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Abstract
Owing to the boom of smartphone industries, the
expansion of phone users has also been significant.
Besides adults, children and elders have also begun
to join the population of daily smartphone users.
Such an expansion indeed facilitates the further ex-
ploration of the versatility and flexibility of digi-
tization. However, these new users may also be
susceptible to issues such as addiction, fraud, and
insufficient accessibility. To fully utilize the ca-
pability of mobile devices without breaching per-
sonal privacy, we build the first corpus for age
group recognition on smartphones with more than
1,445,087 unrestricted actions from 2,100 subjects.
Then a series of heuristically-selected and neurally-
guided features are proposed to increase the sepa-
rability of the above dataset. Finally, we develop
AgeCare, the first implicit and continuous system
incorporated with bottom-to-top functionality with-
out any restriction on user-phone interaction sce-
narios, for accurate age group recognition and age-
tailored assistance on smartphones. Our system
performs impressively well on this dataset and sig-
nificantly surpasses the state-of-the-art methods.

1 Introduction
With the comprehensive development of the functionality
of smartphones, the usage of these devices significantly in-
creases, and the span of smartphone users’ ages has also been
drastically expanded in the recent decade. People other than
adults have become a significant part of smartphone users.
With the increasing base of mobile phone users, the versa-
tility and flexibility of digitization can be further explored,
pushing the boundary of smartphone-based services further
toward covering all ages. It is predictable that many fields,
such as the medical and educational industries, would pro-
foundly benefit from such an expansion.

Despite the benefits given by smartphones, the larger span
of user ages also leads to more potential hazards that users
face when using their devices. For the younger age group
(under 18)[WIKI, 2023], smartphone addiction is becoming
prevalent as more and more teenagers spend a considerable

Figure 1: Overview of our AgeCare system. Non-sensitive interac-
tion data are firstly acquired through user devices. Then, HSFs and
NGFs are extracted by corresponding modules, which are then fed
into the DNN-based classifier. An age-tailored assistance service
will be activated automatically according to the prediction results.

amount of time on social media, mobile games, and other ap-
plications. While for the older age group (above 59)[WHO,
2022], fraud and insufficient accessibility have become domi-
nating issues. Therefore, there is an urgent demand for the su-
pervision of users from special age groups to provide tailored
protection and guidance against the aforementioned issues.

However, current solutions mainly fall into domains such
as government policy and guardians’ responsibility [Nyamadi
et al., 2020]. For the elder group, despite the accessibility
functions on most cell phones, some old people are unable to
access these functions and have to turn to their siblings for
help because of their unfamiliarity with smartphone opera-
tions. In other words, the capability of mobile phones as a
smart device itself to detect user ages is relatively neglected
and unexplored, not to mention the difficulty in determining
users’ ages without breaching privacy also obstacles an effi-
cient protective deployment for special age groups.

To resolve these issues, we develop an implicit and con-
tinuous system called AgeCare to provide age-tailored assis-
tance under unconstrained interaction scenarios (i.e., multi-
Apps, multi-postures, etc.) through age group recognition.
However, there are several challenging obstacles to building
such a system. Firstly, to avoid ethical issues in privacy, none
personal or sensitive information (including the App-related
information from which the current action comes, etc.) can
be accessed. Thus, the available data should only be action-
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related and sensor-related. Secondly, given the first con-
straint, the difference among age groups w.r.t. actions and
sensors could be subtle. In other words, improperly extract-
ing action and sensor features could lead to an extremely en-
tangled and hard-to-separate data distribution. To address all
these challenges, we first build a corpus containing only ac-
tion data and sensor data from smartphones without breach-
ing individual privacy. Subsequently, by closely investigating
and understanding the common sense about the intrinsic dif-
ference among all-age users, we heuristically propose hand
characteristics, action patterns, and frequency information
as our heuristically selected features (HSF) to increase data
separability. Furthermore, we take advantage of the expres-
sive power of LSTM and couple HSF with neurally-guided
features (NGF), efficiently capturing human-imperceptible
but model-friendly characteristics. Finally, we propose a
DNN architecture consisting of three modules to analyze
heuristically-selected features, extract neurally-guided fea-
tures, and fuse them for discriminative feature learning and
accurate age group recognition.

In summary, our main contributions are given as follows:

• We develop AgeCare, the first implicit and continu-
ous system incorporated with bottom-to-top function-
ality without any restriction on user-phone interaction
scenarios, for accurate age group recognition and age-
tailored assistance on smartphones.

• We propose a series of heuristically-selected features to
integrate action patterns and frequency information and
a number of neurally-guided features to capture human-
imperceptible and model-friendly features through the
help of LSTM layers, all of which boost model perfor-
mance in the age group recognition task by a consider-
able amount.

• We build the first and the largest corpus from unre-
stricted scenarios for age group recognition on smart-
phones. It consists of 1,445,087 operations from 2,100
subjects when using more than 50 popular apps on mul-
tiple Android smartphones. Our approach evaluated on
this challenging dataset achieves an impressive AUC
value of 0.91 and F1 score of 0.778 and significantly
surpasses the current SOTA methods.

2 Related Works
2.1 Age Group Recognition
Age recognition and age-related identification have recently
raised attention in the research field as an increasing num-
ber of younger and older users have witnessed the prosper-
ity of digitization. Many age-related issues, including ad-
diction and fraud, have longed for an age group recogni-
tion system to provide further solutions. Early studies re-
lying primarily on facial and voice information [Basaran et
al., 2014; Savchenko, 2019] often required additional input
devices such as cameras or microphones, which may lead
to leaking privacy. Anthony et al.[Anthony et al., 2012]
research showed large differences between children’s and
adults’ touch-gesture interactions on mobile devices, proving
that gesture interactions can be used to distinguish between

children and adults. Without compromising privacy, Vatavu
et al. [Vatavu et al., 2015a] used touch coordinates to identify
the age group of users, especially for children aged between 3
to 6. Nguyen et al. [Nguyen et al., 2019] built a dataset con-
taining 50 users’ data from smartphone sensors to more pre-
cisely capture action characteristics and then conducted age
group recognition using traditional machine learning meth-
ods (SVM and RF) on this dataset. Cheng et al. [Cheng et
al., 2020] proposed three hand-related characteristics: hand
geometry, finger dexterity, and hand stability. The authors
then extracted 53-dimensional features on action data from
four specific tasks and trained conventional machine learning
models to recognize young users.

However, existing works on age group recognition focus
mainly on only the children group, with limited or flawed ap-
proaches ranging from using sensitive data (faces, voices) to
constrained interaction (specifically designed Apps). In addi-
tion, the adopted database in their experiments is not large or
diverse enough for algorithm validation in realistic scenarios.

2.2 User Authentication through Deep Learning
on Smartphones

Recent studies turned to take advantage of the capability of
deep neural networks (DNN) to seek reliable user authentica-
tion on smartphones [Li et al., 2021; Deng et al., 2021]. DNN
models have been proven to be capable of capturing more
complicated features under more diverse interacting scenar-
ios and have been used for authentication [Parkhi et al., 2015;
Sundararajan and Woodard, 2018]. Hu et al. [Hu et al., 2018]
introduced a two-stream CNN for continuous user authentica-
tion by using accelerometer and gyroscope sensors on smart-
phones. Li et al. [Li et al., 2020a] introduced frequency and
temporal difference domain information into training features
and presented a sensor-based continuous authentication sys-
tem using a two-stream CNN. And it is one of the first stud-
ies to utilize two feature fusion strategies to combine the de-
signed features, using the data from three sensors[Li et al.,
2020b]. In [Abuhamad et al., 2020], the authors developed a
DNN model using both touchscreen-based and sensor-based
features for user authentication. [Lin et al., 2022] designed
a novel temporal-aware learning mechanism with DNN for
cross-scenario identity authentication.

More recently, the authors [Stragapede et al., 2023]
first built a behavioral human-computer interaction database
called BehavePassDB under 8 different tasks, and then
trained an LSTM model to realize continuous authentication.
However, BehavePasssDB contains much privacy-sensitive
information and suffers from insufficient tasks to cover re-
alistic smartphone-using scenarios.

Although deep learning (DL) has demonstrated its capabil-
ity in user authentication, few studies attempt to explore DL
deployment in age group recognition on smartphones, not to
mention the scarcity of work that takes elderly people into ac-
count. Our system becomes the first DL-based practice that
recognizes the user ages of children, adults, and elders under
unrestricted human-smartphone interaction scenarios.
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Figure 2: Network Architecture of AgeCare. It consists of three modules: (1) A heuristically-selected features learning module to extract hand
characteristics, action patterns, and frequency information; (2) A neurally-guided features learning module to extract NGFs; (3) A feature
fusion module to fuse HSFs and NGFs to be fed into a DNN-based classifier for training.

3 Methodology
3.1 Overview
Our system AgeCare, as shown in Figure 1, is the first sys-
tem incorporated with bottom-to-top functionality, including
data acquisition and pre-processing, feature extraction, age
detection, and age-tailored assistance. The main approach
proposed in our system consists of three consecutive phases:
a data acquisition method responsible for collecting and pro-
cessing data for subsequent feature extraction; a series of
heuristically-selected and neurally-guided features that help
models to capture key behavioral information when using
smartphones; a specifically designed network to learn from
user behavior and discriminate the age group of the user ac-
cordingly, as shown in Figure 2.

3.2 Data Acquisition and Pre-processing
The data acquisition is subject to the consent of all the sub-
jects, and children’s data are collected under the authorization
and supervision of their guardians. The whole process strictly
follows the guidelines of the privacy act in our country, and
the study has been approved by our institution’s ethics boards.

We develop a generalized built-in SDK in Android smart-
phones to achieve real-time and non-conscious interaction
data(i.e., action data and sensor data) acquisition. More than
50 popular Apps of various types are pre-installed in 14 dif-
ferent models of smartphones for data acquisition.During col-
lection, subjects are first asked to input their age group, user
ID, gender, and posture as user attribute data. This attribute
collection process is only executed during the training phase.

Then, they are allowed to use any App and operate smart-
phones normally for more than ten minutes without any con-
straints. Meanwhile, our SDK will record the device at-
tributes, including the device brand, model, and screen reso-
lution. And the interaction data, including multi-finger touch-

screen action data and sensor data, will also be collected auto-
matically. The touchscreen action data mainly includes times-
tamp, finger contact area size, X\Y coordinates, action type,
and finger number. The sensor data contains the informa-
tion from the three-axis accelerometer, gyroscope, gravime-
ter, linear acceleration, orientation, rotation, and magnetome-
ter data at each timestamp. In addition, the subjects are asked
to operate the smartphones in four different postures, includ-
ing putting smartphones on the table, holding smartphones
while sitting with/without propping arms on the table, and
holding smartphones while standing. Finally, our database in-
cludes 2,100 subjects and 1,445,087 operations, with a nearly
balanced distribution w.r.t ages, genders, and body postures.
The summary of our database is shown in Tab.1. The whole
collection process lasts for about three months.

Since the data is collected without any restriction, the exis-
tence of abnormal data is inevitable. In order to obtain clean
data, it is necessary to eliminate invalid data in the original
data after data acquisition, such as missing key fields. Then,
we convert the multi-finger action data into multiple single-
finger action data because the multi-finger action data are
mixed together at the same timestamp, and the data length in
each timestamp is different, making it not difficult for further
processing and feature extraction. Finally, the single-finger
action vector sequence is obtained, in which each unit repre-
sents a complete sliding action.

3.3 Feature Extraction and Analysis

This section introduces the heuristically-selected features
(HSF) that demonstrate distinctiveness and thus provide sep-
arability among different age groups and neurally-guided fea-
tures (NGF), which can be human-imperceptible and be cap-
tured by deep learning models.
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Database Subjects Operations
Age

Group
Multi
Finger

Multi
Posture

Gender Scenario
Devices

Used

AgeCare 2,100 1,445,087
3-8,9-14,15-
17,18-59,60-
64,65-69,70+

yes(3) yes(4) M/F unrestricted 14

[Cheng et al., 2020] 100 31,285 3-17,18-59 no no M/F extra specific tasks 4
[Vatavu et al., 2015b] 119 4,069 3-6,18+ yes(2) no M/F extra specific tasks 2

[Anthony et al., 2014] 74 10,300 6-17,18-33 no no UNK
extra acquisition task&
gesture interaction task

1

[Syed et al., 2019] 31 19,373 14-38 no no UNK extra matching game 4
[Nguyen et al., 2019] 50 14,383 3-12,24-66 no no UNK 3 specific tasks 1

Table 1: The summary of different databases. Our database collects the multi-finger (3 fingers) interaction data from 7 age groups, in 4 body
postures, on 14 devices, and in completely unrestricted scenarios.

Heuristically-selected Features and Analysis
Intuitively, users across different ages exhibit a varying
pattern of using smartphones. To capture these behav-
ioral variances among age groups, we heuristically craft
a 231-dimension feature based on our investigation and
common knowledge called Heuristically-Selected Features
(HSF). HSF can be categorized into hand characteristics, ac-
tion patterns, and frequency information. The explicit expla-
nations for how these features are crafted and how they can
capture the differences among all age groups are as follows.

Hand characteristics. Because of the different develop-
mental stages in hands among different age groups, current
work [Cheng et al., 2020] characterizes hand-related features
mainly as hand stability, finger flexibility, and palm structure.
As these features are intuitively crucial for depicting the in-
nate variance of children, adults, and elders, we keep these
hand characteristics as our benchmark features. Hand sta-
bility depicts the capability of a user to keep hands steady
and thus cause subtle output changes in sensors. We believe
that teenagers and elderly people have weaker hand stabil-
ity than adults. Hence, pitch, yaw, and roll calculated using
data from the accelerometer are extracted. Finger dexterity
demonstrates how fast and dexterous a user’s action is when
using an APP. Since adults are believed to exhibit higher flex-
ibility while aged people are prone to slower actions, we thus
capture such features using the velocity and acceleration of
fingers. Palm structure is defined as the geometry property of
users’ hands, including hand sizes, finger length, palm width,
etc. Such features are incorporated because the growth of
human hands is stage-wise and significantly different across
different ages. Consequently, we use features such as swiping
distance and the largest deviation point [Nguyen et al., 2019]
to capture these characteristics.

Action patterns. Due to innate physiological differences,
users from different age groups may exhibit various habits
and patterns when using smartphones. This could result from
the difference in a combination of reading speed, cognitive
ability, and reaction speed among children, adults, and elders.
Besides, the variance in the choice of Apps also accounts for

Figure 3: Visualization of data distribution and separability using
histograms for action patterns features: children likelihood(upper
left), elder likelihood(lower left), duty ratio(upper right) and ac-
tion area distribution(lower right), respectively.

different patterns across age groups. Action patterns, includ-
ing standard deviation of hand characteristics, action duty ra-
tio, and action area distribution, are proposed to character-
ize the aforementioned differences. For example, the action
duty ratio is defined by the percentage of an action duration
compared with its complete action period (i.e., its duration
plus its time interval between the last action). A larger action
duty ratio indicates a more frequent and denser action pat-
tern. Given the action duration Td, action interval Ti, action
coordinates on screen X,Y , we now give the expressions of
four representative features in action patterns. The duty ratio
dr, children likelihood pc, elder likelihood pe, and action area
distribution Iact can be calculated as follows:

dr =
Td

Td + Ti
× 100% (1)
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pc = e
−
Ti − βc

1000 (2)

pe = e
−
βe − Ti

1000 (3)

Iact =
X

w
× (

Y

h
+ 1) (4)

where βc, βe, w, h are pre-determined constants. Note that all
time-related data are given in milliseconds (ms). A visualiza-
tion of feature separability is given in Figure 3. Details about
other features in action patterns can be found in the supple-
mentary document.

Frequency information. Inspired by the method in [Amini
et al., 2018], which uses frequency information of mobile
phone sensors for authentication, we further extract frequency
domain features from multiple sensors and integrate them into
heuristically selected features. Action data in the frequency
information are not considered as many of the features in ac-
tion patterns have already integrated such information (e.g.,
duty ratio). Specifically, we use the time-domain data from
sensors such as the accelerometer, gyroscope, magnetometer,
etc. Data are recorded as per a complete window of the user’s
action w.r.t. the X, Y, and Z axis. To reduce the computa-
tional cost, Fast Fourier Transform is used to extract high-
frequency information as frequency information. Given an
action sequence(i.e., from the start to the end of the action) in
the X-axis of length N, the n-th data of this sequence xn, the
corresponding FFT of the total sequence Xk is:

Xk =
N−1∑
n=0

xne

−j2πkn

N k = 0, 1, 2..., N − 1 (5)

where k stands for the frequency bin in the frequency domain.
Note that when k = N/2, XN/2 =

∑N−1
n=0 xne

−jπn is cho-
sen as the high-frequency feature of the sensor sequence.

Neurally-guided Features and Analysis
All the above features related to hand characteristics and ac-
tion patterns are extracted from user interaction behavior data
in an interpretable way based on human intuition and expe-
rience. Although these features have the ability to describe
user interaction, there are still implicit features of interactive
behavior that cannot be captured by heuristically selected fea-
tures. Therefore, we design a sequential model of the interac-
tion as an additional interaction feature extractor to obtain the
deep neural embedding from the raw data of user interaction.

The user’s i-th interaction can be represented by a sequence
bi, in which each sampling frame is a time step. The data of
the j-th time step bij consists of the X coordinate, Y coor-
dinate, sliding speed, sliding acceleration of the user’s touch
screen interaction, as well as the sampling values of all 21
mobile phone sensors. These interaction sequences are di-
rectly fed into the neurally-guided feature extractor, which is
composed of a sequential feature extractor and an encoder.
The output of the neurally-guided feature extractor will be
used as the embedding of the interaction data. Meanwhile,
the triplet loss is used to optimize the network and make the
difference of interaction embedding of different age groups

as large as possible. Specifically, the feature extractor con-
sists of 3 LSTM layers stacked together, and the encoder is
an MLP with 5 full connection layers.

3.4 Network Architecture
As shown in Figure 2, our network is composed of three pri-
mary modules, the HSFs learning module, the NGFs learning
module, and the feature fusion modules. The heuristically
selected feature learning consists of a heuristically selected
features calculator Ch, a multi-interactions features calcula-
tor Cm, and an HSF encoder Eh. This module takes several
consecutive interactions as input and outputs the HSFs em-
bedding of these interactions. The NGFs learning containing
extractor Em is used for NGFs extraction, which takes the
same interactions as input, and outputs the neurally-guided
embedding. The feature fusion module is a classifier com-
posed of MLP, which takes the two types of features as input
and outputs the prediction results of the model.

Heuristically-selected Features Learning
The HSFs learning module is designed to get multi-
interactions embedding code Fh from several consecutive in-
teractions. As described in Section 3.3, we first extract the
hand characteristics Fhc ∈ R46 of each interaction through
Ch. Since there is also a temporal relationship between ev-
ery two consecutive interactions, to obtain more information
conducive to the model prediction results from the interac-
tions, we extract the features of multiple interactions Fm in
addition to the hand characteristics through Cm. Specifically,
we calculate several statistical characteristics for each feature
component of the consecutive interactions, such as the fea-
tures’ mean, standard deviation, maximum, and minimum.
In addition, action pattern features, such as action duty cycle,
action coverage area, and frequency information, are also cal-
culated. Finally, we obtain the multiple interactions feature
Fm ∈ R231. After that, Eh takes the HSFs Fm as input and
outputs the multi-interactions embedding code Fh ∈ R256.
The HSF Encoder is an MLP with 13 full-connection layers.

Neurally-guided Features Learning
As described in Section 3.3, we also design an NGF extractor
Em to obtain an additional interaction embedding code Fmf

based on the characteristics that user interaction data is a time
series. To obtain the correlation between every two consecu-
tive interactions, we adopt the same strategy of statistical fea-
tures calculation to get the NGFs. Specifically, after process-
ing interaction data by sequential model, we can obtain an
embedding feature Fmf,i ∈ R64 for the i-th interaction. Then
we calculate each feature component’s mean, standard devia-
tion, and maximum and obtain the multi-interactions embed-
ding code Fmf ∈ R192. The experimental results in Section
4.4 demonstrate that the strategy of multi-interactions statis-
tical feature calculation is necessary and can significantly im-
prove the model performance.

Feature Fusion Module
In the feature fusion module, we directly concatenate the
heuristically selected features and NGFs and feed them into
the classifier, which is an MLP with 5 full connection layers.
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Loss Function
Our model adopts a two-stage training strategy and imposes
two losses, cross-entropy loss and triplet loss. Cross en-
tropy loss is a common loss in classification tasks. Due
to the large intra-type differentiation in the unconstrained
scene, we adopt the triplet loss to minimize the distance be-
tween neurally-guided embedding feature Fng of the same
age group and expand that of different age groups. The loss
function is as follows:

L = CE(l̂, l) + Ltriplet(fng) (6)

4 Experimental Results
This section details the experimental setups, including the
dataset overview, evaluation metrics, and implementation de-
tails. We then evaluate the proposed AgeCare system by com-
paring it with the SOTA systems/approaches. In addition, we
examine the impact of HSFs, NGFs, multi-interaction strat-
egy, and the data augmentation strategy.

4.1 Datasets and Evaluation Metrics
The self-collected data consisting of 2,100 subjects are used
in our experiments. Table 2 illustrates the details of our
dataset. As given in the table, our database includes 700
adults, 700 children, and 700 elderly. In addition, the cor-
responding distribution of subjects w.r.t. four different body
postures (described in Sec.3.2) is 514, 511, 536, and 539. The
number of male and female subjects is 989 and 1111, respec-
tively. After data preprocessing, the interaction data of each
subject will be used for feature extraction and model training.
The split ratio of the training set and test set is 7:3.

To evaluate the performance of our approach, following
previous works [Cheng et al., 2020; Nguyen et al., 2019;
Abuhamad et al., 2020] in behavioral biometric authentica-
tion and age group detection, we use Macro-F1, Macro-AUC
(Area Under Curve), and Macro-EER (Equal Error Rate) as
our evaluation metrics, which are the most commonly used
metrics in multi-category classification tasks.

4.2 Implementation Details
We developed our data acquisition SDK by JAVA, which
is applicable to various Android-based smartphones. For
DNN training, the margin in the triplet loss is 0.1, and the
weights of CE loss and triplet loss are 0.1 and 1, respectively.
Our algorithm was implemented in the Pytorch deep learn-
ing framework [Paszke et al., 2017]. All experiments were
run with batch size 16 on a Ubuntu 20.04 with NVIDIA RTX
2080Ti GPU. We used the Adam [Kingma and Ba, 2014] op-
timizer with β1 = 0.9, β2 = 0.999. The learning rates for
the two modules were 10−3 and 10−4, respectively. StepLR
is used to adjust the learning rate. For every 20 epochs, the
learning rate decreases to 10%.

4.3 Comparison with State-of-the-arts
To evaluate the proposed approach, we conducted experi-
ments by comparing our method with five state-of-the-art
methods for age identification, including the random forest
(RF), support vector machine (SVM), and ET classifiers in

Age
Group

3-7 9-14 15-17 18-59 60-65 66-70 70+ Total

No. 300 300 100 700 100 387 213 2,100

Table 2: Dataset Details.

Method F1 AUC EER
RF [Cheng et al., 2020] 0.579 0.79 0.289
ET [Cheng et al., 2020] 0.598 0.79 0.301
SVM [Cheng et al., 2020] 0.500 0.75 0.351
RF [Nguyen et al., 2019] 0.653 0.82 0.259
SVM [Nguyen et al., 2019] 0.543 0.75 0.328
AgeCare(HSFE) 0.761 0.90 0.174
AgeCare(NGFE) 0.731 0.88 0.197
AgeCare 0.778 0.91 0.164

Table 3: Comparison with State-of-the-art Methods.

iCare [Cheng et al., 2020] and the RF and SVM classifiers
in [Nguyen et al., 2019]. To achieve the best performance
of previous methods for comparison, we tuned the parame-
ters of ET, RF, and SVM classifiers. In addition, we trained
heuristically-selected Feature model (HSFE) and neurally-
guided Feature model (NGFE), respectively, for comparison.
The results are illustrated in Table 3 and Figure 4(a). It can
be seen that we can achieve better performance than existing
methods by only using the HSF or NGF. Our approach signif-
icantly outperforms state-of-the-art methods and can achieve
a Macro-F1 of 0.778, a Macro-AUC of 0.91, and a Macro-
EER of 0.164. From the results, we can see that the fea-
tures learned by conventional machine learning methods are
broadly separable but not discriminative enough for reliable
age group recognition. We attribute the performance im-
provement to the specifically designed HSF, the NGF extrac-
tor, and the multi-interaction strategy to obtain the correlation
between continuous interaction.

4.4 Influence of Postures and Genders

To validate the influence of postures and genders, we
firstly conducted experiments on different body postures, i.e.,
putting smartphones on the table (On the Table), holding
smartphones while sitting with/without propping arms on
the table (Sitting supported/unsupported), and holding smart-
phones while standing (Standing). The identification perfor-
mance of different genders was also evaluated.

As shown in Table 4 and Figure 4(b), the identification per-
formance for unsupported postures, i.e., unsupported sitting
and standing, is much better than for supported postures, i.e.
supported sitting and on the table. It indicates that sensor-
based features can efficiently capture the discriminative in-
formation in the sensor data among different age groups, par-
ticularly in unsupported scenarios. We also observe a slightly
better performance in female subjects than male, which may
be due to the unbalanced gender ratio in our database.
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(a) (b) (c)

Figure 4: ROC curves illustrate (a) Comparative results with different methods. (b) Comparative results of Agecare under different external
conditions. (c) Comparative results using different features.

Posture Gender F1 AUC ERR
On the Table

-

0.735 0.89 0.203
Sitting Supported 0.732 0.88 0.192

Sitting Unsupported 0.817 0.95 0.139
Standing 0.843 0.93 0.127

- Male 0.749 0.91 0.183
Female 0.798 0.91 0.155

Table 4: Performance of AgeCare w.r.t. postures and genders.

4.5 Ablation Experiments
We performed ablation experiments to illustrate the effective-
ness of the HSFs and NGFs.

HSF and NGF extractor. We conducted a series of exper-
iments, including using hand characteristics only, using full
heuristically selected features (i.e., plus action patterns and
frequency information), as well as using full HSF and NGF.
For our newly proposed heuristically-selected features (HSF),
experimental results given in Table 5 and Figure 4 show that
features combined with action patterns and frequency infor-
mation (All HSF in the table) significantly outperform using
only hand characteristics (HC in the table) by a notable mar-
gin w.r.t. all evaluation metrics (0.06 for F1, 0.03 for AUC
and 0.33 for EER, respectively). This result suggests the
increased separability incorporated by the proposed feature,
demonstrating the superiority of our newly proposed HSF.
As for the effectiveness of the NGF extractor, Table 5 also
indicates that the overall performance of the model can be
further boosted after combining HSFs with the NGF extrac-
tor. This suggests that our proposed feature extractor can effi-
ciently capture human-imperceptible features and serve as an
efficient complement to HSFs.

Multi-interaction strategy. As described in Section 3.4, in
order to obtain the correlation between every two consecu-
tive interactions, we adopt the same strategy of statistical fea-
ture calculation to get the model- favored features. We thus

Module F1 AUC EER
HC (46) 0.699 0.87 0.209
All HSF (231) 0.761 0.90 0.174
NGF (single) 0.672 0.83 0.247
NGF (multiple) 0.731 0.88 0.197
AgeCare 0.778 0.91 0.164

Table 5: Ablation experiments of the proposed features.

trained the network using single interaction features and mul-
tiple interactions features, respectively. As shown in Table 5,
the model trained with NGFs of multiple interactions per-
forms considerably better than the model trained with a single
interactions. These results suggest that consecutive actions
indeed contain more information than a single interaction.

5 Conclusion, Implications and Future Works
This paper proposes the AgeCare system and establishes
the first user interaction database for age group recogni-
tion under unconstrained conditions. We also propose two
feature extractors to expand extant hand characteristics into
heuristically-selected features using action patterns and fre-
quency information and extract novel neurally-guided fea-
tures as complementary features of the former features. Ex-
perimental results show that with a combination of HSFs and
NGFs, our AgeCare significantly outperforms state-of-the-art
approaches in age group recognition.

Our system indicates the potential to identify the age group
of smartphone users using unrestricted interaction data with-
out compromising privacy-sensitive information. However,
to mitigate the gap between the requirements for commercial
applications among millions of smartphone users and the cur-
rent performance and scalability of our model, further explo-
ration of our work calls for tailored features and more stream-
lined models.
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are anonymous. To be specific, we cooperated with several
kindergartens, primary schools, middle schools, universities,
and old people’s homes to complete the data collection. Be-
fore the data collection, we informed all the children subjects,
their guardians (parents and teachers), and other subjects of
the relevant collection contents. The collected data will be
treated anonymously and used only for this experiment. In
the process of collection, children are collected under the
authorization and supervision of their guardians. The chil-
dren’s guardians and all the other subjects have authorized all
the collection processes, and the awareness and authorization
documents have been signed.

Considering the potential ethical concerns associated with
predicting user age, we have made many efforts to ensure that
user privacy is not violated during actual deployment of Age-
Care. Firstly, all aspects of AgeCare are performed locally,
without involving any data transmission or cloud services.
Both interaction data and age recognition results are kept
private and inaccessible to any third-party application. Sec-
ondly, AgeCare will be integrated as a built-in feature within
the OS of smartphones, requiring users to activate it manu-
ally. Meanwhile, the predicted results are only used for child
addiction prevention and tailored care service. Finally, as to
the normal use of adults, we may accept a lower recall for
the target groups to minimize false classification of the adult
group and prevent any negative impact on their normal usage.
If there are still false positives, other conventional authenti-
cation methods, such as passwords, can be used to remove
restrictions.
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