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Abstract: In this paper, we define a generalized Wielandt subgroup, local generalized Wielandt subgroup 
and its series for finite group and discuss its different basic properties which explain the notion of 
generalized Wielandt subgroup in a better way. We bound generalized Wielandt length as a function of 
nilpotency classes of its Sylow subgroups. 

Key words: Wielandt subgroup • subnormal subgroup • sylow subgroup • soluble subgroup

INTRODUCTION

The Wielandt subgroup of a group G is denoted by 
ω(G), consists of those elements of G which normalize 
each subnormal subgroup of G. The Wielandt subgroup 
is the generalization of the idea of centre of a group. In 
[4] Helmut Wielandt, for whom the subgroup named, 
showed that for any minimal normal subgroup N of G 
satisfying minimal condition on subnormal subgroups, 
ω(G) contains N. Thus for a finite non-trivial group the 
Wielandt subgroup is always a non-trivial characteristic 
subgroup. In the same paper he define a series in G by
setting ω0(G) = 1 and for i≥1

i i 1 i 1(G) (G) (G (G))− −ω ω = ω ω

The  smallest  n  such  that ωn(G)  =  G  is  called 
the Wielandt length of G and denoted by ωl(G),
consequently Wielandt length is well-defined. In [1] A. 
Ali bound Wielandt length as a function of numerical 
invariants of Sylow subgroups and the invariants for the 
Sylow subgroups he considered are Wielandt length 
and nilpotency class. The groups having Wielandt 
length one are called T-groups, those in which every 
subnormal subgroup is normal. The structure of T-
groups is investigated by Gashutz [7], Zacher [3],
Robinson [2] and Peng [6]. In particular finite soluble 
T-groups  are  completely  characterized  by  Robinson 
[2]. In [5] Bryce and Cossey give the idea of local 
Wielandt subgroup, it is the normalizer of all p′-perfect
subnormal subgroups of G and denotes it by ωp(G) for 
some prime p. Also the references [1, 5] have
influenced much of the current work, which provides a 
substantial generalization of these two papers.

In this paper we define a generalized Wielandt 
subgroup and its series for finite group, “it is the set of 
elements of a group G which normalize all subnormal 
subgroups of G which are contained in N is the
generalized Wielandt of G with respect to N and we 
denote  it  by ωN(G)”. It is clearly a normal subgroup 
of G  but  in  general  it  may  be  different  than N.
For example

3A 3 3(S ) Sω = . It is also obvious that

N(G) (G)ω ⊆ ω  and in particular N(G) (G)ω = ω  if N = G 

or N = ω(G) or N is the unique maximal normal
subgroup. More (i) If M, N are normal subgroups of G
such that M⊂N, then N M(G) (G)ω ⊂ ω . (ii) If M is a 
subgroup  and  N  is  a  normal  subgroup  of  a  group 
G such that N⊂M, then N N(G) M (M)ω ∩ = ω . (iii) If G
is a T-group and N is a normal subgroup of G, then 
ωN(G) = G. However if M is normal in (ii) then ωN(G)
is normal in G. Also we see that the converse of (iii) is 
not true since if

( )28 2
8

2 4 2 4
1 2

G D x,y:x y xy 1

N x , x and N x,x ,x

= = = = =

= =

then
1 2N N(G) and (G) Gω ω =  but G is not a T-group.

Since ω(G)⊂ωN(G)  so  generalized  Wielandt
subgroup is non-trivial for any finite group G. We
define  the  ascending  generalized  Wielandt  series  for 
G  as  follows.  Write ω0,N(G) = 1, ω1,N(G) = ωN(G)
and for i > 1, define the subgroup ωi,N(G) of G
inductively by:

i , N i,NN (G) (G) i ,N i 1,N i ,N(G (G)) (G) (G)ω ω +ω ω = ω ω
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The smallest n such that ωn,N(G) = G is called the 
generalized Wielandt length of G with respect to N and 
we denote it by ωNl(G). We observe that a number of 
results are more transparent if framed in terms of local 
generalized Wielandt subgroup, defined for each prime 
p as “let G be a finite group and N be a normal
subgroup of G. The set of those elements of G which 
normalize all p′-perfect subnormal subgroups of G that 
are contained in N, is called the local generalized
Wielandt subgroup of G with respect to N and we 
denote it by p

N(G)ω ”. It is important to note that the 
groups we deal with throughout in this paper are finite. 

In §2 we discussed different basic properties of 
generalized Wielandt subgroup which explain the
notion of generalized Wielandt subgroup in a better 
way, among other things we prove that, “if G is a group 
satisfying minimal condition on those subnormal
subgroups which are contained in N, where N is normal 
subgroup of G, then ωN(G) has finite index in G”.

In §3 we use the technique which was developed in 
[1], for calculating the generalized Wielandt subgroup 
of the semi-direct product of two groups of co-prime
order. In §4 we have shown the variation of local 
generalized Wielandt subgroup and establish a relation 
between the generalized Wielandt subgroup and local 
generalized Wielandt subgroup for a finite soluble
group. In §5 we use the technique of §3 and the relation 
of §4 to prove among other things, that “if a normal 
Sylow p-subgroup of G has nilpotency class n > 1, a 
normal Sylow p-subgroup of G/ωN(G) has nilpotency 
class at most n-1”. Also we establish a relation between 
the generalized Wielandt length of a supersoluble and 
other invariants of its normal Sylow subgroups, we 
succeed to prove a general result that, “if G is a
supersoluble group and n is the maximum of the
nilpotency classes of the normal Sylow subgroups of G, 
then G has generalized Wielandt length at most n+1 for 
all n”.

GENERALIZED WIELANDT SUBGROUP

In the following proposition we have establish a 
relation between N and generalized Wielandt subgroup 
with respect to N and investigate the condition under 
which N is contained in ωN(G).

Proposition 2.1: Let G be a group and N be any normal 
subgroup  of  G,  then N(G) N (N)ω ∩ = ω   and  N  is  a 

T-group if and only if N is contained in ωN(G).

Proof: Let n be any arbitrary element of ω(G) and S1 be 
a subnormal subgroup of G contained in N, clearly S1 is 
subnormal in N, so (S1)n = S1 and so n belongs to 
ωN(G), so N(N) (G)ω ⊆ ω  and hence 

N(N) (G) Nω ⊆ω ∩

Conversely let g be any arbitrary element of
ωN(G)∩N. Let S be a subnormal subgroup of N, so S is 
subnormal in G contained in N, therefore Sx = S and so 
g belongs to ω(G), this means that N(G) N (N)ω ∩ ⊆ω .
Thus N(G) N (N)ω ∩ = ω . Now we will prove the second 
part of the proposition, for this let us suppose that N is a 
T-group and let n be any arbitrary element of N, let S 
be a subnormal subgroup of G contained in N, clearly S 
is subnormal in N and as N is a T-group therefore 
S N  so Sn = S which implies that n belongs to ωN(G)
therefore NN (G)⊆ ω . Conversely let us suppose that

NN (G)⊆ ω , we will show that N is a T-group, for this 
let S be a subnormal subgroup of N, since N is normal 
in G so S is subnormal in G contained in N therefore Sg

= S for all g belongs to ωN(G) and hence Sn = S for all n 
belongs to N therefore S N , thus the result follows

Theorem 2.2: If M and N are normal subgroups of G 
such that (|M|,|N| = 1, then

MN M N(G) (G) (G)ω = ω ∩ω

Proof: Let h be any arbitrary element of ωM(G)∩ωN(G)
and let S be any subnormal subgroup of G contained in 
MN as M, N are of coprime order so by lemma 2.1 of 
[1], we have S = (S∩M)(S∩N). Now consider 

( ) gg g gS (S M)(S N) (S M) (S N)
(S M)(S N) S

= ∩ ∩ = ∩ ∩
= ∩ ∩ =

Therefore g belongs to ωMN(G). Hence 

M N MN(G) (G) (G)ω ∩ω ≤ ω

Conversely, since M⊆MN and N⊆MN so by
property (i) we have 

MN M(G) (G)ω ≤ ω  and MN N(G) (G)ω ≤ ω  thus

MN M N(G) (G) (G)ω ≤ω ∩ω

Hence the result follows 
The following is an immediate corollary of

theorem 2.2. 

Corollary 2.3: If G is nilpotent and each Pi′s are the 
Sylow p-subgroups of G, then

ii I P (G) (G)∈∩ ω = ω
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Proposition 2.4: Let G be a group. Suppose Ni;i∈I are 
all normal subgroups of G, then 

ii I N (G) (G)∈∩ ω = ω .

Proof: First we show that 
ii I N (G) (G)∈∩ ω ⊆ ω . For this, 

let g be any arbitrary element of 
ii I N (G)∈∩ ω this implies 

that g belong to 
iN (G)ω  for all i∈I, let S be an arbitrary 

subnormal subgroup of G. Then 
0i

S N⊆  for some i0∈I,

so Sg = S therefore g belongs to ω(G), hence
ii I N (G) (G)∈∩ ω ⊆ ω . Conversely, it is an immediate

consequence  of  the  definition  that
iN(G) (G)ω ⊆ ω  for 

all i∈I. Hence 
ii I N (G) (G)∈∩ ω = ω . The next result shows 

that ωN(G) is non- trivial in general.

Theorem 2.5: If N is a normal subgroup of G and A is 
a minimal normal subgroup of N then A normalizes 
every subnormal subgroup of G which is contained in 
N. That is A is contained in ωN(G).

Proof: We proceed by induction on |N|. Let H is
subnormal in G, such that H⊆N, H≠N and put H1 = HN,
so H1≤N. If 1A H≤/ , then A∩H1 = I and thus [A,H1] = I. 
Hence [A,H] = I. On the other hand, if A≤H1, then 

N
1A N=  for some minimal normal subgroup N1 of H1.

Indeed each conjugate n
1N , for n∈N, will be a minimal 

normal subgroup of H1 and so will normalize H, by 
induction. Therefore A normalizes H and hence is
contained in ωN(G).

Theorem  2.6: Suppose  that  G  is  any  arbitrary
group. Then ωN(G) contain every simple non-abelian
subnormal subgroup of N, where N is a normal
subgroup of G. 

Proof: Suppose that H is simple non-abelian subnormal 
subgroup of N, as N is normal in G, this implies that H 
is subnormal in G, also let K be any subnormal
subgroup of G, such that K≤N, so K is subnormal in N. 
Now if H∩K≠1 then since H∩K is subnormal in H and 
H is simple we must have H≤K and so H normalizes K 
trivially. If H∩K = 1, then [H,K] = 1 and hence the 
result follows.

In groups which satisfy minimal condition on those 
subnormal subgroups which are contained in N, where 
N is normal in that group, then generalized Wielandt 
subgroup is larger than one might expect in the
following sense.

Theorem 2.7: Suppose that G is a group satisfying 
minimal condition on those subnormal subgroups which 

are contained in N, where N is normal subgroup of G, 
then ωN(G) has finite index in G.

Proof: Let R denote the finite residual of G such that 
R⊆N and let H is subnormal in G, such that H⊆N. To 
prove that HR = H will be conclusive. Accordingly 
assume that this is false and let the subnormal subgroup 
such that H⊆N, be chosen minimal subject to HR≠H.
Denote by P the joint of all proper subnormal
subgroups of H: then PR = P by minimality of H.
Moreover P H  and clearly H/P must be simple. Since 
P HR  and HR is subnormal in G, such that HR⊆N,
the group HR/P inherits the property minimal
subnormal from G. We may therefore by using theorem 
13.3.6 of [2], to conclude that HR/P possesses only 
finitely many minimal subgroups. If x∈R, then xP H≤
and Hx/P is a simple and therefore a minimal,
subnormal subgroup of HR/P. Consequently the
number of conjugate of H in R is finite or equivalently 
|R: NR(H)| is finite. However, R has no proper
subgroups of finite index, so R: NR(H) and HR = H, a 
contradiction. Hence the result follows.

The following is an immediate corollary of the
above theorem.

Corollary 2.8: If the group G satisfies the minimal
condition on those subnormal subgroups which are
contained in N, where N is normal in G, there is an 
upper bound for the defects of those subnormal
subgroups of G.

Proof: We write W = ωN(G) and let H is subnormal in 
G, such that H⊆N. Then H HW , while G/W is finite 
by theorem 2.7, now HW/W is subnormal in the finite 
group G/W, so certainly 

s(G:HW) G : W m≤ =

Hence
s(G:HW) m 1≤ +

GENERALIZED WIELANDT SUBGROUP 
OF SEMIDIRECT PRODUCT OF TWO 

GROUPS OF COPRIME ORDER

We  begin  with  a  theorem  which proves very
useful in calculating the generalized Wielandt subgroup 
of the semidirect product of two groups of coprime 
order. To  prove  this  theorem  we  need  the  following 
two lemmas.

Lemma 3.1: Let G = BA be the semidirect product of 
subgroups A,B of coprime order with A normal in G. If 
N is a normal subgroup of G which contains A, then
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N N B(G) B (B)∩ω ∩ ⊆ ω

Proof: Let S be a subnormal subgroup of B contained 
in N. Then SA⊆N is subnormal in G. Let x be an 
element of N(G) Bω ∩ . Then (SA)x = SA, which implies 

that  SxA = SA. Now  for  all  s∈S there is some s1∈S
so that x

1s s A∈  and so 1 x
1s s A B 1− ∈ ∩ = . This means 

that x
1s s S= ∈  for all Nx (G) B∈ω ∩ . Hence we get

N N B(G) B (B)∩ω ∩ ⊆ ω

Lemma 3.2: Let G = BA be a semidirect product of 
subgroups A,B of coprime order, with A normal in G. If 
N is a normal subgroup of G such that A is the unique 
maximal normal subgroup of N, then

N(G) A (A)ω ∩ = ω .

Proof: Let x be any arbitrary element of N(G) Aω ∩

and  let  S  be  a  subnormal  subgroup  of  A. Clearly S 
is  a  subnormal  subgroup  of  G  contained  in  N. 
Then Sx = S and so x belongs to ω(A). Therefore, 

N(G) A (A)ω ∩ ⊆ω .
Conversely, let x be any arbitrary element of ω(A)

and let S be a subnormal subgroup of G contained in N. 
Since A is the unique maximal normal subgroup of N, 
so we have S⊆A. Therefore Sx = S and so x belongs to 

N(G) Aω ∩ . This means N(A) (G) Aω ⊆ ω ∩  and hence 

N(G) A (A)ω ∩ = ω
The following is an easy corollary of the above 

lemma.

Corollary 3.3: Let G = BA be a semidirect product of 
subgroups A,B of coprime order, with A normal in G. If 
N is a normal subgroup of G which is contained in A, 
then N N(G) A (A)ω ∩ = ω .

Now we use these results to prove the following 
theorem.

Theorem 3.4: Let G = BA be a semidirect product of 
subgroups A, B of coprime order with A nilpotent and 
normal. If N is a normal subgroup of G which contains
A and P is the set of those element of N B(B)∩ω  which 
act by conjugation as power automorphism on A, then 

N(G) P (A)ω = ω .

Proof: Suppose  that G  satisfies  the  hypothesis  of 
the theorem so that G = BA, (|A|,|B|) = 1 and A is 
normal and nilpotent in G. By corollary 4.1.2 of [1] we 
can write 

N N N(G) ( (G) B)( (G) A)ω = ω ∩ ω ∩

Using lemma 3.1, we get

N N B N(G) (B)( (G) A)∩ω ⊆ ω ω ∩

By lemma 3.2, the above result becomes 

N N B(G) (B) (A)∩ω ⊆ ω ω . Since A is normal and nilpotent,
every  subgroup  of  A  is  subnormal  in G. Next we 
know that A⊆N, therefore ωN(G) normalizes all
subgroups of A. Hence N(G) B Pω ∩ ⊆ . We claim that 

NP (G) B⊆ω ∩ . By definition P⊆B and we only have to 
show that NP (G)⊆ ω . To prove this let S is a subnormal 
subgroup of G such that S⊆N. Corollary 4.1.2 of [1], 
we have S (S B)(S A)= ∩ ∩ . Since S∩B is subnormal in 
B and S B N B∩ ⊆ ∩ , it is normalized by P. It follows 
from the definition of P, that P normalizes S∩A and 
hence S. This proves our claim and we get

N(G) B Pω ∩ =  and hence N(G) B P (A)ω ∩ = ω

LOCAL GENERALIZED 
WIELANDT SUBGROUP

In the following results we have shown the
variation of local generalized Wielandt subgroup for a 
finite soluble group.

Lemma 4.1: If M, N are normal subgroups of a soluble 
group G, then

(i) MN M N N(G)N N (G N)ω ⊆ ω

(ii) p p
MN M N N(G)N N (G N)ω ⊆ ω

Proof
(i) Let  g  be  an  arbitrary  element of MN(G)N Nω , so 

g = xN, where MNx (G)∈ω . Let S/N be a subnormal 
subgroup of G/N contained in MN/N. This implies 
that S is a subnormal subgroup of G that is
contained in MN. Now consider 

1 1

g 1 1

x

(S N) g (S N ) g (xN) (SN)(xN)

x N(S N)xN x Sx N S N S N
− −

− −= =

= = = =

This means that M N Ng (G N)∈ω  and hence

MN M N N(G)N N (G N)ω ⊆ ω

(ii) Let  g  be  an arbitrary element of p
M N(G)N Nω , so 

g = xN, where p
MNx (G)∈ω . Let S/N be a p′-perfect

subnormal subgroup of G/N contained in MN/N. 
This implies that S is a p′-perfect subnormal
subgroup of G and is contained in MN. Now
consider
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1 1

g 1 1

x

(S N) g (S N ) g (xN) (SN)(xN)

x N(S N)xN x Sx N S N S N
− −

− −= =

= = = =

This means p
M N Ng (G N)∈ω  and therefore

p p
MN M N N(G)N N (G N)ω ⊆ ω

Theorem 4.2: Let M, N be normal subgroups of a
soluble group G.

If N is a p′-group, then p
MNN (G)⊆ ω  and

p p
M N N MN(G N) (G) N.ω = ω

If G/N is p′-group, then p p
N(N) (G) N.ω =ω ∩

(iii) If G/N is p ′-group, then 

p p
p p NO ( (N)) O ( (G) N)ω = ω ∩

Proof: (i) It follows directly from lemma 4.1(ii) that

p p
MN M N N(G)N N (G N)ω ⊆ ω

Conversely we prove this relation by induction on |N|. 
First let us suppose that N is a minimal normal
subgroup of G. Then p

MNN (G)⊆ ω . Let xN be an
arbitrary element of p

M N N(G N)ω . If S is  a  p′-perfect
subnormal subgroup of G contained in MN. Then x
belongs to NG(NS) and so by lemma 2.2.(i) of [5], x
belongs to NG(S). Hence p

MNx (G)∈ω  therefore
p
MNxN (G) N∈ω  thus p p

M N N MN(G N) (G) N.ω ⊆ ω  Now let 
us consider the case if N is not the minimal normal let 
N1⊆N be a minimal normal subgroup of G, then

1

p
1 M N N 1N N (G N )⊆ ω  by induction, so

1

p p
1 M N N 1 MN 1N N (G N ) (G) N⊆ ω = ω

and so p
MNN (G)⊆ ω .

Let 1

1

G N: G N N Nθ →  be the natural

isomo rphism. Then 

1
1

1

p p 1
M N N M N N

1N N

p
M N N 1

1
p
MN 1

1

p
MN

G N(G N) ( )N N

(G N )
byinduction( N N ) ,

(G) N , byinductionN N

( (G) N)

ω θ = ω

ω
=

ω=

= ω θ

Therefore

p p
M N N MN(G N) (G) Nω = ω

and hence the induction is completed 

(ii) Let x be an arbitrary element of ωp(N) and S is a 
p′-perfect subnormal subgroup of G contained in 
N, this implies that S is a p′-perfect subnormal 
subgroup of N, so Sx = S. Thus

p p
N(N) (G) Nω ⊆ω ∩ .

Conversely, let x be an arbitrary element of
p
N(G) Nω ∩  and S is a p ′-perfect subnormal subgroup of 

N so S is a p′-perfect subnormal subgroup of G
contained in N. This means that Sx = S for all

p
Nx (G) N∈ω ∩ , so p p

N(G) N (N)ω ∩ ⊆ ω . Thus the result 
follows.

(iii) As p
p NO ( (G) N) Nω ∩ ≤ , therefore 

p p
p N p N

p
N p

p
N p

p
p

p
p

O ( (G) N) N O ( (G) N)

N (G) N O (G)

N (G) O (G)

(N) O (G) by(ii)

O ( (N))

ω ∩ ≤ ∩ ω ∩

= ∩ ω ∩ ∩

= ∩ ω ∩

= ω ∩

= ω

Now by using the above results we have
established the following important relation between 
the generalized Wielandt subgroup and local
generalized Wielandt subgroup.

Theorem 4.3: If N be a normal subgroup of a soluble
group G, then 

p
N p N(G) (G)∈πω = ∩ ω

Proof: It is obvious that p
N N(G) (G).ω ⊆ ω

Conversely let x be an arbitrary element of
p

p N(G)∈π∩ ω  and S be a subnormal subgroup of G
contained in N. Now S can be written as a product of 
subnormal subgroups each of which has a unique
maximal normal subgroup and hence a p′-perfect for 
some prime p and so each of which is normalized by x 
therefore

p
p N N(G) (G)∈π∩ ω ⊆ ω

Hence
p

N p N(G) (G)∈πω = ∩ ω
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Theorem  4.4: Let  G  be  a  soluble  group  and  G/N is 
a p′-perfect, then for a prime p

p p p

p
MO ( G ) O (G) p MO (G) p(G O (G)) (G) O (G)

′ ′ ′′ ′ω = ω

Where M G  contain N. 

Proof: By theorem 4.2(i) we have

p p p

p p
MO ( G ) O (G) p MO (G) p(G O (G)) (G) O (G)

′ ′ ′′ ′ω = ω

So we need only to show that 

p p p p

p
MO ( G ) O ( G ) p MO ( G ) O ( G ) p(G O (G)) ( G O (G))

′ ′ ′ ′′ ′ω = ω

Let pA O (G)′=  and  assume  for  convenience  that 

A = 1,  let p
MB (G)= ω , let  q≠p  be  a  prime  and  S is a 

q′-perfect subnormal subgroup of G contained in M. Put 
pN O (S)′=  so N is a p ′-perfect subnormal subgroup and 

normalized by B and so it is a normal subgroup of 
xC S : x B= ∈ . Further C/N is generated by subnormal 

p′-subgroups so it is a p′-group. Therefore
[C,B]≤C∩B≤N. It follows that [S,B]≤N≤B it means
that B normalizes S. Therefore q

MB (G)⊆ ω  for all
primes q. Now by theorem 4.3, we have 

q
q M MB (G) (G)∈π⊆ ∩ ω = ω

so
p
M MB (G) (G)= ω ⊆ ω

Converse is obvious one, hence p
M M(G) (G)ω = ω

therefore

p p p p

p

p
MO ( G ) O ( G ) p MO ( G ) O ( G ) p

p
MO ( G) p

(G O (G)) ( G O (G))

(G) O (G)
′ ′ ′ ′

′

′ ′

′

ω = ω

= ω

MAIN RESULTS

In this section our aim is to find a relation between 
the generalized Wielandt length of a supersoluble group 
with  the  invariants  of  the  normal  Sylow sub-groups
of it. We  bound  the  generalized Wielandt length in 
term of the nilpotency classes of the normal Sylow 
subgroups. We begin with a result which gives
information about the Sylow p subgroups of
generalized Wielandt subgroup of a supersoluble group.

Theorem 5.1: If A is a Sylow p-subgroup of a
supersoluble group G, then

MN p MN(AM) F(G) O ( (G))ω ∩ = ω

where M,N G,    such   that   N⊆A   and   M   is a
p′-subgroup.

Proof: Consider 

MN MN( (AM) F(G))M M (AM)M Mω ∩ ⊆ ω

Since G/M is supersoluble, it has a normal Sylow 
subgroup which is a p-group, because F(G/M) is a p-
group by theorem 5.4.8 of [2]. Thus AM/M, being a 
Sylow p-subgroup of G/M, is normal. Also 

MN M N M(AM)M M (AM M)ω ⊆ ω

by lemma 4.1(i). Again since AM/M is a normal Hall 
subgroup of G/M, by corollary 3.3, 

M N M M N M(AM M) (G M)ω ⊆ ω

and so Now by theorem 4.4, the local generalized
Wielandt subgroup of G/M is given by 

p
M N M MN(G M ) (G) Mω = ω

and therefore

p
MN MN( (AM) F(G))M M (G) Mω ∩ ⊆ ω

and so 
p

M N MN(AM) F(G) (G)ω ∩ ⊆ ω

Since MN(AM) F(G)ω ∩  is subnormal p-subgroup of 
G, so 

M N q(AM) F(G) O (G),′ω ∩ ⊆

for all primes q≠p. But by theorem 4.2,
q

q MNO (G) (G)′ ⊆ ω . Therefore,  by  using  theorem  4.3, 
we have

r
M N r MN MN(AM) F(G) (G) (G)∈πω ∩ ⊆ ∩ ω = ω

where  the  intersection  is  over  all  primes  r.  It 
follows that, since MN(AM) F(G)ω ∩  is a p-group and 
subnormal,

M N p MN(AM) F(G) O ( (G))ω ∩ ⊆ ω

Conversely, we claim that 
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p MN MNO ( (G)) (AM)ω ⊆ ω

To prove this claim suppose that S is subnormal 
subgroup of AM, such that S is contained in MN. Then 
S is subnormal subgroup of G and contained in MN. 
Thus for all p MNx O ( (G)) AM∈ ω ⊆ , we have Sx = S and 
therefore

p MN MNO ( (G)) (AM)ω ⊆ ω

Now Op(ωMN(G)) is nilpotent, characteristic
subgroup of ωMN(G) therefore normal in G. So it is 
contained in F(G). Thus we have 

p MN M NO ( (G)) (AM) F(G)ω ⊆ ω ∩

Therefore
MN p MN(AM) F(G) O ( (G))ω ∩ = ω

The following is an easy corollary of the above 
theorem. Corollary 5.2. Let G be a supersoluble group 
and suppose a normal Sylow p-subgroup of G has 
nilpotency class n>1. Then a normal Sylow p-subgroup
of G/ωN(G) has nilpotency class at most n-1. (Where 
N G , contained in every Sylow p-subgroup of G).

Proof:  Let  A   be   a   normal  Sylow  p-subgroup  of
G. Since A has nilpotency class n,

n N(A) Z(A) (A) (A)γ ⊆ ⊆ω ⊆ ω  and by corollary 3.3,

N N(A) (G)ω ⊆ ω . Since N NA (G) (G)ω ω  is normal Sylow 

p-subgroup of G/ωN(G) and 

n N N n N N(A (G) (G)) (A) (G) (G) 1γ ω ω =γ ω ω =

Therefore A/ωN(G)/ωN(G) has nilpotency class at 
most n-1.

In the following results we have tried to relate the 
generalized Wielandt length of a supersoluble group 
with its Sylow subgroups, we begin with the following 
theorem.

Theorem 5.3: Let G be a supersoluble group. If all 
Sylow p-subgroups of G are abelian except for p = 2 
and if the Sylow 2-subgroups have class at most two, 
then G has generalized Wielandt length at most two.

Proof: We begin by supposing that, for some prime p 
dividing |G|, pO (G) 1′ =  In this case Op(G) is a normal 
Sylow p-subgroup of G, by theorem 5.4.8 [2]. Consider 
the  case  p≠2. Then by hypothesis, Op(G) is abelian 
and  so  by  lemma 3.2, p NO (G) (G)⊆ ω . Moreover 
Op(G) = F(G) and using theorem 5.4.10 of [2], G/Op(G)

is abelian. It follows that G/ωN(G) is abelian and
ω2,N(G) = G. That is G has generalized Wielandt length 
two. Now consider the case when p = 2. In this case 
Op(G) = G using theorem 5.4.8 of [2] and so G has 
nilpotency class at most two. But NZ(G) (G)⊆ω  and 
hence G/ωN(G) is again abelian. Thus, under the
assumption pO (G) 1′ = , G has generalized Wielandt
length two. Now consider the general case and, for 
some prime p dividing |G|, put pH G O (G)′=  and let N 
be a normal subgroup of G and let p pK NO (G) O (G)′ ′=

is a normal subgroup of H. Note that pO (H) 1′ = . Using 
the theorem 4.2(i) and theorem 4.4, the local
generalized Wielandt subgroup of H is given as
follows:

p p p

p p

p p p
k NO ( G ) O (G) p NO (G) p

NO ( G ) O ( G ) p k

(H) (G O (G)) (G) O (G)

(G O (G)) (H)
′ ′ ′

′ ′

′ ′

′

ω = ω = ω

= ω = ω

From above case H/ωk(H) is abelian and so is
p
kH (H).ω Now

p p

p

p p
pk
NO ( G ) O (G) p

p
p
NO ( G ) p

(G O (G))H (H)
( (G O (G))

(G O (G))
(G) O (G)

′ ′

′

′

′

′

′

ω =
ω

= ω

again by theorem 4.2

which is isomorphic to
p

p
NO (G )G (G)

′
ω . Thus

p

p
NO (G )G (G)

′
ω  is abelian. This implies that

p

p
NO (G)G (G)

′
′ ⊆ ω  for all p dividing |G|. Hence

p

p
p NO (G)G (G)

′∈π′ ⊆ ∩ ω  and so by theorem 4.3,

pNO (G)G (G)
′

′ ⊆ ω . Thus 
pNO (G)G (G)
′

ω  is abelian. This 

shows that G has generalized Wielandt length for a 
normal subgroup pNO (G)′  at most two.

In the next result we have shown that the
generalized Wielandt length of a supersoluble group is 
bounded by the nilpotency class of its normal Sylow 
subgroups.

Theorem 5.4: Let N be a normal subgroup of a
supersoluble group G if n is the maximum of the
nilpotency classes of normal Sylow subgroups of G
which contains N, then G∈Wn+1,N. (Wn,N: Class of
groups having generalized Wielandt length at most n)

Proof: We prove this relation by induction on n. Its 
follows immediately from theorem 5.3 that the relation 
holds for n = 1. Let us suppose that it is true for n = k≥1
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so that, if all the normal Sylow subgroups contains N 
have nilpotency  class  at  most  k, then G∈Wn+1,N.
Now for n = k+1, that is, when all normal Sylow
subgroups of G contains N have nilpotency class at 
most k+1. By corollary 5.2, this implies that all the
normal Sylow subgroups of G/ωN(G) have nilpotency 
class  at  most  k. By our supposition N k 1,NG (G) W +ω ∈ ,

in other words 

k 1 , N k 1 , NN ( G) ( G) N N(G (G)) G (G)
+ +ω ωω ω = ω

But by definition 

k 1 , N k 1 , NN ( G) ( G) N k 2,N N(G (G)) (G) (G)
+ +ω ω +ω ω = ω ω

Therefore ωk+2,N(G)  =  G.  It  means  that 
G∈Wk+2,N. So the  theorem  holds  for  n = k+1 and 
hence for all n. 
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