
1

Overview

• Mathematicians are (quite) interested in computers

– but they are not (yet) interested in mechanised theorem proving

• Intel, AMD and others are interested in mechanised theorem proving

– because there are (economic) drivers compelling them to “get it right”

• The proofs in these areas are NOT typical mathematical proofs

– they are long and boring and so ideally suited for mechanical verification

Tom Ridge Automated Reasoning Lecture December 4, 2003

Practical Mechanical Theorem Proving

Tom Ridge

December 4, 2003

Tom Ridge Automated Reasoning Lecture December 4, 2003

3

The PGM Protocol

• IETF RFC 3208, draft internet standard

• A Sender, at the root of a tree network, sends messages

• Receivers, at the leaves of the tree, receive messages via. intermediate network

nodes

• Would like to know, for instance, that

for all receivers r, if the sender s multicasts a message m (identified by
some sequence number), then eventually r receives m, or r realises that
m has been lost.

Tom Ridge Automated Reasoning Lecture December 4, 2003

2

Overview
On the other hand . . . even (human produced) mathematical proofs are becoming
extremely long, and referees are struggling.

See extras section detailing flyspeck project. Referees trying to verify the result
came up against a very big proof:

They have not been able to certify the correctness of the proof, and will
not be able to certify it in the future, because they have run out of energy
to devote to the problem.

Tom Ridge Automated Reasoning Lecture December 4, 2003

5

Modelling The Protocol I: State Machine

• Take a model from a current research paper [EM03]

• Model essentially that of a state machine

• Mechanise proofs from paper (proofs very complicated)

• Model very concrete, so results not very general

• Abstract to get at important properties/ make proofs more general

See extras for a description of the agent for the Sender. In particular, note
that the description is mathematical/ logical, so we can reason about it, and
computational, so we can program it.

Tom Ridge Automated Reasoning Lecture December 4, 2003

4

Sender

Receivers

Network elements

Tom Ridge Automated Reasoning Lecture December 4, 2003

7

Modelling The Protocol in Isabelle/HOL

• Follow the model in the paper as closely as possible

• but paper isn’t a formal object, so may not always be possible

• Also need to develop libraries to deal with e.g. trees

• but very labour intensive. . . so try and reuse theories already developed

• Very steep learning curve

• Eventual proof took considerable effort and perseverance, but experience
invaluable

Tom Ridge Automated Reasoning Lecture December 4, 2003

6

Modelling The Protocol II: Events

• Actions/ events occur at a particular node n in a tree (constraint: n must be
a node in the tree)

• A message i is taken from an adjacent channel c (constraint: c must be a
channel connecting n to another node)

• A message o1 possibly sent upwards

• A message o2 possibly sent downwards through a subset of downwards channels
C (constraint: C must be a subset of n’s downward channels)

See extras for an extract from the proof. Frightening!

Tom Ridge Automated Reasoning Lecture December 4, 2003

9

Trees in Isabelle
lemma (in trails-etc) is-path-def-2 : is-path p = (p 6= [] ∧ distinct p)

lemma is-cycle-def-2 : is-cycle p = (hd p = last p ∧ 4 ≤ length p ∧ distinct (tl p))

record ′a pre-graph = Verts :: ′a set Edges :: ′a edge set

constdefs is-graph :: (′a, ′b) pre-graph-scheme ⇒ bool

is-graph g ≡ Edges g ⊆ Pow (Verts g) ∧ (∀ x . {x ,x} /∈ (Edges g))

constdefs is-tree :: (′a, ′b) pre-tree-scheme ⇒ bool

is-tree t ≡ is-graph t ∧ is-connected t ∧ is-acyclic t

constdefs is-rooted-tree :: (′a, ′b) pre-rooted-tree-scheme ⇒ bool

is-rooted-tree t ≡ is-tree t ∧ root t ∈ Verts t

constdefs ch-up :: (′n, ′b) pre-rooted-tree-scheme ⇒ ′n ⇒ ′n edge

ch-up t v ≡ {v ,parent t v}

Tom Ridge Automated Reasoning Lecture December 4, 2003

8

Library example (mathematical): Trees

• Lots of ways to model trees: various datatypes, various set models

• It pays to stick very closely to mathematical practice

• Most mathematical definitions of trees start from the notion of a graph as a
(loopfree) set of vertices and edges

• A path is a list of distinct nodes (which are adjacent in the graph)

• A tree is an acyclic, connected graph

• Good choice of representation is the overriding contributor to whether
mechanisation attempt is successful

Tom Ridge Automated Reasoning Lecture December 4, 2003

11

• Alternatively we define it to be some element, about which we know nothing
(hd [] = arbitrary)

• Other alternatives: lift every domain to have an element representing
“undefined”, use a logic with undefinedness built in (IMPS), represent
definednes in the type etc.

• Maybe tl [] = [] not natural, but allows some simps to work without making
case distinctions.

lemma length-tl [simp]: length (tl xs) = length xs − 1 by (cases xs) auto

• In our case, do we want [] to be a valid path? Maybe we just consider it as a
valid path so that our simps aren’t always conditional on well formedness

Tom Ridge Automated Reasoning Lecture December 4, 2003

10

Representation

• There are literally 1000’s of choices when choosing how to represent things

• For example, all functions in HOL are total (= defined everywhere)

• . . . so we have to decide how to represent functions that are undefined for
some points in their domain

• e.g. what is hd []? what is tl []?

• Sometimes there is a mathematically natural element we can choose to
represent undefined (tl [] = []). Or this may be suggested by desire to abstract
and use symbols. For instance, we define x0 = 1.

Tom Ridge Automated Reasoning Lecture December 4, 2003

13

lemma (in loc-Is-event) Is-event-Ev [simp]: Is-event (Ev n i c o1 o2 C) =

(let Sender = R in

n ∈ V

∧ Is-action (i ,o1 ,o2)

∧ (n = Sender −→ c ∈ Ch↓ n)

∧ (n 6= Sender −→ c ∈ {Ch↑ n} ∪ Ch↓ n)

∧ C ⊆ Ch↓ n

∧ ((i ∈ M↑ ∧ c ∈ Ch↓ n)

∨ (i ∈ M↓ ∧ n 6= Sender ∧ c = Ch↑ n)

∨ (i = ⊥)))

Note that each use of Ch↑ n is guarded by a condition asserting n 6= Sender.

Tom Ridge Automated Reasoning Lecture December 4, 2003

12

Example: Ch↑ , and guarded definitions

• parent not defined for Sender, so Ch↑ not defined for Sender

• Edges are sets of vertices: an edge from x to y is {x, y}

• Natural element “empty set” to identify undefined channel, so could define
Ch↑ Sender = {} (but note definition is ugly)

• We know we will only use Ch↑ in situations where it has a meaning, so leave
Ch↑ Sender arbitrary

• Must enforce usage of Ch↑ so doesn’t apply to Sender!

Tom Ridge Automated Reasoning Lecture December 4, 2003

15

• Does this matter? It means that we cannot tell whether (Sender,⊥, c,⊥,⊥,)
(c some down channel for the Sender) is not the empty event (because to do
so we would have to prove that c 6= Ch↑ Sender).

• In some sense, we could construct our proofs, and they would look exactly as
we want them to. The problem comes when we try and apply them to a real
example.

• Settle on having an empty event as a separate part of a datatype

datatype (′name, ′msg) event = Empty

| Ev ′name ′msg ′name channel ′msg ′msg ′name channel set

Tom Ridge Automated Reasoning Lecture December 4, 2003

14

Example: Empty Event

• Model an event as a tuple (n, i, c, o1, o2, C)

• But also need an empty event “distinct from all the others” (for each node?)

• Unlike Ch↑ Sender, we DO need to know when an event is an empty event:
it is properly part of the model

• So maybe choose (n,⊥, Ch↑ n,⊥,⊥,) to represent an empty event, and have
an associated predicate is empty event

• Our proofs look fine. . .

• . . . but Ch↑ not defined for Sender

Tom Ridge Automated Reasoning Lecture December 4, 2003

17

c in Cr?

Yes No

Cr’ = Cr − i
p Mdown Cr’ = p Mdown Cr

Cr’ = Cr
p Mdown Cr’ = p Mdown Cr

Yes No

Cr’ = Cr −i + i
p Mdown Cr’ = p Mdown Cr

Cr’ = Cr

e = Empty?

Yes

Cr’ = Cr

p Cr’ = p Cr

No

nad in ...?

{Sender} Nes
Res

Inherited case splits from top level of proof

And in general all invariants
preserved trivially

i bottom, in Mup, in Mdown?

bottom

Pureforwarding gives o1 = o2 = i = bottom
Contents of all channels preserved
p Mup Cs’ = p Mup Cs

Mdown

bottom i

Cs’ = Cs − i
Cs’ = Cs −i + |C|*o2

p Mup Cs’ = p Mup Cs
p Mup Cs’ = p Mup Cs

o1= bottom, o2 = i or bottom

o2 = bottom? or i?

p Mdown Cr’ = p Mdown Cr

Know pMup unaffected

c in Cr?

o1 = bottom or i?

Mup, c in Chdown nad
o1 = bottom or i, o2 = bottom
At this point, know that pMdown
will be unaffected

bottom

c’ = c − i
Cs’ = Cs − i
p Mup Cs’ = p Mup Cs

i

p Mup Cs’ = p Mup Cs
Cs’ = Cs −i + i

c in Cr?

p Mdown Cr’ = p Mdown Cr

Yes

Cr’ = Cr − i
pMdown Cr’ = pMdown Cr − i

c in Cr?

Yes No
No

Cr’ = Cr
pMdown Cr’ = pMdown Cr

leadsto nad rad in C?

Yes No

Cr’ = Cr −i +i Cr’ = Cr −i

Cr’ = Cr (nad not parent of rad)

And seems reasonable to separate off lemmas to deal with down projection if i in Mup, and vice versa

Note that leadsto nad rad in C? might be replaced by |C int Cr| = 0 or 1. If c notin Cr then |...| = 0! is extra lemma
Tom Ridge Automated Reasoning Lecture December 4, 2003

16

Planning The Mechanisation

• Make sure you understand the proof BEFORE you mechanise! Unfortunately
TP systems are not at the stage where they can actually HELP you with the
proof

• Plan the proof on paper, down to the last detail

• Try and isolate all the intermediate lemmas the proof depends on

• Try and make your job easier by proving only what you have to

Tom Ridge Automated Reasoning Lecture December 4, 2003

19

Automation

• Simplification well understood, proof search quite well understood

• Combination not so well understood

• But automation can be highly effective (this surprised me)

• And if you want to preserve your sanity, its worth understanding

See extras for an example of the diagonalisation proof conducted with the help
of automated tools. Which proof is preferable?

Tom Ridge Automated Reasoning Lecture December 4, 2003

18

Natural deduction and Readability

• Natural deduction is the standard way to present proofs

• Also seems to deserve its name: in some sense it is “natural”

• Isar implements natural deduction style human readable proofs

• Scoped, hierachical structure- (the only?) general method for organisation

• One of the aims of my current work was to investigate to what extent the
presentation of mathematical proofs can be rendered in Isar

See extras “Diagonalisation” for an example of natural deduction/ readable proofs.

Tom Ridge Automated Reasoning Lecture December 4, 2003

21

Summary

• Theorem proving like programming to some extent, but much more arduous

• Thousands of opportunites to go wrong

• Requires intelligence at almost every step of the way

– and sometimes almost superhuman levels of perseverance

• But rewards are substantial, and future is bright

• If you are interested in truth, proof is a good place to start!

See [Rid] for this document and related theory files.

Tom Ridge Automated Reasoning Lecture December 4, 2003

20

HOL- expert level stuff
Finally, for the real afficionados, it’s worth understanding the ins and outs of the
logic you are using, since this can lead to incredibly slick proofs. For example,
mathematicians frequently refer to inductively defined sets as “the least set
containing x and closed under y” (x a constant, y some operation). How can we
use this definition to derive an induction principle?

See Induct.thy in extras for a truly beautiful example, where defining a set is the
same thing as defining an induction principle.

Tom Ridge Automated Reasoning Lecture December 4, 2003

22

References

[EM03] Javier Esparza and Monika Maidl. Simple representative instantiations
for multicast protocols. In TACAS 2003, pages 128–143. Springer-
Verlag LNCS 2619, 2003. http://www.dcs.ed.ac.uk/home/monika/
maidl-pgm-reduction.ps.

[Rid] Tom Ridge. Informatics homepage. http://homepages.inf.ed.ac.uk/
s0128214/.

Tom Ridge Automated Reasoning Lecture December 4, 2003

