
Combining Dynamic Geometry, Automated
Geometry Theorem Proving and Diagrammatic

Proofs

Sean Wilson 1

School of Informatics,
The University of Edinburgh,

United Kingdom

Jacques D. Fleuriot 2

School of Informatics,
The University of Edinburgh,

United Kingdom

Abstract

This paper outlines Geometry Explorer, a prototype system that allows users to cre-
ate Euclidean geometry constructions using a dynamic geometry interface, specify
conjectures about them and then use a full-angle method prover to automatically
produce diagram independent, human-readable proofs to theorems. Our system
can then automatically generate novel diagrammatic proofs of the forward-chaining
and backward-chaining reasoning used by the geometry theorem prover, as well as
visualise multiple proofs to single theorems. We discuss the features of our sys-
tem, how they were implemented and the issues encountered when trying to create
diagrammatic full-angle method proofs.

Key words: diagrammatic proofs, dynamic geometry, automated
geometry theorem proving, full-angle method.

1 Introduction

Dynamic Geometry Software (DGS) allows users to create geometry diagrams
using standard ruler and compass constructions and explore them interac-
tively in ways not possible with traditional diagrams drawn on paper. The
user creates diagrams by first placing unconstrained geometry constructions

1 Email: sean.wilson@ed.ac.uk
2 Email: jacques.fleuriot@ed.ac.uk



Wilson, Fleuriot

(such as free points) and then creating dependent constructions (such as lines
through pairs of points or line intersection points). The user can then manip-
ulate the diagram, such as moving the position of free points, and explore its
properties in a novel way since dependent constructions dynamically update at
interactive rates. Implementations of this concept, such as Cabri [13] and The
Geometer’s Sketchpad [8], have been well received in schools in the last decade
since the educational benefits of DGS have been realised. For instance, these
systems can aid geometry teaching by having students interactively explore
known geometry theorems.

The field of automated Geometry Theorem Proving (GTP), for its part,
aims to find a mechanical means of proving geometry theorems and has become
one of the most successful areas of automated reasoning. There exists several
powerful so-called polynomial techniques, such as Wu’s method [17] and the
Gröbner basis [9] method, which have been used to prove a huge number of
difficult theorems. Although these represent the most powerful known meth-
ods for GTP, a major disadvantage is that they produce proofs that consist
of hundreds of polynomial terms and tedious algebraic operations that are
not humanly-readable. During the mid 1990s, powerful synthetic techniques
were developed which used intuitive geometric quantities such as areas [4] and
full-angles [5] to produce proofs that were both short and human-readable.
These methods combined simple algebraic operations with traditional tree
based searches to prove hundreds of non-trivial theorems [16].

In this paper, we describe Geometry Explorer, a prototype system that
integrates a dynamic geometry interface with a full-angle method [5] prover,
both of which were custom-made. We start with a brief overview of the full-
angle method in section 2, followed by a discussion of the system interface and
features in section 3. In section 4, we look at how full-angle method proofs
can be visualised diagrammatically and the problems encountered when these
approaches were implemented. Section 5 presents a basic outline of the system
architecture, followed by a short survey of related work in section 6. The final
section offers our conclusions and future directions.

2 The Full-Angle Method

The full-angle method [5] has been demonstrated to prove hundreds of ge-
ometry theorems automatically whilst producing proofs which are both short
and human-readable [2,3,16]. These proofs include non-trivial examples fea-
turing in American Mathematics Monthly and International Mathematical
Olympiad. The full-angle method relies on a single high-level geometric in-
variant called the full-angle to prove theorems.

2



Wilson, Fleuriot

2.1 Overview

Throughout this paper, we use the convention of capital letters for point names
and lowercase letters for line names.

Definition 2.1 The full-angle between the ordered pair of lines u and v is
written as ∠[u, v] and can be thought of intuitively as the rotation required
to make the line u parallel to line v. Two full-angles ∠[m,n] and ∠[u, v] are
equal if there exists a rotation R such that R(m) ‖ u and R(n) ‖ v.

Definition 2.2 For all u ‖ v, ∠[u, v] = ∠[0] is a constant and is said to be a
flat full-angle.

Definition 2.3 For all u ⊥ v, ∠[u, v] = ∠[1] is a constant and is said to be a
right full-angle.

Definition 2.4 For any line w, addition of full-angles is defined as
∠[u, v] = ∠[u, w] + ∠[w, v].

The following steps are taken to prove a geometry theorem using backward-
chaining:

(i) The hypotheses of the theorem is first inserted into what is called the
Geometry Information Basis (GIB). This contains a list of geometry facts
in predicate form which we know to be true about the construction being
reasoned about.

(ii) The conjecture to prove is converted into a conjecture equation of full-
angles of the form ∠[0] =

∑
(fi · ni), where fi is a full-angle and ni is its

integer coefficient.

(iii) The prover then uses conditional rewrite rules with facts from the GIB to
substitute full-angles in the conjecture equation with equal expressions
of full-angles. For example, ∠[u, v] can be rewritten to ∠[1] if the GIB
contains u ⊥ v. Basic properties of full-angles are then applied to simplify
the conjecture equation after each substitution, such as ∠[u, v]+∠[v, u] =
∠[u, v]− ∠[u, v] = ∠[0] and ∠[1] + ∠[1] = ∠[0] .

(iv) A theorem proof is complete when a path of rewrite rule applications is
found that transforms the conjecture equation into the form ∠[0] = ∠[0].
This can be found using traditional tree-based search techniques.

2.2 Backward-Chaining

We give examples of rewrite rules that are used during backward-chaining and
which will feature later in this paper:

R1 ∠[AB,CD] = ∠[AB,EF ] if CD ‖ EF .

R2 ∠[AB,CD] = ∠[AB,EF ] + ∠[1] if CD ⊥ EF .

R3 ∠[AB,CD] = ∠[AB,CE] if E lies on CD.

3



Wilson, Fleuriot

R4 ∠[AB,AC] = ∠[AC,BC] if AB = BC, where XY denotes the length of
the line segment with endpoints X and Y .

R5 ∠[AO,AB] = ∠[AC,BC] + ∠[1] if O is the circumcenter of 4ABC and
M is the midpoint of AB. This is because ∠[AO,AB] = ∠[AO,OM ] +
∠[OM,AB] (definition 2.4) and we know that ∠[AO,OM ] = ∠[AC,BC] and
∠[OM,AB] = ∠[1] are true from the geometry construction.

R6 ∠[AB,BC] = ∠[AD,CD] if A, B, C and D are cyclic.

A geometry theorem proof expressed with full-angles has the property of
being diagram independent. This is not always the case with traditional angles
as different instances of a diagram for one theorem may require various cases
to be proved depending on the position of the points and how rewrite rules
are expressed.

To guarantee termination and optimise the backward-chaining search tree,
the full-angle method takes advantages of the constructive order of points.
The theorem hypotheses must be supplied with the order in which labelled
points are introduced in a way that allows a diagram of the hypotheses to
be built constructively. For example, given that M was the midpoint of AB
and both A and B were free points, a possible constructive order would be
to construct A, then B and then M . Full-angles are eliminated each step in
the search by replacing full-angles with ones which contain lower order points.
This works because the location of the lower order points on a diagram, and
hence the value of the full-angles expressed with them, cannot be dependent
on higher order points by definition of the constructive order. The full-angle
method can also generate multiple proofs to theorems, which is still the case
when this heuristic is used.

2.3 Forward-Chaining

For non-trivial theorems, the backward-chaining approach alone is not pow-
erful enough to find a proof. To remedy this, forward-chaining is applied
to all the known geometry facts in the GIB to discover other true geometry
facts. These new facts are inserted into the GIB and forward-chaining is ap-
plied again. This process happens repeatedly until no new facts can be found.
Backward-chaining is then used to look for a proof, although it should be
noted that the full-angle method is not complete for the class of constructive
geometry statements [16]. We will use the following inference rules in later
examples:

F1 If A, B and C are collinear then AB ‖ BC.

F2 If u ⊥ v, u ‖ w then w ⊥ v.

F3 If M and N are the midpoints of AB and AC respectively then MN ‖ BC.

F4 If O is the circumcenter of 4ABC then OA = OB = OC.

4



Wilson, Fleuriot

F5 If O is the midpoint of CA and AB ⊥ BC then O is the circumcenter of
4ABC.

3 The Prover Interface

Our full-angle method prover originally used a command-line interface where
the program would read a theorem description from a custom file format and
produce a proof if one was found. Command-line arguments allowed different
search techniques to be selected and the user had a choice of text-based or
Latex output for proofs. Due to the highly visual nature of geometry, there is
great scope for improving the user interfaces of automated geometry theorem
provers with respect to describing theorems and exploring proofs. This was
investigated by extending the system to include a dynamic geometry interface
which will be described next.

3.1 Constructing and Manipulating Diagrams

The dynamic geometry interface (see Figure 1) for the software provides com-
mon geometry construction tools (such as midpoints, perpendicular lines and
circumcircles) that let the user construct typical Euclidean geometry diagrams.
The simple GUI enables the user to create a new geometry construction by
choosing an appropriate tool from a toolbar followed by selecting the construc-
tions in the hypotheses diagram window that the new construction will depend
on. Free points have no dependencies on other constructions however and so
can be placed arbitrarily. New points are automatically labelled so they can
be referred to in proofs. After completing a construction, the user can then
switch to a tool which lets them move constructions by clicking and dragging
the mouse, where dependent constructions will then dynamically update at
interactive rates.

To demonstrate how a user can generate and explore proofs with our sys-
tem, we will use the following theorem as an example throughout the rest of
the paper:

Example 3.1 (Nine Point Circle Theorem) Let AD be the altitude on BC
and let the midpoints of the sides AB, BC and CA of 4ABC be E, F and
G respectively. Show that D, E, F and G are on the same circle.

Figure 1 shows an instance of this theorem that has been constructed with
our interface. Figure 2 shows two other instances of this diagram which were
created by changing the positions of the free points in the original diagram.
The theorem holds for each instance and these diagram manipulations allow
the user to explore this in a novel way.

5



Wilson, Fleuriot

Fig. 1. A screenshot of the Geometry Explorer GUI. The construction tools are
shown on the left toolbar and the hypotheses diagram window contains a construc-
tion representing the Nine Point Circle theorem.

Fig. 2. Screenshots of two instances of the Nine Point Circle Theorem. Notice that
on the left diagram, compared to Figure 1, D is now between F and C. On the
right diagram, D has been moved off the line segment BC.

3.2 Theorem Proving

Once a diagram has been constructed, the user can specify a conjecture that
they want the system to find a proof for by selecting a conjecture tool from the
application menu bar. For instance, they can select the “Prove Four Points are

6



Wilson, Fleuriot

Cyclic” or the “Prove Three Points are Collinear” tool, followed by clicking the
required number of points on the diagram. A dialog box then allows the user to
choose which search technique to use, such as depth-first iterative-deepening
to find the shortest proof or bounded depth-first search to find solutions with
a maximum length. The predicate form of the hypotheses diagram is then
supplied to the GTP component along with the stated conjecture, also in
predicate form.

If a proof for the conjecture is found, a window will appear showing a
Latex document containing a traditional style proof. The user can then access
several visualisations of the proof, which will be described in section 4. We
note that there is little useful feedback the prover can give about the progress
of the proof search except for the current tree depth being examined and the
number of nodes explored. The full-angle method is non-interactive, so the
user is only given the option of waiting for a proof to be found or to stop the
search.

The following Latex proof for the Nine Point Circle Theorem was produced
automatically by our system from the diagram in Figure 1 after the conjecture
was selected and depth-first iterative-deepening search was chosen. Note that
the initial equation comes from a rearrangement of rewrite rule R6 to state
the theorem conjecture in terms of full-angles.

Example 3.2 Proof.

−∠[GE,GD] + ∠[FE, FD]

(∠[GE,GD] = −∠[GD,DC] using R1 (GE ‖ DC (discovered fact)))

= ∠[GD,DC] + ∠[FE, FD]

(∠[GD,DC] = ∠[DA,CA] +∠[1] using R5 (G is the circumcenter of DCA (dis-
covered fact)))

= ∠[FE, FD] + ∠[DA,CA] + ∠[1]

(∠[FE,FD] = −∠[FD,CA] using R1 (FE ‖ CA (discovered fact)))

= −∠[FD,CA] + ∠[DA,CA] + ∠[1]

(∠[FD,CA] = ∠[DA,CA] + ∠[1] using R2 (FD ⊥ DA))

= ∠[0] 2

Except for FD ⊥ DA, all geometry facts used in the above proof were
discovered in the forward-chaining step of the full-angle method. The system
is able to explain these by displaying a list containing every discovered fact,
the rule which was used to find each one and the facts with which each rule was
instantiated with. We will discuss how this information can be represented
diagrammatically in section 4.3.2.

7



Wilson, Fleuriot

3.3 Benefits of a Dynamic Geometry Interface for GTP

We found that our dynamic geometry interface provided several advantages
over the previous command-line interface, which we believe would also apply
to GTP systems in general.

3.3.1 Input Error Prevention in the Hypotheses

It was found that the dynamic geometry interface was useful for detecting
and fixing errors in the theorem hypotheses before they were sent to the GTP
component. In Figure 1, for instance, an error could have occurred if the user
constructed the Nine Point Circle Theorem with F to be the midpoint of DC
instead of BC. This error would become obvious immediately if the diagram
looked wrong or after seeing that D, E, F and G clearly did not lie on a
circle when the diagram was manipulated. This type of feedback would not
be available to the user if they had to specify the hypotheses in polynomial
or predicate form directly to a GTP program and similar errors would be
much easier to make with text-based input. Such basic mistakes could result
in the user wasting time either trying to prove a non-theorem or frustrating
them as they try to find the error in their theorem file. This also applies to
the labelling of points, specifying the construction order and specifying the
complete predicate form of a diagram, which the software does automatically,
preventing further user mistakes.

3.3.2 Exploring Conjectures

When the user constructs a diagram, they can easily use the facilities of the
software to manipulate the construction to see if one of their conjectures ap-
pears to be true in different instances of that construction or experiment to
find new conjectures. If a conjecture is false, the user can quickly discover
a counter-example. This type of exploration is not possible with text-based
theorem entry or with static diagrams.

However, there is a danger that exists where people start to take a dynamic
diagram as a proof of a theorem because they cannot find a counter-example
whilst manipulating it, as this does not mean one cannot exist. As the user
can only explore a finite number of configurations of a dynamic diagram, it
can never replace a rigorous mathematical proof which would show that a con-
jecture will always hold true for the infinity of diagram instances. Combining
GTP with DGS allows users to explore conjectures as well as obtain formal
reasoning that explains theorems.

3.4 Integration Issues

Once a diagram has been constructed and a conjecture specified, the system
is then responsible for converting this information into a format, the afore-
mentioned predicate form, that the GTP component can understand. This
presented several integration issues due to the numerous ways that users can

8



Wilson, Fleuriot

construct a diagram for proving the same theorem.

3.4.1 Generating the Predicate Form

In the implementation, each geometry construction is responsible for produc-
ing a predicate form statement that explains how it was constructed. One
aspect of generating the full diagram description is knowing which predicate
statements are meaningful and being aware of how the same predicate form
can come from different constructions.

For example, no useful geometric statement can be made about a circle
constructed with point O as its centre and with point A on its circumference
since a circle can be constructed with any pair of distinct points. But, if we
then construct point B as being a point on this circumference also, we can
then state that OA = OB. If we add another point, C, to the circumference,
we can then state that OA = OB = OC and O is the circumcenter of 4ABC.

As the supplied construction tools allow the same diagram to be drawn in
different ways for usability reasons, care has to be taken that each approach
will result in the same final list of predicate statements. For example, a user
could give the previous construction in the order given or they could construct
the circumcircle of 4ABC directly and then add the centre point O.

3.4.2 Removing Superfluous Hypotheses Points

The sum of full-angles (definition 2.4) has to be used to find a proof to most
theorems in the backward-chaining stage. As one can see, it is not strictly
a rewrite rule as it introduces fresh variables on the right-hand-side. Since
this rule introduces arbitrary points from those labelled in the hypotheses,
the search space size increases rapidly with the number of points available.
As a user can place points that are superfluous to the theorem being specified,
it is important from a usability point of view to avoid penalising them with
slower search times or forcing them to construct a diagram with the minimum
number of points. A heuristic to ignore extraneous points is to create the
set of all points in the conjecture statement, C, and only keep the points in
the hypotheses which are members of C or points on which members of C
are dependent. This works in all example theorems that we have tried [3], as
the last points in the constructive order are always members of C, although
we have not verified if this will ever prevent a proof from being found in the
general case.

4 Visualising Full-Angle Method Proofs

This section describes various visualisations of full-angle method proofs that
can be generated automatically by our system. We also discuss the issues
encountered while attempting to generate diagrammatic proofs.

9



Wilson, Fleuriot

4.1 Visualising Multiple Proofs

The full-angle method is able to generate multiple proofs for a given theorem.
Each of these proofs may use an alternative path of reasoning or give a different
insight into the construction being reasoned about. However, viewing multiple
proofs of one theorem in the form of a list of separate algebraic proofs does
not allow the reader to see the uniqueness of each proof or the similarities
between proofs - the reasoning is usually lost in the similar looking rewrite
rules and algebraic terms.

To make the exploration of multiple proofs easier, our system allows the
user to view all proofs found for one theorem in the form of a graph. Multiple
proofs are collected with constraints put on the search space, such as setting
a maximum proof length. See Figure 3 for an example of some of the shortest
proofs found for the Nine Point Circle Theorem. This visualisation shows a
subgraph of the search space that the full-angle method prover navigates and
is produced automatically. It displays all the proofs found by the prover by
only showing the path of rewrites rules and visited nodes that lead from the
initial state node to the goal node. In the example, notice that it is easy to
see interesting aspects of the multiple proofs, such as how all proofs share a
common rewrite rule, how two paths only differ by the ordering of the rewrite
rules used and how one path is unique.

Fig. 3. A screenshot of a visualisation showing some of the multiple proofs found
for the Nine Point Circle Theorem.

10



Wilson, Fleuriot

4.2 Visualising Geometric Properties

Since our system had access to a diagram of the hypotheses, we wanted a
means of highlighting geometry statements on it to help explain proofs to
the user. This could be used to show the user a non-obvious circle that was
discovered or to let them see a full-angle that is being referred to in a proof.
This is far more convenient and powerful than trying to locate features on a
diagram by inspection. For example, to find a full-angle on a diagram requires
the reader to locate the position of the four points of the full-angle, find the
intersection of the lines and then mentally rotate the first line into the other
to find the angle described.

4.2.1 Implementations Details

The software can highlight diagram properties that the prover says are true
by overlaying extra dynamic constructions onto the diagram (see Figure 4).
For instance, visualising the statement AB = BC is achieved by constructing
AB and BC as coloured line segments and constructing short perpendicular
bisectors through these. This highlights the statement with traditional no-
tation and makes it stand out on the diagram. As this highlighting updates
dynamically with the rest of the diagram, it provides an additional visual tool
that lets the user explore geometry properties in various instances of a con-
struction. For example, by manipulating point positions the user can explore
how all points on a discovered circle stay on that circle in multiple diagram
configurations.

Note that this part of the system must blindly trust the results from the
prover. For example, highlighting a statement that four points are cyclic
proceeds by constructing a circumcircle through the first three points, where
the circumcircle will implicitly pass through the fourth cyclic point.

4.2.2 Issues with Geometry Notation

To visualise forward-chaining reasoning, we needed an unambiguous represen-
tation of each fact in the GIB as a diagram. While trying to highlight various
facts contained in the GIB, it became apparent that standard geometric no-
tation was inadequate for visualising many of them. For example, there is no
standard way to draw attention to three specific points being collinear on a
diagram. This case was resolved by placing a marker circle around each point
and drawing a coloured line segment through them. Circles and circumcircles
are dealt with in a similar fashion.

To differentiate between congruent lines and parallel line segments, we use
the convention of putting a single and double dash through both lines respec-
tively. Indicating midpoints by only marking the congruent line segments is
not sufficient with a dynamic diagram as it does not convey the three points
involved are collinear, so we combine the notation for collinear points and
congruent line segments. Line pairs in perpendicular statements in the GIB

11



Wilson, Fleuriot

Fig. 4. Each diagram shows a screenshot visualising one specific geometry fact
about the Nine Point Circle Theorem: 1. G is the circumcenter of 4ACD. 2.
AE = BE. 3. A, G and C are collinear. 4. F is the midpoint of BC. 5. EG ‖ BC.
6. AD ⊥ FC

commonly do not intersect so it is necessary to extend both lines toward the
intersection point before the traditional right-angle symbol is marked. See
Figure 4 for examples of the above.

4.3 Visualising Geometric Reasoning

As full-angle method proofs are expressed using high-level geometry invariants,
they lend themselves to geometrical visualisation, which cannot be done in an
obvious way with polynomial GTP methods. Our system has novel ways of
visualising the full-angle method proofs. These take advantage of the diagram
independent property of the proofs as each is still valid for different diagram
instances.

4.3.1 Visualising Forward-Chaining Reasoning as a Graph

We first visualised the forward-chaining reasoning using a graph, where each
node was labelled with a fact from the GIB and edges were tagged with rule
names to indicate inference. To see where a new fact came from, the user
can trace how it was derived by following the path of inferences until only
hypotheses are reached. This is a useful tool but it is hard to relate textual
geometry facts to a separate diagram.

12



Wilson, Fleuriot

4.3.2 Diagrammatic Forward-Chaining Reasoning

The software was altered so each node in the graph would contain a rendering
of the hypotheses diagram, with the geometry fact for that node visualised
diagrammatically using the method discussed in section 4.2. The aim was
to create a purely diagrammatic proof. See Figure 5 for an example, which
shows a selection of non-obvious geometry facts found in the Nine Point Circle
theorem by forward-chaining.

If the user clicks on a discovered geometry fact on the graph, it is high-
lighted in the window containing their original hypotheses diagram. They can
then manipulate and explore the construction with this new fact explicitly
marked. All the diagrams in the forward-chaining graph also update as the
hypotheses diagram is changed, allowing them to easily view diagrammatic
proofs for different diagram instances. Although not intended for theorem
discovery, the forward-chaining used in the full-angle method does find non-
obvious facts about constructions. For this reason, the user is given the option
to view all facts in the GIB using the above visualisation so that they can ex-
plore features of the original diagram they were not aware of.

To make the diagrammatic proofs more concise, one issue that had to
be dealt with is the inference caused by rule F1. For example, given that
the GIB initially contains the statement that A, E and B are collinear, R1
automatically implies that AE ‖ AB ‖ BE. This manifests itself as three
parallel facts for each collinear fact in the GIB. Not only does this clutter the
graph, as multiple collinear facts feature in virtually all theorems, but (in this
example) thinking of AE as being parallel to AB is unnatural and confusing.
There is also no obvious way to visualise these overlapping line segments on
a diagram in a clean way. However, these inferences are vital as several rules
need to use these parallel facts.

These fact nodes were eliminated at the proof presentation stage by merg-
ing each collinear fact node with its three corresponding parallel fact nodes
into a single node representing the collinear statement. Rules which use any
of the derived parallel lines will link to merged node, but they still make sense
as the collinear statements are just a special case of parallel lines.

4.3.3 Visualising Backward-Chaining Reasoning as a Graph

Presenting a backward-chaining full-angle method proof as a series of rewrite
rule applications and simplified equation pairs is sufficient to explain the proof,
but this does not emphasise the chains of rewrites applied to the same terms
or which terms cancel one another in a clear way. Our system allows a novel
view of backward-chaining proofs to visualise these properties.

The backward-chaining proofs were first visualised as graphs, where nodes
represented a single full-angle term each and edges were used to show how a
full-angle was rewritten or how it was eliminated. If a full-angle a is rewritten
to full-angle b, we draw an edge from a to b with an “=” node in the middle
of it. If a full-angle a is rewritten to b + c, we draw a forked edge connecting

13



Wilson, Fleuriot

Fig. 5. A screenshot of a diagrammatic proof of several non-obvious properties of
the Nine Point Circle theorem which were found with forward-chaining.

a to both b and c with a “+” node in the middle of it. If the full-angles a+ b
simplify to give c, we draw a forked edge connecting both a and b to c with
a “+” node in the middle of it. Edges are labelled to describe where terms
come from and how they are transformed, which is either from the rewrite
rule applications, cancellations, or from the conjecture statement.

The conjecture is shown as a ∠[0] node with edges joining it to the full-

14



Wilson, Fleuriot

angles in the starting conjecture equation. A valid proof to the conjecture
is shown if all directed paths from this ∠[0] node end at another ∠[0] node,
meaning that all full-angles were eliminated. This visualisation is sufficient
for describing all full-angle method proofs as each equation only uses sums of
full-angles.

This visualisation emphasises the chain of rewrite rules applied to the same
terms, where chains of full-angles linked with only one edge represent equal
full-angles. Term cancellation and how each rewrite aids the progress of the
proof as terms are eliminated is also much clearer.

4.3.4 Diagrammatic Backward-Chaining Proofs

Our next step was to take each node and replace them with a rendering of the
hypotheses diagram. Full-angles were visualised by marking both lines, mark-
ing their start and end points, tracing the two lines to their intersection point,
and then drawing an arrow to indicate the anti-clockwise rotation required to
make the first line parallel to the second. This creates a novel diagrammatic
view of the backward-chaining proofs (see Figure 6).

For each rewrite rule, we originally intended to highlight the geometry
facts it used on the full-angle term nodes it created. Unfortunately, this
emphasised the problem that most full-angle method rewrite rules are not
easy to visualise. For example, visualising the sum of full-angles (definition
2.4) is very unintuitive diagrammatically. However, we hold the view that
this diagrammatic visualisation of backward-chaining is a valuable tool for
investigating full-angle proofs.

5 Overview of System Architecture

Our full-angle method theorem prover was implemented using Sicstus Prolog
and was the result of a rational reconstruction of the original full-angle method
prover by Chou et al [5]. It is able to produce automatic proofs for about 100
theorems from a paper describing 110 sample theorems proved by their system
[3].

Our custom-made dynamic geometry component and GUI was implemented
using Java with Sisctus’s Java/Prolog interface, Jasper, used to interface
the Java front-end to the Prolog back-end. The prover outputs traditional
style proofs in Latex format and outputs the various graph visualisations in
Graphviz [12] format. These graphs, after being laid out automatically by
GraphViz, are then rendered in Java using Graphviz’s Grappa package.

After finding a proof and generating the graph visualisations, the prover
attaches meta-data to nodes and edges about what geometry facts they rep-
resent. Using Grappa, this meta-data is retrieved so that geometry state-
ments can be visualised, for example, when viewing the diagrammatic forward-
chaining proofs. This is done by associating each Prolog geometry predicate
with a suitable set of dynamic geometry constructions that highlight that

15



Wilson, Fleuriot

Fig. 6. A screenshot of a diagrammatic visualisation of the backward-chaining proof
shown in section 3.2 for the Nine Point Circle Theorem. The top three nodes show
the conjecture equation, the nodes at the bottom show term cancellations and the
others show rewrite rule applications.

16



Wilson, Fleuriot

predicate in the dynamic geometry component. After Grappa has drawn the
basic graph elements, individual diagrams are superimposed onto the graph
using the meta-data to highlight the relevant features.

6 Related Work

DGS offers major benefits to the field of GTP and previous work has combined
the two in a multitude of ways. GeoView [1] is a tool which can take a text-
based Pcoq theorem statement and produce a dynamic geometry diagram
from it as a visual aid to the user. Our system works in the opposite direction
and Bertot et al commented [1] that a user constructed diagram as the input
mechanism for the theorem prover would offer usability advantages and be
more concise than text input.

MMP/Geometer [7] is a powerful geometry theorem proving tool which im-
plements Wu’s method, the area method and the deductive database method
[6] and provides several ways for the user to describe theorems. In addition
to using diagrams as an input method, it also supports text-based input in
polynomial form, predicate form, constructive form and a pseudo-natural lan-
guage. When a diagram is not supplied, MMP/Geometer can also generate
one. It does not, however, use diagrams in combination with any of its GTP
methods to visualise proofs.

Cinderella [10] is a dynamic geometry package which is notable for its
inclusion of a randomised theorem checker [15]. This can identify geometry
theorems about a given construction by searching for instances of counter-
examples to conjectures in such a way that the probability of it not finding a
counter-example for a non-theorem is very low. The algorithm used is fast and
has a guaranteed maximal running time, so Cinderella uses this to discover
non-trivial geometry theorems from a diagram as it is constructed, although
proofs cannot be provided. It would be interesting to combine this with a
human-readable GTP method that could provide proofs to theorems as the
theorem checker discovers them. Of note is an extension to Cinderella [14]
which takes the last theorem identified by Cinderella’s theorem checker and
automatically proves it with the Gröbner basis method.

7 Conclusions and Future Work

This paper demonstrates that a dynamic geometry interface offers major ben-
efits to GTP systems in regard to ease of use and the invaluable ability for the
user to visually explore theorems and proofs. Our system takes advantage of
the diagram independent nature of full-angle method proofs and combines this
with dynamic geometry to offer an interface that allows geometry theorems
to be specified easily and each proof step to be investigated geometrically.

We explored several novel ways to view the forward-chaining and backward-
chaining reasoning used in full-angle method proofs, as well as looking at how

17



Wilson, Fleuriot

to visualise the multiple proofs produced for each theorem. Finally, we tried to
use the visual nature of geometry to produce purely diagrammatic proofs with
the full-angle method. These worked surprising well for the forward-chaining
proofs as the rules used were simple and intuitive, but they are not powerful
enough for difficult theorems by design. The rules used in backward-chaining
proofs were found to be unintuitive to visualise and our work here must only
be viewed as a tool for investigating full-angle proofs. Despite this, all of
the visualisations presented offered insights into full-angle method proofs that
were not obvious from traditional proof documents.

A GTP method that only used reasoning that is diagrammatically intuitive
would be desirable in producing more accessible, easier to understand geom-
etry proofs. An interesting extension would be to look at diagrammatic rea-
soning with the deductive database [6] approach, which uses similar, natural
forward-chaining reasoning to the full-angle method, but with more powerful
inference rules as a discovery and proving mechanism.

8 Acknowledgements

This research was supported by an EPSRC DTA studentship and EPSRC
Grant GR/S01771/01.

References

[1] Bertot, Y., F. Guilhot and L. Pottier, Visualizing geometrical statements with
Geoview, in: UITP, 2003.

[2] Chou, S.-C., X.-S. Gao and J.-Z. Zhang, Automated solution of 135 geometry
problems from A.M.M., Technical Report 94-10, Department of Computer
Science, The Wichita State University (1994).

[3] Chou, S.-C., X.-S. Gao and J.-Z. Zhang, A collection of 110 geometry
theorems and their machine proofs based on full-angles, Technical Report 94-4,
Department of Computer Science, The Wichita State University (1994).

[4] Chou, S.-C., X.-S. Gao and J.-Z. Zhang, Automated generation of readable proofs
with geometric invariants, I. Multiple and shortest proof generation, Journal of
Automated Reasoning 17 (1996), pp. 325–347.

[5] Chou, S.-C., X.-S. Gao and J.-Z. Zhang, Automated generation of readable
proofs with geometric invariants, II. Theorem proving with full-angles, Journal
of Automated Reasoning 17 (1996), pp. 349–370.

[6] Chou, S.-C., X.-S. Gao and J.-Z. Zhang, A deductive database approach to
automated geometry theorem proving and discovering, Journal of Automated
Reasoning 25 (2000), pp. 219–246.

18



Wilson, Fleuriot

[7] Gao, X.-S. and Q. Lin, MMP/Geometer - a software package for automated
geometry reasoning, in: F. Winkler, editor, Automated Deduction in Geometry
(2004), pp. 44–66.

[8] Jackiw, N., “The Geometer’s Sketchpad,” Key Curriculum Press, Berkeley
(1990).

[9] Kapur, D., Using Gröbner Bases to reason about geometry problems, Journal of
Symbolic Computation 2 (1986), pp. 399–408.

[10] Kortenkamp, U., “Foundations of dynamic geometry,” Ph.D. thesis, ETH Zürich
(1999).

[11] Kortenkamp, U. and J. Richter-Gebert, Using automatic theorem proving to
improve the usability of geometry software, in: Mathematical User Interfaces,
2004.

[12] Koutsofios, E. and S. C. North, “Drawing graphs with dot,” AT&T Bell
Laboratories, Murray Hill, NJ (1993).

[13] Laborde, J.-M. and F. Bellemain, “Cabri-Geometry II,” Texas Instruments,
Dallas (1993).

[14] Roozemond, D., Automatic geometric theorem proving (2003), Bachelor Project,
Eindhoven University of Technology.

[15] Schwartz, J. T., Probabilistic algorithms for verification of polynomial identities,
in: EUROSAM ’79: Proceedings of the International Symposiumon on Symbolic
and Algebraic Computation (1979), pp. 200–215.

[16] Shang-Ching Chou, J.-Z. Z., Xiao-Shan Gao, “Machine Proofs in Geometry:
Automated Production of Readable Proofs for Geometry Theorems,” World
Scientific, 1994.

[17] Wu, W.-T., Basic principles of mechanical theorem proving in elementary
geometrics, Journal of Automated Reasoning 2 (1987), pp. 221–252.

19


	Introduction
	The Full-Angle Method
	Overview
	Backward-Chaining
	Forward-Chaining

	The Prover Interface
	Constructing and Manipulating Diagrams
	Theorem Proving
	Benefits of a Dynamic Geometry Interface for GTP
	Integration Issues

	Visualising Full-Angle Method Proofs
	Visualising Multiple Proofs
	Visualising Geometric Properties
	Visualising Geometric Reasoning

	Overview of System Architecture
	Related Work
	Conclusions and Future Work
	Acknowledgements
	References

