

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 11 , November 2017

Preliminary Phytochemical screening of Methanol extract of *Indigofera Trita* Linn.

Dr. V. Ramamurthy, M. Sathiyadevi, S. Thirumeni

P.G. & Research Department of Biochemistry, Marudupanidyar College, Vallam Post, Thanjavur, Tamilnadu, India.

ABSTRACT: The aim of the study to phytochemical screening was carried out. The traditional medicine involves the use of different plant extracts or the bioactive constituents, qualitative phytochemical analysis of these plants confirm the presence of various phytochemicals like alkaloids, flavonoids, tannins, Saponins, proteins, gums and mucilage, phytosterols. The result suggest that the phytochemical properties for curing various ailments & posses potential antioxidant & reads to the isolation of new and novel compounds

KEYWORDS: Secondary metabolites, Alkaloids, flavonoids, Saponins, Phenolic Compound.

I. INTRODUCTION

Nearly 80% of the world's population relies on traditional medicines for primary health care, mast of which involve the use of plant extracts. (1) In India almost 95% of the prescriptions were used in unani, Ayurveda, Homeopathy and siddha (2) Phytochemicals are responsible for medicinal activity of plants (3) these are non-nutritive chemicals that have protected human from various diseases. The major constituents are consists of Alkaloids, Flavonoids, Saponins, Phenolic Compounds, Phytosterols, Proteins & aminoacids, gums & mucilage & lignin(4) phytochemical consituents are the basic source for the establishment of several pharamacetical industries the constituents are playing a significant role in the identification of crude drugs. The medicinal value of these plants lies in some chemical substances that produces a definite physiological action on the human body. The most important of these bio active constituents of plants to be more effective with little or no side effects when compared to the commonly used synthetic chemotherapeutic agents. The anit-inflammatory, antispasmodic, antianalgesic and can be attributed to their high steroids, tannins, terpenoids and saponins (5)

Indogofer trita is a dicot plantae and phylum of Tracheophyta, It is a class of magnoliopside and a order of fables, under a family of fabaceae. It is found throughout Africa, Asia and Australia widely distributed in south India of Tamilnadu, Kerala, Karnataka. It has wide geographics and habitat range the population is inferred to be large and stable

Figure 1.1 Photograph of Indigofera trita

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 11, November 2017

TAXONOMIC CLASSIFICATION OF INDIGOFERA TRITA

:	Plantae
:	Viridiplantae
:	Streptophyta – land plants
:	Embryophyta
:	Tracheophyta
:	Spermatophytina
:	Magnoliopsida
:	Rosanae
:	Fabales
:	Fabaceae
:	Indigofera L.
:	Indigofera trita – Asian Indigo
:	Trita
	OTHER LANGUAGE OF INDIGOFERA TRITA
:	Asian Indigo
:	Punal – Murunkai
:	Jidi Vempali
:	Goramti nili

The plant is known for being well perennial, erect or subs candent woody herb or shrub, 0.5-2m tall. Taproot present, Nodules present, stems and branches arching, spreading or decumbent. Branches becoming whitish, Leaves are trifoliotate, about 0.8 -2.5 cm long. Leaflets are about 1.2 - 2.6 cm long, obovate of oblong, velvety on both sides Inflorence is 6-12 flowered, 4.5 cm long or less. Flowers are Zymorphic. Calys 5-lobed, flabrous, petal separate, clawed, pinkishto rose, corolla papilionaceous wing petals narrow, oblanceolate to oblong keel petals auriculate, spurred or gibbous, abruptly curved, or spirally coiled.Fruit a hairy legume, dehis cent oblong or ellipsoidal, coriaceous or becoming woody, 3-10 seeded. Seeds ovoid to rounded in outline, surface smooth, olive, brown or black in colour(6)

It occurs in secondary vegetation, is a weed of disturbed ground and often invasive. This is globally distributed tropical countries America, Australlia, Asia and Africa, Bangaladesh, Ethiopia. Within India, it has been recorded in Andhra Pradesh, Assam, Delhi, Goa, Jammu Kashmir, Karnataka, Tamil Nadu, West Bengal and Peninsular India.

II. METERIALS AND METHODS

A.COLLECTION AND AUTHENTICATION OF PLANT

The plant *Indigofera trita* was collected from Ammapettai in Thanjavur district. The plant was authenticated by Dr. Jayaraman Director Plant anatomy & research centre, west Thambaram, Chennai. The plant identification number is (PAR/2015/3042).

B. PLANT PROCESSING AND EXTRACTION

The entire plant was cut into small pieces dried under the shed for 4 weeks at room temperature. The entire plant was shaded and dried for grinding to get crude power.100 g of crude powdered drug were taken and shifted into filter paper thimble. 250ml of methanol were poured into round bottom flask (1000ml capacity) followed by fitting in on soxhlet apparatus. The powdered drug was extracted with methanol for 24 hours. A semisolid extract was obtained after completed elimination of methanol under reduced pressure. The extract was stored in refrigerator until use.

III. PHOTOCHEMICAL SCREENING

Chemical tests were carried out on the aqueous extract anel on the powdered specimens using strandard procedures of identify the constituents described (7)

A. Test for Alkaloids

About 2g of powdered sample was stirred with a few drops of dilute hydrochloric acid and then filtered. The filtrate was used for following test with various alkaloid reagent such as.

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 11 , November 2017

Sl.No.	Alkaloid reagent	Observation
1.	Mayer's reagent	Cream Precipitate
2.	Dragondroff's reagent	Orange brown precipitate
3.	Hager's reagent	Yellow precipitate
4.	Wagner's reagent	Reddish brown precipitate

B. Test for carbohydrates & Glycosides

To 5g of extracts were dissolved in 5ml of distilled water & filtered. The filtrate was subjected to test for carbohydrates and glycosides.

a. Molisch's Test

The filtrate was treated with 2-3 drops of 1% alcoholic napthol & 2ml of concentrated sulphuric acid was added along the sides of the test. Violet colour was formed and indicate the presence of carbohydrates. **b. Fehling's Test**

The filtrate was treated with 1ml of Fehling's solution and heated in a boiling water bath. A reddish orange precipitate was obtained.

C. Test for Glycosides

2g of extract was hydrolyzed with hydrochcoric acid for a few hours on a water bath and the hydrolysate was subjected to legal's, Borntrager's test to detect the presence of different glycosides.

a. Legal's Test

To the hydrolysate 1ml of sodium nitroprusside solution was added and then it was made alkaline with sodium hydroxide solution. None of the extract produced pink to red colour.

b. Borntrager's Test

Hydrolysate was treated with chloroform and the chloroform layer was separated. To this equal quantity of dilute ammonia solution was added. No. colour change in ammonical layer was observed.

D. Test for Phytosterol

1gm of the extract was dissolved in few drops of dilute acetic acid, 3ml of acetic anhydride was added followed by few drops of concentrated sulphuric acid appearance of bluish green colour shows the presence of phytosterol.

E. Test for fixed oils and fats

- a) Small quantity of the extracts was separately pressed between two filter papers oil stain on the paper indicates the presence of fixed oil.
- b) Few drops of 0.5N alcoholic potassium hydroxide were added to small quantity of various extracts along with a drop of phenolphthalein. The mixture was heated on water bath for 1.2 hours. Formation of soap or partial neutralization of alkali indicates the presence of fixed oil & Fats.

The extract was dicuted with 20ml of distilled water and it was agitated on a graduated cylinder for 15 minutes. The presence of saponins was indicated by formation of 1 cm layer of foam.

F. Test for Tannins

- i) 2ml of extract was added to few drops of 1% lead acetate. A yellowish precipitate indicated the presence of tannins.
- ii) To 2ml of the extract was added 5% Dilute ferric chloride solution a violet colour was formed indicate the presence of innings.

G. Test for proteins and Amino Acids

Dissolve small quantities of various extract in a few ml of water and treated with.

i. Millon's reagent – Red Colour

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 11 , November 2017

- ii. Ninhydrin reagent Purple colour
- iii. Biuret Test Pink Colour
- iv.

H. Test for Gums and Mucilages

About 10ml of the extracts was added to 25ml of absolute alcohol with stiring and filtered. The precipitate was dried in air and examined for its swelling properties and for the presence of carbohydrates.

IV. RESULTS

The results obtained from the various *in vitro* and *in vivo* studies during the course of experiment are given in this chapter.

A. PRELIMINARY PHYTOCHEMICAL ANALYSIS OF INDIGOFERA TRITA

Qualitative determination of phytoconstiuents

The first part of some phytoconstituents in the methanolic extract of entire plant of *Indogfera trita* was analysed. The results were given in (Table - 1). In this investigation, the phytochemical analysis confirm the presence of alkaloids, carbohydrates, glycosides, phytosterols, saponins, tannins, phenols, proteins, free amino acids, lignin, flavonoids volatile oils and absence of gums & muscilage and fats and fixed oils. Pharmacological activity of the plant is attributed to the presence of these compounds.

B. FLUORESCENCE ANALYSIS

After detecting the phytochemicals, the fluorescence analysis of methanolic extract of *Indigofera trita* was done by various chemical test by Daylight & UVlight was used to determine the compound was identified by various colours. (Table-2).

The characteristic of fluorescence properties or colours emitted by the powdered *Indigofera trita* before and after treating with reagents were observed. The powdered *Indigofera trita* as such as appeared Greenish brown under daylight light green in ultraviolet radiation. After treating with various reagents such as aqeous NaoH and methanol dark yellow in day light and yellowish green in UV light.

Treating with HCL and HNO₃, H₂SO₄, ammonia and Iodine under day light, it showed different shades of yellow and green. Light yellow colour showed in day light treated with ammonia and green colour in UV light. After treating with iodine solution and ferric chloride, dark brown, Yellowish brown in daylight, Fluorescent green in UV Light.

The characteristic fluorescent properties or colour observed through this study could be used as a standard in the identification and authentication of the entire plant of *Indigoferatrita* in its extracted form.

C. PROXIMATE ANALYSIS

The proximate analysis in methanolic extract of *Indigofera trita* expressed the value in percentage (w/w) in Total ash(4.2), water soluable ash(1.26), acid insoluble ash(1.8), sulphated ash(3.72), methanol soluble extractive(15.16), water soluble extractive(15.16), crude fibre content(1.6), foaming index(<100), and loss on drying(3.6) in the (Table - 3).

These ash values are important pharmacognostic tool to standardized the crude drugs. The extracts obtained by exhausting plant materials with specific solvents are indicative of approximate measures of their chemical constituents extracted with those solvents from a specific amount of air-dried plant material.

D. QUANTITATIVE DETERMINATION OF PHYTONUTREINTS

In this investigation, presence of quantitative phytochemicals in methanolic extract of *Indigofera trita* expressed the value in mg/g phenols was (5.36mg/g), tannins (2.02mg/g), flavonoids (3.42mg/g) and alkaloids (4.20). Finding the natural substance of medicinal plant that decrease the inflammation and reduce oxidative stress and there by counteracting the macromolecular damage. Flavonoids and phenols in general are highly effective in

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 11 , November 2017

scavenging free radical and providing antioxidant defense in living cells. Quantitative analysis of methanolic extract of *Indigofera trita* were given in (Table-4).

In medicine, it is used in antioridant, anti-cancer, anti-inflammatory central nervous system activities and weight loss etc. The plant having saponins are Indigotera trita linn. Glycosides, Volatile oils and fats were absent in Indigofera trita linn. Tannins were reported that certain tanning were reported that certain tannings were able to inhibit HIV replication selectively besides uses as diuretics and it is recognized for their pharmacological properties & are known to make trees and shrubs a different meal for caterpillars Apart from tannin and phenolic compound Alkaloids & fiavonolds are poetent water – soluble anti – oxidents and free radical scavengers, which prevent oxidative cell demage, have strong anticancer activity and also anti-arthritic activity.

LYS.	YSIS IN METHANOLIC EXTRACT OF <i>INDIGOFER</i>			
	S.No.	Phytoconstituents	Indication	
	1.	Alkaloids	+	
	2.	Carbohydrates	+	
	3.	Glycosides	+	
	4.	Phytosterols	+	
	5.	Saponins	+	
	6.	Fixed oils & fats	-	
	7.	Tannins & phenols	+	
	8.	Proteins & free amino acids	+	
	9.	Gums & mucilage	-	
	10.	Lignin	+	
	11.	Flavonoids	+	
	12.	Volatile oils	+	

TABLE - I ANALYSIS OF PRELIMINARY PHYTOCHEMICAL ANALYS<u>IS IN METHANOLIC EXTRACT OF *INDIGOFERA TRITA*</u>

> + Present - Absent

TABLE – 2 FLUORESCENCE ANALYSIS OF METHANOLIC EXTRACT OF *INDIGOFERA TRITA*

S No	Chamical test	Methanolic Extract	
S.No.	Chemical test	Daylight	U Vlight
1.	Sample as such	Greenish brown	Light green
2.	Extract with aqeous NaoH	Yellow	Dark green
3.	Extract with alcoholic NaoH	Dark Yellow	Yellowish green
4.	Extract with HCL	Yellowish brown	Light green
5.	Extract with 50% HN0 ₃	Brownish yellow	Yellowish green
6.	Extract with 50% H ₂ So ₄	Brownish yellow	Greenish yellow
7.	Extract with methanol	Yellowish green	Green
8.	Extract with ammonia	Light yellow	Green
9.	Extract with I ₂ solution	Dark brown	Fluorescent green
10.	Extract with Fe Cl ₃	Yellowish brown	Fluorescent green

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 11, November 2017

TABLE-3 PROXIMATE DETERMINATION IN METHANOLIC EXTRACT OF *INDIGOFERA TRITA*

S.No.	Parameters Determined	Values in (%) w/w
1.	Total ash	4.2
2.	Acid-insoluble ash	1.8
3.	Water soluble ash	1.26
4.	Sulphated ash	3.72
5.	Methanol Solube extractive	18.26
6.	Water soluble extractive	15.16
7.	Loss on drying	3.6
8.	Crude fibre content	1.6
9.	Foaming index	< 100

TABLE - 4 QUANTITATIVE PHYTOCHEMICAL ANALYSIS OF METHANOLIC EXTRACT OF INDIGOFERA TRITA

Phytochemical(mg/g)	Values in (mg/g)
Phenols	5.36
Tannins	2.02
Flavonoids	3.42
Alkaloids	7.20

V. DISCUSSION

Rheumatoid arthritis (RA) is a common severe joint disease affecting in all age groups. It is great importance to develop new strategies for its treatment. As a number of disease –modifying anti-rheumatic drugs (DMARDS) often have side effects at high doses and during long term administration, the search for new pharmacologically active agents obtained by screening natural sources is warranted.

A. PRELIMINARY DETERMINATION OF PHYTOCHEMICALS

The Phytochemical screening in the present study has reveled the presence of Alkaloids, carbohydrates, glycoside, phytosterols, saponins, tannins, phenols, proetins, amino acids, lignin, terpeoids, volatile oils. Flavonoids are a major group of compounds that act as primary antioxidants or free radical scavengers. Since these compounds were found in the Methanolic extracts of *Indigoferatrita*, it might be responsible for the potent antioxidant capacity.

In Quantitative analysis of *Indigoferatrita* presence of Phenols and flavonoids alkaloids, terpenoids, tannins, are one of the most diverse and widespread groups of natural compounds in plant species. In the present study the phenols and flavonoids content seems to be more in methanolic extract of *Indigoferatrita*(8), Flavonoids are found to be better antioxidants and have multiple biological activities including vasodilatory, anticarcinogenic, anti-inflammatory, antibacterial, immune - stimulating, antiallergic, antiviral and radioprotective effects.

The results show that the extractable high molecular weight phenolic compounds in methanol extract of *Indigofera trita*. reported Tannins are phenols known for scavenging the hydroxyl radical by in direct interaction with radical. Tannin- protein complex was also found to be potential free radical scavenger, radical sinks and prevent the radical mediated diseases occurring in the gastrointestinal tract including peptic ulcer.

Polyphenolic compounds is a highly inclusive term that covers a wide group of phytochemicals, including well known subgroups of phenolic acids, flavonoids, natural dye, lignins etc., it is produced by plant as a secondary metabolites is represent a potential source with significant amount of antioxidants to prevent oxidative stress caused by free radicals. In the present study, methanol extract of *Indigofera trita* was reported to possess polyphenoilc compounds exhibits its antioxidant activity by chelating redox- active metal ions, in activating lipid free radical chains and preventing hydroperoxide conversion in to reactive oxyradicals and other biological properties includes diffusion of toxic free radicals, altering singnal transduction, activation of transcription factors and gens expression. (9)

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 11, November 2017

B. DETERMINATION OF FLUORECENCE ANALYSIS

Fluorescence is the phenomenon the colours emitted by treating with various chemical regents by various chemical. Some Phytochemical constituents show fluorescence of the visible range in daylight and Uv light. The ultra violet light produces fluorescence in many natural products (e.g. alkaloids like berberine), which do not visibly fluoresce in daylight. The substances themselves are not fluorescent, they may often be converted into fluorescent derivatives or decomposition of products by applying different reagents. Hence, some crude drugs are often assessed qualitatively in this way and it is an important parameter of pharmacognostical evaluation. (10)

After detecting the phytochemicals, the flurescence analysis of *Indigoferatrita* in chemical test by Daylight & Uv light the extract appeared greenish brown and green colour. The plant is reliable possess 2 large number of medicinal value and the colour was undertaken as a phamacognostic standardization.

C. DETERMINATION OF PROXIMATE ANALYSIS

The residue remaining after incineration of plant material is the ash content or ash value, which simply represents inorganic salts, naturally occurring in crude drug or adhering to it or deliberately added to it, as a form of adulteration. This includes both 'physiological ash' which is derived from the plant tissue itself, and 'non-physiological ash', which is the residue of the extraneous matter adhering to the plant surface. Acid-insoluble ash is a part of total ash and measures the amount of silica present, especially as sand and siliceous earth. Watersoluble ash is the water soluble portion of the total ash. These ashvalues are important pharmcolognostic too to standardized the crude drugs. (11)

REFERENCES

- 1. Sandhya, B., S. Thomas, W.Isabel and R. Shenbag arathai, 2006. Complementary and alternative medicines, 3:101-114.
- 2. Satyavati, G.V., A.K. Gupta and N. Tandon, 1987. Medicinal plants of India, Indian Council of Medicinal Research, New Delhi, India.
- 3. Kumar, A., R. Ilavarasan, T. Jayachandran, M. Decaraman, P. Aravindhan, N. Padmanabanand M.R.V. Krishna 2009. Phytochemical investigation on a tropical plants. PakisthanJournalo Nutrition, 8:83-85.
- Mallikaharajuna, P.B., L.N. Rajanna, Y.N. Seetharam and G.K. Sharanabasappa, 2007. Phytochemical studies of strychonas Potatorm L.F. A Medicinal Plant E.J. Chem., 4:510-518.
- 5. Sofowara A 1993. Medicinal Plants and Traditional medicine in Africa. Spectrum BooksLtd., Ibadan, Nigeria. P.289.
- 6. USDA-NRCS, 2014. The Plants Database, Baton Rouge, USA: National Plant Data center.
- 7. Trease, G.E and W.C. Evans. 1978. Pharmacognosy, 11th ed. London: Ballier Tridal.
- 8. Yanishlieva Maslarova, N. V. 2001. Inhibiting oxidation. In "Antioxidants in food: Practical applications" (J. Pokorny, N.Yanishlieva, and M. H. Gordon eds). Woodhead Publishing Limited, Cambridge, pp. 22–70.
- 9. Raju senthil kumar., Kanniyan moorthy, Raja vinodhini, and Thambidurai Punitha., 2013. Antimicrobial efficacy and phytochemical analysis of *Indigofera trita linn.*, Aft. J. Tradit complement altern med. 10:518-525.
- 10. Gayathri and Kiruba.D., 2015. Fluoresence analysis of two medicinal plants *psidium guajaval* and *citrus aurantium*. International journal of Pharmaceutical sciences and research., 6:1279-82.
- 11. Akande.I.S., T.A., Samuel., U. Agbazue., and B.L. Olowolagba., 2012 Comparative proximate analysis of ethanolic and water extracts of *Cymbopogen citrates* (lemongrass) and four tea brands.