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ABSTRACT 

Fusarium graminearum, the causal agent of Fusarium head blight of wheat, is a devastating 

pathogen that causes yield and quality losses to its host. F. graminearum produces mycotoxins in 

the grain that cause reduced milling and baking qualities, granary rejection, and livestock feed 

refusal. Research has been conducted to identify genes associated with deoxynivalenol, the most 

important mycotoxin produced by F. graminearum, yet little is known about other pathogenesis 

compounds or pathways used by the pathogen to infect wheat.  

 

To identify essential fungal pathogenesis genes and determine whether host resistance impacts 

aggressiveness of a given isolate, a paired strategy of isolate and transcriptome characterization 

of naturally infected wheat lines was implemented. In the summer of 2016, naturally infected 

spikelets that symptomatically resembled Fusarium head blight were collected from soft red 

winter wheat with varying levels of resistance. Collected Fusarium isolates were surface 

sterilized, grown on potato dextrose agar with rifamycin for six days, and single spored. Of the 

original collected isolates, twelve were utilized as a representative sample to ascertain 

aggressiveness. 

 

Species identification was completed for the twelve isolates by sequencing the translation 

elongation factor 1-alpha gene (EF1-𝛼) using EF1/EF2 primers. DNA was trimmed and blasted 

for species similarities using the Fusarium ID database. Of the twelve isolates, seven identified 

as F. graminearum (Schwabe), three as F. armeniacum, and two were non-determinant. 
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Aggressiveness was categorized through the utilization of two field assays, one greenhouse 

assay, mycotoxin assays, and a spore quantification assay. Pathogenesis assays were conducted 

with the representative Fusarium isolates and a negative control. During anthesis, isolates were 

inoculated in the center spikelet of wheat heads from two cultivars and were replicated per assay. 

Fungal aggressiveness was determined through disease severity with information taken at 14, 21, 

and 28 days post inoculation with area under the disease progress curves calculated from severity 

data. After threshing inoculated heads for each aggressiveness assay, Fusarium damaged kernels 

were collected, processed, and measured for mycotoxin contamination with Reveal Q+ for DON.  

 

Fusarium isolates caused varying levels of infection on inoculated soft red winter wheat. Disease 

severity differed based on cultivar but was higher on highly susceptible cultivars. Aggressiveness 

varied among the isolates by origin of collection and level of host resistance from which the 

isolate was collected from. Spore quantification gave little indication into each isolate’s potential 

aggressiveness upon inoculation. Currently, aggressiveness is defined as a quantifiable amount 

of disease caused by a pathogen. To date, there is no single index measurement that syndicates 

the individual measurements of aggressiveness. The goal of this research was to combine disease 

severity translated into area under the disease progress curve, Fusarium damaged kernels, and 

mycotoxin quantification through deoxynivalenol into a single index and quantifiable 

measurement of aggressiveness. A principal component analysis was conducted on the collective 

aggressiveness traits from each assay to create a multivariate description of isolate 

aggressiveness. This index was then employed in a cluster analysis to classify isolates, as 

described by origin of collection and level of host resistance from which each isolate was 

collected, into clusters based on the index value. 
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CHAPTER 1: INTRODUCTION TO FUSARIUM GRAMINEARUM 

Introduction 

Fusarium graminearum (Schwabe) (syn. Gibberella zeae) is a homothallic, facultative parasite 

within the Ascomycota fungal phylum that causes a multitude of diseases on several hosts. Many 

species are affected by F. graminearum, with the most economic importance being Gibberella 

ear and stalk rot on maize, seed decay and damping-off of soybean, and Fusarium head blight 

(FHB) or scab in small grains, particularly wheat, barley, rye, and triticale.  

 

F. graminearum is regarded as the most important pathogen on wheat (Triticum aestivum L.) for 

a multitude of reasons. FHB can be found in all wheat and other small grains producing regions 

worldwide and is a highly devasting disease  due to its manifold infectious capabilities (Imathiu, 

Edwards, Ray, and Back, 2014). F. graminearum not only causes yield reduction due to 

pathogen infection but also results in mycotoxin deposition within the grain (Imathiu et al., 

2014). In 2012, the Molecular Plant Pathology journal listed F. graminearum as fourth in the top 

ten destructive fungal pathogens based on scientific and economic importance (Dean et al., 

2012). 

 

Disease Cycle 

At the start of the season, F. graminearum poses as a biotrophic fungus by allowing the host to 

survive during fungal nutrient uptake and then becoming necrotrophic later in the season  

(Bushnell, Hazen, and Pritsch, 2003; Singh et al., 2016). F. graminearum overwinters as 

perithecia buried in the prior year’s corn or small grains debris (Figure 1.1). As the warm, moist 

spring approaches, two types of spores germinate to cause host infection: ascospores and 



 2 

macroconidia. Ascospores (sexual spores) are ejected from overwintered perithecia and are 

dispersed by wind and air, whereas macroconidia (asexual spores) are derived from sporodochia 

and conidiophores and are rain disseminated. Infection predominantly takes place during anthesis 

when either spore type lands on open anthers (Bushnell et al., 2003; Schroeder and Christensen, 

1963). Flowering generally lasts three to five days long. Once contact is made, the spore 

germinates, penetrates the host, and grows into the reproductive tissue, making its way through 

the host. In the primary stages of infection, individual spikelets undergo premature bleaching. As 

further infection occurs, surrounding spikelets become bleached, leading to a fully symptomatic 

wheat head. As mycelia colonizes tissue, the rachis begins to discolor from a healthy green tissue 

to slightly black. Later in the season, mycelium and sporodochia on the glumes of wheat appear 

light pink or salmon in coloration. Kernels become diseased and appear shriveled with a white to 

pink discoloration known as tombstoning (Shaner, 2003). As the growing season comes to an 

end, purple to black perithecia (Gaffoor et al., 2005) form on symptomatic glumes, causing the 

visual cue of scab and becoming the source for the following year’s inoculum. 

 

Importance on Wheat 

FHB can be found in all wheat and other small grains producing regions worldwide (Figure 1.2) 

and is a highly devasting disease (Goswami and Kistler, 2004; Imathiu et al., 2014; Singh et al., 

2016; Turkington, Petran, Yonow, and Kriticos, 2014). As severity increases, yield is inversely 

correlated (Salgado, Madden, and Paul, 2015). In the United States, $7.67 billion was lost due to 

FHB in wheat and barley between 1993 and 2001 (Singh et al., 2016). China has experienced 

multiple severe and moderate epidemics in the last seventy years with yield losses as ranging 

from 5 – 10% in moderate years to 20 –  40% in severe epidemics, with 100% yield losses 
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reported some years (Singh et al., 2016). F. graminearum also induces grain quality issues such 

as low seed weight, lack of germination, reduced milling and baking qualities, granary/elevator 

rejection, mycotoxin buildup within the grain, and livestock feed refusal. 

 

Mycotoxins 

Aside from drastically reducing yields, F. graminearum also produces two groups of secondary 

metabolites. Group one includes trichothecenes such as nivalenol (NIV), deoxynivalenol (DON), 

and modified forms of DON: 3-acetyl DON (3-ADON) and 15-acetyl DON (15-ADON) 

(Desjardins, 2006; McCormick, 2003; Mirocha, Xie, and Filho, 2003). Group two are 

biosynthesis inhibitors and estrogenic mimics such as zealerone (ZEA), T-2 toxin, and HT-2 

toxin. Currently, sixteen genes controlling DON production in the pathogen have been described 

(Amarasinghe and Fernando, 2016). Apart from DON, little is known about other pathogenesis 

compounds or pathways used by F. graminearum to cause disease in wheat. 

 

According to the United Nations Food and Agriculture Organization (FAO), an estimated 25% of 

world food crops are contaminated with mycotoxins (Smith, Solomons, Lewis, and Anderson, 

1995). FDA standards have been created to control the amount of DON permitted in human and 

animal consumable products. Upon consumption of these diseased kernels or contaminated 

products, humans and animals such as cows, poultry, swine, and other feed animals can exhibit 

fusariotoxicoses. Ingestion of these compounds can cause emesis, feed refusal, digestive issues, 

male feminization, and weight loss (Čonková, Laciaková, Kováč, and Seidel, 2003). Extreme 

fusariotoxicoses can cause carcinogenic, estrogenic, mutagenic, hemorrhagic, neurotoxic, and 

immunosuppressive effects (Chilaka, De Boevre, Atanda, and De Saeger, 2017). In developing 
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regions, F. graminearum has been associated with human illnesses (Goswami and Kistler, 2004; 

Singh et al., 2016; Turkington et al., 2014) due to the lack of economic resources to control the 

pathogen and its mycotoxin contamination in food products.  

 

Control 

Host resistance, cultural, and chemical practices are the best tactics to employ when controlling 

FHB. Utilizing crop rotations outside of corn-corn, corn-wheat-soybean, corn-wheat, or wheat-

wheat allow overwintering structures in crop debris to break down and thus reduce the following 

year’s quantity of inoculum and disease pressure. Another strategy to effectively control FHB 

and mycotoxin production within the grain is timely fungicide application. Research has noted 

that the use of demethylation inhibitors (DMI) applied at anthesis provide effective control of 

FHB (Ahmed, Mesterházy, and Sági, 1996; Audenaert, Vanheule, Höfte, and Haesaert, 2013; 

Bissonnette, Kolb, Ames, and Bradley, 2018; P.A. Paul et al., 2008). Research has also shown 

that fungicides in the quinone outside inhibitor (QoI) class have adverse control effects in 

comparison to DMI fungicides (Bissonnette et al., 2018; P. A. Paul et al., 2018; Pierce A. Paul et 

al., 2018; Pirgozliev, Edwards, Hare, and Jenkinson, 2003). When QoI fungicides are applied to 

wheat between booting and anthesis, DON concentrations increase within the grain (Bissonnette 

et al., 2018; P. A. Paul et al., 2018; Pierce A. Paul et al., 2018; Pirgozliev et al., 2003). Currently, 

the following DMI fungicides can be used to best control FHB: metconazole (Caramba) by 

BASF Agricultural, prothioconazole (Proline) by Bayer Crop Science, and tebuconazole with 

prothioconazole (Prosaro) by Bayer Crop Science (Bissonnette et al., 2018). 
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Resistance 

Through the development of breeding strategies to deter infection, small grain resistance types 

have been categorized as follows: Type 1 resistance is defined as resistance to the initial 

infection of F. graminearum (Mesterházy, 1995; Schroeder and Christensen, 1963) and 

commonly referred to as incidence (Bushnell et al., 2003). Incidence is predominantly measured 

as the percentage of heads that are symptomatic. Type 2 resistance is described as partial 

resistance due to a limiting factor that inhibits fungal spread within the head, i.e. progression 

from spikelet to spikelet (Mesterházy, 1995; Schroeder and Christensen, 1963). Many breeding 

programs use Sumai 3 and related wheat lines as a source of Type 2 resistance (Bushnell et al., 

2003). To show Type 2 resistance, F. graminearum is inoculated into a single, center spikelet 

and observed daily to determine if surrounding spikelets become symptomatic. Type 3 resistance 

pertains to limiting the secondary metabolite mycotoxin, DON, within the grain (Bushnell et al., 

2003). As mentioned earlier, mycotoxin build-up within the grain is rejected at elevators due to 

the detrimental effects on animals that feed on the infected grain. In contrast to natural 

mechanisms of resistance, Type 4 resistance includes genetic modification of wheat to inhibit 

DON accumulation by creating lines that are resistant to the effects of trichothecenes. Finally, 

type 5 resistance was defined by Mesterházy (1995) as the capability of wheat to be a high yield 

producer despite being in presence of the disease. This type was determined through visual 

symptoms and did not correlate to grain infection. Thus, resistance can be separately defined for 

wheat such as head, culm, grain, etc. (Mesterházy, 1995). 

 

Disease progression and colonization can be quantified in numerous ways. FHB infection can be 

measured through: disease severity of individual spikelets (a visualization of the number of 
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symptomatic spikelets) (Kuhnem, Del Ponte, Dong, and Bergstrom, 2015), incidence (a 

visualization of the number of symptomatic heads per area), damaged kernels (number of kernels 

that appear shriveled or tombstoned), and mycotoxin content (chemical quantification) (Shaner, 

2003). Goswami and Kistler (2005) determined that aggressiveness can be derived from higher 

trichothecene accumulation rather than the type of mycotoxin derivative. Highly aggressive  

F. graminearum isolates tended to also progress further than the presence of hyphal strands 

(Goswami and Kistler, 2005). 

 

Given the quantitative nature of the traits governing Fusarium aggressiveness, breeding is of the 

utmost importance. F. graminearum aggressiveness is quantitatively inherited (Voss, Bowden, 

Leslie, and Miedaner, 2010), and at present, 176 quantitative trait loci (QTL) have been 

associated with resistance (Löffler, Schön, and Miedaner, 2009). Talas et al. (2016) identified 50 

quantitative trait nucleotides (QTNs) for aggressiveness and 29 QTNs for DON production. 

Effectors, proteins expressed by phytopathogens for infection to occur, are believed to be 

necessary for pathogenicity to occur. 
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Objectives 

The question has yet to be examined if F. graminearum isolate aggressiveness is specific to the 

level of resistance derived from the wheat line. For instance, if an isolate was collected from a 

highly susceptible wheat line, does that isolate only have the capability to infect other highly 

susceptible wheat lines, or is aggressiveness non-descript. Using pathogenomics, the utilization 

of genomic information to understand plant and host disease interactions, it is possible to 

recognize pathogenesis genes and their correlation to host infection. Through the collection of 

biological samples, the goal is to capture genes necessary for infection to occur and identify them 

through RNA sequencing. In addition, field and greenhouse assays will be utilized to determine 

levels of isolate aggressiveness collected from wheat lines with various levels of resistance. 

Currently, there is no measurement that conglomerates the individual measurements of 

aggressiveness such as disease severity translated into area under the disease progress curve, 

Fusarium damaged kernels, and deoxynivalenol. The final goal of this research was to combine 

these individual traits to determine a quantifiable definition of aggressiveness. A principal 

component analysis was conducted on the collective aggressiveness traits from each assay to 

create a multivariate description of isolate aggressiveness. Isolates were binned into aggressive, 

moderately aggressive, and non-aggressive groups based on Ward’s Minimum Variance Measure 

of Dissimilarity and the index created through use of principal cluster analysis-based index. 
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Figures 

 

 

Figure 1.1: Fusarium graminearum disease cycle. Courtesy of Ohio State University-Extension. 
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a) Worldwide distribution map of F. graminearum. 

 

 

b) U.S. distribution map of F. graminearum. 

 

Figure 1.2: Distribution map of where F. graminearum (G. zeae) can be found a) worldwide and 

b) within the United States. Maps courtesy of Plantwise Knowledge Bank. 
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CHAPTER 2: CHARACTERIZATION OF FIELD COLLECTED FUSARIUM  

Introduction 

Fusarium graminearum, along with 21 other Fusarium species, is contained within the  

F. sambucinum species complex lineage 1, FSAMSC-1 (Gale, 2003; Kelly et al., 2016). Species 

within FSAMSC-1 play the largest role in causing Fusarium head blight as well as producing 

trichothecenes. This study focuses on identifying what Fusarium species cause FHB, with main 

focus on F. graminearum, from naturally infected field samples in Illinois. To properly identify 

field collected isolates and ensure F. graminearum is within the sample set, DNA extraction was 

conducted through single locus genotyping (SLGT) and compared to the USDA-ARS Mycotoxin 

Prevention and Applied Microbiology Research Unit multi-locus genotyping (MLGT) method. 

SLGT calls for identification through amplification of one primer whereas MLGT undergoes 

amplification using more than one primer with an average of three to five. Each laboratory uses 

their own combination of genes for species identification dependent of pathogen 

characterization. Published reports suggest that TRI3 (15-O-acetyltransferase), TRI10 

(trichothecene 3-O-acetyltransferase), TRI12 (trichothecene efflux pump), EF1-𝛼 (elongation 

translation factor 1-𝛼), RED (reductase), and MAT (mating type) are among the most used genes 

to determine Fusarium species (Boutigny, Ward, Ballois, Iancu, and Ioos, 2014; Cuomo et al., 

2007; Kelly and Ward, 2018).  

 

Aside from species identification, RNA sequencing analysis was conducted to compare the 

transcriptomes of moderately resistant, moderately susceptible, and highly susceptible cultivars 

and to identify pathogenesis genes that are required for infection on wheat. Results on the 

transcriptome analysis are reported in Fall, Salazar, et al., in press (2019). 
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Materials and Methods 

Sample Collection 

In the summer of 2016, in order to collect a variety of Fusarium samples, research sites were 

established in the following Illinois locations: Brownstown, St. Jacob, Carmi, Urbana, and Savoy 

(Figure 2.1). Within each site, five wheat lines were planted in a randomized complete block 

design using the University of Illinois’ wheat breeding program plots. Wheat lines included the 

following: two moderately resistant lines (IL11-28222 and IL07-19334), a moderately 

susceptible line (IL10-19464), one susceptible line (Kaskaskia), and one highly susceptible line 

(Pioneer 25R47). Ten naturally infected heads were identified for each line and two spikelets 

were collected from each head. One spikelet was kept on ice in a microcentrifuge tube for fungal 

isolation and the other adjoining spikelet was immediately placed into a 1.5mL microcentrifuge 

tube containing 500µL of RNAlater. RNAlater (Sigma-Aldrich, Catalog Number R0901) is a 

storage buffer that penetrates fresh tissue to stabilize RNA for later extraction. A potential total 

of 250 Fusarium samples could have been collected (five locations, five wheat lines, ten 

samples, two subsamples).  

 

Sample Processing 

All field collected samples underwent processing in order to create single spore stocks for future 

assays. Each spikelet was surface sterilized by washing in 70% ethanol for five minutes, moved 

to 10% bleach, washed for five minutes, and finally rinsed twice in sterile double distilled water. 

After rinsing, individual chaff or glumes from the sterilized spikelet were placed on potato 

dextrose agar plus rifamycin (PDA+) plates and grown for four days at 25°C. Once mycelia 

colonized the PDA+ plates, a 5mm mycelia covered agar plug was placed in a capped, 
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autoclaved glass test tube with 2mL of carboxymethylcellulose sodium salt, low viscosity broth 

(CMC) (Sigma-Aldrich, Catalog Number C5678) and placed on a shaker. Test tubes were shaken 

at 125rpm at 25°C for two days. During this two-day timeframe, CMC broth encouraged spore 

formation while shaking discouraged mycelial growth. Once free-floating spores were formed in 

the CMC broth, 2mL of sterile double distilled water were added to each test tube and agitated 

by vortexing or shaking vigorously. Contents of the test tube were poured onto new PDA+ 

plates, liquid was spread carefully using a sterile bent glass rod, and plates were kept slightly ajar 

to remove moisture for spore germination. After plates dried, they were incubated for a 16hour 

period at 25°C. Four germinating spores or hyphal tips, if spores were not readily available, were 

selected, placed equidistant on a new PDA+ plate, and grown for four days at 25°C. Once 

mycelial colonies formed from the germinating spores, one randomly selected colony was 

transferred to a new PDA+ plate with autoclaved popcorn kernels. After seven days, kernels 

were collected in a 2mL microcentrifuge tube, given an isolate identification label, and frozen at 

-80°C for future assays. Some samples were compromised with various secondary pathogens 

during processing and omitted from stock creation.  

 

Species Identification 

DNA Extraction 

A randomly selected subsample of twelve isolates (one from each sampled field and mixture of 

wheat lines) was chosen from the processed isolates to represent the population. Mycelia grown 

from PDA+ plates were collected from the representative isolates and a positive F. graminearum 

control, PH-1 (King, Urban, and Hammond-Kosack, 2017) or NRRL 31084 (USDA-ARS 
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Culture Collection (NRRL); Peoria, IL)). DNA was extracted using the FastDNA Spin Kits (MP 

Biomedicals, Catalog Number 116540000) protocol with small adjustments.  

 

A ceramic bead was added to a FastDNA Spin Kit tube with sample filling half of the tube. 1mL 

of CLS-Y extraction buffer, 80µL of PVP solution, and another ceramic bead was added to the 

tube. Tubes were sealed tightly, placed into a cell disruptor, and ran at 6rpms for 60seconds and 

repeated three times until a homogenous mixture was made. Tubes were removed and mixed by 

inverting so foam head could blend with sample. Tubes were incubated at room temperature for 

three minutes and then centrifuged for six minutes at 14,000g. After centrifugation, supernatant 

was transferred to a new 1.5mL tube and centrifuged again for five minutes at 14,000g. 

Following centrifugation, 600µL of supernatant were transferred to a new tube along with 600µL 

of well mixed binding matrix and incubated at room temperature for five minutes. Tubes were 

centrifuged for one minute at 14,000g, supernatant discarded, re-centrifuged for one minute at 

14,000g, and remaining supernatant pipetted out. The binding matrix pellet was gently 

resuspended with 500µL of SEWS-M, transferred to a spin module, and centrifuged for one 

minute at 14,000g. Following centrifugation, 80% ethanol was added to spin filter, the catch tube 

was emptied, and spun again for one minute at 14,000g. Tubes were centrifuged a third time for 

one minute at 14,000g where catch tubes were replaced with recovery tubes. DNA was eluted by 

resuspending the binding matrix in the spin filter with 100µL of DES grade water and incubated 

for five minutes in a 55°C water bath. After heating, tubes were centrifuged for one minute at 

14,000g to pull DNA into the recovery tube. Final tubes were stored at 4°C for immediate use. 
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Isolated DNA was quantified using a NanoDrop OneC Microvolume UV-Vis Spectrophotometer 

(ThermoFisher Scientific, Catalog Number ND-ONEC-W). High quality DNA contained 

concentrations higher than 50ng/µL, an A260/280 score between 1.5 and 2.0, and void of read 

defects such as bubbling. 

 

PCR Assay with EF1-𝛼 

PCR assays were conducted by amplifying the translation elongation factor 1-alpha gene  

(EF1-𝛼) using EF1/EF2 primers (Karlsson et al., 2016; O’Donnell, Kistler, Cigelnik, and Ploetz, 

1998; O’Donnell et al., 2010) to identify if the representative isolates were part of the Fusarium 

genus. EF1 primer sequence was ATGGGTAAGGARGACAAGAC and EF2 primer sequence 

was GGARGTACCAGTSATCATGTT (Karlsson et al., 2016; O’Donnell et al., 1998, 2010). 

 

The total reaction volume per isolate consisted of 7.5µL of ddH2O, 12.5µL of goTAQ Green 

PCR buffer, 1µL of EF1 forward primer at 10µm concentration, 1µL of EF2 reverse primer at 

10µm concentration, and 3µL of target DNA at 25ng/µL. For PCR amplifications, the 

thermocycler was programmed for one cycle of two minutes at 95ºC, followed by 35 cycles of 

30seconds at 95ºC, 30seconds of 53ºC, and one minute at 72ºC, after the 35 cycles, one cycle of 

ten minutes at 72ºC is needed, and finally, product can rest in the thermocycler at 10ºC until 

processing. 

 

To identify banding at the EF1-𝛼 region, gel electrophoresis was conducted on a 1% agarose gel 

with TAE buffer and ran at 90V for 30 minutes. Each well contained 10µL of PCR product and 

2µL of EZ-Vision, Dye-as-Loading-Buffer, 6X (VWR, Catalog Number 97064) and ran with 
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EasyLadder I (BioLine, Catalog Number BIO-33045) for easy band length identification. DNA 

purification after PCR cleanup was completed using Wizard SV Gel and PCR Clean-Up System 

(Promega, Catalog Number A9281). 

 

In an SV minicolumn with a collection tube, 15µL of PCR product were added to an equal 

amount of membrane binding solution and incubated at room temperature for one minute. Tubes 

were centrifuged at 16,000g for one minute with flowthrough discarded. Following 

centrifugation, 700µL of membrane wash solution + ethanol was added to the column, 

centrifuged at 16,000g for one minute, and had flowthrough discarded. Next, 500µL of 

membrane wash solution + ethanol was added to the column, centrifuged at 16,000g for five 

minutes, and had flowthrough discarded. The collection tube was emptied and recentrifuged for 

one minute with the lid open to allow evaporation of residual ethanol. To elute DNA, the 

minicolumn was transferred to a new 1.5mL microcentrifuge tube, 30µL of nuclease free water 

was added to the column, incubated for one minute at room temperature, and centrifuged at 

16,000g for one minute. 

 

Purified DNA was quantified using a NanoDrop OneC Microvolume UV-Vis Spectrophotometer 

(ThermoFisher Scientific, Catalog Number ND-ONEC-W). High quality DNA contained 

concentrations higher than 50ng/µL, an A260/280 score between 1.5 and 2.0, and void of read 

defects such as bubbling. 
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Sanger Sequencing & BLAST Analysis 

DNA from the representative isolates were submitted to the Core DNA Sequencing Facility at 

the University of Illinois at Urbana-Champaign and 5µL of each sample from the purified PCR 

product along with 10µL of EF1 primer were used for sequencing. DNA sequence output was 

used for sequence-based species identification. The following online databases were initially 

used for identification: Westerdijk Fungal Biodiversity Institute, FUSARIUM-ID, Joint Genome 

Institute, EnsemblFungi, and NCBI. After a preliminary assessment, all BLAST searches were 

conducted through FUSARIUM-ID (Geiser et al., 2004). 

 

Representative isolate sequences were trimmed by removing all uncalled nucleotides (N) before 

and after a 5N repeating sequence towards 3’ respectively. Next, the top and bottom 160bps were 

removed and the remainder base pairs were used for analysis. For more information, see 

Appendix A. Reference isolates with the highest similarity percentage were used to determine 

species identification. Sequencing and BLAST analysis were repeated a second time to correctly 

identify species. 

 

Multi-Locus Genotyping 

All processed isolates were sent to the USDA-ARS Mycotoxin Prevention and Applied 

Microbiology Research Unit in Peoria, IL for species identification using MLGT. Some isolates 

were compromised with various secondary pathogens and omitted from the MLGT analysis. All 

processed isolates were conducted using methods written in Kelly and Ward (2018). Of the 175 

processed isolates, 164 were sent to the USDA-ARS Mycotoxin Prevention and Applied 

Microbiology Research Unit in Peoria, IL. 
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RNA Extraction and Sequencing 

Total RNA was extracted from the twelve representative isolates using TRIzol (Thermo-Fisher, 

Catalog Number 15596026), RNAeasy MinElute Kits (Qiagen, Catalog Number 74204), and 

modified method from The Maize Genetics and Genomics Database (Lawrence, Dong, Polacco, 

Seigfried, and Brendel, 2004). 

 

To ensure RNA contamination did not occur, mortar and pestles were baked in an oven at 180°C 

for a minimum of three hours and allowed to cool. Under a flow hood, 1mL of TRIzol was 

pipetted into 1.5mL microcentrifuge tubes and left with the cap open. Liquid nitrogen was 

poured into the unwrapped mortar along with thawed sample in the RNAlater, quickly ground 

into a fine talc-like powder, added to the 1mL of TRIzol, vortexed, and incubated for five 

minutes at room temperature, vortexing frequently. It is crucial to not allow the ground tissue to 

thaw in the mortar since RNAases can rapidly break down RNA as it is yet to be protected by the 

TRIzol. Each tube had 200µL of chloroform added with the TRIzol, vortexed for 15seconds, 

incubated for one minute at room temperature, and vortexed again for 15seconds. Tubes were 

centrifuged in a 4°C incubator for ten minutes at 15,000g to separate phases. Following 

centrifugation, 700µL of Qiagen RLT buffer were added to a new tube. Next, 200µL were 

removed from the top layer of the prior centrifuged tube to the new RLT buffer tube. The 

remainder of the supernatant can be placed into a new tube and frozen at -20°C to serve as a 

backup in case initial yield is low. Using the 200µL of sample now combined with 700µL RLT 

buffer, 500µL of 100% ethanol was added and mixed by vortexing. Half of the sample (~700µL) 

was added to a Qiagen MinElute spin column placed in a 2mL microcentrifuge tube, spun for 
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one minute at 10,000rpm, flow through discarded, and repeated with the remainder of the 

sample. The MinElute column was moved to a new 2mL catch microcentrifuge tube and 500µL 

of RPE buffer was added to the column. Tubes were centrifuged at 10,000rpm for one minute 

and flow through discarded. Following centrifugation, 750µL of 80% ethanol was added to the 

spin column, centrifuged at 10,000rpm for one minute, and flow through discarded. The prior 

step was repeated to ensure removal of all guanidine salts that may inhibit downstream 

applications. Tubes were centrifuged again at top speed for five minutes with the cap off to 

remove all trace amounts of ethanol. RNA was eluted by transferring the spin column to a new 

1.5mL microcentrifuge tube with 10µL of RNAase free water and spun at top speed for one 

minute. Another 10µL of RNAase free water was added to the column and spun at top speed for 

one minute. Purified RNA was quantified using a NanoDrop OneC Microvolume UV-Vis 

Spectrophotometer (ThermoFisher Scientific, Catalog Number ND-ONEC-W). High quality 

RNA contained concentrations higher than 100ng/µL, an A260/280 score near 2.0, and void of 

read defects such as bubbling. 

 

To provide a visual display of rRNA bands, gel electrophoresis was conducted on a 1.2% 

agarose gel with TAE buffer and ran at 190V for 30 minutes. Each well contained: 1µL of 

GelRed Prestain Loading Buffer, 6X (Biotium, Catalog Number 41009) and 5µL of 100ng/µL 

RNA product with TAE buffer. The gel was run with EasyLadder I (BioLine, Catalog Number 

BIO-33045) for easy band length identification. Upon completion, the gel was photographed 

using a UV light box. Isolated RNA was quantified using a NanoDrop OneC Microvolume UV-

Vis Spectrophotometer (ThermoFisher Scientific, Catalog Number ND-ONEC-W). High quality 
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RNA contained concentrations higher than 100ng/µL, an A260/280 score near 2.0, and void of 

read defects such as bubbling. 

 

RNA was submitted to the University of Illinois’ Roy J. Carver Biotechnology Center to prepare 

RNA sequencing libraries using Illumina Truseq Kit and to sequence using the HiSeq4000 100nt 

paired-end reads (Illumina). Paired-end reads were aligned to a recently completed  

F. graminearum PH-1 genome (King et al., 2017) to determine genes that aligned to the fungal 

genome. All bioinformatics were completed using the BioCluster at the University of Illinois’ 

Institute for Genomic Biology. Differential gene expression analysis was conducted with the 

services of HPCBio at the University of Illinois’ Institute for Genomic Biology. Pairwise 

comparisons of gene expression were conducted by controlling for level of host resistance 

(moderately resistant, moderately susceptible, and highly susceptible wheat lines) and origin of 

the collected isolate. This allowed for the identification F. graminearum genes that govern and 

are necessary for pathogenicity to occur. 

 

Results and Discussion 

Sample Collection 

A total of 197 samples were collected from the various field sites (Figure 2.1). Across locations, 

more samples were collected from Brownstown, St. Jacob, and Carmi, Illinois suggesting that in 

the summer of 2016, Fusarium were at a higher pressure in southern counties. As expected, more 

samples were collected from moderately and highly susceptible lines (Table 2.1). This was 

expected since pathogens are more likely to cause disease on hosts with less resistance.  
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Sample Processing 

Of the 197 collected samples, 175 isolates were processed and cataloged (Table 2.2). Processing 

results mirror that of sample collection with the exception that the most lost isolates derived from 

the Carmi location, specifically from the moderately susceptible cultivar group. Given that 

Urbana did not yield any samples collected from either moderately resistant cultivars, the 

location was not used for further experimentation. To accurately capture the Fusarium genetic 

diversity and take into account time and resources, a smaller subsample was surveyed from the 

total processed isolates. Three isolates were randomly chosen from each of the remaining 

locations: one isolate collected from the moderately resistant cultivar (IL11-28222), one from the 

moderately susceptible cultivar (IL10-19464), and finally one from the highly susceptible 

cultivar (Pioneer 25R47). 

 

The twelve representative isolates that were used for the remainder of the study are BMR, BMS, 

BHS, JMR, JMS, JHS, CMR, CMS, CHS, SMR, SMS, and SHS (Table 2.3). Each selected 

isolate denotes the origin of collection as well level of host resistance the isolate was collected 

from, otherwise denoted as level. For example, BMR isolate was collected from a moderately 

resistant wheat cultivar from Brownstown, Illinois. 

 

Species Identification 

DNA Extraction 

High quality DNA was extracted from all twelve representative isolates and the F. graminearum 

positive control. Most concentrations were higher than 50ng/µL, an A260/280 score between 1.5 

and 2.0, and void of read defects such as bubbling (Table 2.4).  
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PCR Assay 

After gel electrophoresis of the PCR products of the EF1–𝛼 gene, proper banding was observed 

for all isolates and the control except BMS, JMS, and JHS (Figure 2.2). Non-banding may be due 

to quality of the DNA, protein contamination, or to the isolates not belonging to the Fusarium 

genus. PCR cleanup was conducted on all representative isolates that produced banding. After 

cleaning, most isolates had DNA concentrations higher than 50ng/µL, an A260/280 score 

between 1.5 and 2.0, and void of read defects such as bubbling (Table 2.5).  

 

Sanger Sequencing & BLAST Analysis 

First and second replicates of sequenced DNA (Table 2.6 and 2.7) yielded roughly 200 – 400bps 

after trimming. After both BLAST analyses were conducted on the twelve representative 

isolates: seven identified as F. graminearum (Schwabe), three as F. armeniacum (Burgess et al., 

1993), and two were non-determinant given issues during PCR amplification (Table 2.8). Given 

that the St. Jacob series of isolates were not able to be identified, they were excluded from the 

remainder of the study. To complete Koch’s Postulates, all Fusarium isolates were re-isolated 

from infected glumes after threshing and found that they maintained their morphological 

characteristics in culture. 

 

F. armeniacum was first reported in Minnesota (Kommedahl et al., 1979) and subsequently 

Australia, South Africa, China (Ellis et al., 2012), and Argentina (Nichea et al., 2015). To date, 

F. armeniacum has been reported to cause seed and root rot on soybeans (Ellis et al., 2012),  

cultured from asymptomatic corn (Leslie and Summerell, 2006), and living as a saprophyte in 
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natural Argentinean grasses (Nichea et al., 2015). F. armeniacum has yet to be reported to cause 

FHB in small grains, specifically wheat. A first report has been written that delves into Fusarium 

armeniacum causing FHB on soft red winter wheat (SRWW) in Illinois (Salazar, in review, 

2018). 

 

Multi-Locus Genotyping 

At the facility, 24 isolates were omitted from the analysis due to secondary pathogen infection. 

Inferences were made on the 140 isolates processed by the USDA facility and were deposited in 

their database. 93.6% of the total isolates were part of the F. sambucinum species complex 

(FSAMSC), in which F. graminearum is a member of (Figure 2.3). Ninety percent of the total 

isolates were identified as F. graminearum (Figure 2.4). After analysis, five species were 

identified: F. acuminatum, F. armeniacum (Burgess et al., 1993), F. circinatum, F. graminearum 

(Schwabe), and F. reticulatum (Figure 2.5). Eighty nine percent of the isolates produced 15-

ADON as predicted by their genotypes. 

 

The majority of the isolates came from moderately susceptible, susceptible, and highly 

susceptible levels as opposed to the moderately resistant level (Figure 2.6). Upon comparison of 

the selected twelve isolates using SLGT and MLGT, two more isolates were identified through 

SLGT, and CMS was identified to be F. armeniacum rather than F. graminearum (Table 2.9). 
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RNA Extraction and Sequencing 

After RNA extractions, all isolates produced high quality concentrations (Table 2.10) to be used 

for gel electrophoresis. Upon gel electrophoresis, all isolates yielded strong banding at the 28S 

and 18S regions (Figure 2.7). 

 

Differential gene expression analysis was conducted with the services of HPCBio at the 

University of Illinois’ Institute for Genomic Biology. Pairwise comparisons of gene expression 

were conducted by controlling for level of host resistance (moderately resistant, moderately 

susceptible, and highly susceptible wheat lines) and origin of the collected isolate. This allowed 

for the identification F. graminearum genes that govern and are necessary for pathogenicity to 

occur. More work on the field pathogenomic assay can be found in Fall, Salazar, et al., Accepted 

(2018). 

 

Conclusion 

Isolate collection and processing results suggest that across Illinois wheat fields in 2016, 

underwent high levels of disease pressure from multiple Fusarium species. After SLGT with the 

twelve representative isolates, seven identified as F. graminearum (Schwabe), three as  

F. armeniacum (Burgess et al., 1993), and two were non-determinant. F. armeniacum was first 

reported in Minnesota (Kommedahl et al., 1979) and subsequently Australia, South Africa, China 

(Ellis et al., 2012), and Argentina (Nichea et al., 2015). To date, F. armeniacum has been 

reported to cause seed and root rot on soybeans (Ellis et al., 2012),  cultured from asymptomatic 

corn (Leslie and Summerell, 2006), and living as a saprophyte in natural Argentinean grasses 

(Nichea et al., 2015). F. armeniacum has yet to be reported to cause FHB in small grains, 
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specifically wheat. A first report has been written that delves into F. armeniacum causing FHB 

on soft red winter wheat in Illinois (Salazar, in review, 2018). The USDA’s MLGT analysis was 

able to detect more Fusarium species, the species complex they belong to, as well as the 

mycotoxin chemotype produced. Of the isolates processed by the USDA facility, 93.6% of the 

total isolates were part of the F. sambucinum species complex (FSAMSC), in which  

F. graminearum is a member of. Ninety percent of the total isolates were identified as F. 

graminearum. After analysis, five species were identified: F. acuminatum, F. armeniacum 

(Burgess et al., 1993), F. circinatum, F. graminearum (Schwabe), and F. reticulatum. Eighty 

nine percent of the isolates produced 15-ADON as predicted by their genotypes. 
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Tables and Figures 

 

Table 2.1: Total number of collected samples per origin and wheat resistance level. 

 
Moderately 
resistant 1 
(IL11-28222) 

Moderately 
resistant 2 
(IL07-19334) 

Moderately 
susceptible 
(IL10-19464) 

Susceptible 
(Kaskaskia) 

Highly 
susceptible 

(Pioneer 25R47) 
Total 

Brownstown 10 10 10 9 10 49 

St. Jacob 10 10 10 10 10 50 

Carmi 10 10 10 10 10 50 

Urbana 0 0 10 2 10 22 

Savoy 2 0 10 4 10 26 

Total 32 30 50 35 50 197 

 

 

 

 

 

Table 2.2: Total number of processed isolates per origin and wheat resistance level. 

 Moderately 
resistant 1 
(IL11-28222) 

Moderately 
resistant 2 
(IL07-19334) 

Moderately 
susceptible 
(IL10-19464) 

Susceptible 
(Kaskaskia) 

Highly 
susceptible 

(Pioneer 25R47) 
Total 

Brownstown 10 10 10 9 10 49 

St. Jacob 8 10 8 10 9 45 

Carmi 10 9 4 5 5 33 

Urbana 0 0 10 2 10 22 

Savoy 2 0 10 4 10 26 

Total 30 29 42 30 44 175 
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Table 2.3: Twelve representative isolates from Illinois fields. 

Origin Resistance Level 12 Representative  
Fusarium Isolates 

Brownstown Moderately resistant 1 BMR 

Brownstown Moderately susceptible BMS 

Brownstown Highly susceptible BHS 

St. Jacob Moderately resistant 1 JMR 

St. Jacob Moderately susceptible JMS 

St. Jacob Highly susceptible JHS 

Carmi Moderately resistant 1 CMR 

Carmi Moderately susceptible CMS 

Carmi Highly susceptible CHS 

Savoy Moderately resistant 1 SMR 

Savoy Moderately susceptible SMS 

Savoy Highly susceptible SHS 
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Table 2.4: DNA concentrations for representative isolates and F. graminearum control. 

Isolate Concentration (ng/µL) A260/280 A260/230 

PH-1.1 52.97 1.80 0.39 

PH-1.2 43.09 1.76 0.34 

BMR 169.72 1.51 0.56 

BMS 301.72 1.76 0.64 

BHS 170.05 1.52 0.54 

JMR 132.72 1.63 0.67 

JMS 299.59 1.67 0.72 

JHS 194.72 1.79 0.64 

CMR 450.32 1.92 1.01 

CMS 138.09 1.66 0.53 

CHS 209.40 1.53 0.49 

SMR 207.77 1.42 0.90 

SMS 112.68 1.55 0.52 

SHS 69.78 1.64 0.42 
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Table 2.5: DNA concentrations after PCR cleanup for isolates and F. graminearum control. Dash 

indicates lack of product. 

Isolate Concentration (ng/µL) A260/280 A260/230 

PH-1.1 51.23 1.77 1.83 

PH-1.2 53.43 1.77 1.31 

BMR 56.88 1.79 1.20 

BMS - - - 

BHS 53.31 1.76 1.34 

JMR 46.24 1.76 1.34 

JMS - - - 

JHS - - - 

CMR 57.68 1.84 1.39 

CMS 59.97 1.77 1.89 

CHS 63.78 1.76 1.81 

SMR 65.36 1.79 1.69 

SMS 56.04 1.74 1.64 

SHS 53.03 1.78 1.70 
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Table 2.6: First replicate of sequenced DNA. Dash denotes lack of product. 

Isolate Total number of sequenced bps Trimmed sequence for BLAST analysis 

PH-1.1 1442 293 

PH-1.2 1136 352 

BMR 1152 348 

BMS - - 

BHS 1152 359 

JMR 1074 347 

JMS - - 

JHS - - 

CMR 1173 424 

CMS 1159 370 

CHS 1147 366 

SMR 1139 348 

SMS 1105 288 

SHS 1129 183 
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Table 2.7: Second replicate of sequenced DNA. Dash denotes lack of product. 

Isolate Total number of sequenced bps Trimmed sequence for BLAST analysis 

PH-1 1431 356 

BMR 1388 364 

BMS 1630 294 

BHS 1440 369 

JMR 1459 380 

JMS 1479 358 

JHS - - 

CMR 1483 355 

CMS 1500 352 

CHS 1493 359 

SMR 1449 357 

SMS 1471 360 

SHS 1456 359 
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Table 2.8: Identification of representative Fusarium isolates using sequencing database, 

FUSARIUM-ID. Dash denotes database was unable to determine a reference species. 

Isolate 
Rep1 

FUSARIUM-ID database 
Rep2 

FUSARIUM-ID database 

Reference Species Percent Similarity Reference Species Percent Similarity 

PH-1.1 F. graminearum 99.65 
F. graminearum 100 

PH-1.2 F. graminearum 100 

BMR F. graminearum 100 F. graminearum 99.15 

BMS - - - - 

BHS F. graminearum 100 F. graminearum 99.72 

JMR F. graminearum 100 F. graminearum 98.94 

JMS - - F. armeniacum 98.32 

JHS - - - - 

CMR F. armeniacum 98.01 F. armeniacum 98.3 

CMS - - F. armeniacum 98.29 

CHS F. graminearum 100 F. graminearum 100 

SMR F. graminearum 100 F. graminearum 100 

SMS F. graminearum 98.61 F. graminearum 98.05 

SHS F. graminearum 95.32 F. graminearum 99.44 
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Table 2.9: Comparison of identification of the 12 representative isolates between SLGT and 

MLGT analysis with differing species highlighted in gray. Dash denotes database was unable to 

determine a reference species. 

Isolate M.M. Salazar Analysis 
Species Identified 

USDA-ARS Analysis 
Species Identified 

BMR F. graminearum F. graminearum 

BMS - - 

BHS F. graminearum F. graminearum 

JMR F. graminearum F. graminearum 

JMS F. armeniacum - 

JHS - - 

CMR F. armeniacum - 

CMS F. armeniacum F. graminearum 

CHS F. graminearum F. graminearum 

SMR F. graminearum F. graminearum 

SMS F. graminearum F. graminearum 

SHS F. graminearum F. graminearum 
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Table 2.10: RNA concentrations from representative isolates after extraction. 

Isolate Concentration (ng/µL) 

BMR 267.97 

BMS 253.63 

BHS 478.54 

JMR 324.41 

JMS 210.27 

JHS 904.65 

CMR 86.77 

CMS 557.43 

CHS 775.4 

SMR 385.71 

SMS 290.25 

SHS 187.3 
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Figure 2.1: Highlighted Illinois counties indicate locations where Fusarium samples were 

collected. Map outline courtesy of WorldAtlas. 
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Figure 2.2: PCR products from the EF1-𝛼 gene showing banding on a 1% agarose gel. All 

isolates produced correct banding except BMS, JMS, and JHS. 
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Figure 2.3: MLGT results describe Fusarium species complex within Illinois fields. Analysis 

shows 93.6% of the collected isolates were determined to be part of FSAMSC which 

F. graminearum is part of. 

 

 

 

Figure 2.4: MLGT results describe Fusarium speciation within Illinois fields. Analysis shows 

90% of the collected isolates were identified to be F. graminearum.   
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a) Fusarium species based on origin of collection. 

 

 

b) Fusarium species based on resistance level. 

 

Figure 2.5: Processed isolates based on (a) origin of collection and (b) level of host resistance. 

Key describes moderately resistant line 1 (IL11-28222), moderately resistant line 2 (IL07-

19334), moderately susceptible line (IL10-19464), susceptible line (Kaskaskia), and highly 

susceptible line (Pioneer 25R47).   
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Figure 2.6: Processed isolates based on origin of collection and resistance level. Resistance level 

axis describes moderately resistant line 1 (IL11-28222), moderately resistant line 2 (IL07-

19334), moderately susceptible line (IL10-19464), susceptible line (Kaskaskia), and highly 

susceptible line (Pioneer 25R47). 
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Figure 2.7: Extracted RNA showing strong banding at 28S and 18S on a 1.2% agarose gel. 
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CHAPTER 3: UNIVARIATE AND MULTIVARIATE ANALYSIS OF 

AGGRESSIVENESS IN FUSARIUM 

Introduction 

Aggressiveness is currently described as a quantifiable amount of disease caused by a pathogen. 

Disease progression and colonization can be quantified in numerous ways. FHB infection can be 

measured through disease severity (DS), area under the disease progress curve (AUDPC), 

incidence (INC), Fusarium damaged kernels (FDKs), mycotoxin quantification such as 

deoxynivalenol (DON), and spore quantification. DS is a visualization of the number of 

symptomatic spikelets (Kuhnem et al., 2015). AUDPC utilizes DS data and measures the 

progression of disease through time. INC is a visualization of the number of symptomatic heads 

per area or plot. FDKs are a quantification of symptomatic kernels that appear shriveled or 

tombstoned. Of all the mycotoxins produced by the Fusarium genus, trichothecenes like DON 

(Desjardins, 2006) are the most studied. It is hypothesized that the more aggressive an isolate is 

the higher the DON accumulation should be (Bai and Shaner, 2004). To determine functional 

pathogen aggressiveness, isolates were inoculated on wheat lines with varying resistance levels 

of resistance in field and greenhouse experiments as well as grown on media to quantify spore 

production. 

 

Currently, there is no measurement that conglomerates the individual measurements of 

aggressiveness. The final goal of this research was to combine these individual traits to 

determine a quantifiable definition of aggressiveness. A principal component analysis (PCA) was 

conducted on the collective aggressiveness traits from each assay to create a multivariate 

description of isolate aggressiveness (Butts-Wilmsmeyer, Seebauer, Singleton, and Below, 2019; 
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Johnson, 1998a). A PCA utilizes principal components or uncorrelated variables that are derived 

from correlated response variables (Johnson, 1998b). Multivariate analyses aim to accomplish 

two objectives: 1) understand the dimensionality, or spatial viewing, of the data, and 2) identify 

significant variables (Johnson, 1998b). Principal components are output in decreasing order of 

importance explaining each level of correlation, where the first principal component accounts for 

the largest amount of variability possible and each subsequent component describes the 

remaining variability to completion (Johnson, 1998b). Component vector loadings are derived 

from normalized eigenvectors, as they explain comparisons of each variable within vector 

loadings rather than across loadings (Johnson, 1998b). When determining the number of 

principal components to use for a cluster analysis, variable dimensionality needs to be visualized 

through the number of principal components with variances larger than zero (Johnson, 1998a, 

1998b). Applying the above outputs, a hierarchical tree diagram can be utilized to visualize the 

similarity and dissimilarity between clusters of observations (Johnson, 1998a). In this instance, 

isolates were binned into aggressive, moderately aggressive, and non-aggressive levels based on 

Ward’s Minimum Variance Measure of Dissimilarity and the index created through use of 

principal cluster analysis-based index. This comprehensive quantitative measure of 

aggressiveness can be utilized to determine a standard definition of aggressiveness across 

multiple disease measures. 

 

Materials and Methods 

The nine representative isolates were analyzed and characterized by origin of collection and level 

of host resistance, level. As a reminder, the nine isolates were collected from three wheat lines 

with diverse levels of resistance across three different locations in Illinois. 
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Univariate Analysis 

Spore Quantification Assay 

To determine if spore production plays a role in determining a pathogen’s level of aggressiveness 

on a host, a quantitative assay was designed. The nine representative isolates were plated on 

PDA+ and allowed to grow for seven days at 25°C with natural sunlight. After ample growth, 

spores were gently washed from agar plates with 3mL of 1% Tween 20 and sterile bent glass 

rods. Collected spores were stored in 4°C and counted within a two-day window to ensure spores 

did not germinate in buffer. Spores were counted using a hemocytometer and diluted if 

necessary. The hemocytometer was cleaned and sterilized between isolates with 95% ethanol, 

washed with deionized water, and dried with kimwipes. Spore quantity was determined by 

averaging the four largest corners in the hemocytometer and repeated using both wells of the 

device. Once both averages were derived, a grand mean was calculated. 

 

The assay was evaluated as a randomized complete block design (RCBD) with the following 

model:  

 

𝑌#$% = 𝜇 + 𝑅# + 𝑂$ + 𝐿% + 𝑂𝐿$% + 𝜀#$% 

 

where 𝑌#$% is the number of spores produced recorded for the 𝑖th replication, the 𝑗th origin of the 

collected isolate, and the 𝑘th level of host resistance (𝑖 = 1, 2, 3; 	𝑗 = 1, 2, 3; 		𝑘 = 1, 2, 3); 𝜇 is 

the grand population mean; 𝑅# is the random effect of the 𝑖th replication assuming 𝑁𝐼𝐼𝐷	(0, 𝜎<=); 

𝑂$ is the fixed effect of the 𝑗th origin of the collected isolate; 𝐿% is the fixed effect of the 𝑘th 
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level of host resistance; 𝑂𝐿$% is the fixed interaction between the 𝑗th origin of the collected 

isolate and the 𝑘th level of host resistance; and 𝜀#$% is the random error term assuming 

𝑁𝐼𝐼𝐷	(0, 𝜎?=).  

 

Statistical analysis was conducted in SAS Edition 9.4 (SAS Institute, November 2018) using 

MIXED, UNIVARIATE, GLM, and GLIMMIX procedures. ANOVA was conducted in PROC 

MIXED. Residuals were obtained from the MIXED procedure and were then analyzed using the 

UNIVARIATE procedure to check for the assumption of normality with Shapiro-Wilk. Original 

data was transformed using a log10 transformation with a qualifier to attain normality. A 

Brown–Forsythe Levene test was used to check the assumption of homogeneous variances. 

Significant differences were calculated with a Tukey’s adjustment and 𝛼 = 0.05. In the presence 

of a significant origin by level interaction, the slice option in LSMEANS of PROC MIXED was 

used to examine the significance of origin and level main effects. 

 

Inoculum Preparation 

Each isolate was placed on a PDA+ plate and allowed to grow for one week at room temperature. 

After fungal growth, each plate was put into a laboratory grade blender with 30mL of double 

distilled water and blended for one minute or until the mixture became homogeneous and smooth 

(Wilcoxson, Kommedahl, Ozmon, and Windels, 1988). As reiterated in a Mesterhazy research 

paper, mycelial slurry is equally effective at causing infection as conidia are (Mesterházy, 1995). 

Inoculum was stored in a 50mL centrifuge tube, placed in a 4°C incubator, and used for host 

inoculations within a week’s time. 
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Field Assays 

Two field pathogenesis assays were conducted to determine aggressiveness under field 

conditions. The University of Illinois’ wheat breeding program field plots in Urbana, IL were 

utilized where wheat plots were planted in an RCBD for each respective year’s assay. In the 

summer of 2017 and 2018, the nine representative Fusarium isolates and a negative control 

(PDA+) were tested against two wheat cultivars: a moderately resistant (IL07-4415) and a highly 

susceptible (Pioneer 25R47). During anthesis (Feekes 10 growth stage), roughly 200µL of 

inoculum was injected via hypodermic needle into the centermost spikelet of two heads from 

each cultivar (Figure 3.1 a-b). Two wheat heads were inoculated to ensure data was available in 

case a head was lost due to the environment, animal interference, or human error. Immediately 

after inoculation, a waxed Seedburo Canvasback shoot bag was placed over the inoculated head 

(Figure 3.1 c) and stapled at the base to protect the inoculum from wind, rain, and mammals, and 

to increase humidity within the bag (Imathiu et al., 2014) (Mesterházy, Bartók, Mirocha, and 

Komoróczy, 1999). Bags were removed after 48hours and monitored daily. Wheat plots were 

grown using standard agronomic practices for SRWW in Illinois. 

 

In the summer of 2017, the assay was evaluated as a split-plot in an RCBD with three replicates 

consisting of ten isolates inoculated on two wheat heads for two cultivars. In the summer of 

2018, the assay was assessed identically as in 2017 with the exception of five replicates 

consisting of ten isolates inoculated on two wheat heads for two cultivars. At the end of each 

growing season, heads were harvested and threshed, and all seed was collected. 
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Greenhouse Assay 

In 2017, a greenhouse pathogenesis assay was conducted to determine aggressiveness under 

greenhouse conditions. The nine representative Fusarium isolates and a negative control (PDA+) 

were tested against two wheat cultivars: a moderately resistant (IL07-4415) and a highly 

susceptible (Pioneer 25R47). Wheat cultivars were grown in a greenhouse at optimal conditions: 

daily average of ~24˚C, 16-hour photoperiod, watered daily, fertilized weekly, and aphid 

controlled.  Six to eight wheat seeds of each cultivar were planted 1in deep in 3in x 2in plugs 

with a soil mixture made of 1 part soil : 1 part peat : 1 part torpedo sand (weed mix) with a basal 

tray with holes for proper water drainage. After planting, soil was watered heavily for complete 

saturation. Plugs were grown in a greenhouse for ten days and watered lightly when needed. 

Once seedlings germinated, trays were moved to a 2 – 4°C vernalization chamber with 12hr 

light/12hr dark fluorescent lights for eight weeks. Trays were watered on a weekly basis and 

checked for seedling health. After vernalization, trays were removed from the chamber, 

transferred to the greenhouse, and allowed to reach greenhouse room temperatures for two days. 

Once soil plugs were no longer cold, plugs were removed, transferred to 6inch pots, watered, and 

fertilized with a teaspoon of osmocote per pot. Pots were watered daily and monitored for 

developmental growth stages, health and wellness, and secondary pathogens. During anthesis 

(Feekes 10 growth stage), roughly 200µL of inoculum was injected via hypodermic needle into 

the centermost spikelet of one head from each cultivar (Figure 3.2 a-b). To maintain high 

humidity, plants were kept in a mist chamber (Figure 3.2 c) that sprayed free-floating water 

droplets for five seconds every ten minutes and removed from chamber after 48hrs (Imathiu et 

al., 2014). As referenced in Fusarium Head Blight of Wheat and Barley, visible FHB symptoms 

can be seen within three days after infection if plants are kept in a moist chamber (Bushnell et 
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al., 2003). Pots were grown using standard agronomic practices for SRWW. The greenhouse 

assay was evaluated as a split-plot in an RCBD with three replicates consisting of ten isolates 

inoculated on one wheat head for two cultivars. At the end of each growing season, heads were 

harvested and threshed, and all seed was collected. 

 

Mycotoxin Assay 

DON levels were quantified using collected grain from both field and greenhouse assays. 

Subsampled heads of the same isolate and cultivar from each field aggressiveness assay were 

combined and processed as one sample (one experimental unit was defined as both threshed 

heads infected from one isolate given one cultivar). Reveal Q+ for DON (Neogen, Lansing, MI, 

Cat. # 8385) assay strips were utilized to quantify mycotoxins. The Reveal Q+ assay strip 

contains specific antibodies for toxin detection and, when present, the particles concentrate to 

form a visible line on the test strip. If large quantities of the toxin are present within the sample, 

fewer particles are captured, and a visible reduction in line density becomes apparent. Using 

Neogen’s AccuScan Gold reader, line density was quantified and translated to mycotoxin parts 

per million or billion (ppm or ppb). 

 

Representative grain samples were ground using a mortar and pestle until homogenously 

emulsified to ensure maximum mycotoxin detection (Tuite, Shaner, and Everson, 1990). For 

each grain sample set, 0.1g was added to a sample cup with 1mL of distilled water. The sample 

was shaken vigorously for three minutes by hand. Once the sample settled, roughly 40µL was 

pushed through a filter syringe provided by Neogen. Next, 10µL of sample diluent was added to 

a provided red dilution cup along with 1µL of filtered sample and mixed by pipetting up and 
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down five times. Afterward, 10µL of the diluted sample was transferred to a new clear sample 

cup. A DON strip was added to the sample cup and allowed to sit for three minutes for strip 

development. The strip was removed at three minutes exactly to ensure the read wasn’t 

overdeveloped or oversaturated. The strip was then fed into the AccuScan Gold Reader with the 

R-labeled cartridge adapter and DON was recorded. If samples read less than 0.05ppm DON, 

samples were diluted, re-ran, DON value was multiplied by the new dilution factor, and the new 

DON value was recorded. 

 

Aggressiveness Traits and Analysis 

Fungal aggressiveness was determined using DS, AUDPC, FDKs, and DON. DS was calculated 

as the percentage of FHB symptomatic spikelets per individual head. DS notes were taken at 

14dpi (days post-inoculation), 21dpi, and 28dpi in the field. AUDPC was computed in R version 

3.4.1 “Single Candle” using the ‘agricolae’ package version 1.2-4. To calculate AUDPC, DS 

data was used to determine the progression of fungal infection through time. FDKs were 

calculated as the percentage of tombstoned seed to total seed count. Reveal Q+ for DON 

(Neogen, Lansing, MI, Cat. # 8385) assay strips were utilized to quantify mycotoxins. 

 

Assays were evaluated as a split-plot in an RCBD with cultivar as the whole plot (two levels) 

and isolate randomized within the subplot (ten isolates) in replicated blocks for each 

aggressiveness assay (two field and one greenhouse assay).  

 

𝑌#$%B = 𝜇 + 𝐶# + 𝛽$ + 𝜀EFG + 𝑂% + 𝐿B + 𝐶𝑂#% + 𝐶𝐿#B + 𝑂𝐿%B + 𝐶𝑂𝐿#%B + 𝜀=FGHI 
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where 𝑌#$%B is the AUDPC, FDKs, DON recorded from the 𝑖th cultivar, the 𝑗th replication, the 

𝑘th origin of the collected isolate, and the 𝑙th level of host resistance (𝑖 = 1, 2;	 

𝐹𝑖𝑒𝑙𝑑	2017	𝑗 = 1, 2, 3; 	𝐹𝑖𝑒𝑙𝑑	2018	𝑗 = 1, 2, 3, 4, 5; 	𝐺𝑟𝑒𝑒𝑛ℎ𝑜𝑢𝑠𝑒	𝑗 = 1, 2, 3; 	𝑘 = 1, 2, 3;	 

𝑙 = 1, 2, 3); 𝜇 is the grand population mean; 𝐶# is the fixed effect of the 𝑖th cultivar; 𝛽$ is the 

random effect of the 𝑗th replication assuming 𝑁𝐼𝐼𝐷	(0, 𝜎X=); 𝜀EFG is the whole-plot random error 

term assuming 𝑁𝐼𝐼𝐷	(0, 𝜎?YFG
= ); 𝑂% is the fixed effect of the 𝑘th origin; 𝐿B is the fixed effect of the 

𝑙th level; 𝐶𝑂#% is the fixed interaction between the 𝑖th cultivar and the 𝑘th origin; 𝐶𝐿#B is the 

fixed interaction between the 𝑖th cultivar and the 𝑙th level; 𝑂𝐿%B is the fixed interaction between 

the 𝑘th origin and the 𝑘th level; 𝐶𝑂𝐿#%B is the fixed interactions between the 𝑖th cultivar, the 𝑘th 

origin, and the 𝑙th level; and 𝜀=FGHI is the sub-plot random error term assuming 𝑁𝐼𝐼𝐷	(0, 𝜎?ZFGHI
= ). 

 

Statistical analyses were conducted in SAS Edition 9.4 (SAS Institute, November 2018) using 

MIXED, UNIVARIATE, and GLM procedures. ANOVA was conducted in PROC MIXED. 

Residuals were obtained from the MIXED procedure and were then analyzed using the 

UNIVARIATE procedure to check for the assumptions of normality with Shapiro-Wilk and 

homoscedasticity. Original data was transformed using a log10 transformation with a qualifier to 

attain normality. A Brown–Forsythe Levene test was used to check the assumption of 

homogeneous variances within the experiment. Significant differences were calculated with a 

Tukey’s adjustment and 𝛼 = 0.05. In the presence of a significant origin by level interaction, the 

slice option in LSMEANS of PROC MIXED was used to examine the significance of origin and 

level main effects. 
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Multivariate Analysis 

Pearson correlation coefficients were calculated from the transformed aggressiveness data 

(T_AUDPC, T_FDK, and T_DON) using PROC CORR in SAS Edition 9.4 (SAS Institute, 

November 2018). Correlation coefficient threshold values (|𝑟|) were modeled similar to Butts-

Wilmsmeyer et al., 2019 to indicate weak, moderate, and strong relationships. Coefficients were 

utilized to calculate PCA variables in PROC PRINCOMP in SAS Edition 9.4 (SAS Institute, 

November 2018) along with means and standard deviations for each variable. PCAs with 

eigenvalues greater than one (Kaiser, 1970) were kept for further analysis as they explained the 

majority of variability between the variables. Selected eigenvalues were used to interpret 

eigenvectors for transformed AUDPC, FDK, and DON data sets. LSMEANS for selected PCA 

values were calculated by PROC MEANS in SAS Edition 9.4 (SAS Institute, November 2018). 

PROC CLUSTER in SAS 9.4 using Ward’s Minimum Variance Approach produced a 

hierarchical dendrogram to determine a measurement of similarity or dissimilarity among the 

representative isolates. This in turn allowed for isolates to be binned into four groups based on 

their level of dissimilarity. 

 

Results and Discussion 

Univariate Analysis 

Spore Quantification Assay 

After statistical analysis (Table 3.1), the two-factor interaction of origin by level was significant 

(p = 0.0033). Of the single factors, origin was significant (p < 0.001), and level was significant 

(p < 0.001). Further study into slice statements can be found in Table 3.2. Viewing the analysis 

with origin being the main focus, isolates that originated from Carmi continuously produced 
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more spores than any other origin irrespective of the level of host resistance. Spore averages 

could be quantified between one hundred million and ten billion total spores. Isolates that 

originated from Brownstown produced the least number of spores across resistance levels 

especially in the moderately susceptible level with averages between ten and slightly over one 

hundred thousand total spores. Isolates that originated from Savoy produced more spores in the 

moderately resistant levels and less in the susceptible levels (Figure 3.3). 

 

Given that the Carmi origin produced the most spores, it is assumed that isolates from this origin 

point would have a greater tendency to cause infection. For instance, the more spores a pathogen 

can produce, the more capabilities there are to cause infection. The opposite is depicted for 

isolates that originated from Brownstown since they consistently produced less spores. Isolates 

collected from the moderately resistant levels appeared to produce more spores than other 

resistance levels. This may be due to the higher the plant’s resistance level is, the harder a 

pathogen must work to cause infection or the more specialized the pathogen must be in order to 

cause infection. By that standard, the trend dictates that isolates that originate from southern 

Illinois areas are higher spore producers and may have a higher capability of causing infection. 

 

Field Assays 

The goal of conducting field trials was to adequately define factors of aggressiveness given the 

environments and the amount of variability that wheat farmers experience. Environments are not 

equivalent from year-to-year as seen in this study. For instance, SRWW planted in Urbana, 

Illinois usually starts heading (Feekes 10.1) around the first week of May (May 3rd – 5th) and 

typically lasts for ten – twelve days until post-anthesis. In 2017, a mild winter was followed by a 
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cool spring and warm, wet weather. Urbana wheat started to head April 26th (Julian date 116) 

and ended May 9th (Julian date 129). In 2018, a late snow occurred in March followed by cool 

lingering temperatures that lead into hot and dry weather. Urbana wheat started heading May 12th 

(Julian date 132) and ended May 21st (Julian date 141). Wheat was roughly one to two weeks 

early in 2017 whereas in 2018, wheat was roughly ten days late for heading.  

 

The field aggressiveness assay in 2017 for AUDPC values depicted lack of significance for the 

three-factor interaction between cultivar, origin, and resistance level (p = 0.1578) (Table 3.3). Of 

the two-factor interactions, cultivar by origin was non-significant (p = 0.5655), cultivar by level 

was non-significant (p = 0.9813), and origin by level was determined to be significant given the 

ANOVA analysis (p < 0.001). Of the single factors, cultivar was non-significant (p = 0.1409), 

level was significant (p = 0.0140), and level was significant (p = 0.0020). Further study into 

slice statements can be found in Table 3.4. ANOVA FDK values depicted lack of significance 

for the three-factor interaction between cultivar, origin, and level (p = 0.6799) (Table 3.3). Of 

the two-factor interactions, cultivar by origin was non-significant (p = 0.6547), cultivar by level 

was non-significant (p = 0.2689), and origin by level was determined to be significant given the 

ANOVA analysis (p < 0.001). Of the single factors, cultivar was non-significant (p = 0.3803), 

origin was significant (p = 0.0033), and level was significant (p = 0.0001). Further study into 

slice statements can be found in Table 3.4. 

 

In 2017, isolates caused relatively low levels of infection and thus, had low FDK levels. A 

combined graph of AUDPC values and their corresponding FDKs (Figure 3.4) shows that the 

Brownstown moderately resistant isolate (BMR) and the Carmi moderately resistant isolate 
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(CMR) produced less infection and low FDKs as opposed to the other isolates which performed 

similar to one another. 

 

The field aggressiveness assay in 2018 for AUDPC values depicted lack of significance for the 

three-factor interaction between cultivar, origin, and level (p = 0.1529) (Table 3.5). Of the two-

factor interactions, cultivar by origin was significant (p = 0.0171), cultivar by level was 

significant (p = 0.0511), and origin by level was determined to be significant given the ANOVA 

analysis (p < 0.001). Of the single factors, cultivar was significant (p = 0.0172), origin was 

significant (p = 0.0011), and level was significant (p < 0.001). Further analysis from slice 

statements, (Table 3.6) suggested all factor levels provided high variance except for the highly 

susceptible level (p = 0.4675). ANOVA FDK values depicted lack of significance for the three-

factor interaction between cultivar, origin, and level (p = 0.1018) (Table 3.5). Of the two-factor 

interactions, cultivar by origin was non-significant (p = 0.1157), cultivar by level was non-

significant (p = 0.5066), and origin by level was determined to be significant given the ANOVA 

analysis (p < 0.001). Of the single factors, cultivar was significant (p = 0.0501), origin was 

significant (p < 0.001), and level was significant (p < 0.001). Further analysis from slice 

statements, (Table 3.6) suggested all factor levels provided high variance except for the highly 

susceptible level (p = 0.7502) and isolates that originated from Savoy (p = 0.0733).  

 

In 2018, isolates caused relatively higher levels of infection and thus, higher FDK levels. A 

combined graph of AUDPC values and their corresponding FDKs (Figure 3.5) suggests 

statistically significant differences. The highly susceptible level generally had higher AUDPC 

and FDK values as opposed to the trend seen in the moderately susceptible and moderately 
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resistant levels. Carmi isolates appeared to produce high AUDPC and FDK values for the 

moderately susceptible and moderately resistant levels despite causing massive infection in the 

highly susceptible level. 

 

Throughout both assays, AUDPC and FDKs responded similarly since diseased heads translate 

into damaged seeds. When AUDPC was high, FDKs followed suit and equivalent for low values. 

Given the weather differences between environments, AUDPC and FDK values were higher in 

2018. Across both years, aggressiveness fluctuated given the level. For instance, resistance levels 

responded similarly in the moderately susceptible level and had slight rank changes in the highly 

susceptible and moderately resistant levels. It is to be expected that the more resistant a wheat 

cultivar is, the more specialized an isolate must be in order to cause infection. As described in 

the spore quantification assay, isolates that originated from Brownstown produced the least 

number of spores in comparison to other locations yet was highly aggressive in both AUDPC 

and FDKs in the highly susceptible and moderately resistant levels. Currently, this observation 

dispels the theory that the more spores a pathogen produces, the more aggressive it can be. 

Despite Carmi isolates producing the most spores, aggressiveness fluctuated given the level 

indicating that spore production does equate to high DS and FDKs. Given that isolates were 

collected in Savoy, a neighboring village to Champaign-Urbana, and utilized in Urbana field 

plots, the environment section of the disease triangle was similar. This equal environment 

suggests that isolates from a given area are specialized for aggressiveness and can be seen in the 

AUDPC and the corresponding FDK values from both years. 
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Greenhouse Assay 

The greenhouse aggressiveness assay for AUDPC values suggested lack of significance for the 

three-factor interaction between cultivar, origin, and level (p = 0.0593) (Table 3.7). Of the two-

factor interactions, cultivar by origin was non-significant (p = 0.2123), cultivar by level was 

non-significant (p = 0.2422), and origin by level was determined to be significant given the 

ANOVA analysis (p < 0.001). Of the single factors, cultivar was significant (p = 0.0288), origin 

was significant (p = 0.0339), and level was significant (p < 0.001). Further analysis from slice 

statements, (Table 3.8) suggested all factors provided high levels of variance except for the 

highly susceptible level (p = 0.5242) and isolates that originated from Savoy (p = 0.1221). 

 

ANOVA FDK values suggested lack of significance for the three-factor interaction between 

cultivar, origin, and level (p = 0.1207) (Table 3.7). Of the two-factor interactions, cultivar by 

origin was non-significant (p = 0.4217), cultivar by level was non-significant (p = 0.1933), and 

origin by level was determined to be significant given the ANOVA analysis (p = 0.0055). Of the 

single factors, cultivar was significant (p = 0.0346), origin was non-significant (p = 0.8268), and 

level was non-significant (p = 0.0631). Analysis from slice statements, (Table 3.8) suggested 

most factors provided high levels of variance except for the highly susceptible level  

(p = 0.2138), the moderately resistant level (p = 0.1343), and isolates that originated from Savoy  

(p = 0.1226).  

 

Isolates caused high levels of infection and thus, high FDK levels. A combined graph of AUDPC 

values and their corresponding FDKs (Figure 3.6) suggests statistically significant differences 

among origins and levels. The highly susceptible level generally had higher AUDPC and FDK 



 55 

values as opposed to the trend seen in the moderately susceptible and moderately resistant levels. 

The moderately resistant level produced the lowest AUDPC and FDK values, denoting little 

infection occurred under lower FDKs. Origin-wise, isolates collected from Carmi and Savoy 

tended to be more aggressive. 

 

AUDPC and FDKs were correlated with one another since diseased heads lead to damaged 

seeds. When AUDPC was high, FDKs followed suit and equivalent for low values with the 

exception of the isolate collected from a highly susceptible wheat line from Carmi. Given 

greenhouse conditions, AUDPC and FDK values were higher than those reported in the field 

assays, with AUDPC values as high as 11 and near 50% FDKs. Isolates from the moderately 

level tended to have lower levels of aggressiveness, suggesting that isolates from this level have 

a lack of specialization for infection. Isolates within the moderately susceptible level responded 

with low levels of aggressiveness except for isolates that originated from Carmi. Isolate 

aggressiveness was higher for AUDPC and FDKs in the greenhouse assay, but trends were 

similar to field assays with minor differences. 

 

Mycotoxin Assay 

DON extracted from threshed seed in the 2017 field aggressiveness assay suggested lack of 

significance for the three-factor interaction between cultivar, origin, and level (p = 0.8643) 

(Table 3.3). Of the two-factor interactions, cultivar by origin was non-significant (p = 0.7890), 

cultivar by level was non-significant (p = 0.4509), and origin by level was determined to be 

significant given the ANOVA analysis (p < 0.001). Of the single factors, cultivar was non-

significant (p = 0.3733), origin was non-significant (p = 0.3267), and level was significant  
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(p = 0.0200). Further analysis from slice statements, (Table 3.4) suggested all factors provided 

high levels of variance except for the highly susceptible level (p = 0.1884) and isolates that 

originated from Savoy (p = 0.5121). After mycotoxin extraction, isolates produced a range of 

DON levels. Isolates within the highly susceptible level tended to produce more DON than the 

other levels (Figure 3.7). Isolates that originated from Brownstown tended to produce more DON 

than other areas in respect to resistance level. 

 

DON values for seed threshed from the 2018 field aggressiveness assay suggested lack of 

significance for the three-factor interaction between cultivar, origin, and level (p = 0.9522) 

(Table 3.5). Of the two-factor interactions, cultivar by origin was significant (p = 0.0054), 

cultivar by level was non-significant (p = 0.2312), and origin by level was determined to be 

significant given the ANOVA analysis (p < 0.001). Of the single factors, cultivar was significant 

(p = 0.0256), origin was significant (p < 0.001), and level was non-significant (p < 0.001). 

Analysis from slice statements, (Table 3.6) suggested all factors provided high levels of variance 

except for the highly susceptible level (p = 0.1330). Isolates produced a range of DON levels 

similar to the prior year’s assay. Isolates within the highly susceptible resistance level tended to 

produce more DON than the other levels (Figure 3.8). Isolates that originated from Brownstown 

tended to produce more DON than isolates from other areas in respect to resistance levels. 

Isolates from Carmi and Savoy produced lower levels of DON in the moderately susceptible and 

moderately resistant levels.  

 

DON extracted from threshed seed in the greenhouse aggressiveness assay suggested lack of 

significance for the three-factor interaction between cultivar, origin, and level (p = 0.7123) 
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(Table 3.7). Of the two-factor interactions, cultivar by origin was non-significant (p = 0.4251), 

cultivar by level was non-significant (p = 0.4882), and origin by level was determined to be 

significant given the ANOVA analysis (p < 0.001). Of the single factors, cultivar was significant 

(p = 0.0132), origin was non-significant (p < 0.001), and level was significant (p < 0.001). 

Further analysis from slice statements, (Table 3.8) suggested all factors provided high levels of 

variance except for the highly susceptible level (p = 0.7075) and isolates that originated from 

Savoy (p = 0.4046). 

 

After mycotoxin extraction, isolates produced a range of DON levels that exceeded prior assays 

with DON levels reaching near 70ppm. Isolates within the highly susceptible level tended to 

produce more DON across all origins than the other levels (Figure 3.9). Highly and moderately 

susceptible isolates that originated from Carmi produced more DON than those collected from 

the moderately resistant level. Highly susceptible and moderately resistant isolates from 

Brownstown produced more DON than those collected from the moderately susceptible level 

which produced close to negligible amounts of DON. Savoy isolates consistently produced DON 

across levels but tended to produce less DON the more resistant the wheat line was. 

 

Throughout all assays, AUDPC, FDKs, and DON modeled one another. This is to be expected 

since host infection causes FDKs, and one outcome of such damage is DON contaminated seed. 

Across all assays, FDKs and DON followed similar trends. DON analysis shows that isolates 

collected from the highly susceptible level produced higher DON levels, suggesting that wheat 

resistance level plays a large role in determining this measure of aggressiveness. While isolates 

in the moderately resistant level depict the opposite, isolates that originated from Brownstown 



 58 

showed high DON irrespective of wheat’s level of resistance. Current FDA standards dictate 

permissible amounts of DON for human and animal consumption through grain, grain byproduct, 

and finished wheat products. Throughout the field and greenhouse assays, including DON 

quantifications, isolate origin and level of host resistance both played a large role in dictating 

aggressiveness. When isolates collected from the surrounding areas were used to inoculate fields 

near the isolate’s origin, most aggressiveness factors per isolate rose, including AUDPC, FDKs, 

and DON. Along with origin, aggressiveness levels based upon host resistance level changed 

from highly susceptible to moderately resistant. The hypothesis that a high number of spores 

equated to high levels of aggressiveness is dispelled as seen from isolates which mass produced 

spores yet lacked in aggressiveness. Overall, these findings could be of great addition to the 

arsenal that phytopathologists currently use to help develop cultivars with resistance to  

F. graminearum. 

 

Multivariate Analysis 

Pearson correlation coefficients denoted strong positive correlation between all three quantitative 

variables (Table 3.9). This is to be expected since progression of the pathogen causes diseased 

wheat spikelets with damaged kernels that translate into mycotoxin filled grain as seen in prior 

assays. Means and standard deviations for the transformed aggressiveness data can be seen in 

Table 3.10. Utilizing the PROC PRINCOMP output, PCAE accounted for 87.65% of the 

combined variability between the coefficients whereas PCA= explained 8.33% and PCA_ 

described 4.02% of the combined variability (Table 3.11). Since only PCAE had an eigenvalue 

greater than one, it was utilized for the remainder of the analysis (Figure 3.10). Focusing on the 

PCAEvector loading, all variables held positive correlations (Table 3.12). Cluster analysis using 
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Ward’s Minimum Variance Approach produced four clusters based on PCAE (Figure 3.11). 

Utilizing all prior assays and their findings, a quantifiable definition of cumulative 

aggressiveness was produced.  

 

𝐴𝐺𝑅 =
𝑃𝐶𝐴1bcdefg ∗ i𝐴𝑈𝐷𝑃𝐶k − 𝜇bcdefgm

𝜎bcdefg
+
𝑃𝐶𝐴1ndog ∗ i𝐹𝐷𝐾k − 𝜇ndogm

𝜎ndog
+
𝑃𝐶𝐴1dqrg + i𝐷𝑂𝑁k − 𝜇dqrgm

𝜎dqrg
 

 

where 𝐴𝐺𝑅 is aggressiveness defined by the additive effects between the respective PCAE 

variable, an individual value from a given transformed data set (T_AUDPC, T_FDK, and 

T_DON), the mean of the transformed data set, and the standard deviation of the transformed 

data set. Using the parameters of this research, the following equation can be used to quantify 

aggressiveness through the collective means of AUDPC utilizing DS, FDKs, and DON. 

 

𝐴𝐺𝑅 =
0.590793 ∗ (𝐴𝑈𝐷𝑃𝐶k − 0.41258)

0.51898 +
0.5645 ∗ (𝐹𝐷𝐾k + 0.76925)

0.502221 +
0.576 + (𝐷𝑂𝑁k − 0.86011)

0.79299  

 

High 𝐴𝐺𝑅 values denote an isolate is highly aggressive to its host where low 𝐴𝐺𝑅 values signify 

low quantitative aggressiveness. Utilizing this comprehensive quantitative measure of 

aggressiveness allows for a standard definition of aggressiveness across multiple disease 

measures that has yet to be applied to phytopathology and plant breeding. 
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Conclusion 

Results from the spore quantification assay gave inclination as to which isolates could cause 

higher levels of aggressiveness. For instance, the more spores a pathogen can produce, the more 

capabilities there are to cause infection. The field and greenhouse assays suggested that the 

number of spores played little role in determining pathogen aggressiveness and is a mere factor 

of pathogen biology. An example can be seen as isolates that originated from Brownstown 

consistently produced less spores yet was highly aggressive for AUDPC, FDKs, and DON 

content in field and greenhouse assays. Currently, this observation dispels the theory that the 

more spores a pathogen produces, the more aggressive it can be. For this reason, spore 

production can indicate potential aggressiveness but should not be the only trait utilized to 

determine pathogen aggressiveness. Throughout all assays, the aggressiveness traits (AUDPC, 

FDKs, and DON) tended to model one another. This is to be expected since host infection causes 

damaged kernels, and one outcome of such damage is DON contaminated seed. Given the 

environmental differences between field experiments, traits were higher in 2018 indicating that 

pathogen infection increases the further anthesis is delayed. After multivariate analysis, 

aggressiveness traits (AUDPC, FDKs, and DON) were highly positively correlated and should be 

utilized when trying to determine potential aggressiveness. Results consistently displayed that 

isolates from the highly susceptible level outperformed other resistance levels in pathogen 

aggressiveness. This concept was reiterated through a hierarchical tree diagram that visualized 

the similarity and dissimilarity between the four clusters of isolates (highly aggressive, 

moderately aggressive, and two non-aggressive bins). This comprehensive quantitative measure 

of aggressiveness can be utilized to determine a standard definition of aggressiveness across 

multiple disease measures. 
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Tables and Figures 

 

Table 3.1: ANOVA for spore quantification assay. If 𝑝 ≤ 0.05, factor is significant. 

Type 3 Analysis of Variance 

Source DF Error DF F Value P Value 

Rep 2 16 1.81 0.1949 

Origin 2 16 59.84 <.0001 

Level 2 16 22.38 <.0001 

Origin*Level 4 16 6.19 0.0033 

Error 16 . . . 

 

 

Table 3.2: Slice statements for spore quantification assay between origin of isolate and resistance 

level. If 𝑝 ≤ 0.05, factor level is significant. 

Tests of Effect Slices 

Effect Origin Level Num 
DF 

Den  
DF 

F 
Value 

P 
Value 

Origin*Level Brownstown  2 16 10.17 0.0014 

Origin*Level Carmi  2 16 1.18 0.3322 

Origin*Level Savoy  2 16 23.40 <.0001 

Origin*Level  Highly Susceptible 2 16 16.33 0.0001 

Origin*Level  Moderately Resistant 2 16 22.99 <.0001 

Origin*Level  Moderately Susceptible 2 16 32.89 <.0001 
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Table 3.3: ANOVA for 2017 field aggressiveness assay across AUDPC, FDKs, and DON values. 

If 𝑝 ≤ 0.05, factor is significant. 

Type 3 Analysis of Variance 

 AUDPC FDK DON 

Source DF Error 
DF 

F 
Value 

P 
Value DF Error 

DF 
F 

Value 
P 

Value DF Error 
DF 

F 
Value 

P 
Value 

Cultivar 1 2.0539 5.47 0.1409 1 2.0247 1.24 0.3803 1 2.0088 1.29 0.3733 

Rep 2 2 1.14 0.4677 2 2 0.92 0.5216 2 2 1.37 0.4218 

Cultivar*Rep 2 70 2.53 0.0873 2 70 5.49 0.0061 2 32 0.90 0.4167 

Origin 2 70 4.54 0.0140 2 70 6.20 0.0033 2 32 1.16 0.3267 

Level 2 70 6.80 0.0020 2 70 10.48 0.0001 2 32 4.43 0.0200 

Cultivar* Origin 2 70 0.57 0.5655 2 70 0.43 0.6547 2 32 0.24 0.7890 

Cultivar* Level 2 70 0.02 0.9813 2 70 1.34 0.2689 2 32 0.82 0.4509 

Origin * Level 4 70 11.88 <.0001 4 70 19.98 <.0001 4 32 8.94 <.0001 

Cultivar* 
Origin * Level 4 70 1.71 0.1578 4 70 0.58 0.6799 4 32 0.32 0.8643 

Error 70 . . . 70 . . . 32 . . . 
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Table 3.4: Slice statements for 2017 field aggressiveness assay across AUDPC, FDKs, and DON 

values between origin of isolate and resistance level. If 𝑝 ≤ 0.05, factor level is significant. 

Tests of Effect Slices 

   AUDPC FDK DON 

Effect Origin Level F 
Value 

P 
Value 

F 
Value 

P 
Value 

F 
Value 

P 
Value 

Origin*Level Brownstown  27.80 <.0001 31.72 <.0001 14.07 <.0001 

Origin*Level Carmi  3.44 0.0374 17.89 <.0001 6.90 0.0032 

Origin*Level Savoy  0.01 0.9946 0.02 0.9804 0.68 0.5121 

Origin*Level  Highly Susceptible 0.26 0.7704 0.74 0.4815 1.76 0.1884 

Origin*Level  Moderately Resistant 4.61 0.0132 21.07 <.0001 7.72 0.0018 

Origin*Level  Moderately Susceptible 22.10 <.0001 31.72 <.0001 9.20 0.0007 
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Table 3.5: ANOVA for 2018 field aggressiveness assay across AUDPC, FDKs, and DON values. 

If 𝑝 ≤ 0.05, factor is significant. 

Type 3 Analysis of Variance 

 AUDPC FDK DON 

Source DF Error 
DF 

F 
Value 

P 
Value DF Error 

DF 
F 

Value 
P 

Value DF Error 
DF 

F 
Value 

P 
Value 

Cultivar 1 4.0004 15.40 0.0172 1 4.0012 7.69 0.0501 1 4 12.03 0.0256 

Rep 4 4 3.98 0.1048 4 4 7.26 0.0405 4 4 3.53 0.1247 

Cultivar*Rep 4 152 3.39 0.0109 4 152 1.19 0.3186 4 64 1.92 0.1184 

Origin 2 152 7.10 0.0011 2 152 22.83 <.0001 2 64 275.53 <.0001 

Level 2 152 25.90 <.0001 2 152 30.86 <.0001 2 64 132.31 <.0001 

Cultivar* Origin 2 152 4.18 0.0171 2 152 2.19 0.1157 2 64 5.66 0.0054 

Cultivar* Level 2 152 3.03 0.0511 2 152 0.68 0.5066 2 64 1.50 0.2312 

Origin * Level 4 152 13.70 <.0001 4 152 11.63 <.0001 4 64 78.73 <.0001 

Cultivar* 
Origin * Level 4 152 1.70 0.1529 4 152 1.97 0.1018 4 64 0.17 0.9522 

Error 152 . . . 152 . . . 64 . . . 
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Table 3.6: Slice statements for 2018 field aggressiveness assay across AUDPC, FDKs, and DON 

values between origin of isolate and resistance level. If 𝑝 ≤ 0.05, factor level is significant. 

Tests of Effect Slices 

   AUDPC FDK DON 

Effect Origin Level F 
Value 

P 
Value 

F 
Value 

P 
Value 

F 
Value 

P 
Value 

Origin*Level Brownstown  21.13 <.0001 9.71 0.0001 14.44 <.0001 

Origin*Level Carmi  26.23 <.0001 41.75 <.0001 266.35 <.0001 

Origin*Level Savoy  5.44 0.0052 2.66 0.0733 8.99 0.0004 

Origin*Level  Highly Susceptible 0.76 0.4675 0.29 0.7502 2.08 0.1330 

Origin*Level  Moderately Resistant 20.82 <.0001 17.36 <.0001 232.59 <.0001 

Origin*Level  Moderately Susceptible 12.83 <.0001 28.38 <.0001 198.32 <.0001 
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Table 3.7: ANOVA for greenhouse aggressiveness assay across AUDPC, FDKs, and DON 

values. If 𝑝 ≤ 0.05, factor is significant. 

Type 3 Analysis of Variance 

 AUDPC FDK DON 

Source DF Error 
DF 

F 
Value 

P 
Value DF Error 

DF 
F 

Value 
P 

Value DF Error 
DF 

F 
Value 

P 
Value 

Cultivar 1 3.0033 15.64 0.0288 1 3.0095 13.53 0.0346 1 3 27.97 0.0132 

Rep 3 3 0.93 0.5216 3 3 1.04 0.4881 3 3 0.43 0.7484 

Cultivar*Rep 3 47 1.47 0.2354 3 47 0.52 0.6721 3 48 0.42 0.7391 

Origin 2 47 3.64 0.0339 2 47 0.19 0.8268 2 48 19.26 <.0001 

Level 2 47 13.02 <.0001 2 47 2.93 0.0631 2 48 30.88 <.0001 

Cultivar* Origin 2 47 1.60 0.2123 2 47 0.88 0.4217 2 48 0.87 0.4251 

Cultivar* Level 2 47 1.46 0.2422 2 47 1.70 0.1933 2 48 0.73 0.4882 

Origin * Level 4 47 16.09 <.0001 4 47 4.19 0.0055 4 48 63.50 <.0001 

Cultivar* 
Origin * Level 4 47 2.45 0.0593 4 47 1.93 0.1207 4 48 0.53 0.7123 

Error 47 . . . 47 . . . 48 . . . 
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Table 3.8: Slice statements for greenhouse aggressiveness assay across AUDPC, FDKs, and 

DON values between origin of isolate and resistance level. If 𝑝 ≤ 0.05, factor level is 

significant. 

Tests of Effect Slices 

   AUDPC FDK DON 

Effect Origin Level F 
Value 

P 
Value 

F 
Value 

P 
Value 

F 
Value 

P 
Value 

Origin*Level Brownstown  23.97 <.0001 5.37 0.0079 54.08 <.0001 

Origin*Level Carmi  17.29 <.0001 3.41 0.0414 102.88 <.0001 

Origin*Level Savoy  2.20 0.1221 2.20 0.1226 0.92 0.4046 

Origin*Level  Highly Susceptible 0.66 0.5242 1.59 0.2138 0.35 0.7075 

Origin*Level  Moderately Resistant 8.01 0.0010 2.09 0.1343 92.81 <.0001 

Origin*Level  Moderately Susceptible 26.99 <.0001 4.66 0.0142 53.11 <.0001 
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Table 3.9: Pearson correlation coefficients between transformed AUDPC (T_AUDPC), 

transformed FDK (T_FDK), and transformed DON (T_DON). Coefficient values of 0.7 ≤ |𝑟| ≤

1.0 signified a strong interaction relationship. 

Pearson Correlation Coefficients 
Prob |r| under HO: Rho = 0 
Number of Observations 

 T_AUDPC T_FDK T_DON 

T_AUDPC  
0.84508 
< 0.0001 

54 

0.86752 
< 0.0001 

48 

T_FDK   
0.75595 
< 0.0001 

48 

T_DON    

 

 

 

 

 

Table 3.10: Mean and standard deviation calculations for transformed AUDPC (T_AUDPC), 

transformed FDK (T_FDK), and transformed DON (T_DON). 

Simple Statistics 

 T_AUDPC T_FDK T_DON 

Mean 0.41258 -0.76925 0.86011 

Standard Deviation 0.51898 0.50221 0.79299 
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Table 3.11: Output eigenvalues denote PCAE accounts for 87.65% of the combined variability 

between coefficients. 

Eigenvalues of the Correlation Matrix 

 Eigenvalue Difference Proportion Cumulative 

𝐏𝐂𝐀𝟏 2.62950302 2.37954178 0.8765 0.8765 

𝐏𝐂𝐀𝟐 0.24996124 0.12942549 0.0833 0.9598 

𝐏𝐂𝐀𝟑 0.12053574 NA 0.0402 1.0000 
 

 

 

 

 

 

 

 

 

Table 3.12: Vector loadings of each principal component. PCAE denotes positive correlations 

between all variables. 

Eigenvectors 

 𝐏𝐂𝐀𝟏 𝐏𝐂𝐀𝟐 𝐏𝐂𝐀𝟑 

T_AUDPC 0.590793 -0.170036 -0.788702 

T_FDK 0.564534 0.785509 0.253529 

T_DON 0.576423 -0.595033 0.560064 
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Figure 3.1: Field inoculated wheat: (a-b) center spikelet inoculated with isolate, (c) freshly 

inoculated heads covered with shoot bags for 48hrs. 

 

 

 

 

   

Figure 3.2: Greenhouse inoculated wheat: (a-b) center spikelet inoculated with isolate, (c) freshly 

inoculated heads were placed in humidity chamber that sprayed free-floating water droplets at 

given time intervals. 

a) b) c) 

a) b) c) 
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Figure 3.3: Back-transformed spore quantification assay for representative isolates denoted by 

origin of collection and resistance level. Different letters from a – c denote significant 

differences at 𝑝 ≤ 0.05. 
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Figure 3.4: Back-transformed 2017 field aggressiveness assay for representative isolates denoted 

by origin of collection and resistance level. Bar graph describes AUDPC where different letters 

from a – b denote significant differences within AUDPC at 𝑝 ≤ 0.05. Line graph describes 

FDKs where different letters from x – y denote significant differences within FDKs at 𝑝 ≤ 0.05. 
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Figure 3.5: Back-transformed 2018 field aggressiveness assay for representative isolates denoted 

by origin of collection and resistance level. Bar graph describes AUDPC where different letters 

from a – c denote significant differences within AUDPC at 𝑝 ≤ 0.05. Line graph describes 

FDKs where different letters from w – z denote significant differences within FDKs at 𝑝 ≤ 0.05. 
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Figure 3.6: Back-transformed greenhouse aggressiveness assay for representative isolates 

denoted by origin of collection and resistance level. Bar graph describes AUDPC where different 

letters from a – d denote significant differences within AUDPC at 𝑝 ≤ 0.05. Line graph 

describes FDKs where different letters from x – y denote significant differences within FDKs at 

𝑝 ≤ 0.05. 
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Figure 3.7: Back-transformed 2017 field aggressiveness assay for DON values with 

representative isolates denoted by origin of collection and resistance level. Different letters from 

a – c denote significant differences at 𝑝 ≤ 0.05. 
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Figure 3.8: Back-transformed 2018 field aggressiveness assay for DON values with 

representative isolates denoted by origin of collection and resistance level. Different letters from 

a – d denote significant differences at 𝑝 ≤ 0.05. 
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Figure 3.9: Back-transformed greenhouse aggressiveness assay for DON values with 

representative isolates denoted by origin of collection and resistance level. Different letters from 

a – c denote significant differences at 𝑝 ≤ 0.05. 
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Figure 3.10: Output eigenvalues denote the proportion of variance explained per principal 

component. PCAE accounts for the highest amount of variability between the combined 

coefficients.  
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Figure 3.11: Dendrogram displays principal cluster analysis for representative isolates bifurcated 

into four bins based on the index value.  
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APPENDIX A: TRIMMING FOR BLAST ANALYSIS 

Representative isolate sequences were trimmed in the following manner: 1) all uncalled 

nucleotides (N) were removed after a 5N repeating sequence (NNNNN), 2: 160bps were 

trimmed from the 5’ area, 3) 160bps were trimmed from the 3’ area, and 4) all remaining bps 

were used for analysis (area marked in yellow). 

 

Example of trimmed DNA sequence output for a given isolate. 

5’:GATGATANATCGGNGCGGATATGCAATAGCNGACCTNGGNGCTTNAGGCGCTCA

TNTNGGTCNCCTNAGNCTGCGGGGNCGGACTATTTTCTGATCTGCTGCGCGAANTTT

GNTTCCAATTNNCNCGACTNGTCTTGTCCTCCTTAANCATAGAGCGAACCATCGAGA

AGTTCGAGAAGGTTGGTCTCATTTTCCTCGATCGCGCGCCCTTTCCCTTTCGAAATAT

CATTCGAATCGCCCTCACACGACGACTCGATACGCGCCTGTTACCCCGCTCGAGGTC

AAAAATTTTGCGGCTTTGTCGTAATTTTTTTCCCGGTGGGGCTCATACCCCGCCACTC

GAGCGACAGGCGTCTGCCCTCTTCCCACAAACCATTCCCTGGGCGCTCATCATCACG

TGTCAACCAGTCACTAACCACCTGTCNATAGGAAGCCGCCGAGCTCGGTAAGGGTT

CCTTCNAGTACGCCTGGGTTCTTGACAAGCTCAAAGCCGAGCGTGAGCGTGGNATCN

CCATTGATATCGCCCTCTGGAAGTTCGAGACTCCNCGCTACNATGNCACCGNCNTTG

GNANGNNGNCNCCNCNGCNGNCNNCNNNTTCNCNNANNAANNNGGNNNNNNNANN

CNCCCGGNCNCCGNGNNTTCNNNNNNAANNNGANCNCTGGNNNCNNCNAANNNNN

NNNNNNNNNN:3’ 
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APPENDIX B: R CODE FOR AUDPC STATISTICAL ANALYSIS 

R code and packages used to determine AUDPC values from DS data points for field and 
greenhouse aggressiveness assays. 
 
# install and load package to run AUDPC 
install.packages("agricolae") 
library(agricolae) 
 
# rename input csv file 
f17sev <- read.csv("field2017 DS.csv") 
 
# manually change factors into numerical data 
str(f17sev) 
 
# manually change factors into numbers 
f17sev$DS14 <- as.numeric(as.character(f17sev$DS14)) 
f17sev[1,9] 
 
# disease severity measurements taken at 14, 21, & 28dpi 
t0<-14 
t1<-21 
t2<-28 
 
# dpi placed into a vector 
time.period<-c(t0,t1,t2) 
 
# place each row value into x 
x<-(1:487) 
 
# for all 3 DS values in x per row, calculate absolute AUDPC by dpi as a 
number and print and insert back into sev(original csv) 
for (val in x) {f17sev$AUDPC[val]<-print(audpc(as.numeric(f17sev[val,10:12]), 
time.period)) } 
 
# export file back to working directory 
write.csv(f17sev, file = "field17_AUDPCvalues.csv") 
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APPENDIX C: SAS CODE FOR UNIVARIATE ANALYSIS 

SAS code used to for univariate analysis of aggressiveness traits (AUDPC, FDKs, and DON) 
across field and greenhouse assays. Thank you to Dr. Carrie Butts-Wilmsmeyer for statistical 
guidance. An example is provided here for field 2017 AUDPC values. 
 
 
data field2017; 
infile "C:/Users/kolblab/Desktop/Melissa Salazar\Aggressiveness\2017 Field 
Assay\field17_AUDPCvalues.csv” dlm="," firstobs=2; 
input year exp$ rep origin$ level$ plot cultivar$ isolate$ head$ DS14 DS21 
DS28 AUDPC FDK DON; 
 
AUDPC_Tlog=log10(AUDPC+0.01); 
FDK_Tlog=log10(FDK+0.01); 
DON_Tlog=log10(DON+0.01); 
run; 
 
ods graphics on; 
 
proc mixed data=field2017 method=type3; 
class rep origin level cultivar; 
model AUDPC_Tlog = cultivar origin level level*cultivar origin*cultivar 
origin*level origin*level*cultivar / ddfm=kr outpred=AUDPC_Tresids; 
random rep rep*cultivar; 
lsmeans origin*level / slice=origin slice=level 
run; 
	
proc unnivariate data=AUDPC_Tresids normal plot; var resid; run; 
	
proc glm data=AUDPC_Tresids; 
class rep origin level cultivar; 
model resid = cultivar origin level level*cultivar origin*cultivar 
origin*level origin*level*cultivar; 
means origin*level / hovtest=bf; 
run; 
 
proc glimmix data=field2017; 
class rep origin level cultivar; 
model AUDPC_Tlog = cultivar origin level level*cultivar origin*cultivar 
origin*level origin*group*cultivar; 
random rep rep*cultivar; 
lsmeans origin*level / lines adjust=tukey; 
run; 
 
ods graphics off; 
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APPENDIX D: SAS CODE FOR MULTIVARIATE ANALYSIS 

SAS code used to for multivariate analysis of aggressiveness traits (AUDPC, FDKs, and DON) 
across field and greenhouse assays. Thank you to Dr. Carrie Butts-Wilmsmeyer for statistical 
guidance. 
 
data don; 
infile "C:/Users/cjbutts2/Documents/All Don Values.csv" dlm="," firstobs=2; 
length Exp$5 Cultivar$20 Loc$5 Group$5 Isolate$15 Plot$30; 
input Exp$ Year Rep Cultivar$ Origin$ Level$ Isolate$ AUDPC T_AUDPC FDK T_FDK 
Plot$ DON T_DON; 
run; 
   
proc corr data=don; 
var t_audpc t_fdk t_don; 
run; 
  
proc princomp data=don out=scores; 
var t_audpc t_fdk t_don; 
run; 
  
proc sort data=don; 
by exp year cultivar origin level; 
run; 
  
proc means data=don noprint; 
var t_audpc t_fdk t_don; 
by exp year cultivar origin level; 
output out=agrmeans; 
run; 
  
data agrmeans; 
set agrmeans; 
if _STAT_~="MEAN" then delete; 
run; 
  
proc corr data=agrmeans; 
var t_audpc t_fdk t_don; 
run; 
  
proc princomp data=agrmeans out=scores; 
var t_audpc t_fdk t_don; 
run; 
 
symbol1 v=dot c=blue; 
symbol2 v=dot c=red; 
symbol3 v=dot c=green; 
symbol4 v=dot c=magenta; 
symbol5 v=dot c=orange; 
symbol6 v=dot c=cyan; 
symbol7 v=dot c=gold; 
symbol8 v=dot c=black; 
symbol9 v=dot c=purple; 
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proc gplot data=scores; 
plot prin1*level=origin; 
plot prin1*origin= level; 
run; 
  
data scores; 
set scores; 
isolate=catx("_",origin,level); 
run; 
  
proc print data=scores (obs=10); 
run; 
  
proc sort data=scores; 
by isolate; 
run; 
  
proc means data=scores noprint; 
var prin1 t_audpc t_fdk t_don; 
by isolate; 
output out=pcameans; 
run; 
  
data pcameans; 
set pcameans; 
if _STAT_~= "MEAN" then delete; 
run; 
  
proc cluster data=pcameans method=ward simple noeigen nonorm rmsstd rsquare 
out=clust; 
var prin1; 
id isolate; 
run; 
  
proc tree data=clust nclusters=4 out=shorttree; 
id isolate; 
run; 
 
proc sort data=clust; 
by isolate; 
run; 
 
proc sort data=shorttree; 
by isolate; 
run; 
 
data merged_cluster; 
merge clust shorttree; 
by isolate; 
run; 
 
data merged_cluster; 
set merged_cluster; 
if isolate="" then delete; 
run; 
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proc sort data=pcameans; 
by isolate; 
run; 
 
proc sort data=merged_cluster; 
by isolate; 
run; 
 
data merged_cluster; 
merge merged_cluster pcameans; 
by isolate; 
run; 
 
proc print data=merged_cluster; 
run; 
  
proc sort data=merged_cluster; 
by cluster; 
run; 
  
proc print data=merged_cluster; 
var isolate cluster; 
run; 
  
proc means data=merged_cluster; 
by cluster; 
var prin1; 
run; 
  
/*proc cluster data=pcameans method=ward simple noeigen nonorm rmsstd rsquare 
out=clust; 
var t_audpc t_fdk t_don; 
id isolate; 
run;*/ 
  
proc print data=pcameans; 
run;	


