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Abstract−In this paper, we have shown that the arbitrary 
supersubdivision of a path, a cycle, a fan graph, a wheel graph, a 
helm graph and a gear graph by a complete bi-partite graph ��,� 
for any � admits star-in-coloring. In addition, we have proved 
the fan graph and the splitting graph of a path, a cycle and a fan 
graph also admit star-in-coloring. 2000 Mathematics Subject 
Classification: 05C15, 05C20. 
 
Keywords: star-in-coloring, splitting graph, fan graph, wheel 
graph, helm graph, gear graph. 

I. INTRODUCTION 

Sethuraman et al.[1] have introduced the concept of 
supersubdivision of edges by the complete bi-partite graph 
and they discussed the supersubdivision of a path and a 
cycle. Sethuraman et al.[1] states that for any � ≥ 3, there 
exists a supersubdivision of 	
 which is graceful. But we 
found that the arbitrary supersubdivision of a cycle 	
 by ��,� fails for some cases. Sudha et al.[2] have found the 
conditions for the gracefulness of the supersubdivision of a 
cycle. Sudha et al.[3], [4] have proved the graceful labeling 
of arbitrary supersubdivision of a helm, centipede, ladder 
and wheel graphs. The splitting graph of a graph was 
defined by Sampathkumar et al.[5]. Sudha et al.[6] have 
proved graceful labeling of the splitting graph of a star 
graph. In 1973, Gr
�nbaum[7] introduced acyclic coloring 
and noted the condition that the union of any two color 
classes induce a forest which can be generalized as bi-partite 
graphs and calls such type of coloring as star-coloring. 
Sudha et al.[8], [9], [10] gave a definition for star-in-
coloring by combining the conditions of both star-coloring 
and in-coloring. Sudha et al.[10] have proved the star-in-
coloring of splitting graph of a complete bi-partite graph ��,
. 
In this paper, we have obtained the star-in-coloring 
chromatic number of the following graphs: 
(i) arbitrary supersubdivision of a path, 
(ii) arbitrary supersubdivision of a cycle, 
(iii) arbitrary supersubdivision of a fan graph, 
(iv) arbitrary supersubdivision of a wheel graph, 
(v) arbitrary supersubdivision of a helm graph, 
(vi) arbitrary supersubdivision of a gear graph, 
(vii) fan graph, 
(viii) splitting graph of a path, 
(ix) splitting graph of a cycle 
and (x) splitting graph of a fan graph. 
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Definition 1: 
Let � be a graph with � vertices and � edges. A graph � is 
said to be a supersubdivision of � if � is obtained by 
replacing each and every edge of � by a complete bi-partite 
graph ��,� for any �. 
 
Definition 2: 
For any graph �, the splitting graph is obtained by adding to 
each vertex �, a new vertex ��, so that �� is adjacent to each 
and every vertex that is adjacent to � in �. 
 
Definition 3: 
The join ����
 of a single vertex �� and the path �
 is 
called a fan graph (��,
). The vertex �� is called the core 
and the edges incident with this core are the spokes. 

 

 
Definition 4: 
A wheel graph (�
) of order �, sometimes called as �-
wheel, is the join of a vertex �� with the cycle 	
��. 
Normally, the vertex �� is placed inside the cycle 	
��. It 
consists of � vertices and 2(� − 1) edges. The inner edges 
here are also called spokes. 

 
Definition 5: 
If each and every vertex of the outer cycle of a wheel graph (�
) has an edge with a new vertex, then it is a helm graph (�
). 

 

 



Star-in-Coloring of Arbitrary Super Subdivision of Graphs and the Splitting Graphs 

14 
Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

Definition 6: 
The gear graph, also sometimes known as a bi-partite wheel 
graph, is a wheel graph by the supersubdivision of each edge 
of the outer cycle by ��,� and is denoted by ��,
. The graph ��,
 has � + 1 vertices and !"
� # edges. 

 
 
Many authors like Ma et al.[11] discussed about the gear 
graph and they gave the representation �
 for gear graph 
with 2� + 1 vertices. But we have given the definition for 
gear graph using the concept of supersubdivision. 

 
Definition 7: 
A star-coloring of a graph � is a proper coloring of a graph 
with the condition that no path on four vertices is bi-colored. 
 
Definition 8: 
An in-coloring of a digraph � is a proper coloring of the 
underlying graph � if for any path �" of length 2 with the 
end vertices of the same color are oriented towards the 
central vertex. 
 
Definition 9: 
A graph � is said to be star-in-colored if 

1. no path on four vertices is bi-colored 
2. any path of length 2 with end vertices of same color are 
directed towards the middle vertex. 
 
The minimum number of colors required to color a graph � 
satisfying the above conditions for star-in-coloring is called 
the star-in-coloring chromatic number of � and is denoted 
by $%&(�). 
 
Illustration 1: 

 
Consider the graph as shown in fig.5. The vertices ��, �", �' are assigned with color 1 and the vertices ��, �(, �) are assigned with the colors 2, 3 and 4 
respectively. This pattern of coloring satisfies the definition 
of star-in-coloring. It should be noted that in this graph no 
two adjacent vertices have the same color and no path on 
four vertices is bi-colored; each and every edge in a path of 
length two in which the end vertices have the same color are 
oriented towards the central vertex. 

II. STAR-IN-COLORING OF ARBITRARY 
SUPERSUBDIVISION OF GRAPHS 

 
Theorem 1: 
Arbitrary supersubdivision of a path �
(� ≥ 2) by the 
complete bi-partite graph ��,� (� may vary for each edge) 

admits star-in-coloring with the chromatic number 3 for all �. 
 
Proof: 
Consider a path, �
 with � vertices and � − 1 edges. The 
vertices are denoted by �&, 1 ≤ + ≤ �. By the definition-1 
each and every edge �&�&,�, 1 ≤ + < � of a path �
 is 
replaced by a complete bi-partite graph ��,� (� may vary 
for each edge). We obtain a new graph with additional 
vertices 
&. in between �& and �&,� where 1 ≤ + ≤ � − 1 

and 1 ≤ / ≤ �. 
If � is the vertex set and 0 is the edge set of the newly 
obtained graph, define a function 1 from � to the color set {1,2,3,… } such that 1: � → {1,2,3,… } such that 1(
) ≠ 1(�) if 
� ∈ 0 1(�&) = :2, +1	+ ≡ 1(�=>	2)3, +1	+ ≡ 0(�=>	2)@ 
                 1A
&.B = 1, 1=C	1 ≤ + ≤ � − 1; 1 ≤ / ≤ � 

We need only three colors for star-in-coloring. 
Thus the star-in-coloring chromatic number of the 
supersubdivision of the path �
 is 3. 
 
Illustration 2: 
The supersubdivision of the edges ����, ���", �"�(, �(�', �'�) of a path �) by the complete bi-partite graphs ��,", ��,(, ��,�, ��," and ��,' respectively is shown in 
figure-6(b). As per theorem-1 the graph is star-in-colored. 
 

 
The star-in-coloring chromatic number of the 
supersubdivision of the path �) is 3. 
 
Theorem 2: 
Arbitrary supersubdivision of a cycle 	
 (� > 2) by the 
complete bi-partite graph ��,� (� may vary for each edge) 
admits star-in-coloring with the chromatic number 3 for 
even � and 4 for odd �. 



International Journal of Innovative Science and Modern Engineering (IJISME) 
ISSN: 2319-6386, Volume-3 Issue-4, March 2015 

 

15 
Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

Proof: 
The vertices of the cycle 	
 be denoted by �&, 1 ≤ + ≤�.The edges of 	
 are replaced by the complete bi-partite 
graph ��,� (� may vary for each edge) by definition-1. 

These newly added vertices between �& and �&,� be 
denoted by 
&. for 1 ≤ + ≤ � − 1 and 1 ≤ / ≤ � and the 

vertices between �
 and �� be denoted by 

. for 1 ≤ / ≤�. 
If � is the vertex set and 0 is the edge set of the newly 
obtained graph, define a function 1 from � to the color set {1,2,3,… } such that 1: � → {1,2,3,… } such that 1(
) ≠ 1(�) if 
� ∈ 0 

There are two cases (i) � odd and (ii) � even. 
Case (i): � odd 
The vertices �&’s of the cycle 	
 are colored as 

1(�&) = F2, +1	+ ≡ 1(�=>	2)G�>	1 ≤ + < �3, +1	+ ≡ 0(�=>	2)4, +1	+ = �																																											 @ 
The newly added vertices 
&. are colored as 

    1A
&.B = 1	1=C	1 ≤ + ≤ �; 1 ≤ / ≤ �. 
The cycle 	
 with this arbitrary supersubdivision of edges 
by the complete bi-partite graphs ��,�  (� may vary for 
each edge) is star-in-colored and its star-in-coloring 
chromatic number is 4. 

Case (ii): � even 
The vertices �&’s of the cycle 	
 are colored as 1(�&) = :2, +1	+ ≡ 1(�=>	2)3, +1	+ ≡ 0(�=>	2)@ 
The newly added vertices 
&. are colored as 

                 1A
&.B = 1	1=C	1 ≤ + ≤ �; 1 ≤ / ≤ �. 
The cycle 	
 with this arbitrary supersubdivision of edges 
by the complete bi-partite graph ��,� (� may vary for each 
edge) is star-in-colored and its star-in-coloring chromatic 
number is 3. 
 
Illustration 3: 
The supersubdivision of the edges ����, ���", �"�(, �(�', �'�� of a cycle 	' by the complete bi-partite graphs ��,", ��,J, ��,(, ��,� and ��,( respectively is shown in 
figure-7(b). It admits star-in-coloring by using case(i) of 
theorem-2. 

 

 
The star-in-coloring chromatic number of the 
supersubdivision of the cycle 	' is 4. 
 
Illustration 4: 
The supersubdivision of the edges ����, ���", �"�(, �(�', �'�), �)��  of a cycle 	) by the complete bi-partite 
graphs ��,", ��,', ��,(, ��,), ��," and ��,� respectively is 
shown in figure-8(b). It admits star-in-coloring by using 
case(ii) of theorem-2. 

 

 
The star-in-coloring chromatic number of the 
supersubdivision of the cycle 	) is 3. 
 
Theorem 3: 
Arbitrary supersubdivision of a fan graph ��,
(� ≥ 2) by 

the complete bi-partite graph ��,� (� may vary for each 
edge) admits star-in-coloring with the chromatic number 4 
for all � ≥ 2. 
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Proof: 
A fan graph, ��,
 with � + 1 vertices and 2� − 1 edges 

has the vertices denoted by �& , 1 ≤ + ≤ � on the path and 
the core vertex �K. By the definition-1 each and every edge 
of the graph is replaced by the complete bi-partite graph ��,� (� may vary for each edge). We obtain a new graph 

with additional vertices 
&. in between �& and �&,� where 1 ≤ + ≤ � − 1 and 1 ≤ / ≤ �. The newly added vertices 

between �K and �&, 1 ≤ + ≤ � be denoted by 
K.& , 1 ≤ / ≤�. 
If � is the vertex set and 0 is the edge set of the newly 
obtained graph, define a function 1 from � to the color set {1,2,3,… } such that 1: � → {1,2,3,… } such that 1(
) ≠ 1(�) if 
� ∈ 0 

The vertices �&’s of the fan graph ��,
 are colored as                       																					1(�K) = 2 1(�&) = :3, +1	+ ≡ 1(�=>	2)4, +1	+ ≡ 0(�=>	2)@ 
The newly added vertices 
&. and 
K.&  are colored as 

               1A
&.B = 1,  for 1 ≤ + ≤ � − 1 and for all / 																		1A
K.& B = 1, for 1 ≤ + ≤ � and for all / 
The fan graph ��,
 with this arbitrary supersubdivision of 

edges by the complete bi-partite graph ��,� (� may vary 
for each edge) is star-in-colored and its star-in-coloring 
chromatic number is 4. 

 
Illustration 5: 
The supersubdivision of the edges ����, ���", �"�(, �(�', �K��, �K��, �K�", �K�(, �K�' of a fan graph ��,' by 

the complete bi-partite graphs ��,�, ��,", ��,(, ��,", ��,", ��,�, ��,", ��,� and ��," respectively is shown in figure-
9(b). It admits star-in-coloring by using theorem-3. 

 

 
 The star-in-coloring chromatic number of the 
supersubdivision of the fan graph ��,' is 4. 
 

Theorem 4: 
Arbitrary supersubdivision of a wheel graph �
 (� > 2) 
by the complete bi-partite graph ��,� (� may vary for each 
edge) admits star-in-coloring with the chromatic number 5 
for even � and 4 for odd �. 
 
Proof: 
A wheel graph, �
 with � vertices and 2(� − 1) edges has 
the vertices denoted by �&, 0 ≤ + ≤ � − 1. By the 
definition-1 each and every edge of a wheel graph �
 is 
replaced by the complete bi-partite graph ��,� (� may vary 
for each edge). We obtain a new graph with additional 
vertices 
&. in between �& and �&,� where 1 ≤ + ≤ � − 1 

and 1 ≤ / ≤ �. The vertices between �
 and �� be 
denoted by 

. for 1 ≤ / ≤ � and the vertices between �K 

and �&, 1 ≤ + ≤ � − 1 be denoted by 
K.& , 1 ≤ / ≤ �. 
If � is the vertex set and 0 is the edge set of the newly 
obtained graph, define a function 1 from � to the color set {1,2,3,… } such that 1: � → {1,2,3,… } such that 1(
) ≠ 1(�) if 
� ∈ 0 

Case (i): For odd � 

The vertices �&’s of the wheel graph �
 are colored as    																				1(�K) = 2 1(�&) = :3, +1	+ ≡ 1(�=>	2)4, +1	+ ≡ 0(�=>	2)@ 
The newly added vertices 
&. and 
K.&  are colored as 1A
&.B = 1, for 1 ≤ + ≤ � and for all / 1A
K.& B = 1, for 1 ≤ + < � and for all / 
The wheel graph �
 with this arbitrary supersubdivision of 
edges by the complete bi-partite graph ��,� (� may vary 
for each edge) is star-in-colored and its star-in-coloring 
chromatic number is 4. 

Case (ii): For even � 

The vertices �&’s of the wheel graph �
 are colored as   				1(�K) = 2 			1(�&) = :3, +1	+ ≡ 1(�=>	2)G�>	1 ≤ + < � − 14, +1	+ ≡ 0(�=>	2) @ 1(�
��) = 5 

The newly added vertices 
&. and 
K.&  are colored as 

   1A
&.B = 1, for 1 ≤ + ≤ � and for all / 
  1A
K.& B = 1, for 1 ≤ + < � and for all / 
The wheel graph �
 with this arbitrary supersubdivision of 
edges by the complete bi-partite graphs ��,� (� may vary 
for each edge) is star-in-colored and its star-in-coloring 
chromatic number is 5. 

 
Illustration 6: 
The supersubdivision of the edges ����, ���", �"�(, �(��, �K��, �K��, �K�", �K�( of a wheel graph �' by the 
complete bi-partite graphs ��,(, ��,", ��,", ��,', ��,", ��,(, ��,( and ��," respectively is shown in figure-10(b). It 
admits star-in-coloring by using case(i) of theorem-4. 
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 The star-in-coloring chromatic number of the  
supersubdivision of the wheel graph �' is 4. 
 
Illustration 7: 
The supersubdivision of the edges ����, ���", �"�(, �(�', �'��, �K��, �K��, �K�", �K�(, �K�' of a wheel 
graph �) by the complete bi-partite graphs ��,", ��,", ��,(, ��,', ��,", ��,", ��,�, ��,(, ��," and ��,' respectively is shown in 
figure-11(b). It admits star-in-coloring by using case(ii) of 
theorem-4. 

 

 
The star-in-coloring chromatic number of the 
supersubdivision of the wheel graph �) is 5. 

Theorem 5: 
Arbitrary supersubdivision of a helm graph �
 by the 
complete bi-partite graph ��,� (� may vary for each edge) 
admits star-in-coloring with the chromatic number 5 for 
even � and 4 for odd �. 
 
Proof: 
A helm graph, �
 consists of 2� − 1 vertices and 3(� −1) edges. Let the central vertex be denoted by �K and the 
vertices on the cycle be denoted by �&, 1 ≤ + ≤ � − 1 and 
the pendent vertices are denoted by �&�, 1 ≤ + ≤ � − 1. By 

the definition-1 each and every edge of a wheel graph �
 is 
replaced by a complete bi-partite graph ��,� (� may vary 
for each edge). We obtain a new graph with additional 
vertices 
&. in between �& and �&,� for all 1 ≤ + ≤ � − 1 

and 1 ≤ / ≤ �. The vertices between �K and �&, 1 ≤ + ≤� − 1 be denoted by 
K.& , 1 ≤ / ≤ � and 
&.�  be the 

additional vertices in between  �& and �&� for all 1 ≤ + ≤� − 1 and 1 ≤ / ≤ �. 
If � is the vertex set and 0 is the edge set of the newly 
obtained graph, define a function 1 from � to the color set {1,2,3,… } such that 1: � → {1,2,3,… } such that 1(
) ≠ 1(�) if 
� ∈ 0 

Case (i): For even � 

The vertices �&’s of the helm graph �
 are colored as 
    1(�K) = 2 			1(�&) = :3, +1	+ ≡ 1(�=>	2)G�>	1 ≤ + < � − 14, +1	+ ≡ 0(�=>	2) @ 
1(�
��) = 5 					1(�&�) = 2, 1=C	1 ≤ + ≤ � − 1 

The newly added vertices 
&., 
K.&  and 
&.�   are colored as 1A
&.B = 1, for 1 ≤ + ≤ � − 1; 1 ≤ / ≤ � 1A
K.& B = 1, for 1 ≤ + ≤ � − 1; 1 ≤ / ≤ � 1A
&.� B = 1, for 1 ≤ + ≤ � − 1; 1 ≤ / ≤ � 

The helm graph �
 with this arbitrary supersubdivision of 
edges by the complete bi-partite graph ��,� (� may vary 
for each edge) is star-in-colored and its star-in-coloring 
chromatic number is 5. 

Case (ii): For odd � 

The vertices �&’s of the helm graph �
 are colored as   																					1(�K) = 2 1(�&) = :3, +1	+ ≡ 1(�=>	2)4, +1	+ ≡ 0(�=>	2)@ 
                  1(�&�) = 2, 1=C	1 ≤ + ≤ � − 1 

The newly added vertices 
&., 
K.&  and 
&.�  are colored as 1A
&.B = 1, for 1 ≤ + ≤ � − 1; 1 ≤ / ≤ � 1A
K.& B = 1, for 1 ≤ + ≤ � − 1; 1 ≤ / ≤ � 1A
&.� B = 1, for 1 ≤ + ≤ � − 1; 1 ≤ / ≤ � 

The helm graph �
 with this arbitrary supersubdivision of 
edges by the complete bi-partite graph ��,� (� may vary 
for each edge) is star-in-colored and its star-in-coloring 
chromatic number is 4. 
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Illustration 8: 
The supersubdivision of the edges  ����, ���", �"��, �K��, �K��, �K�", ����� , ����� , �"�"�  of a helm graph �( 
by the complete bi-partite graphs ��,', ��,(, ��,", ��,�, ��,", ��,", ��,", ��,( and ��,' respectively is shown in figure-
12(b). It admits star-in-coloring by using case(i) of theorem-
5. 

 

 
The star-in-coloring chromatic number of the 
supersubdivision of the helm graph �( is 5. 
 
Illustration 9: 
The supersubdivision of the edges ����, ���", �"�(, �(��, �K��, �K��, �K�", �K�(, ����� , ����� , �"�"� , �(�(�  of a helm 
graph �' by the complete bi-partite graphs ��,', ��,�, ��,(, ��,", ��,", ��,�, ��,(, ��,�, ��,", ��,(, ��," and ��,' 
respect-ively is shown in figure-13(b). It admits star-in-
coloring by using case(ii) of theorem-5. 

 

 
The star-in-coloring chromatic number of the 
supersubdivision of the helm graph �' is 4. 
 
Theorem 6: 
Arbitrary supersubdivision of a gear graph ��,
 by the 

complete bi-partite graph ��,� (� may vary for each edge) 
admits star-in-coloring with the chromatic number 4 for all �. 
 
Proof: 

A gear graph, ��,
 with � + 1 vertices and !"
� # edges has 

the vertices denoted by �&, 0 ≤ + ≤ �. By the definition-1 
each and every edge of a gear graph ��,
 is replaced by a 

complete bi-partite graph ��,� (� may vary for each edge). 

We obtain a new graph with additional vertices 
&. in 

between �& and �&,� for odd +, 1 ≤ + ≤ � and 1≤ / ≤ �. 
The vertices between �
 and �� be denoted by 

. for 

1≤ / ≤ � and the vertices between �K and �&, odd +, 
1≤ + ≤ � − 1 be denoted by 
K.& , 1 ≤ / ≤ �. 
If � is the vertex set and 0 is the edge set of the newly 
obtained graph, define a function 1 from � to the color set {1,2,3,… } such that 1: � → {1,2,3,… } such that 1(
) ≠ 1(�) if 
� ∈ 0 

The vertices �&’s of the gear graph ��,
 are colored as   																				1(�K) = 2 1(�&) = :3, +1	+ ≡ 1(�=>	2)4, +1	+ ≡ 0(�=>	2)@ 
The newly added vertices 
&. and 
K.&  are colored as 1A
&.B = 1, for 1 ≤ + ≤ �; 1≤ / ≤ � 1A
K.& B = 1, for odd +; 1≤ / ≤ � 

The gear graph ��,
 with this arbitrary supersubdivision of 

edges by the complete bi-partite graph ��,� (� may vary 
for each edge) is star-in-colored and its star-in-coloring 
chromatic number is 4. 
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Illustration 10: 
The supersubdivision of the edges ����, ���", �"�(, �(�', �'�), �)�J, �J�M, �M��, �K��, �K�", �K�', �K�J of a gear 
graph ��,M by the complete bi-partite graphs ��,�, ��,", ��,", ��,(, ��,(, ��,", ��,", ��,�, ��,(, ��,", ��," 
and ��,' respectively is shown in figure-14(b). It admits 
star-in-coloring by using case(i) of theorem-6. 

 

 
The star-in-coloring chromatic number of the 
supersubdivision of the gear graph ��,M is 4. 

III. STAR-IN-COLORING OF A FAN GRAPH 

 
Theorem 7: 
Fan graph ��,
 admits star-in-coloring with chromatic 

number 4 for odd � and � ≥ 9. 
 
Proof: 
Consider a fan graph ��,
 which consists of � + 1 vertices 

and 2� − 1 edges. The vertices are denoted by �&, 1≤ + ≤� and �K be its central vertex. 

If � is the vertex set and 0 is the edge set of the newly 
obtained graph, define a function 1 from � to the color set {1,2,3,… } such that 1: � → {1,2,3,… } such that 1(
) ≠ 1(�) if 
� ∈ 0 1(�K) = 1 

1(�&) = F2, +1	+ ≡ 1(�=>	4)G�>	+ ≡ 3(�=>	4)3, +1	+ ≡ 2(�=>	4)4, +1	+ ≡ 0(�=>	4)																																			 @ 
By using the above definition of 1, we can prove that the 
fan graph admits star-in-coloring. 

The star-in-coloring chromatic number of the fan graph is 4. 
Illustration 11: 
Consider a fan graph ��,O. As per the definition-3 it consists 
of 10 vertices and 17 edges. This graph is star-in-colored by 
using theorem-7. 

 
The star-in-coloring chromatic number of the fan graph ��,O 
is 4. 

IV. STAR-IN-COLORING OF SPLITTING 
GRAPH OF GRAPHS 

Theorem 8: 
The splitting graph of a path (��) is star-in-colored if its 
number of edges is even for � ≥ 5. 
 
Proof: 
Consider a path, �� with � vertices and � − 1 edges. The 
vertices are denoted by �&, 1 ≤ + ≤ �. As per the 
definition of splitting graph we obtain � new vertices �&�, 1 ≤ + ≤ � such that �&� is adjacent to �&,� and �&�� if 
there exist edges �&�&,� and �&���& in the path �� 
respectively. The number of vertices present in the newly 
obtained graph is 2� and the number of edges is 3(� −1). 
If � is the vertex set and 0 is the edge set of the newly 
obtained graph, define a function 1 from � to the color set {1,2,3,… } such that 1: � → {1,2,3,… } such that 1(
) ≠ 1(�) if 
� ∈ 0 

The vertices �&’s of the path �� are colored as 
for 1 ≤ + ≤ �, 
1(�&) = F1, +1	+ ≡ 1(�=>	4)G�>	+ ≡ 3(�=>	4)2, +1	+ ≡ 2(�=>	4)3, +1	+ ≡ 0(�=>	4)																																			 @ 

The newly added vertices �&� are colored as 
for 1 ≤ + ≤ �, 
1(�&) = F1, +1	+ ≡ 1(�=>	4)G�>	+ ≡ 3(�=>	4)4, +1	+ ≡ 2(�=>	4)5, +1	+ ≡ 0(�=>	4)																																			 @ 

By using the above definition of 1, we can prove that the 
splitting graph of a path of even length can be star-in-
colored. 
The star-in-coloring chromatic number of the splitting graph 
of the path is 5. 
 
Illustration 12: 
Consider a path �O. As per the definition we obtain the 
splitting graph of a path �O which consists of 14 vertices and 
18 edges. This graph is star-in-colored by using theorem-8. 
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The star-in-coloring chromatic number of the splitting graph 
of a path �O is 5. 
 
Remark: 
A path of length two can be star-in-colored and its star-in-
coloring chromatic number is 3. 
 
Theorem 9: 
The splitting graph of a cycle (	
) is star-in-colored if its 
number of edges is even for � ≥ 4. 
 
Proof: 
Consider a cycle, 	
 with � vertices and � edges. The 
vertices are denoted by �& , 1≤ + ≤ �. As per the definition 
of splitting graph we obtain additional vertices say �&�, 
1≤ + ≤ � which is adjacent to �&’s according to the 
definition of splitting graph. The newly obtained graph 
consists of 2� vertices and 3� edges. 
If � is the vertex set and 0 is the edge set of the newly 
obtained graph, define a function 1 from � to the color set {1,2,3,… } such that 1: � → {1,2,3,… } such that 1(
) ≠ 1(�) if 
� ∈ 0 

The vertices �&’s of the cycle 	
 are colored in two cases: 

Case (i): For � ≡ 0(�=>	4), 1 ≤ + ≤ � 

1(�&) = F1, +1	+ ≡ 1(�=>	4)G�>	+ ≡ 3(�=>	4)2, +1	+ ≡ 2(�=>	4)3, +1	+ ≡ 0(�=>	4)																																			 @ 
The newly added vertices �&� are colored as 

1(�&�) = F1, +1	+ ≡ 1(�=>	4)G�>	+ ≡ 3(�=>	4)4, +1	+ ≡ 2(�=>	4)5, +1	+ ≡ 0(�=>	4)																																			 @ 
Case (ii): For � ≡ 2(�=>	4), 1 ≤ + < �  

1(�&) = F1, +1	+ ≡ 1(�=>	4)G�>	+ ≡ 3(�=>	4)2, +1	+ ≡ 2(�=>	4)	G�>	1 ≤ + < �						3, +1	+ ≡ 0(�=>	4)																																			 @ 1(�
) = 6 

1(�&�) = F1, +1	+ ≡ 1(�=>	4)G�>	+ ≡ 3(�=>	4)4, +1	+ ≡ 2(�=>	4)	G�>	1 ≤ + < �						5, +1	+ ≡ 0(�=>	4)																																			 @ 1(�
� ) = 7 

By using the above definition of 1, we can prove that the 
splitting graph of a cycle 	
 can be star-in-colored if cycle 
is of even length. 
The star-in-coloring chromatic number of the splitting graph 
of a cycle 	
 is 5 for � ≡ 0(�=>	4) and  
7 for � ≡ 2(�=>	4). 

Illustration 13: 
Consider a cycle 	M. As per the definition-2 it consists of 16 
vertices and 24 edges. This graph can be  star-in-colored by 
using case(i) of theorem-9. 

 

 
The star-in-coloring chromatic number of the splitting graph 
of the cycle 	M is 5. 
 
Illustration 14: 
Consider a cycle 	). As per the definition-2 it consists of 12 
vertices and 18 edges. This graph can be  star-in-colored by 
using case(ii) of theorem-9. 

 

 
The star-in-coloring chromatic number of the splitting graph 
of the cycle 	) is 7. 
 
Theorem 10: 
The splitting graph of a fan graph ��,
 admits star-in-

coloring with the chromatic number 7 for odd � and � ≥ 9. 
 
Proof: 
Consider a fan graph, ��,
 with � + 1 vertices and 2� − 1 

edges. The vertices are denoted by �&, 0 ≤ + ≤ �. We 
obtain additional vertices say �&�, 0 ≤ + ≤ � which is 

adjacent to �&’s according to the definition-2. 



International Journal of Innovative Science and Modern Engineering (IJISME) 
ISSN: 2319-6386, Volume-3 Issue-4, March 2015 

 

21 
Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication Pvt. Ltd. 

If � is the vertex set and 0 is the edge set of the newly 
obtained graph, define a function 1 from � to the color set {1,2,3,… } such that 1: � → {1,2,3,… } such that 1(
) ≠ 1(�) if 
� ∈ 0 

The vertices �&’s of the fan graph ��,
 are colored as 1(�R) = 1 

1(�&) = F2, +1	+ ≡ 1(�=>	4)G�>	+ ≡ 3(�=>	4)3, +1	+ ≡ 2(�=>	4)4, +1	+ ≡ 0(�=>	4)																																			 @ 
The newly added vertices �&� are colored as 1(�K� ) = 5 

1(�&�) = F2, +1	+ ≡ 1(�=>	4)G�>	+ ≡ 3(�=>	4)6, +1	+ ≡ 2(�=>	4)7, +1	+ ≡ 0(�=>	4)																																			 @ 
By using the above definition of 1, we can prove that the 
splitting graph of a fan graph ��,
 can be star-in-colored for 

odd �. 
The star-in-coloring chromatic number of the splitting graph 
of a fan graph is 7. 
 
Illustration 15: 
Consider a fan graph ��,O. As per the definition-3 it consists 
of 10 vertices and 17 edges. This graph is star- 

in-colored by using theorem-10. 

 

 
The star-in-coloring chromatic number of the splitting graph 
of fan graph ��,O is 7. 

 

V. CONCLUSION 
We have discussed and found the star-in-coloring chromatic 
number of the arbitrary supersubdivision of a path, a cycle, a 
fan graph, a wheel graph, a helm graph and a gear graph by 

a complete bi-partite graph ��,� (� may vary for each 

edge). We have also obtained the star-in-coloring chromatic 
number of the fan graph and the splitting graph of a path, 
cycle and fan graph. 

Question 1: Is star-in-coloring of the splitting graph of �� 
of odd length possible? 

Question 2: Is star-in-coloring of the splitting graph of 	
 of 
odd length possible? 
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