VISÃO GERAL SOBRE POLÍMEROS BIODEGRADÁVEIS

Diego Saboya

7º Semana de Polímeros

Instituto de Macromoléculas Professora Eloisa Mano

IMA – UFRJ

30/10/2013

Introdução

- □ Polímeros têm se tornado uma parte essencial de nossa vida diária.
- Tendo suas inúmeras vantagens, que consiste na sua utilização em todas as áreas.
- Mas estes produtos poliméricos representam, aproximadamente, 150 milhões de toneladas de resíduos não biodegradáveis a cada ano.

Introdução

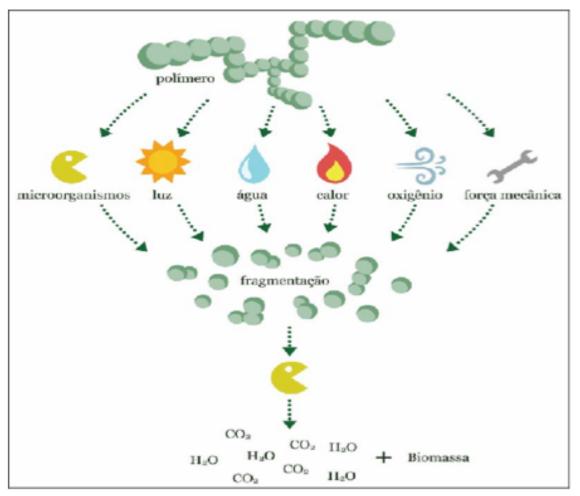
- Essa grande quantidade de resíduo leva a vários problemas.
- Faz-se necessário a utilização de polímeros que minimizem esses problemas, os **polímeros biodegradáveis**.

Degradação vs. Biodegradação

Degradação: alteração irreversível da estrutura do material associada à perda de propriedades (ex: cor, massa molar, desempenho mecânico, etc.) e/ou fragmentação. A degradação é dependente do meio, ocorre num período de tempo e pode envolver uma ou mais fases.

■ Biodegradação: degradação causada por atividade biológica, especialmente enzimática, associada a uma alteração significativa da estrutura química do material.

Degradação vs. Biodegradação


Biodegradação aeróbica:

$$C_{POLÍMERO} + O_2 \longrightarrow CO_2 + H_2O + C_{RESÍDUO} + C_{BIOMASSA}$$

Biodegradação anaeróbica:

$$C_{POLÍMERO} \longrightarrow CO_2 + CH_4 + H_2O + C_{RESÍDUO} + C_{BIOMASSA}$$

Fragmentação e Mineralização

A simples fragmentação do plástico pode ocasionar a chamada "poluição invisível", mais difícil de controlar, e que torna impossível qualquer processo de revalorização.

Biodegradação

Processo de biodegradação de uma embalagem plástica (Biota)

■ Polímero biodegradável: polímero cuja degradação resulta da ação de microorganismos de ocorrência natural como bactérias, fungos e algas.

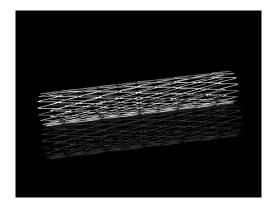
Polímeros naturais (Dupont)

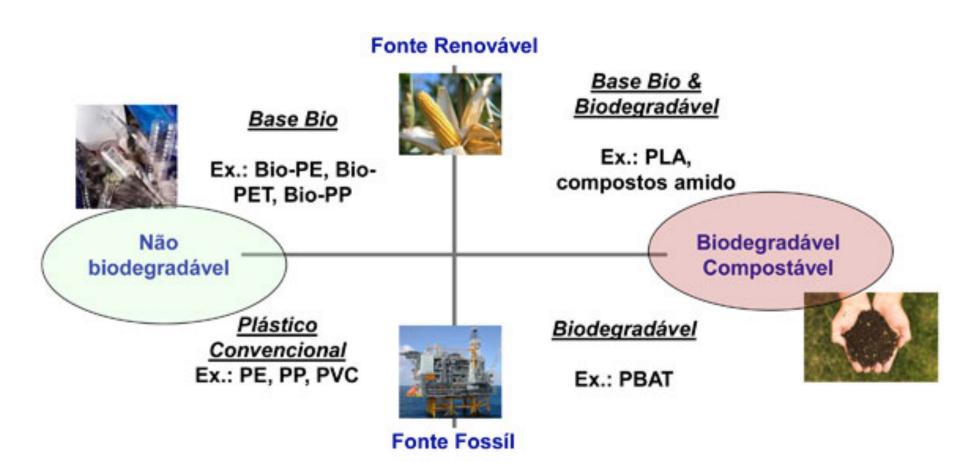
Biopolímeros: polímeros que são produzidos por fontes naturais renováveis e são, frequentemente, biodegradáveis e nãotóxicos. Podem ser produzidos por meio de sistemas naturais (microrganismos, plantas e animais), também chamados de polímeros naturais, ou sintetizados quimicamente usando como matéria-prima materiais biológicos (ex: açúcar, óleos, gorduras, etc).

Trigo principal fonte do glúten

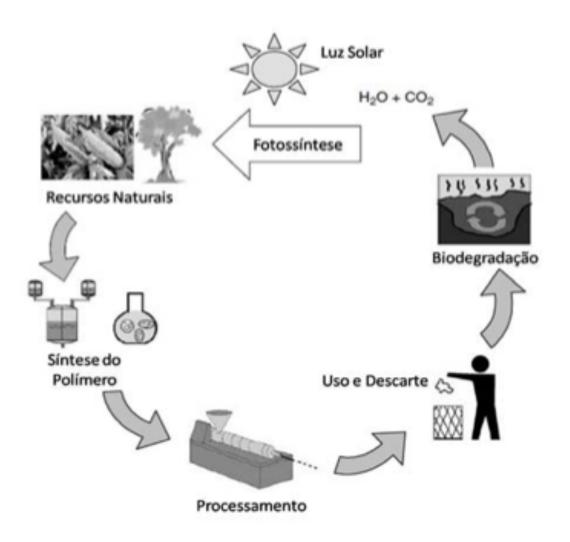
Polímeros verdes: Geralmente, o termo polímero verde é atribuído aos polímeros que outrora eram sintetizados a partir de matéria-prima proveniente de fontes fósseis, mas que passaram também a ser sintetizados a partir de fontes renováveis. Ex: PE verde.

Apresentam as mesmas características dos polímeros obtidos de fontes fósseis. Não são biodegradáveis, entretanto, pelo fato de serem provenientes de fontes renováveis, são classificados como biopolímeros.

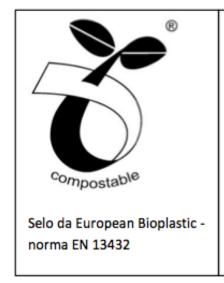



Polímeros bioabsorvíveis: são polímeros biodegradáveis que podem ser assimilados por um sistema biológico.

São usados em aplicações médicas para confeccionar suturas, implantes e fixações ósseas. Eles devem ser absorvidos pelo organismo na mesma escala de tempo em que ocorre a regeneração de um tecido. De um modo geral eles são degradados por hidrólise e não pela ação de microorganismos.


Polímeros oxo-biodegradáveis: consistem de polímeros contendo aditivos (compostos de metais de transição) que aceleram sua degradação oxidativa na presença de luz ou calor, a fim de formar fragmentos oxidados que sejam passíveis de sofrer biodegradação.

Compostagem: É um processo que controla a decomposição biológica e transformação de materiais biodegradáveis via tratamento aeróbico em uma substância semelhante ao húmus chamado de composto: a decomposição do material biodegradável resulta na produção de CO₂, água, minerais e matéria orgânica estabilizada (adubo ou húmus)


Ciclo de vida dos biopolímeros biodegradáveis

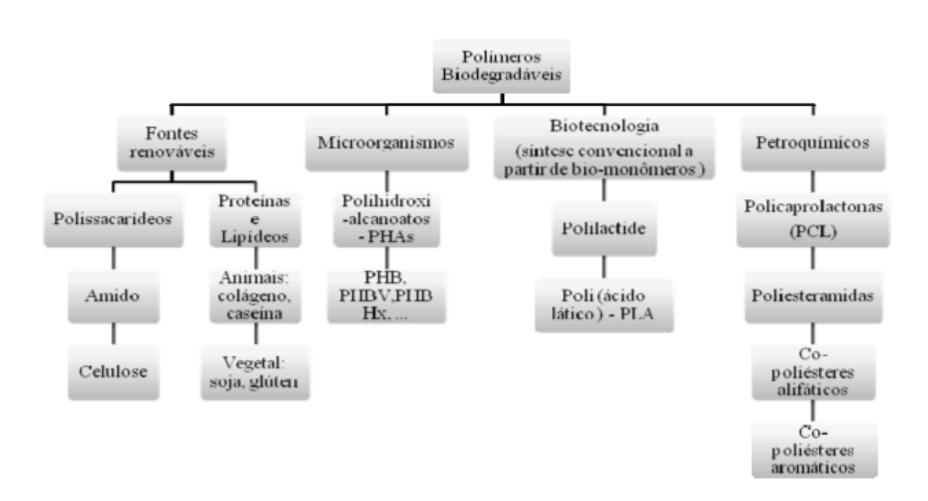
Certificados

Para obter a certificação de um determinado material em compostável, é preciso que este passe por um teste, este consta resumidamente em quatro etapas:

Caracterização química do material: esta etapa inclui análise de metais pessados e sólidos voláteis na composição do material.

Selo do BPI Biodegradable Products Institute – norma ASTM 6400

Selo da certificadora Vinçotte da Bélgica – norma EN 13432

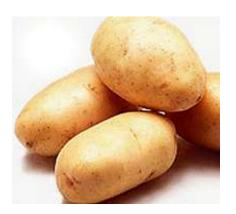


No Brasil: NBR ABNT 15.448-1 e 2

Certificados

- Biodegradação: esta é quantificada através da relação entre a quantidade de CO₂ emitida pelo plástico compostável com a quantidade emitida por uma amostra padrão, durante sua biodegradação, após um período de tempo. (ASTM D5338)
- Desintegração: nesta etapa, o material deve fisicamente se desintegrar, mais de 90% em pedaços menores que 2 mm em 90 dias. (ISO 16929 e ISO 20200)
- Ecotoxidade: verifica se nenhum material tóxico, que atrapalharia o desenvolvimento de plantas, pode ser gerado durante o processo.

Classificação dos polímeros biodegradáveis


Polímeros biodegradáveis de fonte renovável

Amido

O amido é um polissacarídeo que se encontra em plantas sendo armazenado nas raízes, caules e sementes. As principais fontes de amido são a batata, o milho, o trigo, a mandioca, o arroz, o feijão entre outras.

Polímeros biodegradáveis de fonte renovável

Amido

- Aplicações:
 - Artigos de cutelaria (catering)
 - Embalagens alimentares
 - Brinquedos para cães
 - Acessórios veterinários
 - Cápsulas farmacêuticas
 - Filmes para estufas
 - Artigos funerários

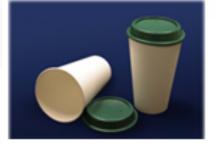
Polímeros biodegradáveis de origem microbiana

Polihidroxialcanoato (PHA)

$$R$$
 O C CH_2 C H D D D

Os PHA constitui uma ampla família de poliésteres produzidos por bactérias através de biossíntese direta de carboidratos da cana de açúcar e do milho ou de óleos vegetais.

Grânulos de um PHA no interior de bactérias


Polímeros biodegradáveis de origem microbiana

Polihidroxialcanoato (PHA)

- Aplicações:
 - Embalagem de cosméticos
 - Implantes médicos (ortopédicos)
 - Cirurgia cardiovascular
 - Utensílios descartáveis (copos)
 - Embalagens para agricultura
 - Revestimentos de papel
 - Garrafas
 - Filme
 - Componentes eletrônicos
 - Indústria automóvel
 - Têxteis
 - Adesivos e tintas

Aplicações do PHA

Polímeros biodegradáveis de origem biotecnológica

Poli(ácido lático) (PLA)

O PLA é uma poliéster proveniente da esterificação do ácido lático produzido por fermentação ou a partir do lactídeo.

Polímeros biodegradáveis de origem biotecnológica

Poli(ácido lático) (PLA)

- Aplicações:
 - Filmes
 - Embalagens
 - Produtos de higiene
 - Suturas e clips
 - Fixações ortopédicas (parafusos)
 - Implantes
 - Fibras têxteis
 - Catering

Exemplos de aplicações do PLA

Polímeros biodegradáveis de origem petroquímica

Policaprolactona (PCL)

O PCL é um poliéster sintetizado a partir de fonte nãorenovável (caprolactona).

n
$$O$$
Sn(Oct)₂
 O
Caprolactona

Policaprolactona

Polímeros biodegradáveis de origem petroquímica

Policaprolactona (PCL)

- Aplicações:
 - Sacos biodegradáveis
 - Revestimentos superficiais
 - Adesivos
 - Indústria automóvel (componentes da suspensão)
 - Indústria do calçado
 - Suturas
 - Sistemas de libertação controlada de medicamentos
 - Talas ortopédicas
 - Impressões dentárias

Algumas aplicações do PCL

Principais aplicações de polímeros biodegradáveis

■ Em termos gerais, as principais aplicações dos polímeros biodegradáveis são:

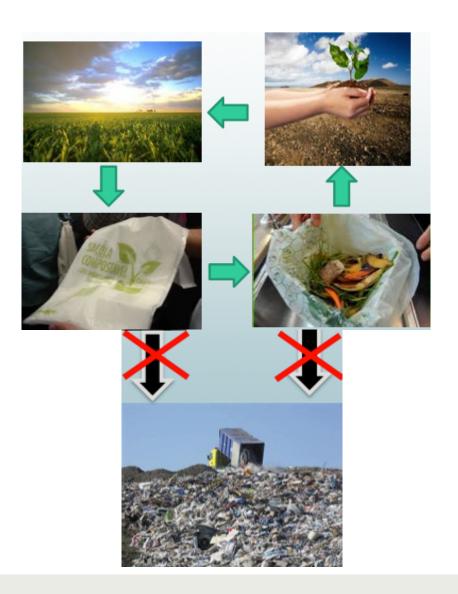
- Embalagens industriais e domésticas
- Sacos
- Fibras
- Filmes para a agricultura
- Artigos de cutelaria (catering)
- Brinquedos
- Na medicina
- Produtos de higiene
- Cosméticos

Descarte dos polímeros biodegradáveis

□ A especificação do tempo é um requisito essencial para qualquer material que se diz biodegradável.

Porém, para que o mesmo sofra biodegradação dentro de um período curto de tempo, este precisa estar sob condições adequadas (temperatuda, umidade, pH, microorganismos, disponibilidade de oxigênio).

Em lixões essas condições são desfavoráveis e os polímeros biodegradáveis e compostáveis apresentaram baixas taxas de degradação.


Descarte dos polímeros biodegradáveis

De forma geral, esses plásticos biodegradáveis não irão biodegradar efetivamente em um aterro sanitário.

Esses produtos poliméricos biodegradáveis devem ser descartados juntamente com o lixo orgânico e levados à unidades de compostagem.

Portanto, não basta apenas ser certificado como compostável se o destino final do material biodegradável não for a unidade de compostagem.

Descarte dos polímeros biodegradáveis

OBRIGADO!!