Star-in-Coloring of Arbitrary Super Subdivision of Graphs and the Splitting Graphs

S. Sudha, V. Kanniga

Abstract-In this paper, we have shown that the arbitrary supersubdivision of a path, a cycle, a fan graph, a wheel graph, a helm graph and a gear graph by a complete bi-partite graph K_{2,m} for any m admits star-in-coloring. In addition, we have proved the fan graph and the splitting graph of a path, a cycle and a fan graph also admit star-in-coloring. 2000 Mathematics Subject Classification: 05C15, 05C20.

Keywords: star-in-coloring, splitting graph, fan graph, wheel graph, helm graph, gear graph.

INTRODUCTION I.

Sethuraman et al.[1] have introduced the concept of supersubdivision of edges by the complete bi-partite graph and they discussed the supersubdivision of a path and a cycle. Sethuraman et al.[1] states that for any $n \ge 3$, there exists a supersubdivision of C_n which is graceful. But we found that the arbitrary supersubdivision of a cycle C_n by $K_{2,m}$ fails for some cases. Sudha et al.[2] have found the conditions for the gracefulness of the supersubdivision of a cycle. Sudha et al.[3], [4] have proved the graceful labeling of arbitrary supersubdivision of a helm, centipede, ladder and wheel graphs. The splitting graph of a graph was defined by Sampathkumar et al.[5]. Sudha et al.[6] have proved graceful labeling of the splitting graph of a star graph. In 1973, Grünbaum[7] introduced acyclic coloring and noted the condition that the union of any two color classes induce a forest which can be generalized as bi-partite graphs and calls such type of coloring as star-coloring. Sudha et al.[8], [9], [10] gave a definition for star-incoloring by combining the conditions of both star-coloring and in-coloring. Sudha et al.[10] have proved the star-incoloring of splitting graph of a complete bi-partite graph

In this paper, we have obtained the star-in-coloring chromatic number of the following graphs:

- (i) arbitrary supersubdivision of a path,
- (ii) arbitrary supersubdivision of a cycle,
- (iii) arbitrary supersubdivision of a fan graph,
- (iv) arbitrary supersubdivision of a wheel graph,
- (v) arbitrary supersubdivision of a helm graph,
- (vi) arbitrary supersubdivision of a gear graph,
- (vii) fan graph,
- (viii) splitting graph of a path,
- (ix) splitting graph of a cycle
- and (x) splitting graph of a fan graph.

Manuscript Received on February 2015.

Dr. S. Sudha, Professor of Mathematics, Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai, India.

V. Kanniga, Ph.D Research Scholar, Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai, India.

Definition 1:

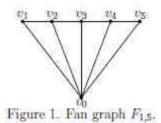
Let G be a graph with p vertices and q edges. A graph H is said to be a supersubdivision of G if H is obtained by replacing each and every edge of G by a complete bi-partite graph $K_{2,m}$ for any m.

Definition 2:

For any graph G, the splitting graph is obtained by adding to each vertex v, a new vertex v', so that v' is adjacent to each and every vertex that is adjacent to v in G.

Definition 3:

The join K_1VP_n of a single vertex K_1 and the path P_n is called a fan graph $(F_{1,n})$. The vertex K_1 is called the core and the edges incident with this core are the spokes.



Definition 4:

A wheel graph (W_n) of order n, sometimes called as nwheel, is the join of a vertex K_1 with the cycle C_{n-1} . Normally, the vertex K_1 is placed inside the cycle C_{n-1} . It consists of n vertices and 2(n-1) edges. The inner edges here are also called spokes.

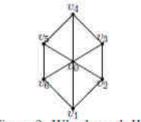
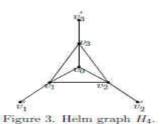


Figure 2. Wheel graph W_7 .

Definition 5:

If each and every vertex of the outer cycle of a wheel graph (W_n) has an edge with a new vertex, then it is a helm graph (H_n) .



Published By: Blue Eyes Intelligence Engineering & Sciences Publication Pvt. Ltd.

Definition 6:

The gear graph, also sometimes known as a bi-partite wheel graph, is a wheel graph by the supersubdivision of each edge of the outer cycle by $K_{2,1}$ and is denoted by $G_{1,n}$. The graph

 $G_{1,n}$ has n+1 vertices and $\left(\frac{3n}{2}\right)$ edges.

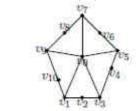


Figure 4. Gear graph $G_{1,10}$.

Many authors like Ma et al.[11] discussed about the gear graph and they gave the representation G_n for gear graph with 2n+1 vertices. But we have given the definition for gear graph using the concept of supersubdivision.

Definition 7:

A star-coloring of a graph G is a proper coloring of a graph with the condition that no path on four vertices is bi-colored.

Definition 8:

An in-coloring of a digraph G is a proper coloring of the underlying graph G if for any path P_3 of length 2 with the end vertices of the same color are oriented towards the central vertex.

Definition 9:

A graph G is said to be star-in-colored if

- 1. no path on four vertices is bi-colored
- 2. any path of length 2 with end vertices of same color are directed towards the middle vertex.

The minimum number of colors required to color a graph G satisfying the above conditions for star-in-coloring is called the star-in-coloring chromatic number of G and is denoted by $\chi_{si}(G)$.

Illustration 1:

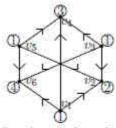


Figure 5. Star-in-coloring of a graph, G.

Consider the graph as shown in fig.5. The vertices v_1, v_3, v_5 are assigned with color 1 and the vertices v_2, v_4, v_6 are assigned with the colors 2, 3 and 4 respectively. This pattern of coloring satisfies the definition of star-in-coloring. It should be noted that in this graph no two adjacent vertices have the same color and no path on four vertices is bi-colored; each and every edge in a path of length two in which the end vertices have the same color are oriented towards the central vertex.

II. STAR-IN-COLORING OF ARBITRARY SUPERSUBDIVISION OF GRAPHS

Theorem 1:

Arbitrary supersubdivision of a path $P_n (n \ge 2)$ by the complete bi-partite graph $K_{2,m}$ (m may vary for each edge) admits star-in-coloring with the chromatic number 3 for all n.

Proof:

Consider a path, P_n with n vertices and n-1 edges. The vertices are denoted by v_i , $1 \le i \le n$. By the definition-1 each and every edge $v_i v_{i+1}$, $1 \le i < n$ of a path P_n is replaced by a complete bi-partite graph $K_{2,m}$ (m may vary for each edge). We obtain a new graph with additional vertices u_{ij} in between v_i and v_{i+1} where $1 \le i \le n-1$ and $1 \le j \le m$.

If V is the vertex set and E is the edge set of the newly obtained graph, define a function f from V to the color set $\{1,2,3,...\}$ such that

$$f: V \to \{1,2,3,\dots\} \text{ such that } f(u) \neq f(v) \text{ if } uv \in E$$

$$f(v_i) = \begin{cases} 2, & \text{if } i \equiv 1 (mod\ 2) \\ 3, & \text{if } i \equiv 0 (mod\ 2) \end{cases}$$

$$f(u_{ij}) = 1, \text{ for } 1 \leq i \leq n-1; 1 \leq j \leq m$$

We need only three colors for star-in-coloring.

Thus the star-in-coloring chromatic number of the supersubdivision of the path P_n is 3.

Illustration 2:

The supersubdivision of the edges v_1v_2 , v_2v_3 , v_3v_4 , v_4v_5 , v_5v_6 of a path P_6 by the complete bi-partite graphs $K_{2,3}$, $K_{2,4}$, $K_{2,2}$, $K_{2,3}$ and $K_{2,5}$ respectively is shown in figure-6(b). As per theorem-1 the graph is star-in-colored.

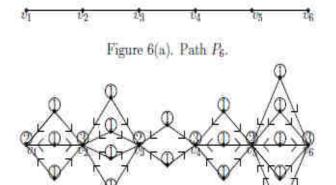


Figure 6(b). Star-in-coloring of arbitrary supersubdivision of a path P₆.

The star-in-coloring chromatic number of the supersubdivision of the path P_6 is 3.

Theorem 2:

Arbitrary supersubdivision of a cycle C_n (n > 2) by the complete bi-partite graph $K_{2,m}$ (m may vary for each edge) admits star-in-coloring with the chromatic number 3 for even n and 4 for odd n.

Proof:

The vertices of the cycle C_n be denoted by v_i , $1 \le i \le n$ n. The edges of C_n are replaced by the complete bi-partite graph $K_{2,m}$ (m may vary for each edge) by definition-1. These newly added vertices between v_i and v_{i+1} be denoted by u_{ij} for $1 \le i \le n-1$ and $1 \le j \le m$ and the vertices between v_n and v_1 be denoted by u_{nj} for $1 \le j \le$

If V is the vertex set and E is the edge set of the newly obtained graph, define a function f from V to the color set {1,2,3, ...} such that

 $f: V \to \{1,2,3,...\}$ such that $f(u) \neq f(v)$ if $uv \in E$ There are two cases (i) n odd and (ii) n even.

Case (i): n odd

The vertices v_i 's of the cycle C_n are colored as

$$f(v_i) = \begin{cases} 2, & \text{if } i \equiv 1 \pmod{2} \text{ and } 1 \leq i < n \\ 3, & \text{if } i \equiv 0 \pmod{2} \end{cases}$$

$$4, & \text{if } i = n$$

The newly added vertices u_{ij} are colored as

$$f(u_{ij}) = 1 \text{ for } 1 \le i \le n; 1 \le j \le m.$$

The cycle \mathcal{C}_n with this arbitrary supersubdivision of edges by the complete bi-partite graphs $K_{2,m}$ (m may vary for each edge) is star-in-colored and its star-in-coloring chromatic number is 4.

Case (ii): n even

The vertices
$$v_i$$
's of the cycle C_n are colored as
$$f(v_i) = \begin{cases} 2, & \text{if } i \equiv 1 \pmod{2} \\ 3, & \text{if } i \equiv 0 \pmod{2} \end{cases}$$

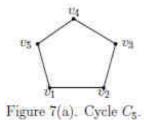
The newly added vertices u_{ij} are colored as

$$f(u_{ij}) = 1 \text{ for } 1 \le i \le n; 1 \le j \le m.$$

The cycle \mathcal{C}_n with this arbitrary supersubdivision of edges by the complete bi-partite graph $K_{2,m}$ (m may vary for each edge) is star-in-colored and its star-in-coloring chromatic number is 3.

Illustration 3:

The supersubdivision of the edges v_1v_2, v_2v_3, v_3v_4 , v_4v_5, v_5v_1 of a cycle C_5 by the complete bi-partite graphs $K_{2,3}, K_{2,7}, K_{2,4}, K_{2,2}$ and $K_{2,4}$ respectively is shown in figure-7(b). It admits star-in-coloring by using case(i) of theorem-2.



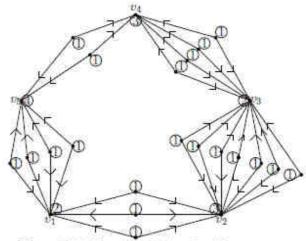
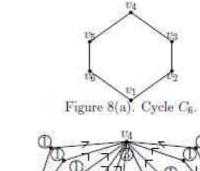


Figure 7(b). Star-in-coloring of arbitrary supersubdivision of a cycle C_5 .

The star-in-coloring chromatic number the supersubdivision of the cycle C_5 is 4.

Illustration 4:

The supersubdivision of the edges v_1v_2 , v_2v_3 , v_3v_4 , v_4v_5 , v_5v_6 , v_6v_1 of a cycle C_6 by the complete bi-partite graphs $K_{2,3}$, $K_{2,5}$, $K_{2,4}$, $K_{2,6}$, $K_{2,3}$ and $K_{2,2}$ respectively is shown in figure-8(b). It admits star-in-coloring by using case(ii) of theorem-2.



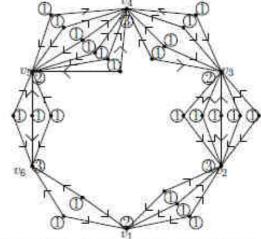


Figure 8(b), Star-in-coloring of arbitrary supersubdivision of a cycle C_6 .

star-in-coloring chromatic number the supersubdivision of the cycle C_6 is 3.

Theorem 3:

Arbitrary supersubdivision of a fan graph $F_{1,n} (n \ge 2)$ by the complete bi-partite graph $K_{2,m}$ (m may vary for each edge) admits star-in-coloring with the chromatic number 4 for all $n \geq 2$.

A fan graph, $F_{1,n}$ with n+1 vertices and 2n-1 edges has the vertices denoted by v_i , $1 \le i \le n$ on the path and the core vertex v_0 . By the definition-1 each and every edge of the graph is replaced by the complete bi-partite graph $K_{2,m}$ (m may vary for each edge). We obtain a new graph with additional vertices u_{ij} in between v_i and v_{i+1} where $1 \le i \le n-1$ and $1 \le j \le m$. The newly added vertices between v_0 and v_i , $1 \le i \le n$ be denoted by u^l_{0j} , $1 \le j \le n$

If V is the vertex set and E is the edge set of the newly obtained graph, define a function f from V to the color set {1,2,3, ...} such that

 $f: V \to \{1,2,3,...\}$ such that $f(u) \neq f(v)$ if $uv \in E$ The vertices v_i 's of the fan graph $F_{1,n}$ are colored as

$$f(v_0) = 2$$

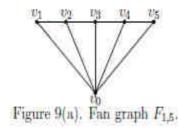
$$f(v_i) = \begin{cases} 3, & \text{if } i \equiv 1 (mod \ 2) \\ 4, & \text{if } i \equiv 0 (mod \ 2) \end{cases}$$
The newly added vertices u_{ij} and u_{0j}^i are colored as

$$f(u_{ij}) = 1$$
, for $1 \le i \le n - 1$ and for all j
 $f(u_{0j}^i) = 1$, for $1 \le i \le n$ and for all j

The fan graph $F_{1,n}$ with this arbitrary supersubdivision of edges by the complete bi-partite graph $K_{2,m}$ (m may vary for each edge) is star-in-colored and its star-in-coloring chromatic number is 4.

Illustration 5:

The supersubdivision of the edges v_1v_2 , v_2v_3 , v_3v_4 , $v_4v_5, v_0v_1, v_0v_2, v_0v_3, v_0v_4, v_0v_5$ of a fan graph $F_{1.5}$ by the complete bi-partite graphs $K_{2,2}$, $K_{2,3}$, $K_{2,4}$, $K_{2,3}$, $K_{2,3}$, $K_{2,2}, K_{2,3}, K_{2,2}$ and $K_{2,3}$ respectively is shown in figure-9(b). It admits star-in-coloring by using theorem-3.



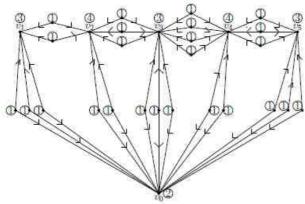


Figure 9(b). Star-in-coloring of arbitrary supersubdivision of fan graph $F_{1,5}$.

chromatic star-in-coloring number the supersubdivision of the fan graph $F_{1.5}$ is 4.

Theorem 4:

Arbitrary supersubdivision of a wheel graph W_n (n > 2)by the complete bi-partite graph $K_{2,m}$ (m may vary for each edge) admits star-in-coloring with the chromatic number 5 for even n and 4 for odd n.

Proof:

A wheel graph, W_n with n vertices and 2(n-1) edges has the vertices denoted by v_i , $0 \le i \le n-1$. By the definition-1 each and every edge of a wheel graph W_n is replaced by the complete bi-partite graph $K_{2,m}$ (m may vary for each edge). We obtain a new graph with additional vertices u_{ij} in between v_i and v_{i+1} where $1 \le i \le n-1$ and $1 \le j \le m$. The vertices between v_n and v_1 be denoted by u_{nj} for $1 \le j \le m$ and the vertices between v_0 and v_i , $1 \le i \le n-1$ be denoted by u_{0j}^l , $1 \le j \le m$.

If V is the vertex set and E is the edge set of the newly obtained graph, define a function f from V to the color set {1,2,3, ...} such that

$$f: V \to \{1,2,3,...\}$$
 such that $f(u) \neq f(v)$ if $uv \in E$

Case (i): For odd n

The vertices v_i 's of the wheel graph W_n are colored as

$$f(v_0) = 2$$

$$f(v_i) = \begin{cases} 3, & \text{if } i \equiv 1 \pmod{2} \\ 4, & \text{if } i \equiv 0 \pmod{2} \end{cases}$$

The newly added vertices u_{ij} and u_{0j}^i are colored as

$$f(u_{ij}) = 1$$
, for $1 \le i \le n$ and for all j
 $f(u_{0j}^i) = 1$, for $1 \le i < n$ and for all j

The wheel graph W_n with this arbitrary supersubdivision of edges by the complete bi-partite graph $K_{2,m}$ (m may vary for each edge) is star-in-colored and its star-in-coloring chromatic number is 4.

Case (ii): For even n

The vertices v_i 's of the wheel graph W_n are colored as

$$f(v_0) = 2$$

$$f(v_i) = \begin{cases} 3, & \text{if } i \equiv 1 \pmod{2} \text{ and } 1 \le i < n - 1 \\ 4, & \text{if } i \equiv 0 \pmod{2} \end{cases}$$

$$f(v_{n-1}) = 5$$

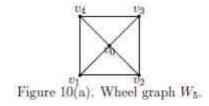
The newly added vertices u_{ij} and u_{0j}^i are colored as

$$f(u_{ij}) = 1$$
, for $1 \le i \le n$ and for all j
 $f(u_{0j}^i) = 1$, for $1 \le i < n$ and for all j

The wheel graph W_n with this arbitrary supersubdivision of edges by the complete bi-partite graphs $K_{2,m}$ (m may vary for each edge) is star-in-colored and its star-in-coloring chromatic number is 5.

Illustration 6:

The supersubdivision of the edges v_1v_2 , v_2v_3 , v_3v_4 , v_4v_1 , v_0v_1 , v_0v_2 , v_0v_3 , v_0v_4 of a wheel graph W_5 by the complete bi-partite graphs $K_{2,4}$, $K_{2,3}$, $K_{2,3}$, $K_{2,5}$, $K_{2,3}$, $K_{2,4}$, $K_{2,4}$ and $K_{2,3}$ respectively is shown in figure-10(b). It admits star-in-coloring by using case(i) of theorem-4.



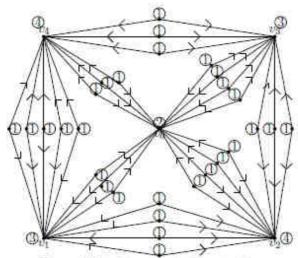


Figure 10(b). Star-in-coloring of arbitrary supersubdivision of a wheel graph W₅.

The star-in-coloring chromatic number of the supersubdivision of the wheel graph W_5 is 4.

Illustration 7:

The supersubdivision of the edges v_1v_2 , v_2v_3 , v_3v_4 , v_4v_5 , v_5v_1 , v_0v_1 , v_0v_2 , v_0v_3 , v_0v_4 , v_0v_5 of a wheel graph W_6 by the complete bi-partite graphs $K_{2,3}$, $K_{2,3}$, $K_{2,4}$, $K_{2,5}$,

 $K_{2,3}$, $K_{2,2}$, $K_{2,4}$, $K_{2,3}$ and $K_{2,5}$ respectively is shown in figure-11(b). It admits star-in-coloring by using case(ii) of theorem-4.

Figure 11(a). Wheel graph W_6 .

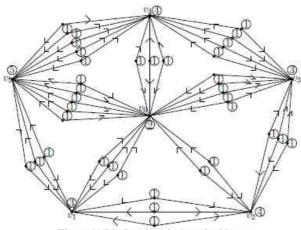


Figure 11(b). Star-in-coloring of arbitrary supersubdivision of a wheel graph W_6 -

The star-in-coloring chromatic number of the supersubdivision of the wheel graph W_6 is 5.

Theorem 5:

Arbitrary supersubdivision of a helm graph H_n by the complete bi-partite graph $K_{2,m}$ (m may vary for each edge) admits star-in-coloring with the chromatic number 5 for even n and 4 for odd n.

Proof:

A helm graph, H_n consists of 2n-1 vertices and 3(n-1) edges. Let the central vertex be denoted by v_0 and the vertices on the cycle be denoted by v_i , $1 \le i \le n-1$ and the pendent vertices are denoted by v_i' , $1 \le i \le n-1$. By the definition-1 each and every edge of a wheel graph W_n is replaced by a complete bi-partite graph $K_{2,m}$ (m may vary for each edge). We obtain a new graph with additional vertices u_{ij} in between v_i and v_{i+1} for all $1 \le i \le n-1$ and $1 \le j \le m$. The vertices between v_0 and v_i , $1 \le i \le n-1$ be denoted by u_{0j}^i , $1 \le j \le m$ and u_{ij}^i be the additional vertices in between v_i and v_i^i for all $1 \le i \le n-1$ and $1 \le j \le m$.

If V is the vertex set and E is the edge set of the newly obtained graph, define a function f from V to the color set $\{1,2,3,...\}$ such that

$$f: V \to \{1,2,3,...\}$$
 such that $f(u) \neq f(v)$ if $uv \in E$
Case (i): For even n

The vertices v_i 's of the helm graph H_n are colored as

$$f(v_0) = 2$$

$$f(v_i) = \begin{cases} 3, & \text{if } i \equiv 1 \pmod{2} \text{ and } 1 \le i < n-1 \\ 4, & \text{if } i \equiv 0 \pmod{2} \end{cases}$$

$$f(v_{n-1}) = 5$$

$$f(v_i') = 2, for \ 1 \le i \le n-1$$

The newly added vertices $u_{ij},\,u_{0j}^i$ and u_{ij}' are colored as

$$f(u_{ij}) = 1$$
, for $1 \le i \le n - 1$; $1 \le j \le m$
 $f(u_{0j}^i) = 1$, for $1 \le i \le n - 1$; $1 \le j \le m$
 $f(u'_{ij}) = 1$, for $1 \le i \le n - 1$; $1 \le j \le m$

The helm graph H_n with this arbitrary supersubdivision of edges by the complete bi-partite graph $K_{2,m}$ (m may vary for each edge) is star-in-colored and its star-in-coloring chromatic number is 5.

Case (ii): For odd n

The vertices v_i 's of the helm graph H_n are colored as

$$f(v_0) = 2$$

$$f(v_i) = \begin{cases} 3, & \text{if } i \equiv 1 \pmod{2} \\ 4, & \text{if } i \equiv 0 \pmod{2} \end{cases}$$

$$f(v_i') = 2, \text{for } 1 \le i \le n-1$$

The newly added vertices u_{ij} , u_{0j}^i and u'_{ij} are colored as

$$f(u_{ij}) = 1$$
, for $1 \le i \le n - 1$; $1 \le j \le m$
 $f(u_{0j}^i) = 1$, for $1 \le i \le n - 1$; $1 \le j \le m$
 $f(u_{ij}^i) = 1$, for $1 \le i \le n - 1$; $1 \le j \le m$

The helm graph H_n with this arbitrary supersubdivision of edges by the complete bi-partite graph $K_{2,m}$ (m may vary for each edge) is star-in-colored and its star-in-coloring chromatic number is 4.

Illustration 8:

The supersubdivision of the edges v_1v_2, v_2v_3, v_3v_1 , $v_0v_1, v_0v_2, v_0v_3, v_1v_1', v_2v_2', v_3v_3'$ of a helm graph H_4 by the complete bi-partite graphs $K_{2,5}, K_{2,4}, K_{2,3}, K_{2,2}, K_{2,3}$,

 $K_{2,3}$, $K_{2,3}$, $K_{2,4}$ and $K_{2,5}$ respectively is shown in figure-12(b). It admits star-in-coloring by using case(i) of theorem-5.

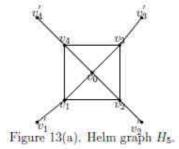


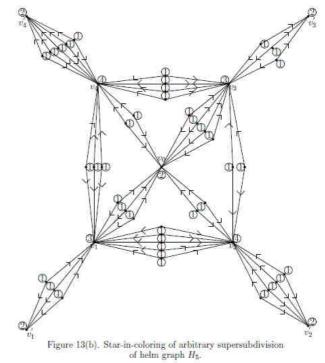
Figure 12(b). Star-in-coloring of arbitrary supersubdivision of a helm graph H_4 .

The star-in-coloring chromatic number of the supersubdivision of the helm graph H_4 is 5.

Illustration 9:

The supersubdivision of the edges v_1v_2 , v_2v_3 , v_3v_4 , v_4v_1 , v_0v_1 , v_0v_2 , v_0v_3 , v_0v_4 , v_1v_1' , v_2v_2' , v_3v_3' , v_4v_4' of a helm graph H_5 by the complete bi-partite graphs $K_{2,5}$, $K_{2,2}$, $K_{2,4}$, $K_{2,3}$, $K_{2,3}$, $K_{2,2}$, $K_{2,4}$, $K_{2,3}$, $K_{2,2}$, $K_{2,4}$, $K_{2,3}$, $K_{2,4}$, $K_{2,3}$ and $K_{2,5}$ respect-ively is shown in figure-13(b). It admits star-incoloring by using case(ii) of theorem-5.





The star-in-coloring chromatic number of the supersubdivision of the helm graph H_5 is 4.

Theorem 6:

Arbitrary supersubdivision of a gear graph $G_{1,n}$ by the complete bi-partite graph $K_{2,m}$ (m may vary for each edge) admits star-in-coloring with the chromatic number 4 for all n.

Proof:

A gear graph, $G_{1,n}$ with n+1 vertices and $\left(\frac{3n}{2}\right)$ edges has the vertices denoted by $v_i,\ 0\leq i\leq n.$ By the definition-1 each and every edge of a gear graph $G_{1,n}$ is replaced by a complete bi-partite graph $K_{2,m}$ (m may vary for each edge). We obtain a new graph with additional vertices u_{ij} in between v_i and v_{i+1} for odd $i,\ 1\leq i\leq n$ and $1\leq j\leq m$. The vertices between v_n and v_1 be denoted by u_{nj} for $1\leq j\leq m$ and the vertices between v_0 and v_i , odd $i,\ 1\leq i\leq n-1$ be denoted by $u_{0j}^i,\ 1\leq j\leq m$.

If V is the vertex set and E is the edge set of the newly obtained graph, define a function f from V to the color set $\{1,2,3,...\}$ such that

 $f: V \to \{1,2,3,...\}$ such that $f(u) \neq f(v)$ if $uv \in E$ The vertices v_i 's of the gear graph $G_{1,n}$ are colored as

$$f(v_0) = 2$$

$$f(v_i) = \begin{cases} 3, & \text{if } i \equiv 1 \pmod{2} \\ 4, & \text{if } i \equiv 0 \pmod{2} \end{cases}$$

The newly added vertices u_{ij} and u_{0j}^i are colored as

$$f(u_{ij}) = 1, \text{ for } 1 \le i \le n; 1 \le j \le m$$

$$f(u_{0j}^i) = 1, \text{ for odd } i; 1 \le j \le m$$

The gear graph $G_{1,n}$ with this arbitrary supersubdivision of edges by the complete bi-partite graph $K_{2,m}$ (m may vary for each edge) is star-in-colored and its star-in-coloring chromatic number is 4.

Illustration 10:

The supersubdivision of the edges v_1v_2 , v_2v_3 , v_3v_4 , v_4v_5 , v_5v_6 , v_6v_7 , v_7v_8 , v_8v_1 , v_0v_1 , v_0v_3 , v_0v_5 , v_0v_7 of a gear graph $G_{1,8}$ by the complete bi-partite graphs $K_{2,2}$, $K_{2,3}$, $K_{2,3}$, $K_{2,4}$, $K_{2,4}$, $K_{2,3}$, $K_{2,3}$, $K_{2,2}$, $K_{2,4}$, $K_{2,3}$, $K_{2,3}$, and $K_{2,5}$ respectively is shown in figure-14(b). It admits star-in-coloring by using case(i) of theorem-6.

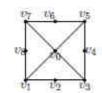


Figure 14(a). Gear graph $G_{1.8}$.

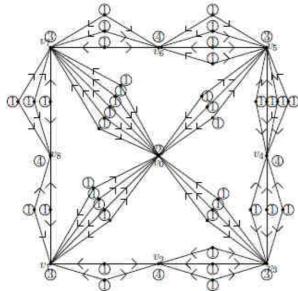


Figure 14(b). Star-in-coloring of arbitrary supersubdivision of a gear graph G_{1,8}.

The star-in-coloring chromatic number of the supersubdivision of the gear graph $G_{1,8}$ is 4.

III. STAR-IN-COLORING OF A FAN GRAPH

Theorem 7:

Fan graph $F_{1,n}$ admits star-in-coloring with chromatic number 4 for odd n and $n \ge 9$.

Proof:

Consider a fan graph $F_{1,n}$ which consists of n+1 vertices and 2n-1 edges. The vertices are denoted by v_i , $1 \le i \le n$ and v_0 be its central vertex.

If V is the vertex set and E is the edge set of the newly obtained graph, define a function f from V to the color set $\{1,2,3,\ldots\}$ such that

$$f: V \to \{1, 2, 3, \dots\} \text{ such that } f(u) \neq f(v) \text{ if } uv \in E$$

$$f(v_0) = 1$$

$$f(v_i) = \begin{cases} 2, if \ i \equiv 1 \pmod{4} \text{ and } i \equiv 3 \pmod{4} \\ 3, if \ i \equiv 2 \pmod{4} \\ 4, if \ i \equiv 0 \pmod{4} \end{cases}$$

By using the above definition of f, we can prove that the fan graph admits star-in-coloring.

The star-in-coloring chromatic number of the fan graph is 4.

Consider a fan graph $F_{1,9}$. As per the definition-3 it consists of 10 vertices and 17 edges. This graph is star-in-colored by using theorem-7.

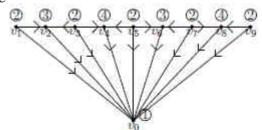


Figure 15. Star-in-coloring of a fan graph $F_{1,9}$.

The star-in-coloring chromatic number of the fan graph $F_{1,9}$ is 4.

IV. STAR-IN-COLORING OF SPLITTING GRAPH OF GRAPHS

Theorem 8:

The splitting graph of a path (P_m) is star-in-colored if its number of edges is even for $m \ge 5$.

Proof:

Consider a path, P_m with m vertices and m-1 edges. The vertices are denoted by v_i , $1 \le i \le m$. As per the definition of splitting graph we obtain m new vertices v_i' , $1 \le i \le m$ such that v_i' is adjacent to v_{i+1} and v_{i-1} if there exist edges $v_i v_{i+1}$ and $v_{i-1} v_i$ in the path P_m respectively. The number of vertices present in the newly obtained graph is 2m and the number of edges is 3(m-1).

If V is the vertex set and E is the edge set of the newly obtained graph, define a function f from V to the color set $\{1,2,3,\ldots\}$ such that

 $f: V \to \{1,2,3,...\}$ such that $f(u) \neq f(v)$ if $uv \in E$ The vertices v_i 's of the path P_m are colored as for $1 \leq i \leq m$,

$$f(v_i) = \begin{cases} 1, if \ i \equiv 1 \pmod{4} \text{ and } i \equiv 3 \pmod{4} \\ 2, if \ i \equiv 2 \pmod{4} \\ 3, if \ i \equiv 0 \pmod{4} \end{cases}$$

The newly added vertices v_i^\prime are colored as

for $1 \le i \le m$,

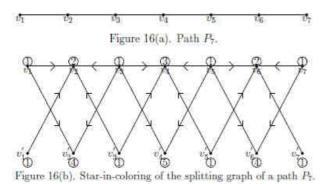
$$f(v_i) = \begin{cases} 1, if \ i \equiv 1 \pmod{4} \text{ and } i \equiv 3 \pmod{4} \\ 4, if \ i \equiv 2 \pmod{4} \\ 5, if \ i \equiv 0 \pmod{4} \end{cases}$$

By using the above definition of f, we can prove that the splitting graph of a path of even length can be star-incolored.

The star-in-coloring chromatic number of the splitting graph of the path is 5.

Illustration 12:

Consider a path P_9 . As per the definition we obtain the splitting graph of a path P_9 which consists of 14 vertices and 18 edges. This graph is star-in-colored by using theorem-8.



The star-in-coloring chromatic number of the splitting graph of a path P_9 is 5.

Remark:

A path of length two can be star-in-colored and its star-in-coloring chromatic number is 3.

Theorem 9:

The splitting graph of a cycle (C_n) is star-in-colored if its number of edges is even for $n \ge 4$.

Proof:

Consider a cycle, C_n with n vertices and n edges. The vertices are denoted by v_i , $1 \le i \le n$. As per the definition of splitting graph we obtain additional vertices say v_i' , $1 \le i \le n$ which is adjacent to v_i 's according to the definition of splitting graph. The newly obtained graph consists of 2n vertices and 3n edges.

If V is the vertex set and E is the edge set of the newly obtained graph, define a function f from V to the color set $\{1,2,3,...\}$ such that

 $f: V \to \{1,2,3,\dots\}$ such that $f(u) \neq f(v)$ if $uv \in E$

The vertices v_i 's of the cycle C_n are colored in two cases: Case (i): For $n \equiv 0 \pmod{4}$, $1 \le i \le n$

$$f(v_i) = \begin{cases} 1, & \text{if } i \equiv 1 \pmod{4} \text{ and } i \equiv 3 \pmod{4} \\ & 2, & \text{if } i \equiv 2 \pmod{4} \\ 3, & \text{if } i \equiv 0 \pmod{4} \end{cases}$$

The newly added vertices v_i' are colored as

$$f(v_i') = \begin{cases} 1, & \text{if } i \equiv 1 \pmod{4} \text{ and } i \equiv 3 \pmod{4} \\ 4, & \text{if } i \equiv 2 \pmod{4} \\ 5, & \text{if } i \equiv 0 \pmod{4} \end{cases}$$

Case (ii): For $n \equiv 2 \pmod{4}$, $1 \le i < n$

$$f(v_i) = \begin{cases} 1, & \text{if } i \equiv 1 \pmod{4} \text{ and } i \equiv 3 \pmod{4} \\ 2, & \text{if } i \equiv 2 \pmod{4} \text{ and } 1 \leq i < n \\ 3, & \text{if } i \equiv 0 \pmod{4} \end{cases}$$

$$f(v_i) = \begin{cases} 1, & \text{if } i \equiv 1 \pmod{4} \text{ and } i \equiv 3 \pmod{4} \\ 4, & \text{if } i \equiv 1 \pmod{4} \text{ and } i \equiv 3 \pmod{4} \\ 5, & \text{if } i \equiv 0 \pmod{4} \end{cases}$$

By using the above definition of f, we can prove that the splitting graph of a cycle \mathcal{C}_n can be star-in-colored if cycle is of even length.

The star-in-coloring chromatic number of the splitting graph of a cycle C_n is 5 for $n \equiv 0 \pmod{4}$ and 7 for $n \equiv 2 \pmod{4}$.

Illustration 13:

Consider a cycle C_8 . As per the definition-2 it consists of 16 vertices and 24 edges. This graph can be star-in-colored by using case(i) of theorem-9.

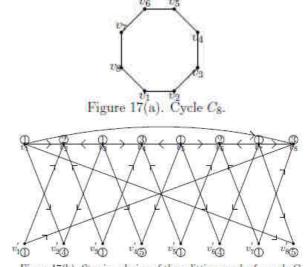


Figure 17(b). Star-in-coloring of the splitting graph of a cycle C_8 .

The star-in-coloring chromatic number of the splitting graph of the cycle \mathcal{C}_8 is 5.

Illustration 14:

Consider a cycle C_6 . As per the definition-2 it consists of 12 vertices and 18 edges. This graph can be star-in-colored by using case(ii) of theorem-9.

Figure 18(a). Cycle C_6 .

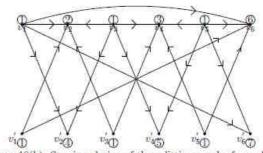


Figure 18(b). Star-in-coloring of the splitting graph of a cycle C_6 .

The star-in-coloring chromatic number of the splitting graph of the cycle C_6 is 7.

Theorem 10:

The splitting graph of a fan graph $F_{1,n}$ admits star-in-coloring with the chromatic number 7 for odd n and $n \ge 9$.

Proof:

Consider a fan graph, $F_{1,n}$ with n+1 vertices and 2n-1 edges. The vertices are denoted by v_i , $0 \le i \le n$. We obtain additional vertices say v_i' , $0 \le i \le n$ which is adjacent to v_i 's according to the definition-2.

If V is the vertex set and E is the edge set of the newly obtained graph, define a function f from V to the color set $\{1,2,3,...\}$ such that

 $f: V \to \{1,2,3,...\}$ such that $f(u) \neq f(v)$ if $uv \in E$ The vertices v_i 's of the fan graph $F_{1,n}$ are colored as

$$f(v_{o}) = 1$$

$$f(v_{i}) = \begin{cases} 2, if \ i \equiv 1 \pmod{4} \text{ and } i \equiv 3 \pmod{4} \\ 3, if \ i \equiv 2 \pmod{4} \\ 4, if \ i \equiv 0 \pmod{4} \end{cases}$$

The newly added vertices v_i^\prime are colored as

$$f(v'_0) = 5$$

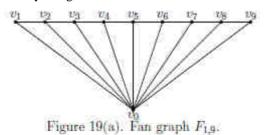
$$f(v'_i) = \begin{cases} 2, & \text{if } i \equiv 1 \pmod{4} \text{ and } i \equiv 3 \pmod{4} \\ 6, & \text{if } i \equiv 2 \pmod{4} \\ 7, & \text{if } i \equiv 0 \pmod{4} \end{cases}$$

By using the above definition of f, we can prove that the splitting graph of a fan graph $F_{1,n}$ can be star-in-colored for odd n.

The star-in-coloring chromatic number of the splitting graph of a fan graph is 7.

Illustration 15:

Consider a fan graph $F_{1,9}$. As per the definition-3 it consists of 10 vertices and 17 edges. This graph is starin-colored by using theorem-10.



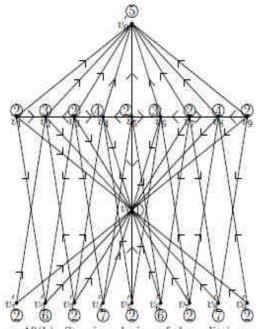


Figure 19(b). Star-in-coloring of the splitting graph of a fan graph $F_{1,9}$.

The star-in-coloring chromatic number of the splitting graph of fan graph $F_{1,9}$ is 7.

V. CONCLUSION

We have discussed and found the star-in-coloring chromatic number of the arbitrary supersubdivision of a path, a cycle, a fan graph, a wheel graph, a helm graph and a gear graph by a complete bi-partite graph $K_{2,m}$ (m may vary for each edge). We have also obtained the star-in-coloring chromatic number of the fan graph and the splitting graph of a path, cycle and fan graph.

Question 1: Is star-in-coloring of the splitting graph of P_m of odd length possible?

Question 2: Is star-in-coloring of the splitting graph of C_n of odd length possible?

REFERENCES

- G. Sethuraman, P. Selvaraju, "Gracefulness of arbitrary supersubdivision of graphs", Indian J.Pure appl.Math., Vol 32(7), 2001, PP 1059 - 1064.
- [2] S. Sudha, V. Kanniga, "Graceful labeling of uniform supersubdivision of cycles by bipartite graphs", 2015, (communicated for publication).
- [3] S. Sudha, V. Kanniga, "Arbitrary supersubdivision of Helms, Centipedes and Ladder graphs are graceful", Mathematical Sciences International Research Journal, Vol 1(3), 2012, pp 860 - 863.
- [4] S. Sudha, V. Kanniga, "Graceful labeling on the combination of some graphs", Mathematical Sciences International Research Journal, Vol 2(2), 2013, pp 630 - 633.
- [5] E. Sampathkumar, and H. B. Walikar, "On Splitting Graph of a Graph", J. Karnatak Univ. Sci., Vol 25(13), 1980, pp 13 - 16.
- [6] S. Sudha, V. Kanniga, "Gracefulness of some new class of graphs", Engineering Sciences International Research Journal, Vol 1(1), 2013, pp 81 - 83.
- [7] B. Grünbaum, "Acyclic colorings of planar graphs", Israel J.Math., Vol 14(3), 1973, pp 390-408.
- [8] S. Sudha, V. Kanniga, "Star-in-coloring of Cycles, Generalized Petersen graphs and their middle graphs", The Journal of Indian Academy of Mathematics, Vol 36(1), 2014, pp 13 - 27.
- [9] S. Sudha, V. Kanniga, "Star-in-coloring of complete bi-partite graphs, wheel graphs and prism graphs", International Journal of Research in Engineering and Technology, Vol 2(2), 2014, pp 97 - 104.
- [10] S. Sudha, V. Kanniga, "Star-in-coloring of some new class of graphs", International Journal of Scientific and Innovative Mathematical Research, Vol 2(4),2014, pp 352 - 360.
- [11] K. J. Ma, C. J. Feng, "On the gracefulness of gear graphs", Math. Practice Theory, 1984, pp 72 73.

Dr. S. Sudha, Professor of Mathematics, Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai-05. Her fields of research are fluid dynamics, graph theory, fuzzy graphs and queueing theory. She has published many articles in all these fields in international and national journals.

V. Kanniga, Ph.D Research Scholar, Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai-05. She has published articles in International Journals. She has attended International Conferences and National seminars and presented papers.

