particular site stresses 
and benefits the plants in the long term (Bois et al., 2006). The field trial is 
in progress by our research group using consortium ECM fungi and out-
planted onto Canadian oil sands disturbed lands.

The significance of AM fungi in disturbed soil remediation has 
lately been recognized by Gaur and Adholeya (2004) and Khan (2006). AM 
fungi and their hyphal network provide an excellent system for plant-based 
environmental clean up and have the potential to take up heavy metals from 
an enlarged soil volume (Göhre and Paszkowski, 2006). Gaur and Adholeya 
(2004) have suggested that indigenous AM fungi found naturally in heavy 
metal-polluted soils are more tolerate than isolates from non-polluted soils, 
and are reported to colonize plant roots effectively in heavy-metal contami-
nated environments. According to Oliveira et al. (2005) AM strain native to 
highly alkaline anthropogenic sediment is generally more effective than the 
non-native fungi in improving plant establishment and growth under stressed 
environments. The result of their study suggested that the use of adapted AM 
as inoculants for phytorestoration of alkaline anthropogenic-stressed sedi-
ments. Several other studies demonstrated that native AM could perform 
better in soils from which they are isolated (Enkhtuya et al., 2000; Caravaca
et al., 2003; Göhre and Paszkowski, 2006). Many studies have suggested 
that for native plant community restoration, the source of inoculum is an 
important factor (Klironomos, 2003; Moora et al., 2004). It has been sugges-
ted that locally collected field inoculum is more effective than commercial 
inocula for establishing late-successional species (Rowe et al., 2007).  

seedlings significantly enhanced when compared to non-inoculated control 

unpublished data). There is currently an increasing interest in using consortium
seedlings in case of both jack pine and white spruce (Quoreshi et al., 2008,

of indigenous fungal strains, which might have certain advantages in revege-
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Ericaceous plants are associated with ERM fungi and have the 
ability to adapt a broad range of habitats (Mitchell and Gibson, 2006). ERM 
fungi can tolerate mine spoils, acidic, nutrient poor, and heavy metal polluted 
environment (Jones and Hutchinson, 1986, 1988; Colpaert and Van Assche, 
1992, 1993; Lacourt et al., 2000; Mitchell and Gibson, 2006; Gibson and 
Mitchell, 2006). The ability of these associations to withstand such harsh 
environments is probably due to the plastic nature of both fungi and partners 
(Cairney and Meharg, 2003). It is demonstrated that the stimulatory effect of 
ericoid mycorrhizal association on copper mine spoil environment was 
dependent on the host plant involved (Gibson and Mitchell, 2006). In their 
study, rooted-cuttings taken from a mine spoil site and inoculated with the 
fungal isolate obtained from an uncontaminated site (not with the isolate from 
mine spoil site) performed better than cuttings taken from an uncontami-
nated site. The combination of cuttings from an uncontaminated site and the 
fungal isolate from mine spoil site had a significantly lower shoot dry mass 
than non-mycorrhizal control plants. Therefore, a suitable combi-nation of 
fungus and host is essential for maximizing the benefits of any inoculation 
programs.

To obtain mined lands tolerant strain of mycorrhizal fungi, it is 
necessary to evaluate the collected isolates in vitro selection procedure first 
under different levels of salts and saline composite tailings release water. 
Finally, the selected isolates need to test in association with host plants (in
vivo selection) in order to identify the most promising salt tolerant strains for 
large-scale inoculation program. A robust screening procedure may reduce 
the need for extensive field-testing of selected isolates. In essence, the funda-
mental steps in any inoculation program are to (i) identify and characterize 
the potential sites to be revegetated; (ii) collection, isolation, and identifi-
cation of fungi; (iii) screening of fungi through in vitro selection procedures 
for identifying most promising strains; (iv) In vivo selection of selected 
fungal strain in association with host plants for larger inoculation program; 
(v) suitable inoculum production; (vi) development of large-scale inoculation 
program under commercial nursery environment, and inoculation of target 
indigenous plant species; (vii) outplanting of inoculated seedlings onto target 
sites for field trials, (viii) monitor plant growth, establishment, and persis-
tence of introduced microsymbionts; (ix) finally, evaluation of the success of 
inoculation program. A proposed scheme for successful use of mycorrhizal 
biotechnology for the reclamation of disturbed lands is shown in Fig. 1.  
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ecosystem using microbial biotechnology. 

6       CONCLUSIONS 

The importance of microbial biotechnology for the reclamation and 
remediation of disturbed lands is now well appreciated by the scientific com-
munity. Numerous studies have demonstrated that plant-microbe symbioses 
and their interactions in the rhizosphere are the essential determinants of plant 
productivity and soil fertility. Since the destruction of mycorrhizal fungal 
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Fig. 1. Suggested approaches for successful reclamation and remediation of disturbed
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networks and other microbial activities in the soil systems is a major soil 
disturbance event, its re-installation is an essential for successful restoration 
of disturbed lands. Study results indicated that mycorrhizal associations are 
one of the key factors for the successful establishment of vegetation on re-
clamation sites. The selection of appropriate plant species and their specific 
site tolerant indigenous microbial isolates is likely to maximize the success 
of land reclamation. It is suggested that the use of saline-alkaline tolerant and 
site adapted mycorrhizal fungi and Frankia strain can enhance the health, 
survivorship, and establishment of conifers and alders outplanted on chall-
enging materials generates from oil sands industry in Alberta. Since the ulti-
mate goal of the oil sands industry is to reclaim their disturbed mined lands 
into a typical boreal forest plant community, it will be essential to consider 
reinstallation of ECM, AM, and ERM fungal associations in the reclamation 
program. To achieve this goal a long-term collaborative effort is required con-
sists of oil sands industry, university, and microbial biotechnology company.   
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Chapter 14 

IN VITRO MYCORRHIZATION
OF MICROPROPAGATED PLANTS: STUDIES 
ON CASTANEA SATIVA MILL

ANABELA MARTINS 
Department of Biology and Biotechnology, Escola Superior Agrária, Instituto Politécnico de 
Bragança, 5301-855 Bragança, PORTUGAL 

Abstract: In vitro mycorrhization can be made by several axenic and nonaxenic techni-
ques but criticism exists about their artificiality and inability to reproduce 
under natural conditions. However, artificial mycorrhization under controlled 
conditions can provide important information about the physiology of symbiosis. 
Micropropagated Castanea sativa plants were inoculated with the mycorrhizal 
fungus Pisolithus tinctorius after in vitro rooting. The mycorrhizal process was 
monitored at regular intervals in order to evaluate the mantle and hartig net for-
mation, and the growth rates of mycorrhizal and nonmycorrhizal plants. Plant 
roots show fungal hyphae adhesion at the surface after 24 h of mycorrhizal 
induction. After 20 days a mantle can be observed and a hartig net is forming 
although the morphology of the epidermal cells remains unaltered. At 30 days 
of root–fungus contact the hartig net is well developed and the epidermal cells 
are already enlarged. After 50 days of mycorrhizal induction, growth was 
higher for mycorrhizal plants than for nonmycorrhizal ones. The length of the 
major roots was lower in mycorrhizal plants after 40 days. Fresh and dry weights 
were higher in mycorrhizal plants after 30 days. The growth rates of chestnut 
mycorrhizal plants are in agreement with the morphological development of 
the mycorrhizal structures observed at each mycorrhizal time. The assessment 
of symbiotic establishment takes into account the formation of a mantle and a 
hartig net that were already developed at 30 days, when differences between 
fresh and dry weights of mycorrhizal and nonmycorrhizal plants can be quanti-
fied. In vitro conditions, mycorrhization influences plant physiology after 20 
days of root–fungus contact, namely in terms of growth rates. Fresh and dry 
weights, heights, stem diameter and growth rates increased while major root 
growth rate decreased in mycorrhizal plants.  

Keywords: Castanea sativa; micropropagation; mycorrhization.
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Ectomycorrhizal (ECM) fungi bring several advantages to plants, 
including increased root area for absorption (Bowen, 1973; Harley and Smith, 
1983), enhanced uptake of nutrients (Harley and Smith, 1983), resistance to 
plant pathogens (Marx, 1969), and drought (Duddridge et al., 1980; Boyd  
et al., 1986; Meyer, 1987; Feil et al., 1988; Marx and Cordell, 1989). ECM 
can also increase growth and nutrient content of plants growing in low nutri-
ent soils (Jones et al., 1991). Water stress appears to be one of the major causes 
for the failure of micropropagated plants during acclimation. The compatible 
mycorrhizal fungi in the substrates during the weaning process not only 
improve the nutritional state of the plants, but also increase their resistance 
to the water stress of ex vitro conditions, increasing their weaning rates. 

The first practical work to evaluate the role of mycorrhizae in plant 
growth was performed by Frank (1894) with seedlings of the Pinus sown in 
sterile and non-sterile soils. The results showed that plants from non-sterile 
soils could develop mycorrhizas and grew better than plants from sterilized 
soils (Smith and Read, 1997). Sterilization by heat was responsible for the 
production of toxic compounds that could be harmful for plant development. 
Other sterilizing methods and new methods of mycorrhizal synthesis were 
used a long time, confirming the results originally shown by Frank (Hacskaylo, 
1953; Marx and Zak, 1965; Trappe, 1962, 1967; Pachlewska, 1968; Skinner 
and Bowen, 1974; Mason, 1975, 1980; Mullette, 1976; Fortin et al., 1980, 
1983; Sohn, 1981; Biggs and Alexander, 1981; Nylund, 1981; Rancillac, 
1983; Duddridge and Read, 1984a, b; Branzanti and Zambonelli, 1986; Kahr 
and Arveby, 1986; Kottke et al., 1987; Wong and Fortin, 1988; Bougher  
et al., 1990, Jones et al., 1990). Mycorrhizae formed in non-sterile soils are 
responsible for the increased performances of the plants. 

2  EFFECT OF MYCORRHIZA INOCULATION  
ON PLANT GROWTH 

The beneficial effect of mycorrhizal associations is the enhanced 
uptake of mineral nutrients, namely phosphorus (Reid et al., 1983; Jones  

European chestnut (Castanea sativa Mill.) has great economic interest
for wood and fruit production but is difficult to propagate by cuttings and
show high heterosis of seeds. C. sativa has been successfully micro-propagated

way to overcome propagation difficulties. However, micropropagated plants  
require a long and difficult adaptation period to ex vitro conditions. During
the first step of weaning, roots obtained in vitro usually have a very low effici-

demonstrating that micropropagation of adult clones can provide an effective 

ency of absorption of water and nutrients (Bonga, 1977; Flick et al., 1983).   

et al., 1990; Tam and Griffiths, 1993; Eltrop and Marschner, 1996; Smith and 
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1990; Guehl and Garbaye, 1990; Jones et al., 1990; Martins, 1992; Martins 
et al., 1997; Smith and Read, 1997). ECM may influence the assimilation 
capacity for CO2 in two distinct forms: increased absorption of P and N in 
mycorrhizal plants influence the photosynthetic rates, as observed for forestry 
species when amended with P; the other resulting from enhanced flux of car-
bon compounds to the roots, promoted by mycorrhizal associations (Martins 
et al., 1997, 1999). This hypothesis considers that the increased photosynthetic 
rates are related with the fungus necessity of carbon compounds and is named 
source-sink concept (Dosskey et al., 1990, 1991) although this seems to be 
just one of mechanism involved in photosynthetic increment in mycorrhizal 
plants (Martins et al., 1997, 1999). 

The effect of mycorrhization on plant growth is well documented 
(Garbaye et al., 1988, Bougher et al., 1990, Grove and Le Tacon, 1993; Le 
Tacon et al., 1997; Généré, 1995; Martins et al., 1996; Généré et al., 1997; 
Parladé et al., 1997; Dell and Malajczuk, 1997). Bougher et al. (1990) made 
several trials in controlled inoculation of Eucalyptus diversicolor seedlings 
with different fungal species and different P supplementations. Plants with 
higher P and N availability (culture media or soil) showed increased meta-
bolism of proteins and phosphorus compounds (nucleic acids and inositol 
phosphates). The synthesis of these compounds implies an increase in energy 
use (carbon compounds) and a lower translocation of carbon compounds to 
the root. The amount of root soluble carbon compounds condition the nutrition 
of the associated fungus interferes with the mycorrhizal infection rates (Le 
Tacon et al., 1997). High levels of mineral nutrients, generally, decrease 
mycorrhizal efficiency or even infection rates. Under nutrient deficiency, 
growth rates of mycorrhizal plants increase. Bougher et al. (1990) also evi-
denced that the response of plants to mycorrhization does not depend only 
upon nutrient availability but also on the fungus species or even strains of a 
same species.  

The abilities of mycorrhizal species and strains to promote plant 
growth opened new perspectives for the use of these fungi inoculations in 
nurseries and forestry. Inoculations of forestry species were performed with 
different species of hosts and fungi, under different conditions and inoculum 
types. The influence of mycorrhization on growth rates reveal that plants 
grow better (Grove and Le Tacon, 1993; Tam and Griffiths, 1994; Eltrop and 
Marschner, 1996; Le Tacon et al., 1997; Généré 1995; Généré et al., 1997; 
Parladé et al., 1997; Dell and Malajczuk, 1997), have more extended root 
systems and both roots and shoots have increased dry weights, although the 
ratio between the dry weights of roots and shoots were lower for mycorrhizal 

Read, 1997). Mycorrhizal symbiosis is frequently associated with increased 

et al., 1983; Bougher et al., 1990; Dosskey et al., 1990; Rousseau and Reid,
photosynthetic rates of mycorrhizal plants (Harley and Smith, 1983; Reid 
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plants. The similar results were observed in young plants growing with high 
nutrient levels, behaving like mycorrhizal plants in comparison with plants 
growing with limited nutrient levels, exhibit nonmycorrhizal like growth 
(Smith and Read, 1997).

The difference in ratio between dry weights of roots and shoots is 
more related to plant dimension than to the colonization rate (Bougher et al.,
1990). The total number of short roots of mycorrhizal plants is higher than 
for nonmycorrhizal ones, exhibiting completely altered root morphology by 
the association with the mycorrhizal fungi. The number of roots per unit 
length and per unit weight was higher for mycorrhizal root systems (Brundrett 
et al., 1996). Root colonization by mycorrhizal fungi can result in lower 
plant growth rates if fungus compatibility, nutrient availability, light intensity 
or temperature is not suitable for plant development (Marx and Bryan, 1971; 
Marx, 1979; Nylund and Wallander, 1989; Dosskey et al., 1990; Colpaert  
et al., 1992; Conjeaud et al., 1996; Smith and Read, 1997). Decrease of growth 
rates is expected when a symbiont depends on the others to obtain the car-
bon compounds for survival, and the other depends on the essential mineral 
nutrients provided by the former for its growth and photosynthesis. Decrease 
in growth is also expected under light conditions limiting photo-synthesis 
(Conjeaud et al., 1996), nutrient availability in soil, conditioning plant growth 
but not colonization intensity (Colpaert et al., 1992; Smith and Read, 1997). 
Son and Smith (1988) observed an increase in plant growth after colonization 
of plants under high PAR (photosynthetic active radiation) and a decrease in 
growth of plants colonized under low PAR, independently of the levels of P 
availability. When nutrient availability allows fungal growth and there is no 
light or temperature limitation, fungal growth can require large amounts of 
carbon compounds conditioning plant growth (Colpaert et al., 1992). 

3 IN VITRO MICORRHIZATION 

Large numbers of in vitro studies have been carried out to evaluate 
the factors that influence mycorrhization. Under natural conditions, inter-
actions of biotic and abiotic factors make the interpretation of the results 
difficult. The methods of axenic synthesis are object of criticism because 
working under conditions where (1) interacting factors are eliminated, (2) 
carbon sources are provided to allow fungal growth before the infection sets 
in, and (3) substrates are sterilized, may change the efficiency and type of 
infection (Piché and Peterson, 1988). 

In parallel with in vitro studies, non axenic studies have been made 
(Fortin et al., 1980; Piché et al., 1982). It was possible to demonstrate that 
there are no significant differences between mycorrhizae synthesized under 
axenic and non axenic conditions (Piché and Peterson, 1988) other than the 
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time of infection (Duddridge and Read, 1984a). The axenic system studied 
had a time of infection starting at 3 weeks and completed by weeks 6 to 8, 
while in natural soils, the association was retarded until 11 to 19 weeks. 
Morphological differences between axenic and non axenic synthesized mycor-
rhizae exist only when high sucrose levels are used (Duddridge and Read, 
1984b). Under these conditions the host-fungus interface is changed and 
there is callose deposition at the cells walls in response to host infection. 

Non axenic systems allow detailed studies of the root colonization 
by the fungus (Fortin et al., 1983). Fungus connection to the root epidermis 
is due to the root polysaccharides secretion (Nylund, 1980). The translocation 
of photosynthetic products to the root increases the concentration of carbon 

compounds, organic acids and plant growth regulators. Mineral balance and 
plant growth regulators concentrations, directly control cell permeability and 
the mechanism of fungus adhesion to the roots when mycorrhization takes 
place (Barea, 1986). 

 Axenic and non axenic mycorrhizal syntheses mainly differ in the 
time and degree of infection (Duddridge and Read, 1984a). These findings 
validated the use of in vitro mycorrhization techniques. Mycorrhizas obtain-
ned by different methods of in vitro synthesis had mantles and hartig nets 

hyphae penetrating between cortical cells may vary with substrate and the 
synthesis method used. 

4  IN VITRO MYCORRHIZATION  
OF MICROPROPAGETED PLANTS 

Micropropagated plants are adversely affected by water stress, either 
due to low absorption capacity of their roots or due to stomata deficient 
regulation of water loss (Bonga, 1977; Flick et al., 1983). Acclimation of 
micropropagated plants corresponds to a transition period when roots become 
adapted to a substrate with less available nutrients, and to an autotrophic 
condition. At this stage, the presence of mycorrhizae could increase the avail-
ability of limiting nutrients such as phosphorus (P) and nitrogen (N), faci-
litating the absorption. Water stress can be responsible for the low survival 
of many micropropagated woody plant species during the acclimation process 
and C. sativa is one of these species. 

Micropropagated plants develop under high moisture and low lighting 
conditions, often with low lignifications levels and decreased functionality 
of the root systems that cause low survival rates to weaning. Mycorrhization 
of micropropagated plants before acclimation increases survival, enhancing 

with similar structures (Brunner, 1991). Mantle thickness and number of 

compounds in root exudates. These are mainly amino acids, proteins, carbon 
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the functionality of the root system and the mineral plant nutrition (Rancillac, 
1982; Grellier et al., 1984; Heslin and Douglas, 1986; Poissonier, 1986; 
Tonkin et al., 1989; Martins, 1992, 2004; Martins et al., 1996; Herrmann  
et al., 1998; Díez et al., 2000). Similarly, in vitro mycorrhization of micro-
propagated plants can be used to increase survival and growth during ex vitro
weaning (Nowak, 1998). 

Mycorrhization trials have been made with different micropropagated 
plant species: pine (Rancillac, 1982; Normand et al., 1996), birch (Grellier  
et al., 1984), poplar (Heslin and Douglas, 1986), eucalyptus (Poissonier, 1986; 
Tonkin et al., 1989), oak (Herrmann et al., 1998), chestnut (Strullu et al.,
1986; Martins, 1992, 2004; Martins et al., 1996; Martins and Pais, 2005), 
cork oak (Díez et al., 2000). These trials were performed as an effort to make 
micropropagation a sustainable propagation method for plant species recal-
citrant to conventional propagation, increasing in vitro plant performances. 

Herrmann et al. (1998) used an in vitro mycorrhizal system of 
Quercus robur micropropagated plants, intending to develop a method to 
analyze the mycorrhization of forest species without the constraints of the 
methods using seedlings. Genetic heterogeneity of seedlings (reflected in 
different germination times), seedling vigour and asynchronous development 
are only some of these constraints. These trials were made to work with (1) 
genetically uniform plants deprived of cotyledons, to function as older plants, 
(2) with selected material, to warranty the uniformity of repetitions, and (3) 
with a mycorrhizal system that allows following the development along the 
trials, in order to characterize mycorrhizal effects on plant morphology. 

Castanea sativa micropropagated plants were studied along 90 days 
of plant-fungus association in vitro, after preliminary studies on plant-fungus 
compatibility with four fungi species (Martins et al., 1996). The studies inclu-
ded: (1) development of mycorrhizal morphological structures (mantle and 
Hartig net) along 90 days; and (2) mycorrhizal influence on growth rates 
(heights, stem diameter, length of major root, total plant length, fresh weights 
and dry weights). 

5  CASTANEA SATIVA MYCORRHIZATION IN VITRO

Plants were first inoculated with four different mycorrhizal fungi 
species to test their mycorrhizal capacities in vitro. Amanita muscaria Hooker 
isolate from Schönbuch/Tübingen, Laccaria laccata (Scop. ex Fr.) Berk and 
Br., isolate from Molina, Piloderma croceum Erikss and Hjortst, isolate from 
Unestam and Nylund 01.01.1976, Sweden and Pisolithus tinctorius (Pers.) 
Coker and Couch, isolate 289/Marx, were used (Martins et al., 1996).The 
fungi tested differed in their capacity to form mycorrhizas with C. sativa plants 
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in vitro. P. tinctorius showed the best capacity to colonize chestnut roots either 
from seedlings or from micropropagated plants(Martins et al., 1996, 1997).

Mycorrhizal (M) and nonmycorrhizal plants (NM) were followed for 
90 days since inoculation with the mycorrhizal fungus P. tinctorius. Mycor-
rhizal synthesis was performed in Petri dishes 13 cm in diameter, as can be 
seen in Fig. 1. Agarized MS modified medium plated in slant was used 
(Murashige and Skoog, 1962). The plants were placed with the root system 
adhering to the medium in Petri dishes inoculated with the fungus (3 weeks 
before). Control plants were placed in non-inoculated Petri dishes. The root 
system was covered with aluminium foil to prevent photo-oxidation (Martins 
and Pais, 2005). 

Fig. 1. Axenic synthesis of micropropagated Castanea sativa mycorrhizas with P. tinctorius. 

Mycorrhizal and nonmycorrhizal plants were maintained in a plant 
tissue culture chamber with a photoperiod of 16 h, light intensity of ~100 

E·m 2
·s 1 and temperatures of 25°C and 19°C respectively during light and 

dark periods for 90 days after plant transference to the pre-inoculated media 
(Martins, 2004; Martins and Pais, 2005). Plant development was monitored 
along 90 days of in vitro mycorrhization. Root mycorrhizal status was obser-
ved at regular intervals and mycorrhizal evolution compared with growth 
parameters for the same time of mycorrhization (Martins, 2004; Martins and 
Pais, 2005). 

Roots from micropropagated plants were white and without root hairs 
or ramifications (Fig. 2a, c) at the time of transference to co-culture with 
the fungus. Pisolithus tinctorius hyphae adhere to the root surface 24 h after 
root-fungus contact (Fig. 2d); after the first contact roots ramify very quickly 
compared with non-inoculated ones. Root ramifications became visible 5 
days after inoculation, while control plants still have no ramifycations. The 
fungus surrounds root ramifications forming mycorrhizae after 20 days 
(Fig. 2e). Establishment of mycorrhizas favours plant growth and leaf  
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Fig. 2. Micropropagated chestnut plants (a) 20 days after transference to Petri dishes without 
fungus; (b) 20 days after transference to Petri dishes with fungus (P. tinctorius); (c) Root 
system of a micropropagated plant before mycorrhization (7.5 ); (d) Inoculated root 24 h after 
root-fungus contact (30 ); (e) Inoculated root 10 days after root-fungus contact (60 ); (f) 
Inoculated roots 40 days after root-fungus contact (5 ); (g) Mycorrhizal plants 40 days after 
inoculation; (h) Colonized root apices emerging from the medium (25 ); (i) Details from a 
mycorrhizal apex (60 ); (j) Inoculated root 60 days after root-fungus contact (40 ); (k) Detail 
of colonized roots 60 days after inoculation (60 ).
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Fig. 3. Cross sections of inoculated roots at different times after plant-fungus interaction (a) 
10 days (100 ); (b) 20 days (some hyphae can be seen at the surface and an Hartig net is 
forming,,100 ); (c) 30 days (elongation of epidermal cells and a well developed Hartig net can 
be seen, 100 ); (d) 60 days (100 ); (e) Mycorrhizal root 30 days after root-fungus contact
(40 ); (f) Longitudinal section 30 days after root-fungus contact (100 ); (g)–(i) Details of a 
cross section of a mycorrhizal root seen 30 days after root-fungus contact. The Hartig net is 
visible between the epidermal cells and a mantle (m) is well developed (400 /1,000 ).
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expansion (Fig. 2a, b). A successive ramification was observed after the first 
mycorrhizas form giving rise coralloid roots (Fig. 2j, k). The microscopical 
observation showed that a mantle (m) forms after 20 days but, the hartig net, 
with longitudinal elongation of epidermal cells, could only be observed after 
30 days of root-fungus contact (Fig. 3). 

6   GROWTH OF MYCORRHIZAL CASTANEA SATIVA

The mycorrhizal process was monitored 90 days of plant-fungus  
co-culture, to evaluate the growth rates of mycorrhizal and nonmycorrhizal 
plants, in terms of heights (h), stem diameters at the collar level (dcollar), lengths 
of the major roots (lroot) and total plant lengths (l). Fresh weight (FW) and dry 
weight (DW), as well as growth rates ( x/ t) and relative growth rates for each 
parameter (x) (RGR(x) = (1/x) ( x/ t)) were also determined for 90 days of 
association (Martins and Pais, 2005). 

Plant heights and stem diameter at the collar level were higher in M 
plants after 50 and 40 days of mycorrhization respectively while the maxi-
mum root length was smaller in M plants after 40 days. The total growth at 
the end of 90 days ( x) and the growth per unit time ( x/ t) were signi-
ficantly higher of M plants. After 90 days, M plants had higher growth rates 
in heights and stem diameter at the collar level. The length of the major root 
had lower growth rates in M plants. The relative growth rates (RGR) also 
showed differences between M and NM plants with the exception of the total 
plant length (Table 1). The larger differences in RGR occurred in the length 
of the major root. RGR values obtained for the growths in height and stem 
diameter were higher in M plants. RGR values for total plant length were not 
significantly different between M and NM plants (Table 1). The ratio h/dcollar
showed that M plants had a higher increased growth in stem diameter in com-
parison with growth in heights. The ratios between h/lroot were also signifi-
cantly different in M and NM plants after 50 days of mycorrhization, showing 
that in M plants the increase in heights was higher than the increase in root 
length (Table 1). 

Fresh and dry weights of M and NM plants were larger in M plants 
after 30 and 20 days of root-fungus contact, respectively. Differences in FW 
and DW of roots between M and NM plants were earlier than other plant 
organs. Roots of M plants showed higher FW and DW than NM plant roots, 
since 20 days, while the shoots only showed differences since 50 days. Incre-
ments in DW ( DW, DW/ t) and RGR were significantly higher for M 
plants (Table 2). The leaves were the plant organs that showed larger incre-
ments in DW after 90 days ( DW) and per day ( DW/ t) (Table 2). The  
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Table 1. Growth parameters of the plants in terms of heights (h), stem diameter at the collar 
level (Dcollar). Increases of growth ( x), increases of growth per day ( / t) and relative growth 
rates (RGR) per plant, in NM and M plants along 90 days of mycorrhization. 

Heights  Diameter 
Length major 

root
Maximum

plant length 

NM M NM M NM M NM M 
h (cm) dcollar (cm) l root (cm) lmax (cm) 

x (cm) 6.2a 8.2b 0.15a 0.26b 9.1b 3.8a 15.3b 12.0a 

x/ t (mm/day) 0.69a 0.91b 0.02a 0.03b 1.01b 0.42a 1.70b 1.33a 

ratios DW/FW of plant roots and the whole plant are higher for M plants since 
75 days of mycorrhization. The differences between the ratios for M and NM 
plants increase along the mycorrhizal synthesis. 

Table 2. Increments in DW ( DW), DW increments per day ( DW/ t) and relative growth 
rates (RGR) per plant in NM and M plant roots, stems, leaves, shoots and whole plant, along 
90 days of mycorrhization. 

Dry weight/plant organ (mg) Dry weight/plant (mg) 

Roots Stem Leaves Shoots Plant 
NM M NM M NM M NM M NM M 

DW
(mg) 39.5a 51.2b 30.5a 39.5b 43.7a 57.3b 74.2a 96.8b 114.4a 148.2b 

DW/ t
(mg/day) 0.4a 0.6b 0.3a 0.4b 0.5a 0.6b 0.8a 1.1b 1.3a 1.6b 

RGR 
(mg/g.day) 9.6a 9.9b 7.6a 8.2b 8.7a 9.3b 8.2a 8.8b 8.7a 9.2b 

7  CONCLUSIONS 

In vitro mycorrhization (endo and ectomycorrhizas) of micropropagated 
plants can be used to increase survival and growth during ex vitro weaning 
(Martins et al., 1996; Nowak, 1998). In the case of fruit trees, the inoculations 
of arbuscular fungi facilitate in vitro plants adaptation to ex vitro conditions 
(Sbrana et al., 1994). However, in vitro ectomycorrhization can improve 
microcutting rooting (Normand et al., 1996) and enables in vitro plants to 
acclimate more readily (Martins et al., 1996, Díez et al., 2000). The in vitro
mycorrhization of micropropagated plants like Helianthemum spp. (Morte  
et al., 1994) and Cistus spp. (Díez and Manjón, 1996) has been obtained only 
in very few mediterranean species. Even somatic embryos acclimation can 

RGR(mm/cm.day) 0.06a 0.07b 0.06a 0.07b 0.08b 0.05a 0.07a 0.06a 
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be improved through mycorrhization (Díez et al., 2000). Increase in the root 
functioning and mineral nutrition of the plants through mycorrhization prior 
to the acclimation phase can overcome the low performance of micropro-
pagated plants improving their survival and weaning (Martins, 1992, 2004; 
Martins et al., 1996; Herrmann et al., 1998, Díez et al., 2000). 

Under in vitro conditions, mycorrhization increases the growth 
parameters of plants and those are in consistency with the morphological 
development of mycorrhizal structures, for the same times of mycorrhization. 
Micropropagated plants improve their performances and survival capacities 
also increase accordingly. Micropropagation and mycorrhization can be 
combined as a tool to give viability to the production of difficult propagating 
species, increasing their survival and growth. Mycorrhization can provide a 
sustainable method for plant production, either by micropropagation or 
through traditional propagation methods.
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Chapter 15 

EFFECTIVE AND FLEXIBLE METHODS
FOR VISUALIZING AND QUANTIFYING 
ENDORHIZAL FUNGI 

SUSAN G. W. KAMINSKYJ 
Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon SK,
Canada, S7N 5E2

Abstract: Fungi associated with plant roots are gaining prominence as to their importance 
for plant survival in a diversity of terrestrial ecosystems. Assessing the impor-
tance of interaction types depends in part on quantifying interaction prevalence, 
particularly in plants harvested from natural ecosystems. In turn, this depends 
on a sensitive method for fungal visualization, and a reliable method for quan-
tifying potentially multiple endorhizal morphotypes. Recent developments in 
these areas are discussed. 

Keywords: Confocal fluorescence; endophyte; fungus; mycorrhiza; quantification; root. 

1 INTRODUCTION 

Plant roots are associated with a diversity of endorhizal and rhizo-
sphere fungi whose interactions vary from endophytic to pathogenic. Few  
of these interactions produce macroscopic phenotypes, apart from ecto-
mycorrhizae, which are associated with morphological changes in colonized 
roots (Brundrett et al., 1996; Smith and Read, 1997). However, this does not 
mean the others are unimportant! Arbuscular mycorrhizal (AM) interactions 
are found in about 80% of terrestrial plant families and under experimental 
conditions contribute to plant survival and competitiveness (Smith and Read, 
1997). In addition, roots contain a diversity of endophytic fungi that have 
roles including stress tolerance (Márquez et al., 2007; Rodriguez et al., 2008). 
In order to study the nature of plant-fungal interactions and their relative 
importance to the plants, it is essential that fungi be clearly visualized and 
accurately quantified. 
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Microscopic visualization methods for endorhizal fungi have recently 
been reviewed by Peterson et al. (2004) and Vierheilig et al. (2005). Tradi-
tional mycorrhizal visualization used coloured stains with transmitted light 
microscopy. For certain experimental studies, roots can be infected with a 
fungal strain that has been transformed with a fluorescent protein construct 
(e.g. GFP), so that fungal growth and behaviour can be followed in living 
roots. However this depends on using previously identified and genetically 
transformable species (not yet available for many fungi, including AM) rather 
than assessing roots harvested from natural environments. 

Most roots are several to many cell layers thick and may have 
pigmented surface layers, whereas most fungi are disseminated mycelia of 
hyaline hyphae. Only the dark septate endophytes can readily be identi- 
fied without staining (Jumpponen and Trappe, 1998). For transmitted light 
microscopy of mycorrhizal fungi, cleared roots are typically stained with 
chlorazole black E (CBE) (Brundrett et al., 1996), trypan blue (Phillips and 
Hayman, 1970), or lactofuchsin (Carmichael, 1955). The latter sometimes 
have insufficient contrast for high magnification transmitted light microscopy. 

For quantification of AM fungi, Brundrett et al. (1996) used CBE- 
stained roots examined under a dissecting microscope. This provides an 
overview of fungal colonization, but assessment depends in part on skill and 
experience, so results can be difficult to reproduce quantitatively between 
users. A method described by McGonigle et al. (1990) used 200X magni-
fication to examine roots at defined intersections. With this method, the 
user’s attention was directed to precise regions examined at relatively high 
resolution. Reproducibility of the microscopic intersect method even with 
different users was good, suggesting that it was relatively objective. However, 
as described, this method was limited to quantifying AM fungi, and did not 
distinguish between AM morphotypes, nor between levels of AM colonization. 

Studies of AM associates in roots of plants collected from sites in 
the Canadian High Arctic, where they had been thought to be rare or absent, 
required that we develop a sensitive method for fungal visualization, a secure 
method for specimen preservation, and a reliable method for quantifying 
potentially multiple endorhizal morphotypes. Endorhizal visualization meth-
ods using fluorescence microscopy (Allen et al., 2006) were later extended 
to studying roots with multiple morphotypes and from herbarium specimens 
(Ormsby et al., 2007). Specimen preservation and endorhizal quantification 
methods described in the latter paper have led to a set of robust and flexible 
methods that will be presented in detail, below. 

 Kaminskyj
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2 METHODS

2.1 Choice of stain 

Trypan blue has been used as a fluorescent stain for fungal foliar 
pathogens (Wei et al., 1997), although the preparation method appears to be 
laborious. The structure of trypan blue and CBE is similar (Fig. 1) suggest-
ing that CBE might be useful as a fluorescent stain for mycorrhizal fungi. 
CBE fluorescence imaging was not superior to transmitted light microscopy, 
since CBE solutions develop a fine particulate background. Acid fuchsin, the 
dye component of lactofuchsin, which is used as a fungal stain (Carmichael, 
1955), has a chemical structure suggesting it might be fluorescent (Fig. 1). 
We later discovered that Merryweather and Fitter (1991) used lactofuchsin 
for fluorescence imaging, but this method had not been pursued by the 
authors or others. We independently considered lactofuchsin as a fluorescent 
stain for fungal cells within plant roots, particularly using confocal epifluo-
rescence microscopy. Use of other fluorescent stains including aniline blue is 
reviewed by Peterson et al. (2004) and Vierheilig et al. (2005).

Fig. 1. Chemical structures of chlorazole black E (CBE), trypan blue, and lactofuchsin. 

.
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2.2   Sample preparation for lactofuchsin staining 

Plant roots from different species may grow intertwined. It is critical 
that the above-ground and root samples are from the same plant. In addition, 
roots like those of peony (Peonia chinensis; Fig. 2) have a complicated archi-
tecture, and are highly pigmented. For these roots, the bulk soil was gently 
removed by hand (Fig. 2A) and the remaining soil removed by soaking and 
then rinsing in tap water (Fig. 2B). The soil balls in Fig. 2A contained abun-
dant fine branches. 

Fig. 2. Roots of peony (Peonia chinensis) that had been growing in undisturbed garden soil.
Bar in B = 1 cm. 

2.2.1  Fixing

       Washed roots were fixed in 3.7% formaldehyde containing 0.5% 
ethanol, buffered to pH 7 in 50 mM Na-K phosphate. Fixation with 3.7% 
formaldehyde alone, and with 70% or with 95% ethanol was also tested. All 
gave similar results for staining, but sometimes with higher plant wall fluo-
rescence. However, it may be advantageous to fix in 100% ethanol or iso-
propyl alcohol, if subsamples might be used for molecular DNA studies.  

Ormsby et al. (2007) described an adaptation of the clearing and 
staining technique for roots sampled from herbarium specimens. These were 
rehydrated by autoclaving in 10% KOH (see below). Even after rehydra-
tion, herbarium root samples were sometimes more brittle than chemically 
fixed roots. All other techniques are the same as for chemically fixed roots. 
Herbarium specimens can also be used for molecular DNA analyses, and 
serve as a voucher for identification. 
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2.2.2 Sampling 

For quantitative studies, roots should be cut into segments typically 
1–2 cm long, suspended in a large volume of water, and then randomly 
sub-sampled. For some studies, there is a limited amount of root material 
available, in which case it is preferable to examine the entire length. 

2.2.3  Clearing 

Root samples are typically autoclaved for 20 min in 10% KOH, to 
clear the cytoplasm, using wide glass vials that are topped with a large glass 
marble to prevent evaporation. Aluminum foil is degraded by hot 10% KOH 
vapours. Delicate roots survive this treatment, but clearing stems and leaves 
may require only 95ºC for 20 min at atmospheric pressure. Cleared samples 
should be rinsed twice in room-temperature 70% ethanol to remove the 
KOH, which is more effective than water alone.  

2.2.4  Bleaching  

Pigmented roots must be bleached before staining. Roots can be 
bleached in freshly prepared peroxide solution (1:1:8–28% ammonium 
hydroxide: 30% hydrogen peroxide: distilled water) or in commercial sodium 
hypochlorite bleach diluted in distilled water to about 1.75% NaClO3. The 
latter is effective for bleaching, but these specimens may have higher plant 
wall fluorescence. Roots are incubated in room-temperature bleaching solu-
tion (with occasional swirling, particularly for the peroxide bleach) until 
pale. Typically this requires 15–30 min. Bleached roots are rinsed twice in 
distilled water prior to staining. Following staining in lactofuchsin, the 
vascular cylinder is likely to fluoresce, which can be useful for orientation. 

2.2.5  Staining 

Roots are stained in lactofuchsin (Carmichael, 1955), 0.1% acid 
fuchsin in 85% lactic acid. Staining is for 0.5–3 h at 47°C to 68°C, as 
optimized for different root types. Stained roots are rinsed twice in room-
temperature destaining solution (DLAG) (1:1:1 distilled water: 85% lactic 
acid: glycerol) to remove surface dye, and then destained in DLAG at 47°C 
to 68°C, typically for 3 h to overnight. Deeply-stained roots will likely have 
high background fluorescence and poor imaging characteristics. Faintly-
stained roots may be still useful since the fluorescence yield of lactofuchsin 
is much higher than the visual contrast. Under-stained (or overly destained) 
roots can be re-stained, for longer or at a higher temperature. 
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2.2.6  Mounting 

Mount roots in PVAG solution (recipe below), and cover them with 
a coverslip. This provides security and permanence, compared to mounting 
in DLAG, and PVAG slides are easier to clean if immersion optics are used. 
Where possible, it is most convenient to mount the roots parallel to the long 
axis of the slide. Bubbles trapped during cover slipping are all but impossible 
to remove, but seldom interfere with image acquisition. The PVAG solution 
is polymerized overnight at 40ºC. Following PVAG polymerization, the 
edges of the coverslip should be sealed with nail polish for protection, since 
these can chip or lift. Slides stored in the dark at 4ºC are stable for at least 
two years. PVAG does not fluoresce at the excitation wavelengths used for 
lactofuchsin staining. 

PVAG solution, modified from Brundrett et al. (1996), contains 4 g 
polyvinyl alcohol powder [we use 98% polymerized, but various grades are 
available, and many appear to work]: 50 mL distilled water: 20 mL glycerol. 
This is warmed to 60°C (covered) with constant stirring until dissolved, 
typically 3 h to overnight. Eventually, PVAG solution will solidify at room 
temperature and become opalescent, but it can be re-melted one or more 
times with gentle heat and stirring. 

2.3 Imaging 

Lactofuchsin-stained roots can be examined with transmitted light, 
or with widefield or confocal epifluorescence illumination. Lactofuchsin has 
a wide range of excitation wavelengths, spanning at least 405–534 nm (blue 
to green) available with most epifluorescence systems. We typically use an 
FITC filterset (widefield) or 534 nm excitation (confocal). The emission range 
is also broad. For confocal imaging, we use an LP585 filter. Under these 
conditions, the actual colour of lactofuchsin fluorescence is orangered. We 
typically choose to present images that are false-coloured yellow or are grey-
scale, in order to increase image contrast. 

As with other types of fluorescence imaging, there are tradeoffs to 
consider. Widefield epifluorescence illuminates the entire field, and both the 
depth of focus and the lateral resolution are related to the numerical aperture 
of the objective. Fortunately, lactofuchsin is a very stable fluorochrome, so 
photobleaching is seldom a problem. Confocal epifluorescence optics provide 
exquisite control of lateral and depth resolution, but higher resolution images 
have reduced depth of focus, which can be problematic for fine endophytes 
(FEs). Shallow depth of focus can be offset by collecting multiple focal 
levels (z-stacks) at the cost of additional time for image collection. Typically 
we use confocal optics for high resolution imaging, and widefield optics for 
quantitation.  
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Fig. 3. The scanning procedure for the Multiple Quantitation Method. Roots (A) are 
visualized using at least 200X magnification (B). Fungal structures that intersect the vertical 
line on the graticule are considered, throughout the entire focal depth of the root. (C) 
Intersections are evenly spaced by moving the stage by one field of view each time. 

Examples of endorhizal fungal imaging using lactofuchsin staining 
and confocal epifluorescence microscopy are shown in Figs. 4–6. Figure 4 
shows transmitted light (A) and confocal fluorescence (B) images of a 
lactofuchsin-stained Taraxacum officinale (common dandelion) root, collec-
ted from garden soil in Saskatoon SK, 52ºN. These images were collected 
simultaneously. The greater depth of focus with transmitted light microscopy 
provides a sense of continuity for the Paris-type coils (P), but details of 
arbuscule (Ar) structure are more evident with confocal fluorescence because 
out-of-focus glare is reduced. Multiple focal depth (z-stack) confocal imaging 
shows that the hyphae which form coils and arbuscules are continuous (Allen 
et al., 2006).

Fig. 4. Arbuscular mycorrhizal colonization in Taraxacum officinale (common dandelion). 
This specimen was stained with lactofuchsin and imaged with transmitted light (A) and 
confocal epifluorescence optics (B). Arbuscule (Ar). Paris-type intracellular hyphal coil (P). 
The arrow indicates continuity between an intercellular hypha and the arbuscule. Bar in A = 
10 m, for both. 
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Figure 5 shows FE hyphae in roots of a T. phymatocarpum plant 
collected from highly mineral tundra soils overlying shallow permafrost, on 
Axel Heiberg Island in the Canadian High Arctic, 80ºN. The FE network 
shown in (A) is typical of near root-surface morphology, whereas that in  
(B and C) is typical of networks deeper in the root. This FE colony appears 
to be relatively newly established, since it has yet to form arbuscules, which 
typically form near the vascular cylinder (Fig. 5, Allen et al., 2006). Due to 
their narrow width (1–1.5 m) FE hyphal networks are difficult to study at 
high spatial resolution using transmitted light microscopy. FE hyphae are 
highly abundant in plants from High Arctic sites (Ormsby et al., 2007) and 
so are likely to be ecologically important. 

Fig. 5. Fine endophyte (FE) hyphae in a Taraxacum phymatocarpum root. This lactofuchsin-
stained sample was imaged with confocal epifluorescence merged with transmitted light to 
provide spatial context. Root cortical cell walls and the vascular cylinder (VC) have faint 
fluorescence. Optical sections were (A) 8 m, (B) 21 m, and (C) 32 m beneath the root 
surface. Bars = 10 m.

Figure 6 shows FE hyphae, arbuscules, and vesicles of a T. phymato-
carpum root. This plant was collected near the specimen shown in Fig. 5, 
stained with lactofuchsin, and imaged with confocal fluorescence. The rela-
tively high resolution image shows the detail that can be acquired with con-
focal microscopy. 

Figure 7 shows lactofuchsin-stained fungi in a peony root sample 
collected from garden soil in Saskatoon, SK. These roots have not been 
studied previously for their fungal associates. The macroscopic appearance 
of these roots suggested that they would be ectomycorrhizal; however, no 
evidence of a mantle or Hartig net system was found. Morphologies con-
sistent with ectomycorrhizae are readily recognized with lactofuchsin fluore-
scence (not shown). Peony roots are challenging to work with because of 
their architecture and pigmentation. In this case, the adjacent field-of-view 
procedure shown in Fig. 3 is useful for keeping attention focused during quan-
titation.
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Fig. 6. Fine endophytes (FEs) in a Taraxacum phymatocarpum root stained with lactofuchsin 
and imaged with confocal epifluorescence. FEs produce (A) arbuscules, and (B) vesicles. The 
arrow in A shows continuity between an FE hypha and an arbuscule. Bar in A = 2 m, for both.  
.

Fig. 7. Endophytic fungi in peony roots visualized with lactofuchsin staining and confocal 
epifluorescence optics, including arbuscular mycorrhizal (AM) fungi and fine endophytes 
(FEs). AM fungi formed Paris-type (P) intracellular coils. FE hyphae (arrowheads in A) 
produced vesicles (V), and arbuscules (not shown). A putative microsclerotium (MS) suggests 
there may also be septate endophytes. Bar in B = 10 m for both. 
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3. THE MULTIPLE QUANTITATION METHOD 

Quantitation is essential to assess the relative importance of particular 
interactions. Molecular DNA techniques can be excellent for identification, 
with caveats as described in Shepherd et al. (2007), but are not well-suited to 
quantitation. Our multiple quantitation method (MQM), built on that of 
McGonigle et al. (1990) and described here and in Ormsby et al. (2007), 
accommodates samples that have endorhizal fungi as well as AM, and that 
vary in colonization and abundance (Table 1).  

As indicated in Fig. 3 (where possible, but see Fig. 2) root samples 
should be arranged parallel to the long axis of the microscope slide, so they 
can be examined systematically (Fig. 3A). Statistical studies by McGonigle 
et al. (1990) show that quantitation estimates by different users examining 
the same sample converged by about 150 intersections. There is no guarantee 

Table 1. Fungal endorhizal colonizationa for Asteraceae from Axel Heiberg Island, 80ºN,
assessed using lactofuchsin epifluorescence, and the multiple quantitation method. 

Species AMA AMV AMH-L AMH-M AMH-H AMH-tot 
(# of plants)       

      
Arnica alpina (10)   0.7 ± 0.5   1.3 ± 1.3 0 ± 0   1.1 ± 0.5   7.9 ± 5.2 9.0 ± 5.2 
Erigeron compositus (5)   0 ± 0   0 ± 0 0.6 ± 0.6   0.8 ± 0.8   2.0 ± 1.3 3.4 ± 2.2 
E. eriocephalus (8)   7.5 ± 3.0   0.5 ± 0.3 0.4 ± 0.3   7.9 ± 2.4 29.7 ± 7.5 38.0 ± 7.6 
Taraxacum hyparcticum (6) 15.8 ± 4.6   9.0 ± 4.0 1.0 ± 0.6 10.3 ± 3.7 19.2 ± 4.8 30.5 ± 5.5 
T. phymatocarpum (13) 13.5 ± 4.3 11.4 ± 3.5 1.8 ± 0.6   6.7 ± 1.1 39.8 ± 7.6 48.3 ± 7.7 
All species 9.1 ± 1.8   5.2 ± 1.4 0.8 ± 0.2   5.6 ± 0.9 25.5 ± 3.7 31.9 ± 4.1 

Species FEA FEV FEH SHE Total fungal 
(# of plants)    colonization

     
Arnica alpina (10) 27.8 ± 10.1 10.4 ± 3.6   50.5 ± 13.6   27.4 ± 10.5 82.7 ± 6.3 
Erigeron compositus (5)  6.4 ± 3.6   4.6 ± 3.0   44.2 ± 17.9   27.6 ± 14.1   59.0 ± 16.9 
E. eriocephalus (8)  0.6 ± 0.4   0.2 ± 0.2 10.2 ± 4.3 50.7 ± 6.4 76.1 ± 6.0 
Taraxacum hyparcticum (6) 21.0 ± 4.2 28.3 ± 3.2   76.8 ± 10.4   26.5 ± 10.2 88.3 ± 5.2 
T. phymatocarpum (13)  5.6 ± 3.4   2.8 ± 1.4 16.5 ± 8.4 42.1 ± 8.6 78.3 ± 7.3 
All species 11.6 ± 2.9 7.5 ± 1.7 33.8 ± 5.7 36.7 ± 4.4 80.0 ± 3.6 
aSummary data of colonization by endorhizal fungi, expressed as percent abundance  ±  
standard error of the mean. These data were originally presented in Ormsby et al. (2007). 
Arbuscular mycorrhizae (AM) were categorized as arbuscules (AMA), vesicles (AMV) and 
hyphae (AMH). Root samples from each plant were assessed at about 100 intersections per 
sample. AM hyphae varied in abundance, so were subdivided into abundance classes: low (1 
hypha per intersection), medium (2–5 hyphae per intersection) and high (>6 hyphae per inter-
section). Fine endophyte (FE) fungi were categorized as arbuscules (FEA), vesicles (FEV) 
and hyphae (FEH). Septate endophyte hyphae (SEH) were found in some root intersections. 
Total colonization was calculated as the number of intersections assessed, minus intersections 
lacking fungal structures.
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that different portions of a large root system will be colonized to the same 
extent, so increasing the number of intersections leads to a diminishing 
return for effort. Nevertheless, for large root samples, assessing colonization 
at 150 intersections may leave some portions unexamined. If so, the remaining 
material should be scanned for rare types of interaction.  

We start at one corner of the slide, and position the field of view and 
the orientation of the eyepiece graticule so that the intersection line is 
perpendicular to the root axis at that point (Fig. 3B). The entire depth of the 
root should be examined (adjusting the fine focus as needed) and the data 
recorded. Then the stage should be moved along the root by one field of 
view, and the scoring process repeated. This systematic approach reduces the 
very real temptation to be attracted to the colonized parts of the root, which 
can lead to overestimation. It can also help when dealing with complicated 
root architectures as shown in Fig. 2B. 

With the MQM technique, each type of fungal morphology is scored 
separately, and new categories can be added if necessary. In samples that 
contain multiple types of fungal endophyte (Figs. 4 and 7) scoring can be 
facilitated by considering the morphology of the hyphae to either side of the 
intersection (as they are likely to be continuous), but quantification data should 
only be collected at the intersection. In addition to scoring fungal inter-
actions, the absence of interaction is also important. Intersections that do not 
contain fungi should be scored as a separate category, so that overall coloni-
zation can be calculated. Otherwise, as in Allen et al. (2006), summing abund-
ances could be misleading.  

In Ormsby et al. (2007) we were faced with the challenge that some 
intersections had only one AM hypha, whereas in others they were very 
abundant. We defined additional categories (in this case low, medium and 
high hyphal abundance) to describe this variation (Table 1). Roots of Arctic 
Asteraceae had few AM hyphal coils; the data in Table 1 are almost exclusively 
for Arum-type intercellular hyphae. Thus it was perhaps surprising that there 
were relatively few arbuscules (these plants were collected in early July 
2004, at the height of the Arctic summer), however, Ryan et al. (2003) have 
shown that intercellular AM hyphae may also participate in mineral nutrient 
transfer.

4 DISCUSSION

Discrimination and quantitation of endorhizal fungal structures is an 
important correlative technique for molecular and physiological studies, 
because it is likely to be directly related to the significance of an interaction 
to the symbiotic partners. The methods described in this chapter include the  
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most sensitive staining and imaging currently available. Fluorescence micro-
scopy has long been the method of choice for cell biology, because luminous 
objects are highly contrasted with a black background, which increases detec-
tion and resolution of fine structures. In this application, high detectability 
and spatial resolution are particularly important for examining details of 
arbuscule structure and FE hyphal networks.  

To date, for samples harvested from field sites where there is often 
little control of the fungal root symbiont(s), lactofuchsin staining viewed with 
epifluorescence provides a convenient combination of relative simplicity of 
preparation and imaging quality.  

The choice of confocal vs widefield epifluorescence imaging depends 
on the need, and naturally on availability of equipment. Confocal epifluore-
scence optics are often superior for documentation, whereas widefield optics 
are more efficient for quantitation. Modern widefield epifluorescence micro-
scopes are typically equipped with high-sensitivity imaging systems, so there 
can be considerable flexibility. 

We have found endorhizal quantitation using the MQM method to 
be reproducible as well as flexible. MQM is well suited for plant roots harves-
ted from natural locations where the endorhizal fungi are not necessarily 
well described. Furthermore, MQM can quantitate the relative contributions 
of different endorhizal interactions, which must intrinsically be related to 
their importance to the plant’s physiology. 
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