Quantifying long loop variability in Recent terebratulide brachiopods and its implications for species delimitation in the fossil record

Natalia López Carranza, Ph.D. candidate

PI: Dr. Sandra J. Carlson

Brachiopods and their long loops

- One of the most diverse and abundant marine invertebrates in the fossil record.
- The loop is a calcareous structure that supports the lophophore.
- Important morphological character.
 - Phylogeny, taxonomy, ontogeny

Terebratalia transversa

Studying loop morphology and variability

- Long loops are geometrically complex.
- How can we study them?
 - Illustrations
 - Photographs
 - SEM
 - Serial sections
 - CT scans

Laqueus erythraeus

SEM

Pictothyris (taken from Saito, 1996)

Terebrataliopsis, Cretaceous brachiopod (modified from Smirnova, 1962; Muir-Wood, 1956)

 To fully capture shape and variability in quantitative manner, it is necessary to work with 3D reconstructions.

CT scanning and 3D geometric morphometrics

L. quadratus, Japan

Research question and big picture

- Is it possible to discriminate species based on loop morphology?
 - Recent brachiopods

- Can we translate what we observe in extant specimens to fossils?
- Correspondence between named species in Recent and fossil record

D. occidentalis

Species

- Three genera from Order Terebratulida
 - Terebratalia, Dallinella, Laqueus
- North Pacific distribution
- Some with problematic taxonomic history

Terebratalia transversa, Friday Harbor, WA

Dallinella occidentalis, Catalina Island, CA

Terebratalia transversa, Tacoma Narrows, WA

Species

Laqueus

L. erythraeus

Catalina Island, CA

Monterey Bay, CA

L. blanfordi Japan

L. quadratus Japan

L. rubellus Japan

Methods

3D isosurface models

- From CT scans
- Amira

Landmark and semilandmark registration

- Based on proposed landmark schemes
- Stratovan Checkpoint

Landmark superimposition

- Generalized Procrustes Analysis
- Semilandmark sliding using bending energy

Ordination Methods

- Principal Component Analyses (PCA)
- Canonical Variate Analyses (CVA) and betweengroup PCAs

Statistical methods

Procrustes ANOVA

R packages geomorph and Morpho

Landmark schemes

Semilandmark scheme

Isosurface models

D. occidentalis, Catalina Island, CA

T. transversa, Tacoma Narrows, WA

Landmark registration

Stratovan Checkpoint

T. transversa

Landmark superimposition

50 specimens, 15 landmarks, 69 semilandmarks

Exploring general pattern of variability

PCA and CVA for Dallinella and Terebratalia

Maximizes betweengroup differences relative to within-group covariation

Cross-validated classification result (CVA):

	D. occidentalis	T. coreanica	T. transversa
D. occidentalis	5 (100%)	0	0
T. coreanica	0	7 (87.5%)	1 (12.5%)
T. transversa	0	2 (25%)	6 (75%)

Overall classification accuracy: 85.71%

Procrustes ANOVA: *Dallinella* and *Terebratalia*

- Is shape dependent on size?
 - No, size does not have a statistically significant impact on shape (p=0.15).

- Do species differ in shape?
 - Yes, species are statistically different (p=0.001).

PCA and CVA for Laqueus

Classification result (CVA):

	L. erythraeus	L. vancouveriensis	L. rubellus
L. erythraeus	16 (100%)	0	0
L. vancouveriensis	0	12 (100%)	0
L. rubellus	0	0	10 (100%)

Overall classification accuracy: 100%

Procrustes ANOVA: Laqueus

- Is shape dependent on size?
 - Yes, size has statistically significant impact on shape (p=0.001).

- Do species differ in shape?
 - Yes, species are statistically different (p=0.001).

Summary

- Is it possible to discriminate species based on loop morphology?
 - Yes, each species has a statistically distinct loop.
 - Although species of *Terebratalia* seem to be harder to tell apart, possibly due to its highly variable loops.
 - Each species cluster together in shape space.
- CT technology plays an important role in understanding geometrically complex structures like loops.

Future directions

- Since loops are rarely preserved in the fossil record, how can we apply these results to fossil specimens? CT scanning of fossils? YES.
- Is there correspondence between loop shape and shell shape?
 - Outline analyses of Recent specimens + loops
 - Outline analyses of fossil (Cenozoic) specimens
- Include genetic data.

Fossils!

• Thanks Invert Paleo Coll. at NHM!

Terebratalia transversa

Laqueus vancouveriensis

Acknowledgments

- National Science Foundation grant EAR 1147537
- Dr. Douglas J. Rowland, Center for Molecular and Genomic Imaging, UC Davis.
- Invert Paleo, Natural History Museum Los Angeles County
- Dr. Mark Florence and Holly Little, National Museum of Natural History, Smithsonian Institution
- California Academy of Sciences
- Santa Barbara Museum of Natural History
- National Science Foundation grant EAR 1147537

