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This illustrated ebook formulates my own perspective of some key neuroscience knowledge that is currently (or could be soon) used in neuroscience-
grounded AI efforts, following my deep conviction that the road towards machine intelligence is inseparable from a mixed AI & neuroscience approach. It
builds upon my difficult but rewarding experience of navigating through neuroscience papers with a datascientist perspective during several months.

The first part – the longest – is dedicated to biological intelligence. It begins with the fundamental role of physical actions into the gradual emergence of
high-level cognitive abilities through evolution. Then, the level of sophistication of the described neural machinery will appear unrivaled compared to
today’s deep learning artificial networks. I highlight the neocortex, a highly-researched brain structure that currently inspires many AI & neuroscience
researchers because of its central role in human intelligence. In order to keep this document short, I had to make choices. One of those choices was to
skip the focus on probably underrated subcortical sensorimotor circuits, and on two other popular brain structures in the AI community: the basal
ganglia and the hippocampus. I keep those topics for another time.

The second part deals with biologically-inspired AI, starting with the modelling of more realistic neurons, architectures and learning rules into artificial
networks. It subsequently continues with the transition from abstract artificial networks to artificial agents learning lifelong by interacting with their
environment through their own perspective.

The primary target audience is the classical AI community interested to get insights from brain mechanisms. Also, curious neuroscientists who would like
to keep up with neuroscience-grounded AI initiatives are invited to skip to the second part.

I already reached a personal goal with the completion of this ebook. My second goal will be reached if some AI & neuroscience enthusiasts benefit from
this reading.

I would be happy to read your comments, answer your questions, correct the errors that you may have spotted, add key missing elements to the
document, or just discuss machine intelligence & neuroscience with you.

Foreword

2@mthiboust

Matthieu Thiboust

Matthieu Thiboust

https://twitter.com/mthiboust
https://www.linkedin.com/in/matthieu-thiboust-54919a24/
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• Artificial Intelligence needs a new momentum. Why not look at the brain?

1. The primary function of a brain is not to think but to efficiently control complex behavior 
2. This control is supported by abilities that were progressively acquired and refined through evolution
3. Biological intelligence gradually emerged with active perception and cognition 

1. Neurons are sophisticated elementary components of the neural “hardware”
2. Neuron plasticity allows to retain memories of previous neural activity
3. Interconnected brain structures group neurons into organized network architectures
4. Brain activity continuously loops across those structures through parallel pathways

1. The neocortex is divided into hundreds of functionally specialized but anatomically similar cortical areas
2. Cortical areas receive and send information in a laminar-specific way
3. A majority of long-distance projecting pyramidal neurons cohabits with a minority of local inhibitory cells
4. Functional neocortical circuits rely on laminar-specific lateral and radial interactions
5. Sensory stimuli, motor actions and spatial navigation offer a window into the cortical code
6. The dynamics of cortical activity can only be analyzed in relation to brain oscillations

1. Next-level artificial neural networks model more realistic neurons, architectures and learning rules
2. The transition from artificial networks to artificial agents is a necessary step towards machine intelligence
3. The potential emergence of machine intelligence already raises existential questions

• The road towards machine intelligence is inseparable from a mixed AI & neuroscience approach

Personal motivations, Acknowledgments, References, License, Illustration credits, Glossary
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Introduction

• AI needs a new momentum. 
Why not look at the brain?

Main inspirational people whose work helped me to shape
my vision in this section (views are my own):
• Yoshua Bengio
• François Chollet
• Demis Hassabis
• Jeff Hawkins
• Gary Marcus

Art credit: Brainbow Hippocampus, Greg Dunn Design

Matthieu Thiboust

See the reference section for a list of materials that inspired me.

http://www.gregadunn.com/
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The success of Deep Neural Networks hides some fundamental brittleness for Machine Intelligence

Despite numerous and impressive successes of Deep Neural Networks (DNNs) – commonly referred to as Deep Learning – during the last 10 years in
visual/audio/text recognition, processing and synthesis, the pace of breakthrough innovations is now slowing down.

There seems to be no easy fixes for the fundamental brittleness of DNNs that perform brilliantly until they break in unpredictable ways when taken
into unfamiliar territory. This classical AI approach – primarily designed to solve specific and isolated tasks – requires some important revolutions to
lead to a longer-term vision of Machine Intelligence.

Examples of DNNs brittleness

The model is 
fooled by the 
addition of 

stickers on a 
“Stop” sign

The model is 
fooled by rotation 
and perspective
transformations 

“Stop”

“Speed 
limit 45”

“Racket”

“Dumb-bell”

The model is fooled 
by the addition of  

specifically designed 
noise even if the 

image looks similar

Abstract 
patterns 
fooling 
models

“Sloth”

“Race car”

Adversarial examples from

“Starfish”

“King penguin”

No basic reasoning and 
arithmetic in Natural Language 

Processing (NLP) models

Eykholt, 2017, and Nguyen, 2014Deep Mind, 2019,

https://arxiv.org/abs/1707.08945
https://arxiv.org/abs/1412.1897
https://deepmind.com/blog/article/robust-and-verified-ai
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Common sense is the most sought-after feature when talking about Machine Intelligence 

The most regular criticism about AI systems is probably that they lack common sense, and it is
sometimes explained as a lack of intelligence.

Common sense arises from the fact that most people in a group have a shared background
knowledge about the world. For example, we expect people to know that “Lemons are sour”,
“Cars do not fly”, “Knives cut things”, “Gravity causes things to fall down”, “Falling from a
significant height is dangerous”, etc.

To be useful and robust, an advanced AI system needs to share the background knowledge of its
user community. A self-driving car should consider changing lanes when tailing an overloaded
truck on a bumpy road, a home assistant should react when asked to prepare a meat dish for a
vegan guest, and a robot should not saw the side of a tree limb he is sitting on.

In the spectrum of potential solutions to give machines common sense, the most appealing one
relies on agents able to self-learn the shared background knowledge as they grow up by
interacting with us, but it needs some flavor of intelligence that machines currently do not have.

Side note: adding common sense is not only important for intelligence, but also making AI ethical
if we consider that ethics is a collection of shared values within a society.

Putting a knowledge 
base inside the agent

Making the agent actively 
learn by interacting with us

Technically feasible but not flexible, not 
exhaustive and practically fastidious

Appealing approach but it requires some flavor of 
intelligence that machines currently do not have

Rules 
& facts

Understanding 
of the world

Sawing the wrong 
side of a tree limb!
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Definition of “intelligence” will get clearer with progress in neurosciences and AI research

Because Artificial Intelligence (AI) and Artificial General
Intelligence (AGI) became strongly loaded expressions, this
presentation prefers the still-innocent term Machine
Intelligence.

Even if the term is largely used by psychologists, philosophers, neuroscientists and AI
researchers, “intelligence” is still an elusive concept with no widely adopted universal
definition in the scientific community.

The word “intelligence” is a source of confusion amalgamating several meanings. With
scientific progress, the definition will be progressively refined by separating these
meanings, as it was done in the 19th century for the words "heat" and "temperature".

Obviously, the same applies to other concepts like consciousness, cognition, thinking,
attention, perception, understanding, emotion…

Because one cannot advance by totally ignoring this problem, here is a still-to-be-refined
definition of intelligence (from Legg and Hutter, 2007):

“Intelligence measures…

…an agent’s ability to achieve goals in a wide range of environments”

Skill-acquisition ability
(generality & adaptation)

Task-specific skills
(specificity & static)

Intelligence is multidimensional

Spatial, linguistic, logical, kinesthetic, musical, 
interpersonal, intrapersonal, naturalist, 
existential, moral (Gardner, 2009)

Intelligence varies across a continuum

Within each dimension, agents' performances 
could be categorized and quantified(across human 
beings with IQ tests, or across the animal kingdom)

Intelligence is not restricted to biological agents

No a priori reason why this ability would be 
reserved to existing living creatures. Artificial 
agents could show some degrees of intelligence

Definition of intelligence is often anthropocentric

Tendency to define intelligence as a collection of 
human’s abilities not yet mastered by machines. 
This definition evolves with AI progress.Up to now, AI systems have mostly dealt with task-specific skills. In order to push forward

AI research towards more intelligent and more human-like artificial systems, we need to
focus on the broader and more complex skill-acquisition efficiency part of the definition
of intelligence (Chollet, 2019).

Remark: Defining “Intelligence” is not a prerequisite to advance in Machine Intelligence
research. We – living examples of intelligent agents – can still get inspiration from ourselves.

https://arxiv.org/abs/1911.01547
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Our brain is the most reliable source of inspiration for Machine Intelligence

Researchers are following different paths towards Machine Intelligence that can be grouped into two global approaches:

• A fundamental approach primarily leveraging our knowledge in abstract scientific fields such as mathematics, information theory, physics,
logic and causality. This approach is commonly referred to as Symbolic AI.

• A biologically-inspired approach at the intersection between neurosciences, psychology and computer sciences. Connectionist AI falls into
this category even if most of Artificial Neural Networks (ANNs) remain far from their biological counterparts.

Because the successful connectionist approach currently faces bottlenecks, some researchers are now trying to merge symbolic AI ideas into ANNs, while
others are attempting to make those ANNs even more biologically realistic. The latter has the advantage to have the human brain as a reliable and
invaluable guide to progress incrementally towards Machine Intelligence, without the risk of running into a dead-end requiring us to go back to square one.

Moreover, the collaboration between bio-inspired artificial and biological intelligence has already proven to be productive for both fields even if we still
have a very long way to go in mimicking truly human-like intelligence:

Bio-inspired 
Artificial Intelligence

Biological 
Intelligence

Distributed networks of 
relatively simple elements

Reward system 
in basal ganglia

Role of feedback 
connections in learning

Cognitive maps for 
planning and navigation

Hierarchical visual 
processing

More to come!

Modularity of 
memory systems

Attentional 
system

Sparse coding

Temporal 
difference 
learning

Online learning

Hebbian plasticity

Embodied 
cognition

Some topics at the 
intersection between 

AI & neuroscience
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Multidisciplinary approaches will considerably speed up the path towards Machine Intelligence  

Since the first mention of AI research in the 1950s, the academic field of AI has largely evolved
from a computer science subfield to a highly multidisciplinary field encompassing diverse fields
like information engineering, robotics, mathematics, psychology, linguistics, philosophy and
neuroscience (not exhaustive).

During the early decades of this long journey, many AI practitioners were well versed in
neuroscience. It led to the idea that networks of simple elements can produce remarkable
computations, and that some network architectures are well suited for pattern recognition tasks.

Today, subfields at the intersection of AI and neurosciences like computational neuroscience,
cognitive neuroscience and system neuroscience have taken over this increasingly specialized
research with promising results for our understanding of the brain.

The multidisciplinary nature of AI

Harvesting the next low-hanging fruits relies on multidisciplinary approaches. Research
information produced by neuroscience and computer science are not read enough outside their
respective fields.

It is not surprising given that researchers from both fields already have a hard time keeping up
with the incredible number of publications from their peers, even in their own subfield.

From the perspective of the AI researchers, there are hurdles to overcome if they want to
navigate the jungle of experimental results in neuroscience: few and often disputed frameworks
to make sense of the findings, complex naming conventions, high variability of results (sometimes
even contradictory results) due to cross-species differences, in vivo vs in vitro, awake vs
anesthetized, staining methods, or conduct of the experiment itself.

My hope is that this document can simplify the first step of this effort for a curious AI researcher.

Bridging the gap between AI and neuroscience

NeurophysiologyNeuroanatomy

Neuropharmacology

Behavioral 
neuroscience

Developmental 
neuroscience

Cognitive 
neuroscience

Systems 
neuroscience

Molecular 
neuroscience

Computational 
neuroscience

Neurophilosophy

Neurology
Neuropsychology

Neuroevolution

Machine Learning

Neural Networks

Evolutionary 
Computation

Vision

Robotics

Expert Systems

Speech Processing

Natural Language 
Processing

Planning

AI branches

Neuroscience branches

A
I &

 N
e

u
ro

sc
ie

n
ce

Thiboust, 2020



Brains & cognitive abilities

1. The primary function of a brain is not 
to think but to efficiently control 
complex behavior

Matthieu Thiboust

Art credit: Midas and the Bandsaw, Greg Dunn Design

Main inspirational people whose work helped me to shape
my vision in this section (views are my own):
• György Buzsáki
• Paul Cisek
• Antonio Damasio
• Sten Grillner
• Joseph Ledoux
• Luis Puelles

See the reference section for a list of materials that inspired me.

http://www.gregadunn.com/
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The brain is the central part of a bidirectional signaling system that generates complex behavior

Wikipedia

The nervous system is an electrical-based signaling system supporting complex functions
and structures of multicellular organisms. Compared to the endocrine hormone-based
signaling system, nervous systems are much faster and much more specific for
transmitting information, while being energy-efficient (only 20 watts in humans).

The nervous system has two main components:
• The central nervous system (CNS) composed of the brain and the spinal cord. It is the

major processing unit of nervous systems
• The peripheral nervous system (PNS) with nerve fibers reaching almost all body parts

in two opposite pathways (from and towards the CNS)

By coordinating situation-dependent distributed sequences of actions throughout the
body, they generate appropriate complex behaviors to sustain the homeostasis process
(perpetuation of life as an organism and a species).

Two kinds of action:
• Secretion of hormones (coupling with the endocrine system via the hypothalamus &

hypophysis)
• Contraction of muscles: smooth muscles (in walls of hollow visceral organs, except

the heart) and striated muscles (skeletal and cardiac muscles)

Different classes of senses:
• Exteroception for environmental stimuli (sight, hearing, touch, smell, taste)
• Interoception for internal vegetative stimuli (from organs, muscles and blood vessels)
• Proprioception for internal position and dynamics of the body (muscle tension, joint

orientation, sense of balance, …)

CNS

PNS

Brain

Spinal cord

Nerve fibers
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The control of the different behaviors is distributed over a collection of brain substructures 

Key behaviors <> key macro-structures

Because new brain structures were progressively added on top of previous ones along the
phylogenetic tree of evolution, it is tempting to associate a newly acquired ability with a
newly acquired substructure, and postulate that the very function of this ancient
substructure was mostly preserved in today's descendants. Admittedly, it is an
oversimplification of a very intricated system, but it helps to get the big picture.

The hypothalamus is the structure that is in charge of the
regulation of basic vital needs of the body like hunger,
temperature, thirst, fatigue, sleep, circadian rhythms.
Because some of those needs are complex to satisfy, the
hypothalamus delegates some of its functions to the
telencephalon, a structure composed of:

• A subpallium (basal ganglia) for behavior selection

• A pallium (hippocampus & cerebral cortex) for
exploitation, exploration & interaction behaviors
(behaviors such as orienting, reaching, grasping or
vocalizing are associated with the cortex)

An ancient structure, the tectum, is associated with vital
escape and approach behaviors, in parallel to appetitive
versus aversive subcircuits in the habenula and the
amygdala.

Also present in the midbrain, hindbrain and spinal cord,
Central Pattern Generators control stereotyped motor
behaviors like walking, swimming, flying, ejaculating,
urinating, defecating, breathing, or chewing.

Rather than supporting specific given behaviors, the
cerebellum in the hindbrain allows the coordinated
unrolling of learned behaviors.

Adapted 
from wikipedia Cisek 2019

https://doi.org/10.3758/s13414-019-01760-1
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Perception and cognition gradually emerged throughout evolution to support increasingly complex behaviors

Brains did not evolve with perception or cognition as a target.

Firstly, evolution does not follow targets. It just selects biological
structures that prove to be useful in the quest for survival.

Secondly, perception and cognition are not an end in themselves. They
emerged as gradual and quantitative abilities to primarily help generate
more appropriate complex behaviors.

Reflex movements are the most basic behaviors consisting of triggering a
set of actions when specific receptors are stimulated. Simple organisms
can sustain life with those simple behaviors.

Perception goes beyond the instantaneous feeling of sensations. It
compares sensations with memories of similar experience to identify the
evoking stimulus. Organisms that perceive are able to associate a valence
(goodness scale) to situations in order to select an appropriate behavior
and flexibly adapt its execution.

Cognition adds the ability to form internal representations and use them
to guide complex behaviors requiring abilities such as planning, thinking
long term, building upon other’s knowledge, making rational choices…

Understanding brain function should begin with brain mechanisms and
explore how those mechanisms give rise to the performance we refer to
as action, perception and cognition.

Screaming 
when hurt

Reaching 
& grasping 

a fruit

Reaching & 
grasping a 
server tray

Reflex 
movement

Raising cardiac 
pulse if in dangerBasic 

walking

Dancing in 
a ballet

Writing 
a book

Reading a 
newspaper

Proving a 
theorem

Building 
a bridge

Blinking of eyes 
when touched

Walking on 
a boat deck

C
O

G
N
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P
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C
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TIO
N
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Designing 
tools

Writing 
a ballet

Painting a 
landscape

BreathingDigesting

Vestibulo-ocular reflex

Singing 
a song

Complex 
behaviors

Approaching 
potential mates

Having 
goose bumps

Returning to a 
pleasant place

Teaching 
philosophy

Thiboust, 2020



Brains & cognitive abilities

2. This control is supported by abilities 
that were progressively acquired 
and refined through evolution

Matthieu Thiboust

Art credit: Midas and the Bandsaw, Greg Dunn Design

Main inspirational people whose work helped me to shape
my vision in this section (views are my own):
• Paul Cisek
• Antonio Damasio
• Sten Grillner
• Joseph Ledoux
• Kevin Mitchell
• Luis Puelles

See the reference section for a list of materials that inspired me.

http://www.gregadunn.com/
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Brains of current living creatures result from an evolutionary process of 700 million of years

15

Cisek 2019

Through natural selection, nature has progressively come up with
brains as a solution to the problem of controlling increasingly
complex behavioral activities on the quest for survival of
individual living organisms and their species as a whole,
requiring the coordination of the activities of cells distributed
over different parts of the body.

Put differently, brains are first and foremost evolved tools that
coordinate the homeostasis process of multicellular organisms
for survival and reproduction.

Deep timeline of evolution:

• 14 billion years: formation of the universe

• 4 billion years: appearance of life

• 700 million years: first nervous system

• 550 million years: first vertebrate

• 300 million years: first mammal

• 50 million years: first primate

• 5 million years: chimpanzee/human last common ancestor

• 2 million years: homo habilis

• 0,4 million year: homo sapiens

Cisek 2019

https://doi.org/10.3758/s13414-019-01760-1


Insights from the brain: the road towards Machine Intelligence – © 2020 Matthieu Thiboust

The neocortex is a major brain innovation along the vertebrate phylogenetic branch

16

Ancestral vertebrate brain

Mammalian brain

Cisek 2019

Researchers have inferred the brain organization of vertebrate
ancestors from their still living successors.

Being the most phylogenetically-distant currently living vertebrates,
lampreys are a good proxy of the ancestral vertebrate brain. They
possess:

• A set of tectal visuomotor circuits for species-typical approach and
avoidance behavior (the superior colliculus is the mammalian
evolution of the optic tectum)

• Olfactory foraging systems forming the initial telencephalon
(pallium & subpallium) to arbitrate between local exploitation
(ventrolateral pallium for olfaction and ingestion) and long-range
exploration (medial pallium for navigation which will later become
the hippocampus) for controlling nutrient concentration.

Later, jawed vertebrates evolved two new structures:

• A larger dorsal pallium specialized for sensorimotor interactions

• A cerebellum

Then, the size of the dorsal pallium increased a lot with mammals into
what is called the neocortex (or isocortex since it is not a complete
innovation of the mammals), which continued to increase a lot with
primates and humans. A larger neocortex means an increased capacity
to process sensory stimuli (like vision) and a larger repertoire of
sniffing, burrowing, reaching, and grasping behaviors.

Unfolded map

Small 
neocortex 
ancestor

Large 
neocortex

Cerebellum

Superior 
colliculus

Tectal visuomotor circuits

https://doi.org/10.3758/s13414-019-01760-1
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Evolution plays with the brain developmental recipe, not directly with mature brain characteristics

17

Simplified view of the complex genetic
architecture of behavioral and psychological
traits (from Mitchell, 2018):

The position of our 86 billion neurons and the connections of their 100 trillion synapses
are obviously not directly encoded in our genetic material. First, it would not be possible
to store those explicit design characteristics into our genome with “only” 3 billion of base
pairs. Second, our nervous system would be far less flexible if all connections were
hardcoded.

Instead, our genome encodes developmental rules like a recipe specifying how to make a
mature brain from neural stem cells. Those rules are executed in each cell by the
sequential expression of specific genes depending on the cell surroundings, thanks to
other genes ruling those conditional gene expressions (depending on chemical gradients).

Of the 20,000 genes in the human genome, at least one third are primarily expressed in
the brain. It means that a significant portion of our genome is dedicated to our brain
recipe.

Genetic mutations in those genes can impact the brain development, leading to neutral,
beneficial or harmful effects. Such beneficial mutations in germ cells will be progressively
transferred to next generations through natural selection. Evolution plays with the
recipe, not directly with the final characteristics.

Mutation in genes used in early developmental phases have statistically less chances to
be beneficial because of subsequent cascading effects over the remaining developmental
phases. Thus, as a general rule, the chronological order of brain developmental phases
mainly reflects the chronological order of brain evolution in the phylogenetic tree.

It is important to underline the high stochasticity inherent to brain development. Two
identical twins raised in the same environment will likely have different traits because
they have followed slightly different developmental paths (innate but not genetic).

The brain recipe

Illustrations from Mitchell, 2018

https://doi.org/10.2307/j.ctvc77m71
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Our abilities progressively mature with a carefully choreographed developmental process

18

Prenatal images 
from Mitchell, 
2018

The daunting complexity of brain organization is the result 
of carefully choreographed processes of: 

• Neurogenesis (proliferation of neuron cells) 

• Cell migration (towards final position)

• Cell differentiation (neuron specialization)

• Axonal growth (long-distance projection)

• Synaptogenesis (creation of connections)

• Synaptic pruning (suppression of connections)

Sensorimotor interactions

Embryos acquire knowledge of their 
body via initially meaningless 
random movement patterns 
(ex: baby kicks, muscle jerks)

Neurogenesis
(from 0 to 86 

billion neurons)

Synaptogenesis and synaptic pruning
(from 0 to 1000 to 500 trillion synapses)

25 days 40 days 100 days 6 months 8 months 9 months / Birth Birth + 1 year Teenager

Images adapted from Mitchell, 2018

COGNITION
PERCEPTION

ACTION

Babies tie external stimuli 
induced by their movements to 
a self-organized brain activity

Infants can sustain internal 
brain activity without 
producing movement

Progressive emergence of 
cognitive abilities during 

the developmental process

and from Kolb et al, 2009 Thiboust, 2020

https://doi.org/10.2307/j.ctvc77m71
https://doi.org/10.1007/978-0-387-78867-8_2


Brains & cognitive abilities

3. Biological intelligence gradually emerged 
with active perception and cognition 

Matthieu Thiboust

Art credit: Midas and the Bandsaw, Greg Dunn Design

Main inspirational people whose work helped me to shape
my vision in this section (views are my own):
• György Buzsáki
• Paul Cisek
• Karl Friston
• Carlos E. Perez
• Giovanni Pezzulo

See the reference section for a list of materials that inspired me.

http://www.gregadunn.com/
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Perceptions are constructed mental representations, not the veridical representations of the objective world

The predictive coding theory – an
increasingly popular theory for
perceptual processing – states that
the brain is constantly generating
and updating a mental model of
sensory input. The brain makes
sense of the experience by adjusting
a balance between expectations and
sensory information: a mismatch
between expectations and reality
will induce a more sensory-driven
reinterpretation of this experience.

Clap

Clap

Examples

In the checker shadow illusion,
tile A looks significantly darker
than tile B whereas both tiles
are exactly the same shade of
grey.

The brain makes inferences
from the location of the
shadow and the colors of
nearby tiles. These inferences
lead to different perceptions
of the same color.

Optical illusion

Suppression of self-generated stimuli

Same 
color!

We don’t hear our own footsteps

Except if you voluntarily pay
attention to the sound of your
footsteps, you do not hear it.

The brain learns to turn off
responses to predictable self-
generated sounds. It cancels
the footstep sound from the
other external sounds by
applying an internal model of
sound produced by its own
movements.

The fact that our brain makes its own subjective model of the environment
is easily verifiable in perceptual illusions that trick our brain:
• Optical illusions: visual relations (specific shadow, perspective, distance

and size of objects), absence of stimuli in the visual area (ex: blind spot)
• Auditory illusions (ex: tinnitus / ringing ears after a loud concert)
• Somatic illusions (ex: feeling ownership of a rubber hand)

Mental representations can also greatly differ from the veridical
representations of the objective world when self-generated stimuli are
suppressed from our perceptual experience. For instance, we do not hear
our own footstep when walking.

Perception is our sensory experience of the world around us. It results from
the interpretation of bottom-up sensory stimuli based on internal top-down
expectations.

Top-down 
expectations

Bottom-up 
sensory

information

« Perception » 
= act of updating
model of what is
out in the world

https://commons.wikimedia.org/wiki/File:Grey_square_optical_illusion.svg
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When we intentionally move our sensors, perception is stabilized by corollary discharges of motor commands

The stimuli received by our sensors are continuously changing because the
environment and/or the sensor position is changing. It feels intuitive that
we can see a moving object when we stay still: if the stimuli are changing, it
is because the environment is changing.

In fact, our sensors are also continuously moving during sensory
experiences, generally without us knowing it. Despite this fact, our
perceptions are surprisingly stable. This phenomenon exists for every
sense, but it is more obvious for vision with fast eye motions called
saccades that direct the fovea which has much better acuity than the rest
of the retina (around 5 saccades per second) .

Saccadic eye movements when looking at a human face

Example of trajectories 
of eye saccades focusing 
successively on the eyes, 
the nose and the mouth

21

In order to predict the next sensory stimuli, the expectations of the brain
have to take into account the upcoming self-generated movements, in
addition to the flow of sensory inputs. This information is provided via a
copy of the motor command signals called corollary discharges, going
directly from motor to sensory brain areas.

After enough time and experience to calibrate visual neural circuits,
sensory stimuli begin to make sense because we have learnt to:
• Filter out meaningless sensory stimuli during the saccade motion
• Predict the expected stimuli after the saccade

If some visual stimuli represent a mouth, we may expect to be looking at a face. To verify this prediction, we
generate the next saccade in a place where we expect to see a eye, then the other eye, then the nose, etc.

0 ms 1 s500 ms
Wikipedia

Saccade #1 Saccade #2 Saccade #3 Saccade #4 Saccade #5

Perception needs action:
vision ceases after a few
seconds when saccades
are impeded

Thiboust, 2020

→ the brain as an active predictive machine

https://commons.wikimedia.org/wiki/File:Szakkad.jpg
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Active sensorimotor interactions are essential to generate meaningful percepts grounded to the real world

Moving our sensors is not only a way to scan the environment, it is also a way to
actively verify the correctness of our models and to correct them if needed. We
learn from the consequences of our brain’s actions about aspects of the
environment that matter for particular goals.

When incoming bottom-up stimuli fit top-down expectations, it implies that a
connection has been established between some brain’s circuits and something
meaningful from the real world. This active process is referred to as grounding. It
attaches a meaning to a stimuli-induced neural activity that becomes a meaningful
percept.

If perception is the act of continuously updating our imperfect models from our
actions, then it is inseparable from the grounding process.

Grounding is realized via sensorimotor interactions through time (also referred to
as active sensing). The objective is to refine the meaning of sensory signals by
successive comparisons of predictions vs outcomes of self-generated movements.

With experience, general mental representations are complemented by more
specific mental representations with hierarchical connections between those
representations (ex: an oak is a tree and a tree is an inanimate object, a tree is
composed of branches and leaves).

To be useful, all those representations have to be meaningful and to show at least
some degree of invariance:
• Meaningful because the representation of an object is attached to a collection

of properties that could be helpful to achieve behavioral goals.
• Invariant because the same mental representation of a physical object should

be activated when the object is viewed from different brightness, angles or
zoom levels.

“We connect to the world not through
our sensors (although they are essential)
but through our actions. This is the only
way that sensation/perception can
become “grounded” to the real world as
experience.

The distance between two trees and two
mountain peaks may appear identical on
the retina. It is only through walking and
moving one’s eyes that such distinctions
can be learned by the brain.”

Buzsáki, 2019

Moving to verify the correctness of our models

Grounding useful percepts to the real world

Zoom level 
invariance

Perspective 
invariance

Subparts
relations

Meaningful 
properties

Grounding
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Cognition uses grounded mental representations while disengaging from the external world

Perception is a prerequisite for cognition because the latter uses meaningful
mental representations that should already be grounded by active sensing.

Contrary to perception, cognition is characterized by a disengagement from
the external world. Cognition relies on internally organized activity
detached from immediate sensory inputs and motor outputs.

This ability allows us to imagine the future and recall the past. More
fundamentally, the main evolutionary advantage of cognition is the ability
to test mentally “what if” scenarios to anticipate at long time scales the
potential consequence of alternative actions without actually taking them.

From the perspective of a brain network receiving sensory inputs, there is
no difference between real sensory inputs and similar activity generated by
other internal networks. The brain would only need a gating mechanism to
direct the neural flow accordingly. Similarly, the motor command sent by
the brain network can be retained, leaving only the internal corollary
discharge.

Remark on this explanation of perception and cognition:
This presentation is not supported by the classical outside-in framework that
states that the brain is a passive device whose job is to sequentially perceive,
cogitate and then act. However, the outside-in approach is increasingly
questioned by neuroscientists favoring an inside-out approach. In the inside-
out approach, self-organized brain activity is grounded to meaningful
features from the environment via actions (perception). Then, this brain
activity can be internally sustained (cognition). More in Buzsáki, 2019

No cognition without perception

When brain circuits are calibrated by action-
based perceptions, then the brain can
disengage from the external world, relying
only on internal circuits that support
meaningful representations. We call this
ability “cognition”.

Perception

Cognition

Perception grounds meaningful mental
representations to the external world. This
process is done by processing stimuli that
have been deliberately produced by an action
on the sensor, coupled with internal corollary
discharges bypassing the environment.

Contrary to what some researchers are looking for, the question is not
“how to ground abstract symbols to concrete experience?”. Those
symbols are first grounded by perceptual experience before they could
be detached for cognition.

In fact, the real question is “how do symbols get detached?”.

23
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Speculation: cognition is like perception with an internal reference model instead of the environment

I think that perception and cognition are two abilities that use the
same fundamental mechanism: updating internal models
according to the difference between two parallel signals: a
prediction and a reference induced by a self-generated command.

Some 
brain area

Motor Sensor

Environment

outcome

prediction
Model

motor 
command

corollary 
discharge

model update

Perception

Cognition

Some 
brain area

Reference

prediction

Learning 
Model

Internal 
command

corollary 
discharge

model update

Reference 
Model

(already grounded by perception 
or by another cognition loop)
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Speculation!

In perception, those two parallel signals are:
• A motor command that will induce the outcome (the reference)
• A copy of this motor command (corollary discharge) that is processed by an internal

model in order to generate a prediction

If we draw a parallel to perception, we could say that cognition is the act of updating our
imperfect models from our “disengaged actions” with two parallel signals:
• An internal command that will produce the reference via a “reference model” circuit

(could be a complex model or simply a memory circuit with direct correspondences
between internal commands and reference values)

• A corollary discharge of the internal command that is processed by an internal
model in order to generate a prediction

In cognition, a prerequisite is that the “reference model” circuit has already been
grounded by perception or by another cognition loop. Whereas the reference signal is
given by the environment in perception (model-free), the reference signal is modeled
internally in cognition (model-based).

Going further: in cognition, the brain can gate neural activity to consider a high-order
area as the reference and a low-order area as the model to be updated (deduction), or
the other way around (induction), depending on the context (see later chapter on
neocortex for more explanations about hierarchy)

Model-free

Model-based
Thiboust, 2020
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Brains host a highly diverse neuronal ecosystem with hundreds of different neuron types

26

Even if each single neuron is basically a cell transmitting nerve impulses, there is a
great diversity in neuron types.

Our 86 billion neurons can be classified into hundreds of families and subfamilies
depending on:

• Their morphology: shape & size

• Their position: sensory neurons, motor neurons, interneurons

• Their connectivity: number of input & output connections, and the neuron
families they are connected to

• The length of their connections: local vs long-distance

• The specificity of their messages : focal vs diffuse, ephemeral vs long-lasting

• Their impact on other neurons: excitatory vs inhibitory

• Their passive and active electrical properties

• Their excitability: sensitivity level

• Their transmission speed

• Their discharge patterns: single vs multiple spikes

• Their expression of specific proteins

Cell of thalamic 
nucleus

Spindle-
shaped 

cell

Pyramidal cell
Granule cell

Ovoid 
cell

Small reticular 
formation

Inferior 
olivary 
nucleus 
neuron

Double 
pyramidal 

cell

Large cell of spinal 
trigeminal nucleus

Small 
gelatinosa cell

Neuron from putamen of 
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Purkinje cell

Globus 
pallidus 

cell

Large 
reticular 

formationBraini, 2016
(adapted from Ramon y Cajal)

https://tel.archives-ouvertes.fr/tel-01736978/document
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Neural communication relies on a network of neurons transmitting signals via electrical and chemical signals

27

Neurons are electrically excitable cells
that communicate with other cells via
specialized connections called synapses.

They are typically composed of two
parts:
• Several dendrites with thousands of

branches/segments that can get
excited by other neurons

• One axon extending into thousands
of axon terminals that can excite
other neurons

Signal processing and transmission uses:
• Chemical neurotransmitters in

synapses between two neurons
• Electrical action potential (AP) inside

the neuron from the dendrites to the
axon via the cell body

Those characteristics are the common
denominator of neural communication.
However, there are considerable
variations around this general theme,
with different neuron morphologies and
organizations, different kinds of spikes
and different neurotransmitters.

Adapted from 
Dowling, 2018
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Dozens of neurotransmitters and neuromodulators transmit chemical signals in synapses between neurons

28

Neurons use several dozen different molecules to convey chemical
messages at the synapses level, with various effects on the receiving
neuron (multiple types of receptors for each molecule).

They can act as neurotransmitters, neuromodulators or both:

• Neurotransmitters convey fast and ephemeral point-to-point signals
in synapse channels.

• Neuromodulators convey slow and long-lasting point-to-many
signals. They induce biochemical changes in the postsynaptic neuron.

Adapted from Hirase, 2014

Neurotransmitter

Neuromodulator• Fast impact: 0.5 ms to reach 
postsynaptic neuron (*)

• Ephemeral effect: less than 100 ms (*)
• Focal target: only 1 synapse

Examples:
• Amino acids: glutamate (main 

excitatory transmitter), GABA (main 
inhibitory transmitter), glycine

• Cholinergic: acetylcholine

• Slow impact: few seconds to 
reach postsynaptic neuron

• Long-lasting effect: minutes, 
hours or even days

• Diffuse target: many synapses

Examples:
• Amine: dopamine, serotonin, 

norepinephrine
• Peptide: substance P, endorphins

Each neuron generally releases only one kind of neurotransmitter or
neuromodulator, but it can be excited by a combination of several
neurotransmitters and neuromodulators on its thousands of synapses.

At the synapse level, only one or two substances are released. The combination
is done by multiple neighboring synapses on the same dendritic segment.

Some substances have inhibitory effect (like GABA) while others are excitatory
(like glutamate). Acetylcholine’s inhibitory or excitatory effect depends on
whether it is used as a neurotransmitter or a neuromodulator.

* Metabotropic receptors (≠  ionotropic receptors) can have a longer latency and effect duration

https://dx.doi.org/10.1098%2Frstb.2013.0604
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Dendrites are active components of a neuron that can perform complex computations

29

Clustered inputs

Dispersed inputs

Figures from Stuart & Spruston, 2015

A neuron can have tens of thousands of synapses (sometimes even hundreds of thousands)
grouped on hundreds of dendritic segments. Depending on the time-distance from the soma
(proximal vs distal dendrites) and the distribution of synaptic inputs on the different segments
(clustered vs dispersed), dendrites of a single neuron can perform complex computations by
combining basic operations (like AND, OR, and even XOR) performed on each dendritic segment.

Dendrites do not only passively integrate excitatory postsynaptic potential (EPSP) and inhibitory
postsynaptic potential (IPSP) that can trigger an Action Potential in the axon initial segment if
above a given threshold. They are also able to actively trigger various localized dendritic spikes
(different from Action Potential (AP) spikes) propagating from distal dendrites to the soma.
Dendritic spikes increase the probability of AP firing in the axon, but they do not assure it.

Dendrites can also backpropagate AP (generated in the axon initial segment near the soma) into
the dendritic arbor. This is referred to as a backpropagating AP (bAP). Interactions between
dendritic spikes and bAP are believed to be involved in synapse learning mechanisms.

Passive integration Active integration Backpropagation

Calcium 
spike

Sodium 
spike

NMDA 
spike

Dendritic spikes

https://doi.org/10.1038/nn.4157
https://doi.org/10.1126/science.aax6239
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Propagating Action Potentials are triggered when membrane potential increases over a threshold near the soma

30

Action Potentials (AP), also called spikes, are propagating
depolarizations of neuron membrane potential (= voltage) along
its axon from the axon initial segment (near the soma) towards
axon terminals.

AP propagates very quickly along the axon: from a few to a
hundred meters per second, making it possible to convey long-
distance electrical messages throughout the brain and the body.

Voltage spatial map

If the potential goes over a given 
voltage threshold in the axon initial 
segment, an AP is generated Wikipedia

Short 
depolarization 
(only a few ms)

Recording electrode

Axon

Propagating
Action Potential

High 
voltage

Low 
voltage

Dendrites

AP voltage time profile

Synaptic 
integration

AP are triggered when synaptic inputs increase the membrane potential of the axon
initial segment over a given voltage threshold. To maximize the chance to generate a
spike, those inputs have to co-occur during a short integration time-window.

Remark: A cell with a depolarized but subthreshold potential will be quicker to fire if
new dendrites became positive. This characteristic is essential to explain competition
between neurons at a network level: the first neuron to fire inhibits its neighboring
excitatory neurons via fast inhibitory interneurons (see later focus on neocortex).

https://fr.m.wikipedia.org/wiki/Fichier:Action_potential.svg
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Neurons exhibit a variety of firing patterns composed of successive spikes

31

Successive action potentials fired by a neuron are called spike trains.

Depending on the physiology of the neuron, there exist different firing
patterns. For instance, bursting neurons tend to fire repetitively and
very quickly during a period, followed by a long quiescent period.

The information is somehow coded into those firing patterns. There
are many ways neurons might code information. The most
straightforward code is a rate code where spike frequency is correlated
with the strength of integrated inputs. Phase coding is another coding
strategy involving brain oscillations (see later chapter on neocortex).

Firing patterns

Twenty of the different types of firing patterns exhibited by single neurons 
in the mammalian cortex:

Each horizontal bar denotes a 20-ms time interval

Rate coding

Weak stimulus

No stimulus

Moderate stimulus

Strong stimulus
D

o
w

lin
g

, 2
0

1
8

Izhikevich, 2004

Remark: those illustrations show firing patterns in response to artificial
current injections. Real sensory responses of awake animals are more
complicated and composite.

https://doi.org/10.1096/fj.201901790
http://www.izhikevich.com/
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A combination of local plasticity mechanisms support short and long term memories 

Virtually everything we do or experience can cause changes in our plastic
brain. Our new memories are encoded by those changes that can persist
in time, from tens of milliseconds to a hundred years.

Those changes occur at different levels in our neural networks:
• Synapse level: adding or pruning a synapse, increasing or decreasing a

synaptic weight
• Neuron level: modifying a neuron intrinsic excitability or other

physiological characteristics
• Network level: self-sustaining a looped activity via network recurrent

interactions

Even if there is a growing interest for non-synaptic plasticity in the
research community, it is believed that memories are mostly encoded in
synapses, because there are thousands per neuron.

Synaptic plasticity rules give an abstraction of synaptic plasticity
mechanisms (like Long Term Potentiation (LTP) and Depression (LTD),
synaptic facilitation, …). They describe how synaptic weights get changed
in function of the frequency, the intensity and the timing of activity of
presynaptic and postsynaptic neurons. Synaptic changes can also depend
on a third factor modulating the plasticity.

Hebbian learning (often simplified by “fire together, wire together”) and
Spike-Timing Dependent Plasticity (STDP) are the most famous rules.

All brain plasticity rules are local: changes only depend on information
directly available to the synapse, neuron or network.
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Synaptic plasticity involves cellular and molecular pre and postsynaptic mechanisms

34

The contribution of synapses to the evoked post-synaptic potential depends on the number,
the strength (also referred to as weight) and the dendritic position of synapses.

When some specific patterns of synaptic activity occur, plasticity mechanisms adapt synaptic
characteristics by weakening/strengthening synaptic weights and creating/pruning synapses
(each neuron is only connected by synapses to a fraction of other neurons).

The different cellular and molecular mechanisms of synaptic plasticity are only partially
understood. They mainly involve the pre and post-synaptic neurons. However, some complex
mechanisms also rely on local concentration of neuromodulators (released by other neurons)
and/or neighboring astrocytes (a type of glial cells that populate the nervous systems along
with neurons) that act as catalysts or inhibitors.

The most commonly studied mechanisms are Long Term Potentiation (LTP) and Long Term
Depression (LTD). They produce long-lasting increases and decreases in synaptic efficacy of
excitatory synapses using the glutamate neurotransmitter (most excitatory synapses use
glutamate). The mechanism involves the density regulation of two types of glutamate
receptors (NMDA and AMPA). LTP is induced each time the postsynaptic depolarization and
the postsynaptic concentration of calcium is above a minimum level. A very high level of
calcium generated by a back propagating AP can also be sufficient by itself for LTP.

Short Term Plasticity is believed to be mostly controlled by presynaptic mechanisms. Short
term facilitation increases the probability of neurotransmitter release, whereas depression
reflects a depletion of releasable neurotransmitters. Because their effect only last for a second
or so, they dynamically alter the frequency response of synapses.

Spike Timing Dependent Plasticity (STDP) involves both pre and postsynaptic mechanisms.
The precise temporal order of activity between the two neurons matters. If the presynaptic
spike precedes the postsynaptic spike, the synaptic strength is increased (most cases) or
decreased, depending on the mechanism.

Some characteristics impacting the synaptic strength
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The historical Hebbian plasticity rule has been significantly enriched since its
first mention by Hebb in 1949. This simple model postulates that when one
neuron drives the activity of another neuron, the connection between these
neurons is potentiated (often summarized as “cells that fire together wire
together”).

More advanced phenomenological models – based on an input-output
relationship between neuronal activity and synaptic plasticity – offer a
conceptual framework to understand network-level effects induced by changes
in synaptic strength.

Rate based models determine the sign and magnitude of synaptic plasticity from
the average firing rate (over some time period) of pre and postsynaptic neurons.

Spike timing based models are inspired by STDP mechanisms. Their outputs
depend on the relative timing difference between pre and postsynaptic spikes.

Some rate based and spike timing based models are in fact more complex. Those
elaborate versions allow to:
• Mix the two model families
• Adjust the response with the initial synaptic state
• Separate short term and long term averages
• Take into account depolarization events in addition to spike events
• Modulate the synaptic change according to a neuromodulator concentration

(3-factor learning rule).

In every cases, models of synaptic plasticity only use inputs directly available in
the local periphery of the synapse, and then implement local learning rules.

Models of synaptic plasticity implement local learning rules

35Feldman, 2012

Example of spike timing based models

Hebbian STDP (most common)

Anti-Hebbian STDP (less common)

Spike timing based models are often characterized by a graph
of synaptic changes (positive means strength increase) in
function of the relative timing between neuron (positive means
that the presynaptic spike precedes the postsynaptic spike).

https://doi.org/10.1016/j.neuron.2012.08.001
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Nonsynaptic plasticity mechanisms complement their synaptic counterparts

Nonsynaptic plasticity involves cellular and molecular mechanisms occurring
in the soma, the dendrites and the axon of neurons (instead of synapses for
synaptic plasticity) that modify the intrinsic excitability of the neuron.

Those mechanisms mostly depend on neuromodulatory regulation and on the
internal activity of the neuron.

Nonsynaptic plasticity can have short-term or long-term effects on synaptic
integration, subthreshold propagation, spike generation, and other
fundamental mechanisms of neurons at the cellular level.

Although research on nonsynaptic plasticity is still in its infancy, it is generally
believed that both synaptic and nonsynaptic plasticity are essential to
memory and learning in the brain. Their mechanisms complement each
other.

For instance, LTP mechanisms at the synapse level can be accompanied by the
densification of voltage-gated ion channels along some axon terminals in the
presynaptic neuron (strengthening of neuronal action potential) and/or some
dendritic branches in the postsynaptic neurons (increased significance in
synaptic integration). The regulation of those ion channels augments the
effectiveness of synaptic memory formation.

Nonsynaptic plasticity also has a homeostatic role in order to prevent long-
term drift towards excitability or inexcitability. This continuous regulation
makes sure that the circuit keeps its ability to convey information (too many
and too few firings mean lower information transmission).

DendritesSoma

Neuron

Axon

Axon terminals

Example of neuronal mechanisms affected by nonsynaptic plasticity

Spike 
generation

Action Potential 
propagation

Synaptic integration
Subthreshold propagation
Dendritic spike propagation

Action 
Potential 
propagation

Adapted from 
Dowling, 2018

https://doi.org/10.1096/fj.201901790
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Specific architectures allow to assign credit to the faulty neurons inside a global network

In a complex network of neurons, how to know which synapses to
strengthen and which synapses to weaken when the outcome turned out
to be bad? This question is referred to as the credit assignment
problem.

The difficulty of the problem lies in the fact that all plasticity
mechanisms are local in the brain, whereas signals transit successively
through many neurons before knowing the outcome.

According to recent research, brains seem to have overcome this issue
thanks to specific neuron morphologies and network architectures.

Cerebellum Cortex

Richards and Lillicrap, 2019

For instance, Purkinje cells – large neurons located in the cerebellum – have an
intricately elaborated dendritic arbor that is innervated by two kinds of fibers.
One kind of fiber probably acts as an error signal. It synapses onto Purkinje cells
in a one-to-one correspondence and modifies the spike profile when activated
along with the other fibers.

A similar dendritic solution for credit assignment may also exist in the cerebral
cortex. This developing theory is still under investigation because multiple
inputs and multiple outputs are related in a highly complex way contrary to the
cerebellum that is basically organized in a characteristic feedforward manner.

Climbing fibers synapse onto Purkinje cells in a one-to-one correspondence. 
When stimulated along with parallel fibers, they induce a complex spike that 
may give the sign of change of synaptic plasticity (LTP or LTD).

Neuron-by-neuron credit assignment Credit assignment solution still unknown

Because the coactivation 
of different dendritic 
arbors induces a more 
complex spike, and 
because some arbors 
received more inputs 
from areas higher in the 
hierarchy, it is 
hypothesized that it may 
be interpreted as a credit 
assignment signal.

Pyramidal neuron

https://doi.org/10.1016/j.conb.2018.08.003
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Related neural networks are grouped in macro-structures identifiable at the anatomical level

39

Brain anatomical structures result from the gradual
differentiation of neural stem cells during the early development
of the nervous system. At the highest level, they are separated
in forebrain, midbrain, hindbrain and spinal cord. At a lower
level, they are often divided in a dozen of regions (see
illustration below), each one consisting of the aggregation of
several substructures. For example, the thalamus is composed of
dozens of nuclei.

Cerebral 
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Hippocampal 
formation
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Thalamus
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2019

Telencephalon / 
Cerebrum 

(part of forebrain)

Diencephalon
(part of forebrain)

Hindbrain

Midbrain

The substructures of a brain structure are spatially grouped, except the basal ganglia
which groups various nuclei, some of which being very distant (not shown in the
illustration). This naming convention reflects the functional relation between those highly
interconnected nuclei.

Cognitive abilities like intelligence have mainly been associated with specific brain regions
like the cerebral cortex, the hippocampus and the basal ganglia. But without the other
underlying subcortical areas, those structures are pretty useless. Brains work as a whole.

https://v19.proteinatlas.org/humanproteome/brain
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Neural networks are organized in a variety of nuclei and layered architectures  

40
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Each brain substructure possesses its own organizational design.

At a macro-level, we can distinguish between 3 kinds of design:

• Layers: neurons are grouped in layers, and the connection patterns between layers are conserved across this 2D scalable brain structure (ex: neocortex,
hippocampus, cerebellar cortex, optic tectum…)

• Nuclei: neurons are segregated along a radial organization that is sometimes described as concentric layers (ex: pallium of birds, cerebellar nuclei, red
nucleus, inferior olive, hypothalamus nuclei, basal ganglia…)

• No apparent structure: the distribution of neuron types still follows a gradient but it is more diffuse (ex: substantia innominata)

Olivary nucleus

Some examples of neuronal organizations:

Nuclei
Layered structure

Thiboust, 2020
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Brain connectome

Brain structures are highly interconnected with dense and long-distance fiber tracts

41

Mapping the neuron-to-neuron connectivity of the human brain is still
technically out of reach. However, the macroscopic connectivity between
brain regions is sufficiently known to inform the function of those regions
and the major processing pathways they are involved in. This structural
connectivity is called the connectome.

Virtually everything seems connected to everything in the brain! But
beyond this redundancy, general connection patterns exist: all cortical
areas are connected to some thalamus nuclei, cerebellum is connected to
nuclei in the pons, etc.

The massive interconnections consist in nerve tracts (= bundles of
axons). The length of those fibers ranges from a few millimeters to a
dozen of centimeters.

The cerebral cortex is involved in most long-distance fiber tracts which
are commonly classified into three categories:

• Association fibers connect cortical areas within the same hemisphere

• Commissural fibers connect corresponding cortical areas in the two
hemispheres. The biggest commissure is the corpus callosum

• Projection fibers connect cortical areas with the thalamus, the basal
ganglia, the midbrain, the pons, the medulla and the spinal cord

Remark: direction of fibers and network dynamics are generally not
represented in connectomes

Corpus callosum
Association fibers

Projection fibers

Image credit: Courtesy of the Laboratory of Neuro Imaging and Martinos Center for Biomedical 
Imaging, Consortium of the Human Connectome Project – www.humanconnectomeproject.org

http://www.humanconnectomeproject.org/
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Neural activity continuously loops into multiple interconnected neural circuits 

Brains consist of networks of neurons forming parallel and
intricated closed-loops:

• Sensorimotor loops through the environment or the body are
necessary to ground a given neural activity with external
stimuli via sensorimotor interaction: motor actions shape
sensory input and sensory percepts guide future motor
commands.

• Internal loops sustain, regulate and coordinate neural activity
inside and between brain substructures. This internal activity
bypasses sensors and motor effectors, by addressing corollary
discharges directly from motor to sensory centers via multiple
parallel pathways. The loop is closed inside the brain.

Adapted from Buzsáki, 2013

Schematic representation of 
interconnected neural loops

Sensorimotor 
loops

Internal 
loops

• Sensor-motor loop

• Sensor-brainstem-motor loop

• Sensor-thalamo-cortico-motor loop

• Cortico-cortical loop

• Cortico-thalamo-cortical loop

• Cortico-basal ganglia-thalamo-cortical loop

• Cortico-ponto-thalamo-cerebello-cortical loop

Some brain loops (far from exhaustive)

Loops of 
neural circuits

Interaction 
across loops

https://doi.org/10.1038/497568a
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Sensorimotor loops through the environment are closed via efference copies

Multiple pathways exist from sensory stimuli to body actuators:
• Very short pathways for reflex movements through the spinal cord or the brainstem
• Short pathways through subcortical structures (brainstem & cerebellum)
• Long pathways through the cerebral cortex

Importantly, those pathways form sensorimotor loops that are closed inside the brain by
efference copies (also called corollary discharges) which are internal copies of motor signals
directed towards sensory systems. Those signals are essential to distinguish between self-
initiated movements (reafference) and external signals (exafference).

Ahissar et al, 2016

Sensory 
centers

Sensory 
neurons

Motor 
centers

Motor 
neurons

Sensory

Associative

Motor

Cortex & 
Thalamus

Cerebellar 
System

Reflex movement

Example of a sensorimotor loop

Connections of the mouse whisker system, forming
multiples loops between whiskers and muscles (efference
copies are not represented in this illustration).

Whisker

Muscle

Efference copies also explain the
stability of our perceptions despite
the regular movements of our
sensors. Internal forward models
learn to predict sensory inputs from
motor commands.

Such internal forward models are
believed to be implemented in the
cerebellum in addition to some part
of the cortex. They enable the brain
to predict the effect of actions at
different levels of abstraction.

The interactions between the
different intricated loops are still
poorly understood.
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List of basal ganglia loops
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Actions are selected via parallel internal loops through the basal ganglia  

Graham, Murray, Wise, 2017

Cerebral cortex Striatum PallidumThalamus

The typical examples of loops are the sensorimotor, associative and limbic
circuits whose striatal structures are respectively the putamen, the
caudate nucleus and the nucleus accumbens.

Interestingly, the terminology of basal ganglia can be used in an extended
sense to include striatal-like and pallidal-like structures. For example, the
hippocampus is involved in a loop with the septal nuclei and the midline
thalamic nuclei. The different amygdala nuclei are also involved in a
similar loop.

The cortico-basal ganglia-thalamo-cortical loop is a fundamental
processing pattern in the forebrain. It is implicated in action & behavior
selection, motivation, reward learning and decision making.

Multiple such loops exist in parallel: a given cortical area projects to a given
area of basal ganglia (first striatum, then pallidum) which projects to a given
thalamic nuclei, which projects back to the corresponding cortical area
(projections are said to be topographically organized).

When the activity in a loop has converged to a selected choice, the pallidum
communicates this decision to other nuclei (in brainstem or hypothalamus).

Cerebral cortex

Striatum

Pallidum

Brainstem & 
Hypothalamus

Thalamus

Basal 
ganglia

Simplified view of the parallel cortical-basal ganglia-thalamo-cortical loops:
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https://global.oup.com/academic/product/the-evolution-of-memory-systems-9780199686438?cc=fr&lang=en&


Focus on the neocortex

1. The neocortex is divided into 
functionally specialized but 
anatomically similar cortical areas

Art credit: Gold Cortex, Greg Dunn Design
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The cerebral cortex is a thin sheet of brain cells that can be functionally divided into dozens of specialized areas

The cerebral cortex is a two-dimensional thin sheet of neural tissue covering the
outside of the brain in two hemispheres, connected to nearly all brain structures.

All vertebrates possess a cerebral cortex (or a pallium, its primitive form), but its
significance greatly increased in mammals, with the expansion of the part that is
called neocortex (or isocortex to avoid the misconception of a mammalian innovation).

This expansion in surface area gradually continued through the phylogenetic tree by
increasing the size of the brain and by folding the sheet, forming the famous
characteristic patterns on the external surface of primate and human brains.

Different high-order cognitive abilities are associated to different specialized areas
that can be divided at 3 structural levels for each hemisphere:

• 4 cortical lobes: frontal, temporal, parietal and occipital

• 52 Brodmann areas (ex: area n°17 correspond to the primary visual cortex V1)

• 180 cortical areas (from Glasser, 2016, with Human Connectome Project data)

Frontal
Movement, 
planning, smell…

Temporal
Hearing, memory 
consolidation, …

Occipital
Vision

Parietal
Somatosensory 
information, …

Neupsy Key, 
adapted from 

Van Essen, 2001.

Specialized Cortical areas

Unfolding

An unfolded cerebral 
cortex hemisphere of 
the macaque monkey 
with Brodmann areas 

Human 
brain

Pictures from 
Kinser, 2000

Cortical area varies greatly across the vertebrate animal
kingdom with brain size and cortex folding.

frog squirrel cat humanmonkey

100.000 mm²1 mm² 15.000 mm²8.000 mm²

Cortical surface area

https://neupsykey.com/the-organization-of-cognition/
https://serendipstudio.org/bb/kinser/Compare1.html
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All cortical areas have a similar anatomical structure made of a collection of fundamental units called minicolumns

Even if the different cortical areas support very diverse functions, their anatomical organization is strikingly similar.

Indeed, the whole cortical sheet is made of a collection of anatomical fundamental columnar units called
minicolumns (around 50 µm of diameter). Each cortical area is basically a collection of millions of minicolumns
(each one being composed of around 100 neurons). Minicolumns are organized in layers (generally 6 layers), with
specific neuron types and connection patterns in each layer. This organization is said to be laminated.

Neighboring minicolumns share a same Receptive Field (RF), meaning that they are innervated by the same axonal
inputs. Those minicolumns form structures called macrocolumns/hypercolumns (around 500 µm of diameter) that
are thought to be functional fundamental units (the hypothetical functional role of macrocolumns remains
controversial).
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Jolygon, 
Shutterstock

1 minicolumn
100 neurons

1 cortical sheet
2 million macrocolumns
200 million minicolumns

20 billion neurons

1 macrocolumn
100 minicolumns
10.000 neurons

All excitatory neurons of a
minicolumn come from the same
progenitor cell that divided multiple
times in a radially inside-out
manner during brain development
in the embryo. This origin explains
the vertical columnar aspect and
the regularity of the inter-laminar
connection pattern inside a
microcolumn.

This common origin does not
concern inhibitory neurons which
migrate later into the cortical plate.

Development of minicolumns

48

Inside-out 
migration

Hippenmeyer, 2014

https://doi.org/10.1093/brain/120.4.701
https://www.shutterstock.com/fr/image-vector/monochrome-vintage-engraving-drawing-brain-illustration-1369504175
https://doi.org/10.1007/978-94-007-7687-6_1
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Cortical neurons are horizontally organized in 6 layers identifiable by the density and morphology of their neurons

The neocortex is classically arranged in
6 layers that lie above a dense
horizontal network of fiber tracts (white
matter).

Those fibers are axons traveling to
and/or from some cortical areas. When
they enter the cortical plate, they form
vertical axon bundles (parallel to
minicolumns) with some axons crossing
just a few layers, and others going until
L1 near the pial surface.

Cortical neurons are distributed through
L2 to L6, with laminar specificity:

• Stellate cells are more common in
L4 and L2

• Pyramidal cells in L2/3, L4 (small
and medium size), L5 (big) and L6

Pyramidal cells have an apical dendritic
tree climbing vertically (some going
towards L1).

Lateral/horizontal myelinated fibers are
more common in deep layers than
upper layers.

Ranson, 1959 and

2
 m

m

Cell bodies 
and dendrites

Cell bodies
Myelinated 

fibers
Cell bodies 
and axons

Dendrites
and axons

Fiber tracts of axons
/ white matter

Infragranular/deep
layers (L5 & L6)

Supragranular/
upper layers (L2/3)

Granular
layer (L4)

Different experimental methods 
showing different characteristics

Mountcastle, 1997 

https://journals.lww.com/academicmedicine/citation/1959/05000/the_anatomy_of_the_nervous_system__its_development.20.aspx
https://doi.org/10.1093/brain/120.4.701
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The laminar organization and composition slightly vary across the cortex

von Economo, 1929,

Dividing the cortical sheet into layers is hard to get exactly right, although it's good enough
for most purposes. More, this laminar structure is not uniform across the cerebral cortex.

Some evolutionary ancient parts (called allocortex) have less layers than their neocortex
counterparts: only 3 layers for the hippocampus and 4 layers for the olfactive system.

Even in the neocortical 6-layer structure, there are significant variations along a granular-
agranular axis. Compared to agranular cortices, granular cortices have a smaller thickness,
a greater neuron density & number, and a large granular L4 giving them their name.

The composition of some layers also differs. Granular cortices tend to have a greater
proportion of stellate cells than pyramidal cells in L2/3. Moreover, the nature of L4 cells is
not the same in the primary visual cortex and the somatosensory cortex, two granular
cortices.

The variation from granular to agranular forms a continuum across the cortex:
• Granular cortices for primary sensory areas (in red in the figure)
• Less granular cortices for higher sensory areas (in yellow)
• Even less granular cortices for associative and high-order areas (green & blue)
• Agranular cortices for motor areas (purple)

Neocortex of mammals Cortex of turtles Pallium of birds

Dugas-Ford et al, 2012

Laminar differences of cytoarchitecture

Insight from birds and turtles: Anatomical organization doesn’t necessarily
make the function. Those animals have similar neuron types and wiring
despite structural differences in their cortex-equivalent:

Fukutomi et al, 2018

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1250095/
https://doi.org/10.1073/pnas.1204773109
https://doi.org/10.1016/j.neuroimage.2018.02.017
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The main direction of processing flow in the cerebral cortex is from granular
to agranular areas. Looking at the function of those cortical areas, the main
processing flow is from sensory and high-order areas to motor areas. Note
that there are also many connections going in the other direction.

Unsurprisingly, dense granular areas develop less inter-area connections
than loose agranular areas. When those long-distance connections occur
between cortical areas of similar cytoarchitecture, they are mostly
“horizontal”: projections originating from a neuron of a given layer mainly
target distant neurons located in the same layer (from L2/3 to L2/3, L5 to
L5, and L6 to L6).

Somatosensory

Vision

Auditory

Motor & 
Premotor

Processing flows mainly follow laminar differences: from granular to agranular cortical areas

Adapted from Beul et al, 2015

Main direction of processing flow

Feedforward

Feedback

Schematic view only. 
Anatomically, those projections travel into the white matter band, and then go up 

through the cortical layers (till L1 for feedback, and just L4 for feedforward)
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However, long-distance connections between areas of different
cytoarchitecture are not horizontal: upper layers of granular areas tend to
project more to deep layers of agranular areas (and conversely). Those
different connection patterns come from temporal differences in cortical
development between agranular (early) and granular (late) areas

Projections in the direction of the main processing flow are generally called
feedforward connections, and the others are feedback connections. This
vocabulary can be confusing because the same terms are also used to
describe connections between areas of different hierarchical level (but main
processing flow does not necessarily follow the level of abstraction)

Processing flow at a laminar level Processing flows at cortex level
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Thiboust, 2020

https://doi.org/10.3389/fnana.2014.00165
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Cortical areas are densely interconnected with many feedback and feedforward skip connections across hierarchy

Rees et al, 2002

Hierarchy of visual 
areas in the macaque 

cortex
Higher 
level

Lower 
level

Connectome of visual areasEven if all cortical areas are bidirectionally connected with other brain
structures, their main inputs and outputs come from other cortical areas via
long-distance connections.

The connection matrix between areas is dense and bidirectional. However,
there is an organizational and quantitative asymmetry in these bidirectional
projections, explained by a hierarchy between areas.

Sensory areas are lower in the hierarchy than associative and motor areas.
This classification can be refined at a finer level: for example, the primary
visual area has a lower hierarchy level than the secondary visual area.

Bottom-up projections from a lower area to a higher area are generally called
feedforward projections, in opposition to top-down feedback projections.

The “simplified” connectome of visual cortical areas shows general cortical
architecture rules:

• Many skip connections across the
hierarchy (example: V1 projecting
directly to V4 bypassing V2)

• High recurrence with many
feedback loops, and some coming
from top-level areas

• Distributed processing rather
than serial processing

Top-down 
expectations/needs

Bottom-up 
sensory 

information

https://doi.org/10.1038/nrn783
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At a higher level, cortical activity is organized around key cortical and subcortical hub connections 

Browne, 2019

Except in early sensory processing and in late motor areas,
information streams occur essentially in a parallel form.

Those bidirectional streams between many cortical areas are
organized around associative areas that integrate various content in
increasingly more abstract concepts. Specific relevant information
can be shared with the rest of the cortex thanks to massive hub
connections between the different associative areas from the
parietal, temporal and fontal lobe.

All cortical areas receive information from the thalamus: either
relatively raw sensory inputs for sensory areas or already
preprocessed inputs for the other areas, or both (not represented in
the diagram). In addition to their thalamic inputs, some cortical
areas also receive major inputs from the hypothalamus (prefrontal
cortex) and the hippocampal complex (temporal lobe).

The hypothalamus furnishes an internal drive towards the initiation
of actions needed by the body, while the hippocampal complex
(hippocampus, subiculum and entorhinal cortex) gives access to the
individual location in the surrounding environment and to personal
experiences related to the self. Those experiences are colored by the
amygdala.

Basic system level diagram of the cerebral cortex

Legend:

Neocortical area

Hippocampal complex

Subcortical structure

Sensory streams

Hub connections

Subcortical connections

https://discourse.numenta.org/t/basic-system-level-diagram-of-the-brain/5834
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2. Cortical areas receive and send 
information in a  laminar-specific way

Art credit: Gold Cortex, Greg Dunn Design
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Each cortical area interacts locally and distally in a canonical way 

The organization and connectivity of the neocortex are broadly similar
between cortical areas, leading to the idea of a canonical cortical
microcircuit.

Locally, neurons of a given cortical area interact in two directions:
• Lateral (=horizontal) interactions inside the same layer (L2/3, L5, L6)
• Radial (=vertical) interactions between layers (L4→L2/3, L2/3→L5,

L5<-->L6)

Distally, each cortical area interacts with other cortical areas and
subcortical structures.

The thalamus is the main input and output subcortical structure of the
neocortex (it is sometimes referred to as the 7th layer). It primarily sends
sensory or preprocessed information to L4 (and to deep layers to a lesser
extend on its way to L4). Other thalamocortical projections innervate
upper layers in a more diffuse way. On the output side, L5 and L6 project to
the thalamus. In addition to the thalamus, L5 also projects to other
subcortical structures such as the striatum and motor centers.

In general, the first four layers (L1 to L4) serve as input stations whereas
deep layers (L5 and L6) are the main source of output projections.
Projections from the basal forebrain, which reach every cortical layer, do
not follow this rule but their modulatory function put them apart.

Long-distance corticocortical interactions tend to connect corresponding
layers together (L2/3 with L2/3, L5 with L5, L6 with L6) via long fiber tracts
running under L6. To be precise, if one cortical area is higher in the
hierarchy, the target layers of its projections are slightly shifted toward L1.

L1

L2

L3

L4

L5

L6

Other 
cortical 
areas

Thalamus
Other 

subcortical 
areas

Cortical 
area

L1

L2

L3

L4

L5

L6

Local interactions
(laterally & radially)

Long-distance 
corticocortical interactions

Long-distance 
subcortical interactions

Canonical microcircuit

Fiber tract

Simplified illustration

Core

Matrix

Thiboust, 2020
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Long-distance corticocortical interactions transmit signals across hierarchy and create an inter-area coupling

Inter-area projections
Reciprocal connections

Non-reciprocal connections

Local 
interactions

Long-distance 
interactions

Local 
interactions

Cortical areas are densely interconnected by long-distance corticocortical
connections. Lower areas send bottom-up “feedforward” inputs to higher
areas and receive top-down “feedback” inputs from those higher areas.
Areas of same hierarchical level also interact together.

Inter-area long-distance connections between L2/3 neurons are not
particularly reciprocal at the neuron level, meaning that a neuron which
projects to another neuron is generally not targeted by the same neuron in
return. On the contrary, there are many long-distance looped interactions
between neurons from deep layers L5 and L6 (Young et al, 2019).

Reciprocal excitatory connections create a strong coupling, even between
distant cortical areas (those long-distance interactions with myelinated axons
can be faster than local interactions with unmyelinated axons).

Schematically, there are two kinds of coupling via reciprocal connections:
• Inter-area coupling via long-distance connections in deep layers
• Intra-area coupling via local lateral connections in supragranular layers

Long-distance non-reciprocal connections give clues to other areas without
coupling (in both supragranular and deep layers).

Corticocortical interactions

Thiboust, 2020
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Virtually all information reaching the cortex passes through the thalamus which routes and gates input signals

Core
Specific 
thalamic 
inputs

Matrix
Non-specific 
thalamic 
inputs

Basal Forebrain

Thalamic 
nuclei

Subcortical inputs

Diffuse 
modulatory 
inputs

The thalamus is the gateway to the neocortex. It routes and
gates the inputs it receives from nearly all brain structures.

Virtually all cortical areas receive two main types of
thalamocortical projections:

• Core thalamic neurons send focal and dense inputs to
layer 4 and to layer 6 to a lesser extent. They constitute a
significant part of the neuron population in principal
sensory thalamic nuclei (ex: LGN for some of the visual
information) and some other nuclei. Those projections
are strong enough to drive vigorously cortical activity.

• Matrix thalamic neurons send dispersed modulatory
inputs to layer 1 (and to layer 2/3 to a lesser extent). They
are distributed in all thalamic nuclei and represent the
only type of cortical projections in some nuclei.

In addition to thalamic inputs, all cortical areas also receive
direct projections from neurons in the basal forebrain. Those
diffuse and modulatory projections reach all cortical layers.

Some exceptions:
• The agranular motor cortex (that has no layer 4) mainly

receives thalamic inputs in layers 1 and 5
• The piriform cortex for olfaction (that is an evolutionary

ancient cortex with only 3 layers) receives its primary
sensory inputs directly from the olfactory bulb, bypassing
the thalamus.

Inputs from many brain structures
(sensory centers, basal ganglia, hypothalamus, amygdala, 

hippocampus, midbrain, pons, medulla, cerebellum)

(Corticothalamic 
connections not 

represented)

Soma
Axon

Legend:

Thiboust, 2020
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Each cortical area projects subcortically to the thalamus, the striatum and motor centers via its deep layers

Subcortical outputsCortical neurons that project their axon to subcortical
structures are called corticofugal projection neurons. They
are essentially located in deep layers (L5 & L6).

Each cortical area sends 3 types of corticofugal projections:

• Intratelencephalic (IT) cells in L5 and L6 project to the
striatum (input structure of the basal ganglia) in addition
to other cortical areas. Some other cells in L6 project to
the claustrum, a telencephalic structure whose function is
still largely unknown.

• Pyramidal Tract (PT) cells in L5 project to several
subcortical structures via long axon collaterals reaching at
least the striatum, the thalamus and one motor center in
the brainstem, the spinal cord or the tectum. It
sometimes also targets the subthalamic nucleus (STN).

• Cortico-Thalamic (CT) cells in L6 project to the same
thalamus nucleus that sends its inputs to L4 & L6

Some exceptions of corticofugal projections that could be
interpreted as deviations from the canonical neocortex model
(mainly located in evolutionary ancient limbic cortex):
• Projections from L2/3 (to the striatum and the amygdala)
• Projections to other subcortical structures: hippocampus,

amygdala, septum, hypothalamus, VTA, habenula

NB: the hippocampus and the pallial amygdala could be seen
as primitive cortical areas forming “lateral” connections with
the cortex (so not really corticofugal)

IT PT

Basal 
ganglia

Striatum

STN

Motor centers in the 
spinal cord, tectum 

or brainstem

Thalamic 
nuclei

CT

(cortical projections to the 
claustrum not represented)

“Broadcast mode”
The exact same 
signals from PT 

cells are received 
by at least 3 
majors brain 

structures via 
long axons 
collaterals

Soma
Axon

Legend:

Thiboust, 2020
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Thalamocortical interactions

59

With its dense connections into and out of cortex, the thalamus can be viewed as the seventh cortical layer

The thalamus is not only the gateway to the cortex. It is also involved in
thalamocortical loops that reverberate to the same cortical area and transmit
signals across the cortical hierarchy.

Each cortical area has two ways to send output back to the thalamus:

• Via axon collaterals of the giant PT cells in layer 5 that project to different
thalamic areas that send inputs to the layer 4 of cortical areas higher in the
hierarchy. In higher order thalamic nuclei that do not receive any primary
sensory stimuli, those projections act the same way as sensory inputs in first
order thalamic nuclei (Sherman, 2018). They are reference inputs to be
processed by the corresponding cortical area.

Speculation: It is the main feedforward pathway across the cortical
hierarchy. Contrary to corticocortical projections that exist in both
feedforward and feedback directions between cortical areas, this cortico-
thalamo-cortical pathway only exists in the feedforward direction.

• Via the many CT cells in layer 6 that project back to the same thalamic
nucleus that sends input to the layer 4 of this cortical area. This
thalamocortical loop is believed to have a modulatory role on L4 inputs
(Sherman, 2018) and/or a learning role by comparing predictions from L6 CT
cells with reference inputs received by the thalamus (O’Reilly, 2017).

Speculation: Difference between those two signals is interpreted as an
error signal. If the error is significant, the thalamus transmits this error
signal to L1 via matrix cells (that target apical dendrites in related cortical
areas) and amplifies the gain of “ground truth” reference inputs towards
L4 to help the cortex to disambiguate.

Thalamic nuclei

Area 2

Primary 
sensory 
inputs

PT
CT

Hierarchy

NB: For simplicity, thalamic matrix cells, other 
subcortical targets of PT cells, axon collaterals to the 
TRN, and inhibitory interneurons are not represented

To next 
level in the 
hierarchy

Thalamo 
cortical 

loop

Thiboust, 2020

https://arxiv.org/abs/1709.04654


Focus on the neocortex

3. A majority of long-distance projecting 
pyramidal neurons cohabits with a 
minority of local inhibitory cells

Art credit: Gold Cortex, Greg Dunn Design
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The cortex is mostly populated by excitatory pyramidal neurons surrounded by an ecosystem of inhibitory neurons

Each mm3 of cerebral cortex contains between 20.000 and 40.000 neurons, of which
85% are excitatory neurons (75% pyramidal cells, 10% spiny stellate cells) and only 15%
inhibitory neurons.

The vast majority of cortical excitatory neurons are pyramidal cells which have a
characteristic apical dendritic arbor and project their axon over long distances to cortical
and subcortical targets. They form an extensive network mainly among themselves.

The other neurons are called interneurons because their activity remains local. It
comprises excitatory spiny stellate neurons in some layers and a high diversity of
inhibitory neurons in all layers.

Over a dozen of types of inhibitory neurons populate the cortex. They are loosely
interspersed and contribute to about 10% of the synapses on pyramidal neurons

Kubota et al, 2016
Motta et al, 2019

Reconstruction of a portion of L4 
somatosensory cortex showing 

the densely packed neurons

Diagram of cortical microcircuit 
showing pyramidal neurons  
surrounded by the major subtypes 
of inhibitory interneurons

https://doi.org/10.3389/fncir.2016.00027
http://dx.doi.org/10.1126/science.aay3134
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Pyramidal neurons have a characteristic apical dendritic arbor extending towards the pial surface

Pyramidal neurons are the typical excitatory neurons of the gray matter of the cerebral cortex. Their name comes
from the triangular shape of their cell body.

In addition to the common dendritic arbor around the soma (basal dendrites), they have the particularity to have an
ascending dendritic branch extending towards the pial surface (apical dendrite), contrary to spiny stellate neurons.

The apical dendrite spatially segregates distal inputs from proximal inputs, influences the trigger of action potentials
(AP) near the soma via dendritic spikes (NMDA spikes in the apical tuft and calcium spikes along the apical trunk), and
is believed to play a major role in learning mechanisms because they are heavily targeted by feedback projections.

The dendrites of each pyramidal neuron make several tens of thousands of excitatory synapses (around half from
local sources, half from remote sources) and a few thousands of inhibitory synapses.

Ledergerber and Larkum, 2010

300 to 600 µm

Basal 
dendrites

Apical 
dendrite

Trunk

Tuft

Dendrites of a pyramidal neuron

Soma

Pyramidal neurons in different
layers exhibit considerable diversity
in morphologies (cf figure).

Most have an apical tuft extending
in L1 except for L6 pyramidal
neurons whose apical dendrite only
ascends to roughly L4 in a focal way
(no or small tuft).

The main other difference is in the
extend of the tuft. For example,
cells in L5 can be thick-tufted or
slender-tufted.

Caveat: morphology can 
misrepresent connectivity.

Pial surface

https://doi.org/10.1523/JNEUROSCI.2254-10.2010
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Pyramidal neurons make both short-range and long-distance excitatory connections

Cortical pyramidal neurons are both short-range and long-distance projecting neurons. In total, each pyramidal neuron makes several tens of thousands of
excitatory synapses (usually none or few synapses with any one of the other neurons).

Its axon descends radially from the soma to the white matter where it joins fiber tracts until arriving to its target. Along the way, this principal axon makes
numerous branches called axon collaterals:
• Axon collaterals that branch before quitting the cortical area give rise to several local/intrinsic axonal arbors: around the soma, laterally in the same layer

(ex: L2/3, L5tt and L6cc cells), beneath the soma in deeper layers (ex: L2/3 cells projecting to L5), above the soma in upper layers (ex: L5st cells projecting
broadly to L1 and L2/3 in a conic manner, L5tt cells projecting focally to L1, L6cc projecting massively to L3 and L4).

• Axon collaterals that branch after quitting the cortical area give rise to several distant/extrinsic axonal arbors: pyramidal neurons project to other cortical
areas or to subcortical structures like the thalamus, the striatum, the claustrum, motor centers, or to both cortical and subcortical areas.

1 cm

MouseLight Janelia
(neuron AA0949)

Dendrites are in red and axons are in colors

Image Credit: Axons and Brain Architecture, 1st Edition, ISBN: 978-0-12-801393-9, 
Figure was adapted from Narayanan et al. (2015). By permission of Oxford University Press

Distant/extrinsic 
axonal arbors

Local/intrinsic axonal arbors

Axon going to 
distant brain areas

Narayanan et al. (2015)

http://ml-neuronbrowser.janelia.org/
https://doi.org/10.1016/B978-0-12-801393-9.00009-8
https://doi.org/10.1016/B978-0-12-801393-9.00009-8
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Diverse morphologies
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The modulatory power of inhibitory interneurons is greatly expanded by their incredible diversity 

Favuzzi et al, 2019

In the cerebral cortex, information flows via excitatory neurons that activate
other excitatory neurons and so on. This excitatory recurrent chain cannot go on
forever, it has to slow down or stop whenever required to keep the network in a
functional state. Inhibitory neurons allow a balanced cortical activity between
excitation and inhibition.

They are often called inhibitory interneurons because they only project locally
(there exists a few exceptions). If a distant brain structure needs to inhibit a
cortical neuron, it has first to excite an inhibitory interneuron that will then
inhibit the given neuron in its vicinity.

Even if inhibitory interneurons are vastly outnumbered by excitatory projection
pyramidal neurons, their modulatory power is greatly expanded by their
incredible diversity in their morphology, the targeted postsynaptic
compartment, the selectivity of their connections and their firing patterns.

They are classified by their morphologies and their molecular marker expression
in a dozen of classes, the most prominent being:
• Basket cells have a multipolar shape, target exclusively the soma of

pyramidal cells and often exhibit fast spiking discharge rates.
• Martinotti cells are small multipolar neurons with short branching dendrites

and send their axons up to L1 to target the distal tuft of apical dendrites
• Neurogliaform cells are small neurons with an unusually high presynaptic

bouton density
• Chandelier cells have characteristic axon arbors with the terminals forming

distinct arrays called "cartridges“ (hence their name). They specifically target
the axon initial segment of pyramidal cells, meaning that they inhibit the
propagation of Action Potentials, not their generation.

Diverse postsynaptic targets

Diverse firing patterns

Inhibitory interneurons can
specifically target different
compartments of pyramidal
cells: dendrites (proximal,
distal or tuft), soma or axon

Fast-spiking
(FS)

Late-spiking 
(LS)

Irregular 
spiking (IS)

bursting 
(BST)

Low threshold 
spiking (LTS) 

Sultan et al, 2017

Sultan et al, 2017

https://doi.org/10.1126/science.aau8977
https://dx.doi.org/10.1002%2Fwdev.306
https://dx.doi.org/10.1002%2Fwdev.306
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The cortical circuitry relies on laminar-specific radial and lateral interactions at different scale levels

Axonal & dendritic topologies of excitatory vs inhibitory neurons matter a lot
to understand the cortical circuitry.

All cortical pyramidal neurons are spatially oriented along a radial axis. They
all have an apical dendrite going up towards the pial surface and an axon going
down to the white matter. The lateral and translaminar extension of their
dendritic and axonal arbors can vary significantly depending on their type.

Minicolumns levelMacrocolumn levelCortical area level

Lateral interactions in upper layers via reciprocal 
lateral connections of L2/3 pyramidal cells

diameter ~ 50 µm
~ 100 neurons

diameter ~ 500 µm
~ 10.000 neurons

diameter ~ 5 mm
~ 1.000.000 neurons

At the minicolumn level, radial interactions between different layers
constitute the main connection pattern. Because of local inhibition by
interneurons, lateral interactions occur at a larger scale level: macrocolumn
and cortical area.

All connections presented here are intra-area cortical connections. They do
not use the fiber tracts in the white matter underneath the cortical plate.

Local lateral interactions in upper and deep layers 
and ascending conical dendritic and axonal arbors

Radial interactions 
between layers

66

Radial
Lateral

Lateral

Lateral

Oblique 

Illustration of a minicolumn from Mountcastle, 1997

Upper 
layers

Deep 
layers
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Strong radial connections across cortical layers dominate interactions at the level of a few minicolumns

Radial interactionsAt the level of a minicolumn (or a few minicolumns), excitatory neurons
are likely to be connected radially across cortical layers, but not laterally
within the same layer. Those strong radial connections come from the
way the cerebral cortex develops in the embryo: excitatory neurons of
the same minicolumn originate from the successive divisions of a
progenitor cell that migrates radially in an inside-out manner.

Therefore, a significant fraction of radial interactions originates from
neurons with a common developmental lineage:
• From L4 to L2/3
• From L4 to L5
• From L2/3 to L5
• Also probably between L5 and L6

“Integration of vertical input from related neurons within radial units and
lateral input from unrelated neurons may represent a developmentally
programmed blueprint for the construction of functional neocortical
circuits.” (Cadwell et al, 2019)

Fundamental cortical unit for radial interactions:

Even if radial connections are enhanced between clonally related
neurons, they are also significant between nearby unrelated pairs. It
would be more accurate to say that the fundamental unit for radial
interactions corresponds more to a few nearby minicolumns than a
single minicolumn.

L2/3 neuron reconstruction 
from Tanaka et al, 2011

Example of connections from L2/3 
to L5 by a L2/3 pyramidal cell

Minicolumn 
(or a few minicolumns)

~ 100 neurons

L1

L2

L3

L4

L5

L6

Dendrites

Axonal 
terminals 

in L5

Minicolumn

Axon going to 
other distant 

areas

Axonal 
terminals 

in L2/3

50 µm

Thiboust, 2020

https://doi.org/10.1101/526681
https://dx.doi.org/10.1523%2FJNEUROSCI.3139-11.2011
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The complex connectivity patterns of macrocolumns support a subtle excitatory vs inhibitory dynamics

Lateral and conical connectionsMacrocolumns are ensembles of minicolumns that share a similar receptive
field from thalamic input in L4. Anatomically, they can be discrete (barrels in
mouse somatosensory cortex) or continuous (orientation columns in
primary visual cortex V1).

At this scale level, spatial topography and cell type determination matter a
lot to uncover the cortical connectivity patterns (still not yet fully
understood).

Most cortical neurons make lateral reciprocal connections via a local axonal
arbor surrounding their soma (mainly in L2/3, L5 and L6): activation can
propagate laterally step by step between macrocolumns to form global
activation patterns that mutually reinforce themselves. In addition to those
connections, pyramidal neurons also make distal connections via their
ascending conical dendritic and axonal arbors. Because of the conical shape,
input diversity is broader in upper layers and more focal in lower layers.

In every layer, inhibitory interneurons enforce a competition for activation
between excitatory neurons: the first excitatory neuron to fire inhibits its
neighbors. This dynamics is called Winner-Take-All (WTA) competition. It is
an important computational principle in the brain: depending on the
network parameters, it can achieve ramp-up computations, decision-
making or sustained activity (not exhaustive).

The 3 main excitatory neuron types in the cerebral cortex (IT, PT, CT) show a
laminar and cell type specificity in their local connectivity patterns:
• IT cells synapse with all types of cells (in L2/3, L4, L5 and L6)
• PT cells preferentially synapse with PT cells (in L5)
• CT cells preferentially synapse with CT cells (in L6)

Neurons reconstruction 
from Jiang et al, 2015

Reconstruction of 8 cortical neurons 
(2 excitatory, 6 interneurons)

(far from exhaustive representation)

Macrocolumn
~ 10.000 neurons

L1

L2

L3

L4

L5

L6

500 µm

Thiboust, 2020

https://doi.org/10.1126/science.aac9462
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Inside a cortical area, macrocolumns are coupled via strong recurrent connections in superficial layers

Lateral recurrent connectionsContrary to other cortical neurons, lateral connections from L2/3
excitatory pyramidal cells can extend up to a few millimeters in several
lateral directions. They form a strong recurrent network able to propagate
and sustain activity inside a cortical area.

Synapses are strongly clustered along the very elaborated axonal arbor of
L2/3 pyramidal cells. In V1, we can differentiate three kinds of clusters
(possibly not a universal characteristic):
• One large local axonal cluster surrounding their soma in L2/3
• One distal radial axonal cluster in L5 underneath their soma
• Several distal lateral axonal clusters in L2/3

The first two clusters make connections at a macrocolumn level, while the
distal lateral clusters connect with other macrocolumns (not necessarily
direct neighboring macrocolumns).

Connections between orientation
columns in V1 are an illustration of
those connections via distal lateral
clusters in L2/3 (see next chapter for
orientation columns).

Synaptic boutons distribution (in black)
from axons of L2/3 pyramidal neurons
of a column associated with an 80°
orientation. (Bosking et al, 1997)

Cortical area

5 mm

Neuron reconstruction 
from Martin et al, 2017

L1

L2

L3

L4

L5

L6

Reconstruction of a L2/3 
pyramidal neuron with its 

axonal clusters  

Distal 
lateral 

clusters

Local 
cluster

Distal 
radial 
cluster

Thiboust, 2020

https://doi.org/10.1523/JNEUROSCI.17-06-02112.1997
https://dx.doi.org/10.1007%2Fs00429-017-1410-6
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Neural correlates of sensory stimuli and spatial location inform us on cortical internal representations 

Because they offer a privileged window into internal neural activity, neural
correlates are largely studied in neuroscience experiments recording from
single neurons in vivo (generally in mice, cats or monkeys).

In particular, neural responsiveness to sensory stimuli in primary sensory
cortices and to spatial location in the hippocampal complex & entorhinal
cortex inform us on how specific brain circuits form internal
representations. In those cases, firing patterns of orientation-selective
cells, head direction cells, place cells and grid cells are strongly correlated
with the examined external variable.

However, neural responses are often only partially correlated with the
examined external variable, making the interpretation more complex.
Brain states, contexts, goals and/or other parallel tasks can modulate the
neural response.

Going further:

New approaches are even able to reveal neural correlates of behavior
without behavior measurement (in hippocampus and prefrontal cortex,
for behaviors such as moving along a linear track, turning and drinking as
a reward) by measuring and correlating internal structure of neuronal
activity with internal representations. Surprisingly, the measured internal
structure was conserved across mice, allowing using one animal’s data to
decode another animal’s behavior (Rubin, 2019).

Orientation-selective cell 
in V1

Orientation of visual lines

Head direction cell 
in the subiculum

Allocentric direction of 
the animal’s head

Place cell
In the hippocampus

Allocentric position

Grid cell
In the entorhinal cortex

Allocentric position on an
hexagonal lattice

Speed cell
In the entorhinal cortex

Instantaneous 
allocentric speed

Single neuron activity External variable

“Velocity” cell
In the sensorimotor striatum

(not the cortex)

Instantaneous targeted velocity 
during prey hunting with 

egocentric direction of motion

Border cell
In the subiculum

Allocentric position

… …

Examples of neural correlates
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Orientation-selective cells in the primary visual cortex correlate with the orientation of visual stimuli

Orientation-selective cells are neurons that increase their firing rate for
specific angles of visual line stimuli. They are direct neural correlates of
external stimuli.

They are found in multiple layers of the primary visual cortex (V1) of
humans, primates, cats (but not mice), and are organized in orientation
columns that group cells of the same orientation selectivity.

Firing patterns

Example of recordings of average firing activity in V1
when the animal is shown vertical and obliquely oriented
visual lines (areas with great activity are in dark).

Each black area represents the average activity of
thousands of cells that form an orientation column.

This orientation selectivity disappears in neighboring
cortical areas like V2.

Afgoustidis, 2015

Map of V1 orientation columns

Purves, 2005

Bosking et al, 1997

Bosking et al, 1997

https://doi.org/10.1186/s13408-015-0022-9
https://doi.org/10.1523/JNEUROSCI.17-06-02112.1997
https://doi.org/10.1523/JNEUROSCI.17-06-02112.1997
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Head direction cells in diverse cortical and subcortical areas correlate with allocentric head direction

Head direction (HD) cells are neurons that increase their firing rates
above baseline levels when the head of an awake animal points in a
specific direction, whatever its location.

Each cell has only one direction in which it fires maximally. This direction is
said to be allocentric because it is anchored to its surrounding
environment as its reference frame (depend on landmarks and self-motion
cues). In a given familiar environment, their firing remains stable during
days and even months

Their firing is primarily independent of the animal’s on-going behavior.

They are found in many interconnected brain areas:

• Cortical areas: postsubiculum, retrosplenial cortex, entorhinal cortex

• Subcortical areas: thalamus (anterior dorsal and the lateral dorsal
thalamic nuclei), lateral mammillary nucleus, dorsal tegmental nucleus
and striatum

and Sharp 2001

Firing patterns
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Example of recordings from 4 differently tuned
head direction cells. The blue curve
corresponds to a cell that fires when the
animal’s head points to the East in this
environment (arbitrarily referenced by 0°).

They are often represented by visual friendly
polar plots (equivalent to the curve plots).
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Adapted from Page, 2017

https://doi.org/10.1152/jn.00501.2017
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Place cells in the hippocampus correlate with the allocentric spatial location

Place cells are neurons that fire at a high rate whenever the animal is in a
specific location in the environment, called the place field.

Contrary to head direction cells, they are location-specific and
orientation-invariant. A large population of place cells can provide a
reliable map and faithfully track the animal’s allocentric position in the
environment by relying on landmarks and self-motion cues.

However, this map is not static. If the animal is placed in a different
environment, a different set of place cells becomes active. Neighboring
place fields of two place cells in one environment can be very different in
another environment. More, place fields change even when the animal
visits the same environment at different times (remapping).

Place cells are found in hippocampus. The size of their place fields
increases along the dorsoventral axis.

Firing patterns

Example of recording from 7 differently
tuned place cells with overlapping place
fields, in a linear environment.

When the animal is in the middle of the
path, the “yellow” place cell fires
maximally, along with some firings from
the “orange” and “green” place cells.

Firing of 
different 

place cells

Position on a 
linear axis

#1
#2
#3
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Moser, 2008

Place field (red area) of a place cell
in a square room environment. The
position of the animal is recorded
along with the firing of a place cell
during a few minutes. Each red dot
correspond to a location that
coincides with a firing. The black
line is the full recorded track of the
animal.

https://doi.org/10.1007/s11571-006-9013-6
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Grid cells in the entorhinal cortex correlate with the allocentric spatial location on an hexagonal lattice

Grid cells are neurons whose multiple firing locations define a periodic
hexagonal lattice covering the entire available surface of an open two-
dimensional environment.

This allocentric neural representation of space and location differs from
our intuitive cartesian coordinates system. This neural metric may be a
general representation for cognitive map encoding knowledge, not just
spatial navigation (Behrens et al, 2018).

Neighboring grid cells have stable similar patterns, with only a slight
spatial offset (phase). They are organized in discrete modules that group
grid cells of same scaling and orientation.

Grid cells are found in the medial entorhinal cortex (mEC) which is a part of
the hippocampal complex. The scaling of the grid increases along the
dorsoventral axis.

Firing patterns

The position of the animal is encoded by the simultaneous firing of multiple
grid cells of different scaling, orientation and phase.

Moser, 2008

Scaling Orientation Phase

Firing of a grid cell in a square room
environment. The position of the
animal is recorded along with the
firing of a grid cell during a few
minutes. Each red dot corresponds
to a location that coincides with a
firing. The black line is the recorded
track of the animal.

Ventral mEC Dorsal mEC

Distance 
between fields

Tilt of the grid relative 
to a reference axis

Displacement in the x and 
y directions relative to an 
external reference point

https://doi.org/10.1016/j.neuron.2018.10.002
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Brain waves

77

Macroscopic oscillations reveal synchronized activity of neural ensembles at different frequencies

Recording EEG electrode

time

Each dot corresponds 
to an individual action 

potential within the 
population of neurons 

in the recorded area

Neuronal spiking 

EEG signal reflecting the local field potential

Frequency decomposition of the EEG signal

Theta (~5 Hz)

Alpha (~10 Hz)

Beta (~25 Hz)

Gamma (~100 Hz)

0 ms 500 ms 1 s

Neural activity is made of rhythmic patterns of various
frequencies called neural oscillations or brain waves.

These dynamics result from repetitive firings of individual
neurons and from recurrent/feedback interactions between
neurons. At the level of neural ensembles, synchronized
activity of large numbers of neurons gives rise to
macroscopic oscillations, which can be observed with non
invasive methods like electroencephalography (EEG) or
magnetoencephalography (MEG).

Recorded signals reveal oscillatory activity in specific
frequency bands. The best-known rhythm is the alpha
activity between 8 and 12 Hz. It is often accompanied by
delta (1-4 Hz), theta (4-8 Hz), beta (13-30 Hz), low gamma
(30-70 Hz) and high gamma (70-150 Hz) activity.

Most of these oscillations have been linked to cognitive
states and/or functions. For example, strong alpha waves are
observed in the occipital lobe during wakeful relaxation with
closed eyes, but they are weak with open eyes or during
sleep. Beta activity briefly appears after the execution of a
movement. High gamma is thought to be involved in
communication between cortical areas.

Some fast oscillations can be nested within slow oscillations.
This is commonly observed in the cerebral cortex with fast
gamma activity nested within alpha or theta activity.

Thiboust, 2020

http://blog.donders.ru.nl/?p=7839&lang=en
http://blog.donders.ru.nl/?p=7839&lang=en
http://blog.donders.ru.nl/?p=7839&lang=en
http://blog.donders.ru.nl/?p=7839&lang=en
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Cortical dynamics consists in periodic ~100 ms alpha cycles modulating gamma oscillations in specific layers

Alpha and gamma oscillations constitute the main oscillatory activity in the
neocortex. Gamma waves are thought to reflect functional cortical
processing, while alpha waves may produce functional active inhibition to
suppress the processing of distracting information (Bonnefond, 2013).

Those oscillations drive dynamical interactions between cortical layers, with
a strong alpha activity in deep layers (L5 & L6), and gamma activity in
superficial layers (L2/3 & L4). Interestingly, gamma activity in superficial
layers is coupled to the alpha rhythm in deep layers: the lower frequency
alpha oscillation cuts down otherwise constant gamma (Spaak et al, 2012).

The strength of the coupling between alpha and gamma is strong in the
granular layer (L4) that receives most thalamic inputs, and lower in
supragranular layers (L2/3) that seem to process information in relative
isolation.

Alpha activity in sensory regions implements a mechanism of pulsed
inhibition silencing neural firing every ~100 ms. Said differently, this
mechanism periodically gates external sensory information, so sensory
perception is more likely to occur at specific phase of alpha activity.

Each periodic alpha cycle can be decomposed in an inhibitory phase during
which thalamic inputs are silenced, followed by an excitability phase.

Layer specific cortical activity

Sakata and Harris, 2010

Evoked response

100 ms

Upstates

100 ms Spaak et al, 2012

Weakly alpha 
modulated 

gamma activity

Strongly alpha 
modulated 

gamma activity

Alpha oscillation

(auditory cortex) (visual cortex)

https://doi.org/10.4161/cib.22702
https://doi.org/10.1016/j.cub.2012.10.020
https://dx.doi.org/10.1016%2Fj.neuron.2009.09.020
https://doi.org/10.1016/j.cub.2012.10.020
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Precise timing of individual spikes in relation to the phase of neural oscillations encodes information

Some neurons fire individual action potentials that are precisely timed
at a specific phase of neural oscillations in the surrounding cells (a
process referred to as phase precession)

This phase code differs from the classical rate code in which the intensity
or salience of a feature is represented by the rate of firing. Because
phase coding is relative to a given oscillation, there are different phase
codes (theta phase code, beta phase code, …). An individual neuron can
simultaneously use those different coding strategies.

Electrophysiological studies of place cells in the hippocampus show
strong evidence that phase precession encodes critical information
about recent past, present and planned locations. Place cells strongly fire
during the trough of the theta oscillation when the animal is precisely
located at the corresponding place field. Before arriving at this location,
those place cells were firing on the ascending part of the oscillation as if
they were representing a planned state. After leaving this location, they
fire on the descending part of the oscillation.

Other experiments have shown that the theta phase precession of
hippocampal place cells is not restricted to spatial location (Lenck-
Santini, 2008).

A phase precession coding strategy has also been observed in the
entorhinal and prefrontal cortex – considered as limbic cortices – with a
gamma activity nested in beta/theta waves (Hafting, 2018, and Smith et
al, 2019). It is not yet clear if the neocortex uses a similar coding strategy
with the gamma/alpha coupling.

Phase precession 
of place cells
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Coding temporal information by nesting gamma 
activity within specific phases of theta cycles
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activity

Place cell 
activity

Present state  
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Past state  
(spike on the 

descending part)
Thiboust, 2020
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Cortical dynamics varies significantly between the various states of wakefulness and sleep

Illustration adapted from Wikipedia

Brain oscillations – and therefore cortical dynamics – vary significantly
between the different states of wakefulness and sleep.

During wakefulness, cortical activity is mainly constituted of alpha and
gamma waves, as described previously.

During sleep, the brain alternates between REM and NREM sleep
phases.

REM stands for Rapid-Eye-Movement. It is recognizable by rapid
movements of the eyes, low muscle tone and a propensity of the sleeper
to dream vividly. Physiologically and electrically, it is characterized by
high level of acetylcholine neurotransmitter and theta/gamma rhythms.

NREM sleep stands for non-REM sleep. It groups the other phases of sleep.
The transition from wakefulness to eyes closed intensifies alpha waves that
are replaced by theta waves at the first stage NREM1. Intermittent spindles
appear in NREM2. Then, NREM3 & NREM 4 are characterized by slow
oscillations (< 1 Hz) and delta waves (Adamantidis et al, 2019)

Even if those specific oscillations mostly occur in the hippocampal complex
and nearby areas, they impact the dynamics of connected cortical areas.

Sleep phases are believed to play a role in the consolidation of long-term
memories via hippocampal replay/preplay: consolidation of declarative
memories seems tightly tied to NREM, but it is still unclear whether other
memories are consolidated during NREM or REM (Ackermann, 2014).
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See the reference section for a list of materials that inspired me.
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HTM and Spiking neurons refine the classical “point-neuron” model by modeling dendrites and precise timing
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• Used mainly by researchers to model precisely 
the physiology of the different neuron types

• Precise timing matters: inputs integration, 
electrical profile of spikes, refractory periods

• Some well-known models: Hodgkin-Huxley, 
Izhikevish, Leaky Integrate-and-Fire (LIF)

• Used in classic Deep Learning ANN
• No dendrites / All synapses on soma
• Importance of synaptic weights
• All inputs are considered synchronized
• Non-linear function of the weighted 

sum of the inputs

• Used in ANN by Numenta
• Inspired by pyramidal neurons in the cortex
• Different kinds of dendrites: 

• Proximal for feedforward inputs
• Distal basal for contextual inputs
• Distal apical for feedback inputs

The “point neuron” model has been used for decades in ANNs, namely in commercially successful Deep Learning ANNs the last 10 years. At the other side of
the spectrum, Spiking Neural Networks (SNNs) closely mimic natural neural networks for neuroscience research purposes, but are computationally-intensive.
In between, some dendrite-focused models ignore some biological implementation details to save computational effort (like the HTM model, not exhaustive).

https://doi.org/10.3389/fncir.2016.00023
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Wide & highly recurrent network architectures are more biologically plausible than deep & feedforward ones

• Deep Learning networks used to get increasingly better by adding hidden
layers: several hundreds and even 1202 layers for ResNet-1202 (He, 2015).

• However, wider networks can outperform their thin and very deep
counterparts: example with simple 16-layer wide ResNet (Zagoruyko et al,
2016). They also present better learning dynamics (Xu et al, 2019).

• With their massive parallel processing abilities, humans can reliably identify
objects in the central visual field within a single fixation in less than 200 ms
when viewing “standard” images (DiCarlo, 2012). Given an average duration
of 5 ms per neuron activation, it would mean that humans achieve this task
with a network depth of only 40 successive layers (even less in reality given
the recurrent connections)

Wider rather than deeper
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Feedforward Network Highly Recurrent NetworkRecurrent rather than feedforward

• Feedforward networks are popular because of the easy applicability of the
backpropagation learning algorithm, but they lack the memory abilities of
Recurrent Neural Networks (RNN). In simple RNN and specific recurrent
architectures like LSTM/GRU, the network can be unfolded to apply a
backpropagation through time algorithm (BPTT). However, this solution
doesn’t scale well for more complex recurrent structures (Pascanu, 2013).

• In humans, only 10% of inputs to the LGN (main input to primary visual
cortex) come from the retina. 90% of inputs come from feedback projections
of different position in the hierarchy (cortex & brainstem), making the
network highly recurrent (Derrington, 2001)

Thiboust, 2020

https://arxiv.org/abs/1605.07146
https://doi.org/10.1109/CVPR.2019.00944
https://dx.doi.org/10.1016%2Fj.neuron.2012.01.010
https://arxiv.org/pdf/1211.5063.pdf
https://doi.org/10.1016/S0960-9822(01)00379-7
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Sparsity is a key characteristic of ANN to improve noise robustness

+

=

Sparse Distributed Representation (SDR) are binary vectors
mostly composed of 0s and representing a state of the layer.

Because of their sparsity, unions (= bitwise-OR) of SDRs can
represent multiple things or ambiguous states with low
overlaps (= indexes of 1s after bitwise-AND).

An altered SDR can also be easily recognized.

• Each pyramidal neuron in L2/3 receives inputs
from around 5% of other nearby accessible
pyramidal neurons (Holmgren, 2003)

• Sparsity can be enforced by pruning
connections with low synaptic weight

Sparse connections

Sparse activations

• At each instant, only around 1% of cells are
active (Lennie, 2003).

• Sparsity can be enforced by applying a k-
Winner-Take-All algorithm

Sparsity is the biological solution of the brain to maintain robustness while being
highly energy-efficient. Sparsity is both structural (number of neurons & synapses) and
operational (% of active neurons, % of synapse updates)

Ahmad et al, 2019

Ahmad et al, 2019

Fully connected Sparsely connected

Example of noise robustness with sparsity

https://arxiv.org/abs/1903.11257
https://arxiv.org/abs/1903.11257
https://arxiv.org/abs/1903.11257
https://arxiv.org/abs/1903.11257
https://arxiv.org/abs/1903.11257
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Hierarchy can be rethought with skip connections along the bottom-up and top-down pathways 

Adapted from Lin et al, 2017 (dense connections and ZigZag Net added)
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• Hierarchy is not linear in the brain: for example, the different areas of the
human visual stream are densely interconnected with V1 projecting not only
to V2, but also directly to even higher areas like V4, MT & IT, etc.

• Those skip connections are used in Residual Networks (ResNet) and Dense
Networks (DenseNet) to optimize the training of very dense networks with
the backpropagation algorithm. They also made available low-level features
to higher layers.

Multi-levels clues

Top-down modulation of predictions

• Combining a bottom-up with a top-down network and “lateral skip
connections” allows to simulate feedback connections at each level while
keeping the network feedforward (ex: Top-Down Modulation Networks,
Feature Pyramid Networks). Predictions at high-resolution (semantically weak
features) is improved by top-down clues (semantically strong features)
working as a kind of attention mechanism.

Dense Net (skip connections)

Dense Feature Pyramid Net

Dense ZigZag Net

Top-down modulation of predictions and inputs

• Some networks make bilateral connections between the bottom-up and top-
down networks to mimic the brain more closely (ex: ZigZagNet). The
bidirectional connections are critical for fusing and exchanging context,
progressively learning how to refine the feature maps with useful information.
However, the training is more complex because of the recurrent connections.

“Dense” is not the 
opposite of “sparse” 
in this terminology…

https://zpascal.net/cvpr2017/Lin_Feature_Pyramid_Networks_CVPR_2017_paper.pdf
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Local learning rules allow to get around the limitations of the backpropagation algorithm

Designing biological-inspired RNN architectures is mainly constrained by the limitations of the biologically non-plausible backpropagation algorithm. This
kind of training suffers from vanishing gradient and gradient exploding problems. While many researchers are looking for specific RNN architectures well-
adapted to the canonical or approximated backpropagation algorithms (LSTM, GRU, …), other have chosen to tackle the inverse problem: finding a learning
algorithm well-adapted to biological-inspired RNN. It comes as no surprise that the latter researchers are focusing on biologically plausible local learning
rules for updating the synaptic weights, the most famous being Hebbian learning / Spike Timing Dependent Plasticity (STDP) and competitive learning.

Li, Miao et al, 2014 Rumelhart et al, 1985

Hebbian learning / STDP Competitive learning

• Updates of synaptic weights only depend on the
relative timing of spikes between pre and post-
synaptic neurons (and possibly other reward/error
inputs in three-factor plasticity rules).

• Brains implements those mechanisms via back-
propagating Action Potentials (bAP) from the soma
to NMDA receptors in dendrites.

• The Hebbian rule is the most famous: increase of
synaptic weights between neurons that fire together.

• Some synapses are governed by anti-Hebbian or
non-Hebbian plasticity to enforce causality
information into the network: the pre-synaptic
neuron fires slightly before the post-synaptic neuron
if it is the cause of the firing.

• This updating mechanism is applied locally and
online at each step.

• Updates of synaptic weights depend
on the result of the competition
between neurons in a given cluster
of neurons.

• Brains implements those
mechanisms via biological
interactions between excitatory
inputs and local inhibitory neurons.

• Only the fastest neuron to fire wins
the competition and inhibits the
other ones: Winner-Take-All (WTA).

• It is used by Self-Organizing Map
(SOM) algorithms (also called
Kohonen map).

• This updating mechanism is applied
locally and online at each step.

https://doi.org/10.1038/srep04906
https://doi.org/10.1016/S0364-0213%2885%2980010-0
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New algorithms are needed to solve the credit assignment problem without the backpropagation of errors

Multi-layer neural networks need a credit assignment algorithm to compute the contribution of each neuron to the overall error, and then use this
information to update the parameters of the entire network. Limitations of the backpropagation of errors for biologically-inspired networks have
encouraged researchers to look for more biologically-plausible alternatives that could be classified into three main families:

Contrastive Hebbian Learning (CHL) Target Propagation (TP) Feedback Alignment (FA)

• Target-based learning via activity
difference between a minus phase
(forward-only) and a plus phase
(essentially backward). Similar to
Boltzmann Machine learning

• Requires a symmetric feedback pathway
and cyclic inhibition/disinhibition of the
backward pathway

• Does not require a full forward pass
before updates

• Variants: Random CHL (rCHL) with no
need for symmetry in feedback pathway

• Target-based learning via auto-encoders
to assign reconstructed targets to each
layer below. Reciprocal propagation of
the activities is realized through learned
connections

• Requires a feedback pathway and layers
of similar dimension to avoid
bottlenecks during reconstruction

• Does not require symmetric weights

• Variants: Difference TP (DTP)

• Gradient-based learning via propagation
of errors through feedback connections
with learned weights. The network
learns how to learn.

• Requires a feedback pathway and a full
forward pass before updates

• Does not require symmetric weights

• Variants: Direct FA (DFA) with level-
skipping, Indirect FA (IFA)
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Local Representation Alignment (LRA), 
Direct Random Target Projection (DRTP) 

Hybrid 
approaches

https://doi.org/10.1016/j.neunet.2019.01.008
https://arxiv.org/abs/1407.7906
https://arxiv.org/abs/1609.01596
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2. The transition from artificial networks 
to artificial agents is a necessary step 
towards machine intelligence

Matthieu Thiboust

Art credit: Cortical Circuitboard, Greg Dunn Design & Brian Edwards

Main inspirational people whose work helped me to shape
my vision in this section (views are my own):
• Yoshua Bengio
• François Chollet
• Jeff Hawkins
• Carlos E. Perez
• David Silver
• Richard S. Sutton

See the reference section for a list of materials that inspired me.

http://www.gregadunn.com/
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Hybrid Reinforcement Learning approaches supports more autonomous agents driven by rewards

Actions

States / Stimuli

Reward Reward

Model-based Model-free

The brain uses both:
• Model-based learning with the prefrontal cortex and

the dorsomedial striatum (DMS)
• Model-free learning with the sensorimotor cortex and

the dorsolateral striatum (DLS)

With habituation, behavioral decisions are progressively
transferred from the DMS to the DLS.

Implementing both types of learning in an artificial agent
allows for combining the sample-efficiency of model-
based RL with the accuracy of model-free RL.

Combining Model-Based & Model-Free RL

Reinforcement Learning (RL) is a
paradigm in which software agents
learn to take actions in an
environment so as to maximize a
cumulative reward:

Combining Value-Based and Policy-Based RL The brain is believed to work both:
• As an actor that learns policies in the dorsal striatum
• As a critic that learns value functions of the policies

followed by the actor in the ventral striatum

In RL, this is called an actor-critic algorithm.

The actor takes as input the state and outputs the best
action. It controls how the agent behaves by learning the
optimal policy (policy-based RL).
The critic evaluates the action by computing the value
function (value based RL).

Actions

States / Stimuli

Reward

Actor Critic

As such, it differs from supervised
learning where an already labelled
inputs-outputs dataset is provided,
and from unsupervised learning
where only the inputs are given:

RL algorithms optimize the policy
and/or estimate the value of a given
policy, with or without modelling
the environment. All those methods
can be combined like the brain does.

Thiboust, 2020
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Reinforcement Learning gives insights about learning from delayed feedback & knowledge transfer

Temporal Difference (TD) learning is “learning a prediction from
another, later, learned prediction”. This scalable & online learning
algorithm is well adapted to real-life general multi-step prediction
problems where the feedback is delayed or even not reached. TD(λ) is a
more powerful extension of TD with some of Monte-Carlo advantages.

Dopamine signals generated in VTA/SNc brain structures exhibit many
of the hallmarks of the reward prediction TD error (Shultz, 1998).
However, recent findings have shown that dopamine signals are higher
dimensional that initially thought, driving new RL research.

Learn from delayed feedback with Temporal Difference

The Reinforcement Learning community has developed several key algorithms to tackle longstanding challenges in Machine Learning.

One popular and very successful algorithm is Q-Learning (and its improved variants Double-Q-Learning, Deep-Q-Learning, Double-Deep-Q-Learning).
However, it relies on Action-Value functions which appear less biologically plausible than Value functions. Indeed, brains are primarily action-driven and
seem to equate Action and State representations according to a growing consensus in the neuroscience community.

Two other RL algorithms have shown surprising similarity with specific brain mechanisms:

Transfer knowledge with Successor Representations

Value

t

outcome

predictions

TD 
error

δ

Formula:

The approximation of the value function can be simplified under the
hypothesis that it can be decomposed in two decoupled factors:

• The Successor Representation (SR) that only depends on the dynamics
of the environment and the agent itself

• The reward function of the environment

Having learned the SR of an environment dynamics, it can be transferred
to similar environments but with different reward functions.

Place cells can be modeled with SR. Surprisingly, grid cell patterns look
accurately similar to the eigendecomposition of SR (Stachenfeld, 2017)

Formula:

Reward SR

Real grid cells

Modelled 
grid cells 
via SR Value

Stachenfeld et al, 2017

https://doi.org/10.1152/jn.1998.80.1.1
https://doi.org/10.1038/nn.4650
https://doi.org/10.1038/nn.4650
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Leverage temporal data to “self-learn” by continuously predicting what will happen next

All living organisms process temporal data that streams continuously on their sensors.

Recurrent Neural Networks (RNNs) and memory networks like LSTMs already take the
time dimension into account, but not the Convolutional Neural Networks (CNNs) that
are commonly used to recognize object in images. If CNNs are applied to every frames
of a video, they will process each frame independently, without using the results of
previous frames as clues for the next ones.

In order to allow the temporal integration of temporal data in computer vision, CNNs
are combined with recurrent and feedback connections into what are called deep
convolutional recurrent neural networks (CRNNs).

Temporal data

Self-supervised learning

Streams of temporal data can be used to “self-train” a model by continuously
predicting the future from the past, and then comparing the prediction vs the
outcome at the next timestep. Note that it does not require pre-labelled data. This
training method follows the principles of the predictive coding theory from the
neuroscience literature.

In the AI community, it is part of a more general method called “self-supervised
learning”. The idea is to train a model using labels that are naturally part of the input
data, instead of separate external labels. In addition to the biologically-plausible task
of predicting future representations based on the recent past, AI practitioners can ask
the model to reorder video frames that have been voluntarily shuffled, or to reposition
pieces of an image that has been voluntarily cut for instance.

The field of Natural Language Processing (NLP) has been
the first AI discipline to fully embrace self-supervised
learning. Self-training models by predicting the next word
given the past sequence conducted to state-of-the-art
models like Word2Vec, Glove, ELMO and BERT.

In computer vision, models pretrained on the huge
ImageNet dataset are commonly used as the starting point
before applying transfer learning. It works well when
dealing with real-life pictures, but not with specialized
medical images like radiographies for which annotated data
is still scarce.

Self-supervised learning is increasingly chosen as a solution
to this issue in computer vision:

Lotter et al, 2016

The PredNet is a CRNN
trained for next-frame
video prediction with the
belief that prediction is
an effective objective for
"self-supervised"
learning”

Self-supervised learning in practice

http://arxiv.org/abs/1605.08104
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Sensorimotor interactions

92

Agents can build meaningful internal models of the environment via active sensorimotor interactions 

Humans acquire knowledge by interacting with their surroundings. In other words, they
build internal models of the environment by creating their own data through their
own actions. This kind of learning gives a much richer understanding of objects and the
world in general by grounding meanings through actions.

Artificial agents can also do active sensing in the sense that the movement of their
sensor is controlled to improve information pickup and is tuned to the ongoing task.

Real vs virtual environments

Like for humans, actions of artificial agents do not necessarily have to impact the
environment. Active sensing like controlling the camera orientation (eye saccades for
humans) or moving the whiskers of a robot (Pearson et al, 2011) is enough to get a
sense of what is happening through time and to consolidate or refine internal models
with predicted or unpredicted chosen observations.

The time dimension in sensorimotor interactions is crucial to transform simple
correlation learning into causal learning.

Causality links are strengthened in experiences where changes in the environment are
directly caused by the actions of the agent (for example, self-generated camera shakes
when moving)

Embodied AI

In reference to the expression “embodied cognition” that underlines the strong
intertwinement of the mind and the body, the AI field uses “embodied AI” to define
those intelligent agents that learn from their own perspective with sensorimotor
interactions (for example, a visual representation within an environment). The acquired
knowledge of these agents is grounded in their artificial embodiment.
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Agent knowledge acquired through interactions in a real
environment shares a common ground with human
knowledge. As such, those agents may have self-initiated
meaningful interactions with humans in the future.

Simulated environments are often preferred to avoid the
long training time and the engineering challenges of
robotics. Because designing good virtual environments is a
difficult task, AI researchers do not hesitate to use simulated
environment from video games. However, simulations are
still far from real-world richness and complexities.

Starcraft video game Robot arm

Virtual environment Real environment

Shrewbot
(vibrissal 
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https://doi.org/10.1098/rstb.2011.0164
https://vpg.cs.princeton.edu/
https://doi.org/10.1098/rstb.2011.0164
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Agents learn continually all along their life with adaptive learning mechanisms and curriculum training

The extent to which human
and artificial agents learn all
along their life depends on:

• Their built-in adaptive
learning mechanisms
allowing to adapt to
evolving data
distribution and to learn
new tasks without
catastrophic forgetting.

• The richness, diversity
and progressivity of
their exposure to various
situations or datasets in
order to generalize to
increasingly more
abstract concepts.

Curriculum training

t

Task 
complexity

Plasticity

Adaptive learning mechanisms

t

Plasticity Adaptation 
of plasticity

• A first phase of synapses growing, followed by an intense synaptic pruning phase to
speed the convergence towards the initial architecture (like infant development).

• A divided architecture between a slowly evolving global part and a quickly evolving
task-specific local part, with progressive knowledge transfer from the latter
(hippocampus-like) to the former (cortex-like).

• A self-learned and evolving learning rate parameter at the synapse or neuron level,
so that the network learns when and how to adapt.

• A globally decreasing learning rate with self-learned semi-global learning rate
adaptations mimicking neuromodulated plasticity (ex: “backpropamine” ANN).

A compromise must be found between two goals: adapting to new tasks and enforcing stability to preserve knowledge
from previous tasks

Like humans and animals, artificial agents exhibit better learning performance when the training is organized in a
meaningful way. This is referred to as curriculum training:

• Making the learning tasks gradually more difficult, in order to stabilize first the
fundamental knowledge upon which subsequent knowledge will be grounded. It
can be seen as a special case of transfer, where the knowledge collected during the
initial tasks is used to guide the learning process of more sophisticated ones.

• Sequencing learning along successive critical periods of subparts of the network to
mimic the successive limited time windows in infant development during which the
brain is particularly plastic (primary sensory areas first, then language areas, ….)Easy Difficult

Juliani, 2017

https://blogs.unity3d.com/2017/12/08/introducing-ml-agents-v0-2-curriculum-learning-new-environments-and-more/
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Agents need human-like innate priors designed by hand or via evolutionary algorithms

We, humans, are not born with a blank slate. We possess numerous innate
priors – selected by natural selection over millions of generations and likely
embedded in our DNA – that speed up our intellectual development during
a lifetime.

Innate priors can be incorporated into ANN by either relying on
researchers’ intuitions (like the Convolutional Neural Networks architecture
to impose translational invariance) or on evolutionary algorithms for a
more general and prior-agnostic approach.

In ANN, innate priors reside in the chosen network architecture,
hyperparameters and learning rules. They constrain the network.

It is common to use genetic algorithms to optimize hyperparameters, but
not yet for the network architecture and its learning rules. It may be a
promising approach to incorporate useful priors.

Meta-learning priors 

High-level knowledge priors 

Meta-learning priors govern our learning strategies and capabilities for
knowledge acquisition. As such, they are the building blocks of intelligence:

High-level knowledge priors regarding objects and phenomena in our 
external environment:

• Elementary physics: object definition, object persistence, object 
motion, object contact, …

• Goal-directedness: separation between inanimate and animate objects 
possessing intentions and following their own objectives

• Elementary arithmetic: abstract number representation for small 
numbers that can be added, subtracted and compared 

• Elementary geometry: distance and orientation in 2D/3D environment

• Spatiotemporal continuity: form persistence and 
smoothness of motion

• Modular-hierarchical structure as a general 
organization rule of information 

• Causality: directional correlation with direction 
provided by time. A preceding observation likely 
causes the following observation

94

Chollet, 2019

Example of network architecture optimization via evolutionary algorithms (Wistuba, 2018)

time

https://www.ibm.com/blogs/research/2018/09/ai-design-deep-learning/
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Extending artificial perception

Artificial cognition goes through an extension of artificial perception, not through a neuro-symbolic hybrid approach 

Adding symbol manipulation capacity to deep learning
networks sounds like adding slow-serial-conscious abilities
to fast-massively-parallel-unconscious abilities.

Some new architectures implementing soft attention
mechanisms may constitute a key ingredient to focus
computation on a few concepts at a time.

95

Since its beginning, the history of AI has been divided into two approaches:

• The connectionist approach that revolutionized computer vision and natural
language processing with neural networks, but has not yet succeeded in tasks that
involve logical reasoning, planning or capturing causality. In other words, those
models are good for “curve fitting” but bad for extrapolation beyond training data.

• The symbolic approach that thrives in bounded problems with symbols, objects and
relationships between them, but struggles to bridge the messiness of the real world
to the world of symbols.

Those approaches look so complementary – both in what they have to offer and in what
they lack – that it seems natural to combine the best of both worlds to have both
perception and logical reasoning.

However, I think that connecting a neural network to a rules & logic system is not the
way to go. In this hybrid approach, the symbols of the second system would need to be
attached somehow to the corresponding neural representations.

Following biology, it would be more interesting to “grow” symbols directly inside a
neural network, and then see how those symbols could be detached to be manipulated
at a high level (see the symbol detachment problem by Pezzulo et al, 2007).

“Growing” symbols is a multistep process that begins with simple symbols (percepts)
that are then combined into more complex and abstract symbols (concepts).
Implementing compositionality is essential to combine existing concepts in novel ways.

How to detach symbols that could be logically manipulated and communicated by
language is still an open question in the AI community that is actively looking for some
kinds of new priors. This research is still in its infancy, but its biological inspiration makes
me confident that future neuroscience findings will inform this approach.

Compositional learning

Symbol manipulation

I know what is a horse and what
is a horn, so I can imagine what
a unicorn would look like even if I
have never seen any.

Compositionality is the capacity to understand and produce
novel combinations from known components. AI progress
on this topic would have tremendous impact on data-
efficiency, zero or one-shot learning and transfer learning.

Two cognitive systems (according to Kahneman, 2011):

System 1:

System 2:

Fast

Slow

Parallel

Serial

Everyday 
decisions

Complex 
decision

Mainly 
unconscious

Mainly 
conscious

https://doi.org/10.1007/s10339-007-0164-0
https://doi.org/10.1080/13669877.2013.766389
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Online learning algorithms and neuromorphic hardware are necessary for fast and energy-efficient computations

Samples are processed sequentially one at a time as they come in
from the stream. With multisensory encoding, the same architecture
can process multiple streams coming from different sensors in
parallel. No need to store and access in memory old samples.

The intelligence of the agent resides in filtering perceptual data and
retaining in real-time only the most important information which
will compose the recall memory.

Online learning algorithms

Simulating today’s not-yet-so-intelligent agents already requires an extraordinary amount of computational power, using sometimes thousands of
GPUs/TPUs in parallel during a few days to train the network. As an example, the training of the BERT model for NLP on 64 V100 GPUs consumed 12 MW
during 79 hours while the brain only uses 20 W on average.

Two technical solutions – one software, one hardware – can enable scalable fast and energy-efficient computation in biologically-inspired neural networks:

Neuromorphic hardware

Batch learning Online learning

• Scan all data before updates

• Need memory to store data

• Model updates after each sample

• Process data once and then get
rid of them Neuromorphic architecture with digital or analog circuits mimicking

biological networks of spiking neurons and their STDP learning rules
without the need to constantly shuttle data between physically
separated logic and memory units von Neumann architectures.

Neurons do not need to produce an output at all times. Instead,
information is integrated over time and communicated sparsely using
discrete spikes, lowering the energy footprint.

Some chips hardcode local learning rules following precise topology
without complex and memory-hungry software computations.

SpiNNaker TrueNorth

Photos credits: The University of Manchester (SpiNNaker), DARPA (TrueNorth), 
Heidelberg University (BrainScaleS)

BrainScaleS

Digital Analog

https://doi.org/10.1109/IJCNN.2015.7280625
https://en.wikipedia.org/wiki/SyNAPSE#/media/File:DARPA_SyNAPSE_16_Chip_Board.jpg
https://www.ibm.com/blogs/research/2018/09/ai-design-deep-learning/
https://en.wikipedia.org/wiki/SyNAPSE#/media/File:DARPA_SyNAPSE_16_Chip_Board.jpg
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3. The potential emergence of 
machine intelligence already 
raises existential questions

Matthieu Thiboust

Art credit: Cortical Circuitboard, Greg Dunn Design & Brian Edwards

Main inspirational people whose work helped me to shape
my vision in this section (views are my own):
• Lisa Barrett Feldman
• François Chollet
• Stanislas Dehaene
• Antonio Damasio
• Christof Koch
• Joseph Ledoux

See the reference section for a list of materials that inspired me.

http://www.gregadunn.com/
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How far are we from High-Level Machine Intelligence (HLMI) ?

The AI debate is filled with existential questions about the possibility to achieve
HLMI, the potential threat for humanity and the philosophical implications of what
it means to be human.

Concerning the first question, predictions about a coming-soon HLMI regularly
make the headlines. Those claims, which often arise from some famous business
leaders, have a high resonance in the ongoing hype while most experts in the field
are more reserved.

Given enough time, there seems to be a consensus that we will eventually reach
HLMI. But it may take decades or even centuries.

Progresses towards Machine Intelligence do not follow a linear path. From time to
time, there is a new breakthrough idea that allows significant advances, followed by
small marginal improvements until the next breakthrough.

Even if scientific breakthroughs are intrinsically hard to predict, we can safely state
that HLMI is not around the corner because several significant breakthroughs still
need to be unlocked to bridge the gap, and unlocking those breakthroughs at the
same time is statistically unlikely.

The list of the needed breakthroughs is not straightforward. We can just guess that
some of those breakthroughs will be software-related: modelling of synapses &
neurons, network architectures, interactions between networks, learning
algorithms (not exhaustive). Others will relate to hardware: neuromorphic chips,
embodiment, virtual perception (not exhaustive).

Current AI is still at least a dozen breakthroughs away from HLMI, very unlikely to happen within the next decade

According to this survey among 352 AI researchers, the aggregate
forecast gave a 50% chance of HLMI occurring within 45 years
and a 10% chance of it occurring within 9 years (with a large
inter-subject variation)

Grace et al, 2018

Expert predictions of HLMI arrival

“High-level machine intelligence” (HLMI) is achieved when
unaided machines can accomplish every task better and more
cheaply than human workers.

https://doi.org/10.1613/jair.1.11222
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Shape of the intelligence takeoff
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Should we expect a singularity such as an intelligence explosion?

Surely on an evolutionary timescale yes, but probably not on a human lifetime scale. 

The intelligence explosion – the most popular version of the singularity hypothesis – is a
hypothetical point in time when an intelligent agent slightly surpasses human
intelligence, and then recursively designs more intelligent agents in such a way that
machines overtake human intelligence by orders of magnitude in a short period of time.

The plausibility of such a scenario depends on the timescale:

• On an evolutionary timescale, we are already experiencing an intelligence explosion
started 10.000 years ago. However, it is does not relate to individual biological
intelligence. It is an explosion of collective intelligence supported by human
cumulative culture (most of our intelligence is now at a civilization level, not a brain
level). A hypothetical High-Level Machine Intelligence (HLMI) will surely accelerate
the pace of those exponential progresses, but not to the point of an explosion over a
human lifespan.

• On shorter timescales like a human lifespan, the self-improvement cycles initiated by
a new HLMI will hit some hard limits impeding a quick intelligence explosion. For
instance, an intelligent agent will still need a significant amount of time to experience
its environment and to be trained before reaching its full potential: HLMI will not be
able to rely only on knowledge databases to learn human social interactions, they will
have to experience at least some of them at the pace of those interactions to ground
their knowledge. Copying/duplicating their software will not be an option either for
physically embodied agents

However, let’s remember that such a potential intelligence explosion relies on the
speculative hypothesis that we first achieve High-Level Machine Intelligence (HLMI).

Human baseline

Crossover 

Civilization 

Strong Intelligence 

System capability

Time

Bostrom, 2014

If it ever happens, intelligence explosion will not occur in a
single day, a single week, and even a single year because of
training periods that could not be time-compressed to
interact with the real world at its own pace. The duration of
the singularity would likely take at least a dozen years.

Exponential progress would also be capped by resource
limitations and economical constraints.

Very unlikely to be shorter than a year. 
Dozens of years would be more likely.

https://global.oup.com/academic/product/superintelligence-9780199678112
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Embodied intelligent agents inside virtual worlds
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Will an intelligent agent need a body?

Definitely yes, but it does not necessarily have to be physical. It can be a virtual body in a simulated world. 

Embodied cognition – a growing scientific discipline – suggests that to understand
the world, we must experience the world through our body.

Indeed, in order to deeply understand its environment, an intelligent agent needs
to manipulate meaningful mental representations. Living organisms like us
construct such meaningful concepts in a multi-step grounding process that seems to
have no alternative:
• First, by grounding meaningful percepts through active sensing (perceiving by

moving their sensors)
• Then, by using those grounded meaningful percepts to anchor progressively

more abstract meaningful concepts (cognition).

Similarly to living organisms, a bio-inspired intelligent agent would need to act on
its sensors to ground its artificial percepts, the essential primary step before
machine intelligence. And acting on its sensors implies that the agent has a body.

Though, I don't see physical embodiment as a necessity: the intelligent agent could
have a virtual body in a simulated world, as long as it has something that
corresponds to action and perception. Such a “software AI” could do sensorimotor
interactions inside its virtual world.

However, cognition of software AI living inside a simulation would be another flavor
of cognition, because its virtual perception will be grounded on different materials
compared to ours. Even if it would still rely on similar principles, it would not share
a shared background knowledge with us (a kind of alien intelligence).

Simulations are still (and will remain) far from real-world richness
and complexities. Embodied software AI growing and learning in
those environments will likely be limited in their capacity to
extrapolate their behavior in the real world.

Gao et al, 2019

VRKitchen: 
an Interactive 3D 

Virtual Environment 
for Task-oriented 

Learning

A virtual world mimicking the real-world environment

A virtual world with no real-world equivalent 

An embodied software AI in charge of routing web traffic
between internet servers could behave intelligently in its
environment. The usefulness of virtual environment depends on
the goal we are following.

https://arxiv.org/pdf/1903.05757.pdf
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Could artificial intelligent agents have emotions?

They must have affects and could fake emotions. Feeling emotions depends on whether they are conscious or not.

Every living organism comes with some built-in functions that drive their actions in
their quest for survival and reproduction. In humans, the homeostatic process
keeps our heart rate, breathing, blood pressure, temperature, hormones and
metabolism into an acceptable range despite constant external disruptions. If those
variables get too far from their ideal values, an unpleasant signal motivates us to
take adequate actions in order to reach again the pleasant signal. Those signals are
interoceptive affects that help us to maintain our body budget.

Intelligent machines must also have a motivation function based on internal
sensors. In that sense, they have affects. More, machines need internal affects to
hold their own goal of self-preservation in a dynamic and unpredictable world.

Evolutionary more recent than affects, emotions like fear and happiness are mental
tools that also help us to navigate through our social life. Following the theory of
Lisa Barrett Feldman (and supported by Joseph Ledoux), emotions are constructed
concepts, like the concepts of colors. This embodied knowledge depends on one’s
culture and experience.

Intelligent machines may construct emotional concepts to categorize and represent
the sensed reality. The more concepts they construct, the more emotional
granularity they have. They could also try to fake the cultural “fingerprints” of
emotions of a given culture by mimicking their human counterparts.

However, the possibility that machines could feel these emotions is a different topic
that depends on whether they could be conscious or not.

Unreliable stereotyped fingerprints of emotions

Source: J. Pass, 1821, after Charles Le Brun

Reading expression on faces is not as straightforward as one
might think. Facial movements increasingly appear as an
inexact gauge of a person’s emotions (Barrett Feldman, 2019):
the same emotions are not always expressed in the same way,
the same facial expression do not reliably indicate the same
emotions, the results are culture and context-dependent.

Even if the so-called emotional expressions do not reflect true
emotions, machines could still try to fake emotion by exploiting
our strong stereotypes that will mislead us.

https://en.wikipedia.org/wiki/Emotion/media/File:Sixteen_faces_expressing_the_human_passions._Wellcome_L0068375_(cropped).jpg
https://doi.org/10.1177%2F1529100619832930
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Leading theories of consciousness
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Could machines become conscious?

Maybe! There seems to be no fundamental reason preventing physical machines from becoming conscious.

The existence of conscious machines is compatible with the two leading theories of
consciousness: the Global Workspace Theory (GWT) by Stanislas Dehaene and the
Integrated Information Theory (IIT) by Giulio Tononi.

Those theories do not embrace the same level. The GWT proposes that
consciousness is a form of information processing that could be artificially
replicated. When a piece of information enters the “global workspace” (supposedly
in the prefrontal cortex), it can be selected and then be broadcasted back to the
other centers. The selection process is what we perceive as consciousness. Stanislas
Dehaene distinguishes two orthogonal dimensions of conscious computations:
global availability via selection & broadcasting, and self-monitoring of those
computations leading to subjective introspection.

The IIT is a more fundamental approach in which consciousness is an intrinsic
property of matter that arises from the interconnectedness of brain networks that
exert a causal power on themselves: the more complex a neural network, the more
conscious it is. In this theory, machines have to be physical to access some level of
consciousness, whereas consciousness could arise from nothing more than specific
computations in a simulation according to the GWT.

But how would we know if a machine is conscious? How it feels to be a machine?
Because consciousness is a subjective experience and because we cannot
impersonate another living organism or a machine, we could only rely on
consciousness correlates to assess consciousness. We may give a machine some
level of consciousness depending on the chosen correlates, a highly debated topic.

Global 
Workspace 

Theory

Integrated 
Information 

Theory

Global 
Workspace

Sensory 
data

Other brain 
centers

Information bottleneck
Selection & broadcast

Intrinsic
« causal power »

Sensory 
data

Illustrations adapted from Reading-Ikkanda, Quanta Magazine, 2019

https://www.quantamagazine.org/neuroscience-readies-for-a-showdown-over-consciousness-ideas-20190306/
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How to strengthen our resilience?
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Despite its ethical issues and potential threats, should machine intelligence be seen as a desirable target?

A more fundamental question is “how should we prepare ourselves for upcoming progress in machine intelligence?” 

Numerous ethical issues and potential threats are already raised by the
development of AI research and its business & governmental application. No need to
be a visionary to predict that those topics will get increasingly problematic with a
strong brain-inspired machine intelligence.

Though, the question of whether machine intelligence should be seen as a desirable
target is a profound question but with very impractical solutions if the answer is no.
The financial and geopolitical stakes of this winner-takes-all race for machine
intelligence are too high to prevent other organizations or countries from following
this goal, should it be pursued secretly.

Because tremendous progresses in machine intelligence have already occurred and
will continue anyway (even if not High-Level Machine Intelligence), a more
fundamental question is how should we prepare our society to harness the current
and upcoming impacts of this technology.

Immediate societal issues are already around the corner: the redistribution of
machine-produced wealth in a context of rising social inequalities, the
transformation of the labor market with some significant job losses across large
industries, the distortion of our sense of reality fueled by fake videos and audio
recordings challenging democracies with potential threats of mass manipulation, the
development of lethal autonomous weapons, to mention only a few.

Setting up safeguards to prevent malicious uses of this technology will obviously not
be enough. First and foremost, we have to strengthen the resilience of our societies.

Develop our ability to adapt at all levels:
local to global, industry & institutions to
civil society (mindsets open to changes,
financially viable alternatives for unskilled
workers, retraining and continual training,
local ecosystem of skills…)

Becoming more flexible

Reducing the attack surface

Develop industrial, institutional and civil
awareness, improve critical thinking, prefer
local solutions, reduce our reliance on
digital technologies for physical vital
infrastructures…

Some innocent
food for thought

Because progress towards machine intelligence goes along with
progress in our understanding of the brain, we should also get
ready for fundamental questions about the nature of what makes
us human, challenging our spiritual and philosophical beliefs.



Conclusion

• The road towards machine intelligence is 
inseparable from a mixed AI & 
neuroscience approach

Art credit: Brainbow Hippocampus, Greg Dunn Design

Matthieu Thiboust

http://www.gregadunn.com/
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Driven by the convergence of neuroscience and AI research, the road towards Machine Intelligence is a fascinating scientific endeavor we are
currently witnessing. This document has described how intermingled this effort is with the fundamental attempt to understand the brain.

Despite the fast accumulation of huge amounts of data about brain structure and function, neuroscience still lacks a widely-accepted theoretical
framework to interpret those findings and artificially replicate parts of brain functions. Because the brain is both integrated and composite, this
framework would likely consist in global organizing principles on top of a collection of specialized theorical concepts and models.

Analyzing a complex system – like the brain – involves analyzing it at multiple and distinct levels of abstraction. Only by moving up and down this
ladder of abstraction one can get a deep understanding of the system. The three-level hypothesis of David Marr has been very influential since the
1980s to investigate brain functions: the computational level (what does the system do), the algorithmic level (what algorithms does the system
instantiate) and the implementation level (what hardware or substrate does the system run on). But not everyone agrees with this three-level
sequence of stages that implies that the brain does represent information. According to György Buzsaki, the brain does not represent information, it
constructs it: “understanding of brain function should begin with brain mechanisms and explore how those mechanisms give rise to the performance
we refer to as perception, action, emotion and cognitive function”.

Understanding how such brain functions emerge from simpler brain mechanisms will help to separate implementation details from fundamental inner
workings in order to simplify the modeling (no need to simulate chemical reactions at the molecular level for instance). In fact, mimicking the right
collection of brain mechanisms could lead to machine intelligence before we actually understand how the brain works (if we ever do). In return, this
artificial replica of intelligence would give invaluable insights to neuroscience. This process will likely be iterative between AI and neuroscience,
converging progressively towards more intelligent machines and a deeper understanding of the brain.

My deep conviction is that the road towards machine intelligence is now inseparable from a mixed AI & neuroscience approach.

Matthieu Thiboust

Understanding the brain and building machine intelligence are two different objectives with a common path

105



Behind the scene

Personal motivations 
and acknowledgments

Matthieu Thiboust



Insights from the brain: the road towards Machine Intelligence – © 2020 Matthieu Thiboust

As a datascientist, I got increasingly frustrated by the unjustified mediatic brouhaha about the impending Artificial General Intelligence (AGI) that
would take over humanity. It made me dig deeper into the limits of current Artificial Intelligence (AI) approaches and the natural next step for me was
to look into neuroscience. My first book on the subject, “On Intelligence” by Jeff Hawkins, profoundly piqued my curiosity and I rapidly became
addicted to neuroscience books, reading dozens of them in the last few years. More recently, the very inspirational book “The Brain from Inside Out”
by György Buzsaki changed my perspective on how to understand the brain and fueled new ideas on my side.

My fascination grew to the level that I decided to take a sabbatical leave dedicated to neuroscience. I intensified my readings of scientific papers, went
to seminars, exchanged with people in the field, and finally felt the need to make some order in my notes. Wearing my consultant hat, I chose to
digest this complex knowledge by making visual and synthetic slides. It is a good way to identify, collect, adapt and assemble the scattered existing
pieces of the giant brain puzzle. Information exposed here is certainly not new, but I hope that this presentation format, in sharp contrast with classic
scientific literature, can serve as a useful and more accessible document by the neuroscience & AI community.

Researchers are vigorously looking for new algorithms beyond deep learning to model real intelligence - still an elusive concept without widely
adopted universal definition. I see two possible roads: the very hard one and the hard one. The very hard road is like finding blindly one of the exits of
an unknown giant multi-dimensional maze. Virtually all directions will lead to a dead-end without knowing it until the long-lasting complete
exploration of each segment. This is the current fundamental and abstract approach taken, by trying to integrate symbol-manipulation and causality
principles in artificial neural networks. The hard road is the biological one. Evolution has done an incredible job to come up with living examples of
intelligent agents. We can use insights from our brain to rapidly eliminate all biologically-incompatible segments in the maze. That’s why I am
convinced that understanding the brain is the quickest road towards Machine Intelligence, even if it may take hundreds of years.

I learnt a lot during this fantastic and intense journey. I now have more questions than I started with, but those are more informed, and they better
motivate me to continue my own investigations.

Matthieu Thiboust

Personal motivations
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An Action Potential (AP) is a propagating spike along its axon from the
axon initial segment (near the soma) towards axon terminals. An Action
Potential is a spike, but not every spike is an Action Potential.

Adaptative Learning is a paradigm in which the model adjusts its
parameter in order to find a compromise between two goals: adapting
to new tasks and enforcing stability to preserve knowledge from
previous tasks.

Affects are basic biological signals that help living organisms to
maintain their body budget in their quest for survival and reproduction.

The Agranular Cortex refers to the part of the cerebral cortex that does
not contain a granular layer (for instance, the motor cortex).

The Amygdala is a brain structure often associated with quick reactive
behaviors in response to potential threats.

An Apical Dendrite is an ascending dendritic branch extending towards
the pial surface, contrary to common dendritic arbors around the soma
(basal dendrites). They constitute a key characteristic of pyramidal
neurons.

An Apical Tuft is the extremity of some Apical Dendrites that
terminates in a tuft morphology.

Artificial General Intelligence (AGI): See HLMI.

Artificial Intelligence (AI): See Machine Intelligence.

Artificial Neural Networks are connectionist AI methods that attempt
to mimic biological neural networks even if they remain far from their
biological counterparts. They are organized in layers of artificial
neurons.

An Axon (or Nerve Fiber) is the long and slender neuron part that
conducts Action Potentials to the next connected neurons. It can be as
long as one meter. The axon spreads from the Axon Initial Segment
(near the soma) to many axon terminals at the other end.

Axon Collaterals are forks from a neuron main axon. They transmit the
same neuronal signal to other brain structures.

Axon Initial Segment: See Axon.

Axonal terminals: See Axon.

Backpropagating Action Potential (bAP) are propagating spikes of
dendrites travelling in the reverse direction: from the soma to dendrite
terminals. Interactions between dendritic spikes and bAP are believed
to be involved in synapse learning mechanisms.

The Backpropagation Algorithm is a widely used gradient-based
algorithm in training feedforward ANN in supervised learning. It is not
biologically-inspired and the neuroscience-grounded AI community is
looking for alternatives.
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Basal ganglia are a collection of nuclei in the brain often associated
with motor control, motor learning and decision making.

Brain Waves: See Neural Oscillations.

Brodmann Areas are subparts of the Cerebral Cortex. There are 52
Brodmann areas per hemisphere in the human brain.

The Cerebellum is the brain structure containing most neurons (around
80% of neurons in human). It is often associated with motor control
and motor learning.

The Cerebral Cortex is a two-dimensional thin sheet of neural tissue
covering the outside of the brain in two hemispheres. All vertebrates
possess a cerebral cortex, but its significance greatly increased in
mammals, with the expansion of the part that is called neocortex (or
isocortex to avoid the misconception of a mammalian innovation).

Cognition is an extension of perception for more abstract constructed
mental representations. It adds the ability to form internal
representations and use them to guide complex behaviors requiring
abilities such as planning, thinking long term, building upon other’s
knowledge, making rational choices…

Common Sense is a sound judgment in practical matters that depends
on a shared background knowledge inside a community.

Competitive Learning is a form of unsupervised learning in which
neurons compete for the right to respond to a subset of the input data:
if one neuron responds more strongly to a particular input it inhibits
the output of the other neurons in the group.

Compositionality is the capacity to understand and produce novels
combination from known components.

Connectionist AI regroups a collection of AI methods based on
networks of relatively simple elements organized in a typical topology
(like Artificial Neural Networks)

A Connectome is a macroscopic connectivity map between brain
regions in the brain.

Consciousness is still an evasive concept referring to what we
experience. It is related to concepts such as awareness, self-awareness,
awareness of awareness, feeling, private thought, introspection…

Contrastive Hebbian Learning (CHL) is an alternative to the
backpropagation algorithm to solve the credit assignment problem.

Convolutional Neural Network (CNN) are a class of ANN with shared-
weights architecture and translation invariance characteristics. They are
commonly used in image recognition tasks.

Corollary Discharge: See Efference Copy.
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"Cortex" refers to the Cerebral Cortex (when the term is used alone).
See Cerebral Cortex.

Cortical Areas are subparts of the Cerebral Cortex. There are around
180 cortical areas per hemisphere in the human brain.

Cortical Lobes are subparts of the Cerebral Cortex. There are 4 cortical
lobes per hemisphere: frontal, temporal, parietal and occipital.

Cortical Sheet: See Cerebral Cortex.

The Credit Assignment is a process that computes the contribution of
each neurons to the overall error. It answers to the following question:
in a network of neurons, how to know which synapses to strengthen
and which synapses to weaken when the outcome turned out to be
bad?

Curriculum Learning is a paradign in which the model is trained by
gradually more difficult tasks in order to increase the learning
performance.

The Cytoarchitecture is the cellular composition of a brain tissue that
can be observed under the microscope.

Deep Learning is a field of AI focused on the use of Deep Neural
Networks.

Deep Neural Networks are Artificial Neural Networks with many layers
of neurons (usually dozens of layers).

Dendrites are neuron parts that conduct electrical potentials generated
by other neurons. In each neuron, there are different dendritic
segments. Each dendritic segment has a dendritic arbor with many
dendritic terminals.

Dendritic Segment: See Dendrite.

A Dendritic Spike is a propagating spike along some of its dendrites
from axon terminals towards the soma. Dendritic spikes increase the
probability of AP firing in the axon, but they do not assure it. NMDA
spikes are examples of dendritic spikes.

Dendritic Terminals: See Dendrite.

An Efference Copy (or Corollary Discharge) is a copy of a motor
command signal, going directly from motor to sensory brain areas. It is
an essential information in order to predict the next sensory stimuli by
taking into account the upcoming self-generated movements, in
addition to the flow of sensory inputs.

The expression "Embodied AI" has been coined in reference to the
expression “embodied cognition” that underlines the strong
intertwinement of the mind and the body. In the AI community,
embodied AI refers to those intelligent agents that learn from their own
perspective with sensorimotor interactions (for example, a visual
representation within an environment). The acquired knowledge of
these agents is grounded in their artificial embodiment.
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Emotions like fear and happiness are mental concepts that also help us
to navigate through our social life. They are evolutionary more recent
than affects.

Evolutionary Algorithms are a class of computational algorithms that
use mechanisms inspired by biological evolution like natural selection,
reproduction, mutation and recombination.

Evolutionary Tree: See Phylogenetic Tree.

An Excitatory PostSynaptic Potential (EPSP) is a postsynaptic potential
that increases the probability of an action potential occurring in a
postsynaptic neuron. EPSP are triggered by Excitatory Synapses.

Excitatory Synapse: See Excitatory PostSynaptic Potential (EPSP).

Feedback Alignment (FA) is an alternative to the backpropagation
algorithm to solve the credit assignment problem.

Feedback Connections are neuronal projections in the opposite
direction of the main processing flow (to previous layers). This
vocabulary can be confusing because the same terms are also used to
describe connections between areas of different hierarchical level (but
main processing flow does not necessarily follow the level of
abstraction)

Feedforward Connections are neuronal projections in the direction of
the main processing flow (to next layers). This vocabulary can be
confusing because the same terms are also used to describe
connections between areas of different hierarchical level (but main
processing flow does not necessarily follow the level of abstraction)

Fiber: See Axon.

Gated Recurrent Unit (GRU) networks are RNN with feedback
connections adding greater memory abilities.

Our Genome is a collection of genes that encode developmental rules
like a recipe specifying how to make a mature brain from neural stem
cells. Those rules are executed in each cell by the sequential expression
of specific genes depending on the cell surroundings, thanks to other
genes ruling those conditional gene expressions (depending on
chemical gradients).

The Granular Cortex refers to the part of the cerebral cortex that
contains a granular layer (for instance the sensory cortices).

The Granular Layer refer to the fourth layer of the cerebral cortex (L4).

Grounding is an active process that attaches a meaning to a stimuli-
induced neural activity that becomes a meaningful percept. Grounding
is realized via sensorimotor interactions through time.
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The historical Hebbian Learning rule postulates that when one neuron
drives the activity of another neuron, the connection between these
neurons is potentiated (often summarized as “cells that fire together
wire together”).

High-Order Areas refer to areas representing abstract concepts
compared to Low-Order Areas. For example. sensory areas are lower in
the hierarchy than associative and motor areas. This classification can
be refined at a finer level: for example, the primary visual area has a
lower hierarchy level than the secondary visual area.

The Hippocampus is a brain structure often associated with memory
consolidation and spatial memory.

High-Level Machine Intelligence (HLMI) is a still-innocent term
referring to superhuman artificial abilities of machines. I prefer to use
this term instead of Artificial General Intelligence (AGI) which has
become a strongly loaded expression.

Homeostasis is a self-regulating process by which biological systems
tend to maintain stability. It can be seen as an internal drive for survival
of individual living organisms and their species as a whole.

Hypercolumn: See Macrocolumn.

The Hypothalamus is a brain structure deeply involved in the
regulation of basic vital needs of the body like hunger, temperature,
thirst, fatigue, sleep, circadian rhythms.

Infragranular Layers refer to deep layers L5 & L6 of the cerebral cortex,
below the granular layer.

An Inhibitory PostSynaptic Potential (IPSP) is a postsynaptic potential
that decreases the probability of an action potential occurring in a
postsynaptic neuron. IPSP are triggered by Inhibitory Synapses.

Inhibitory Synapse: See Inhibitory PostSynaptic Potential (IPSP).

Innate Priors refer to hardcoded materials in our genome (our
developmental recipe). We, humans, are not born with a blank state.
We possess numerous innate priors – selected by natural selection over
millions of generations and likely embedded in our DNA – that speed
up our intellectual development during a lifetime. Innate Priors also
refer to hardcoded characteristics and constraints in ANN.

Intelligence is still an elusive concept related to advanced abilities.
There is no widely adopted universal definition in the scientific
community.

The term "Interneuron" seems to have different meanings. I use the
term "Interneuron" to refer to a neuron that influence activity within a
limited, localized brain region (contrary to a projection neuron).
Inhibitory neurons in the cerebral cortex are interneurons.

Laminar: See Layer.



Insights from the brain: the road towards Machine Intelligence – © 2020 Matthieu Thiboust 138

Glossary (6/10)

Layers reflect an organizational design. Biological neurons are
something grouped in layers (like the neurons in the cerebral cortex
have a laminar organization). Artificial neurons are conceptually
organized in layers (for instance, a feedforward connection links a
neuron from a layer to another neuron in the next layer layer).

Long Short-Term Memory (LSTM) networks are RNN with feedback
connections adding greater memory abilities.

Long Term Depression (LTD) produces long-lasting decreases in
synaptic efficacy of excitatory synapses using the glutamate
neurotransmitter (most excitatory synapses use glutamate).

Long Term Potentiation (LTP) produces long-lasting increases in
synaptic efficacy of excitatory synapses using the glutamate
neurotransmitter (most excitatory synapses use glutamate).

Low-Order Area: See High-Order Area.

Machine Intelligence is a still-innocent term referring to advanced
artificial abilities of machines. I prefer to use this term instead of
Artificial Intelligence (AI) which has become a strongly loaded
expression.

Macrocolumns (also called Hypercolumn in some cortical areas) are
ensembles of minicolumns (around 500 µm of diameter). The existence
of this structure is not always clear in the cerebral cortex.

Membrane Potential (also called membrane voltage) is the difference
of electric potential between the inner and outer part of a biological
cell like a neuron.

Minicolumns are fundamental units that constitutes the cerebral
cortex (around 2 mm long and 50 µm of diameter).

A Myelinated Axon is an axon covered with specific cells that strongly
accelerate the propagation of Action Potentials.

Neocortex: See Cerebral Cortex

Nerve fiber: See Axon

Nerve Tracts (also called Fiber Tracts) are bundles of axons that form
massive interconnections between brain areas.

Neural Oscillations (or Brain Waves) are rhythmic patterns of various
frequencies that constitute neural activity. At the level of neural
ensembles, synchronized activity of large numbers of neurons gives rise
to macroscopic oscillations, which can be observed with non invasive
methods like electro-encephalography (EEG) or magneto-
encephalography (MEG).

Neurogenesis is the process by which new neurons are produced by
neural stem cells. There is a significant neuron proliferation during the
last months of human embryos before birth.
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A Neuromodulator is a molecule that conveys slow and long-lasting
point-to-many chemical signals at the synapse level. They induce
biochemical changes in the postsynaptic neuron.

The "Neuron" term can refer to biological or artificial neurons. A
biological neuron is an electrically excitable cell that transmits nerve
impulses to other neurons (or muscles & gland cells). An artificial
neuron is a simplified model of a biological neuron used in artificial
neural networks.

Neuroscience-Grounded AI is an AI approach that attempts to make
ANN more biologically realistic. This approach has the human brain as a
reliable and invaluable guide to progress incrementally towards
Machine Intelligence.

A Neurotransmitter is a molecule that conveys fast and ephemeral
point-to-point chemical signals at the synapses level

NMDA Spike: See Dendritic Spike.

NREM Sleep is a sleep phases that alternates with REM Sleep phases.
NREM sleep stands for non-REM sleep. It groups the other phases of
sleep. See REM Sleep.

A Nucleus (plural "nuclei") is a structure grouping neurons. Neurons are
segregated along a radial organization that is sometimes described as
concentric layers.

The Pallidum is a part of basal ganglia.

Perception is our sensory experience of the world around us. They are
constructed mental representations, not the veridical representations
of the objective world. Organisms that perceive are able to associate a
valence (goodness scale) to situations in order to select an appropriate
behavior and flexibly adapt its execution.

Phase Coding is a neural code encoding information with the precise
timing of spikes regarding a time reference based on slower
oscillations. Some neurons fire individual action potentials that are
precisely timed at a specific phase of neural oscillations in the
surrounding cells (a process referred to as phase precession)

Phase Precession is a process by which some neurons fire individual
action potentials that are precisely timed at a specific phase of neural
oscillations in the surrounding cells.

A Phylogenetic Tree (also called Evolutionary Tree) is a branching
diagram showing the evolutionary relationships among various
biological species.

A Postsynaptic Neuron in a neuron that receives the neurotransmitter
after it has crossed the synapse and may fire an action potential if the
neurotransmitter is strong enough.

A Presynaptic Neuron is a neuron that releases the neurotransmitter at
the synapse as a result of an action potential entering its axon terminal.
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A Projection Neuron is a neuron that send its axon to distant brain
targets. Projection neurons in the cerebral cortex are pyramidal
neurons.

Pyramidal Neurons are excitatory neurons that constitutes around 75%
of the neurons of the cerebral cortex. They have a characteristic apical
dendritic arbor and project their axon over long distances to cortical
and subcortical targets. They form an extensive network mainly among
themselves.

Rate Coding is a neural code encoding information with the spike
frequency. Typically, the intensity or salience of a feature is represented
by the rate of firing.

Recurrent Connections are neuronal projections to areas of the same
level (to same layer).

Recurrent Neural Networks (RNN) are a class of ANN where the output
from previous step are fed as input to the current step (recurrent
connections). They are commonly used in speech recognition and
natural language processing (NLP).

Reinforcement Learning (RL) is a paradigm in which software agents
learn to take actions in an environment so as to maximize a cumulative
reward.

REM Sleep is a sleep phases that alternates with NREM Sleep phases.
REM stands for Rapid-Eye-Movement. It is recognizable by rapid
movements of the eyes, low muscle tone and a propensity of the
sleeper to dream vividly.

Saccades are fast eye motions that direct the fovea which has much
better acuity than the rest of the retina (around 5 saccades per
second).

The Self-Organizing-Map (SOM) algorithm is a competitve learning
algorithm that produces a low-dimensional & discretized
representation of the input space that is called a map.

Self-supervised Learning is a paradigm in which the model use labels
that are naturally part of the input data, instead of separate external
labels. Streams of temporal data can be used to “self-train” a model by
continuously predicting the future from the past, and then comparing
the prediction vs the outcome at the next timestep. Note that it does
not require pre-labelled data.

Sensorimotor Interaction is a process by which an agent actively
interacts with its environment in order to gain knowledge via self-
induced stimuli.

Short Term Plasticity produces short-lasting effects in synaptic strength
of synapses.
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The Singularity is an hypothetical point in time when an intelligent
agent slightly surpasses human intelligence, and then recursively
designs more intelligent agents in such a way that machines overtake
human intelligence by orders of magnitude in a short period of time.

Skip Connections are neuronal projection bypassing neighboring layers.
They acts as shortcut across the hierarchy.

The Soma refers to the cell body of a neuron cell.

Sparse Distributed Representations (SDR) are data structures enforcing
the sparsity of the encoded data. They mimic the sparse activity
occurring in the brain.

A Spike is a propagating depolarization of neuron membrane potential
(=voltage) along its axon or some of its dendrites. Axonal spikes are
called Action Potentials.

Spike Timing Dependent Plasticity (STDP) is a synaptic plasticity
mechanism that involves both pre and postsynaptic mechanisms. The
precise temporal order of activity between the two neurons matters.

Spiking Neural Networks are ANN that closely mimic natural neural
networks for neuroscience research purposes. They are
computationally-intensive.

The Striatum is a part of basal ganglia.

Supervised Learning is a paradigm in which the model is fed with
labelled training data so that it can learn the association between
input-output pairs. It requires a significant human intervention.

Supragranular Layers refer to upper layers L1 & L2/3 of the cerebral
cortex, above the granular layer.

Symbolic AI regroups a collection of AI methods based on abstract
logical operations upon symbols explicitly representing human
knowledge in a declarative form.

The “Synapse" term can refer to biological or artificial synapses. A
biological synapse is the junction between two neurons (or between a
neuron and a muscle/grand cell). A synapse involve an axon terminal
(on the presynaptic neuron) and a dendritic terminal (on the
postsynaptic neuron). An artificial synapse represent the connection
between two artificial neurons. Each synapse has a synaptic weight.

Synaptic Plasticity is a biological mechanism that induces adaptions in
synaptic characteristics by weakening/strengthening synaptic strength
and creating/pruning synapses.

Synaptic Pruning is the process by which synapses are eliminated. It
mainly occurs between early childhood and the onset of puberty in
many mammals.

The Synaptic Strength (also called synaptic weight) characterizes the
impact level of a synapse on the postsynaptic neuron.
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Synaptic Weight: See Synaptic Strength.

Synaptogenesis is the process by which new synapses are formed
between neurons. There is a significant synaptogenesis during early
childhood in many mammals, followed by a major synaptic pruning.

Target Propagation (TP) is an alternative to the backpropagation
algorithm to solve the credit assignment problem.

Temporal Difference Learning (TD Learning) is “learning a prediction
from another, later, learned prediction”. This scalable & online learning
algorithm is well adapted to real-life general multi-step prediction
problems where the feedback is delayed or even not reached

The Thalamus is the gateway to the neocortex. It routes and gates the
inputs it receives from nearly all brain structures.

Tuft: See Apical Tuft.

Unsupervised Learning is a paradigm in which the model is only fed
with unlabeled data, with no human intervention.

The White Matter refers to areas that are mainly made up of axons.
There are significant volumes of white matter underlying the cerebral
neocortex.

The Winner-Take-All (WTA) algorithm is a competitive learning
algorithm by which neurons of a layer compete with each other for
activation. Only the best players win the right to stay active while the
other neurons are shut down.
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