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INTRODUCTION

Acanthocephalans, or thorny-headed worms, are
in adult stages obligate endoparasites of the intestine
of vertebrates (Nickol 1985, Marcogliese 1995, Garey
et al. 1996, Nickol et al. 2002, Taraschewski 2005).
The cystacanths of this genus are the infective stage.
Morphologically, they are similar to the mature
worms, but differ in the size of the trunk and the
degree of development of the sexual organs (Hoberg
et al. 1993, Zdzitowiecki 1991).

Among zooplankton communities, euphausiids
play an important role as intermediate hosts in the

pelagic realm (Marcogliese 1995). They are able to
attain massive biomasses that form vast and dense
swarms occupying one of the lowest trophic levels.
Moreover, they can be used by different parasites to
reach their definitive host (Mauchline 1980, 1984,
Marcogliese 2002). Nyctiphanes couchii (Bell, 1853)
is the main euphausiid in the European continental
shelf and one of its areas of higher concentrations is
situated near the Spanish coast (Roura et al. 2013).
This species is also one of the main prey items of dif-
ferent fish species, which in turn are involved in the
diet of potential definitive hosts (Pascual et al. 1996,
Marcogliese 2002). Some reports (e.g. Sars 1885, Shi-
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mazu 1975, Lindley 1977, Tsimbalyuk 1980, Gómez-
Gutiérrez et al. 2010, Gregori et al. 2012) recognised
some species of cystacanths infecting the thoracic
organs of adults of several species of krill.

Moreover, it is well-known that within the Palaea-
canthocephala, a few members of Rhadinorhynchus
(Lühe, 1911) have experienced considerable specia-
tion in aquatic environments (Taraschewski 2005),
where they are able to infect important commercial
fishes such as Scombridae (Rego et al. 1985, Rego
1987), Xiphidae (Hogans et al. 1983), Belonidae,
Carangidae, and Bramidae in the Atlantic Ocean
(www. nhm. ac. uk/ research-curation/ research/ projects/
host-parasites/ database/ index. jsp).

As far as we know, no previous data on the pres-
ence of Rhadinorhynchus sp. (Rudolphi, 1802) in
euphausiids from the NE Atlantic are available. With
the exception of Rodrigues et al. (1975) and Rego et
al. (1985), Rhadinorhynchus has not been reported in
this area. In addition, these authors found adults of
this genus infecting scombrid fishes.

Despite parasites having a great ecological and
economic significance in NE Atlantic waters, their
recruitment to the zooplankton level is poorly under-
stood. Therefore, the aims of this study were to (1)
report the role of euphausiids in the life cycle of Rha -
dino rhynchus sp. in NW Iberian Peninsula waters; (2)
provide data about parasite morphology, genetic and
demographic infection values; and (3) discuss the
controversy with the genetic identification of R. prisits
(Rudolphi, 1802).

MATERIALS AND METHODS

Biological sampling

The zooplankton samples were
caught in the Ria de Vigo in Galician
waters, NW Iberian Peninsula,
onboard the RV ‘Mytilus’ (Fig. 1).
Ten surveys were undertaken in the
summer (2, 4, 9 and 11 July) and
autumn (26 September, and 1, 3, 9,
10 and 14 October) of 2008. Samples
were collected by double oblique
towing, using a 750 mm diameter
bongo net equipped with 375 µm
mesh. At a ship’s speed of 2 knots,
the bongo net was first lowered and
stabilized near the bottom for a
period of 15 min, then hauled to the
surface at 0.5 m s−1. The Bongo was

equipped with a current meter, which enabled calcu-
lation of the volume of water filtered during the haul,
thus permitting an estimation of zooplankton abun-
dance (no. m−3). The sample was filtered using a
500 µm sieve and fixed on board with 100% ethanol.
Samples were later transferred to 70% ethanol in the
laboratory and stored at −20°C.

Zooplankton estimation

The abundance of the different zooplankton taxa
was estimated after counting a sub-sample using a
Folsom splitter (Omori & Ikeda 1984). Organisms
were identified to the lowest possible taxonomic
level. Species diversity was calculated using the
Shannon-Weaver and Evenness indices (Omori &
Ikeda 1984, Guisande et al. 2006). The number of
euphausiids was estimated using the method of cal-
culating precise replica (Andrew & Mapstone 1987).

Collection and processing of cystacanths

All zooplankton components of the samples were
examined for acanthocephalans using a stereomicro-
scope (20×). Parasites were removed from the host
using dissection material under the stereomicro-
scope. Cystacanths were identified by examining the
body and proboscis according to Petrochenko (1956,
1958), Cable & Linderoth (1963), Yamaguti (1963),
Zdzitowiecki (1989), and Arai (1989). The number
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Fig. 1. Sampling area off the Ría de Vigo in Galician waters, NE Atlantic. 
T2−5: transects 2−5
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and distribution patterns of the proboscis armature
and variations in the spination of the anterior part of
body are considered the most important determining
features (Miller & Dunagan 1985). Morphological
study was carried out to determine the cystcanth spe-
cies. As the cystacanths normally presented the pro-
boscis, neck, and part of the anterior trunk intro-
verted, we dissected them to evert these structures.
The body was cleared using the protocol described
by Gregori et al. (2012) because this method does not
damage DNA. The caudal part of the body was used
for DNA extraction.

Scanning electron microscopy preparations in a
Philips XL 30 were used to clarify the morphological
examination. Infection parameters were estimated
following Bush et al. (1997) and Rózsa et al. (2000).
Sterne’s exact 95% confidence interval (CI) was cal-
culated for prevalence (Reiczigel 2003).

Genomic DNA extraction and PCR amplification

Genomic DNA was isolated using the Qiagen
DNeasyTM Tissue Kit according to the manufacturer’s
instructions. DNA quality and quantity was checked
in a NanoDrop® ND-1000 spectrophotometer and in
1% agarose gel. The primers 18SU467F (5’-ATC
CAA GGA AGG CAG CAG GC-3’) and 18SL1310R
(5’-CTC CAC CAA CTA AGA ACG GC-3’) (Suzuki
et al. 2008) were employed to amplify approximately
900 bp of the small subunit (18S) ribosomal RNA
gene. PCRs were performed in a total volume of 25 µl
containing 1 µl of genomic DNA (150−200 ng), PCR
buffer at 1× concentration, 1.5 mM MgCl2, 0.2 mM
nucleotides (Roche Applied Science), 0.3 µM primers
and 0.625 U Taq DNA polymerase (Roche Applied
Science). The cycling protocol for 18S rRNA gene
was 2 min at 94°C, 35 cycles with 30 s at 94°C, 1 min
at 55°C and 2 min at 72°C, followed by 7 min at 72°C.
All PCRs were carried out in a TGradient thermo -
cycler (Biometra) and a negative control (no DNA)
was included for each set of PCRs.

DNA sequencing and phylogenetic analysis

Positive PCR products were cleaned for sequen-
cing using ExoSAP-IT© (USB Corporation). Se -
quences were subjected to BLASTn analyses against
available sequences from GenBank, through web
servers of the National Center for Biotechnology
Information (USA). All 18S rRNA sequences present
in GenBank of the Class Palaeacanthocephala were

downloaded for phylogenetic analyses (n = 49). Addi-
tionally, 2 rotiferan sequences were downloaded as
an outgroup, due to their close relationship with
the acanthocephalans (García-Varela et al. 2000).
Table 1 shows the species used for phylogenetic
analyses and their accession numbers. These 18S
rRNA sequences were aligned using MAFFT v5.7
(Katoh et al. 2002) with default settings. GBlocks
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Taxon GenBank accession no.

Southwellina hispida JX014228, EU267809
Arhythmorhynchus brevis AF064812
Pseudocorynosoma constrictum EU267800
Ibirhynchus dimorpha CQ981436
Hexaglandula corynosoma EU267808
Pseudocorynosoma anatarium EU267801
Polymorphus minutus EU267806
Profilicollis botulus EU267805
Polymorphus sp. AF064815
Polymorphus altmani AF001838
Andracantha gravida EU267802
Corynosoma enhydri AF001837
Corynosoma magdaleni EU267803
Corynosoma strumosum EU267804
Bolbosoma vasculosum JX014225
Bolbosoma balaenae JQ040306
Plagiorhynchus cylindraceus AF001839
Centrorhynchus conspectus U41399
Centrorhynchus sp. AY830155
Centrorhynchus microcephalus AF064813
Serrasentis sagittifer JX014227
Gorgorhynchoides bullocki AY830154
Transvena annulospinosa AY830153
Pararhadinorhynchus sp. HM545903
Rhadinorhynchus pristis JQ061133
Rhadinorhynchus sp. AY062433
Acanthocephalus dirus AY830151
Acanthocephalus lucii AY830152
Filisoma bucerium AF064814
Filisomaa rizalinum JX014229
Echinorhynchida sp. EU732662
Acanthocephaloides propinquus AY830149
Echinorhynchus gadi AY218123, U88335,

JX014222
Rhadinorhynchus pristis JX014226
Rhadinorhynchus lintoni JX14224
Pomphorhynchus laevis JX014223, AY218124,

AY423346
Pomphorhynchus tereticollis AY423347
Dentitruncus truttae JX460865
Illiosentis sp. AY830158
Pseudoleptorhynchoides lamothei EU090950
Koronacantha pectinaria AF092433, AY830157
Leptorhynchoides thecatus AF001840
Pomphorhynchus bulbocoli AF001841
Outgroup: Rotaria rotatoria AY218121
Plationus patulus DQ297712

Table 1. Species and GenBank accession numbers of taxa 
used for 18S rDNA analyses
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(Castresana 2000) were then used to identify and
remove highly divergent regions and poorly aligned
positions. Afterwards, a substitution model was se -
lected under Akaike’s information criterion (Akaike
1974) as implemented in jModeltest (Posada 2008).
The GTR+I+G (Tavaré 1986) model was chosen to
infer the evolutionary history using the maximum
likelihood (ML) method. The analysis involved 51
nucleotide sequences with a total of 582 conserved
sites in the final data set. Bootstrap probabilities with
1000 replications were calculated to assess reliability
on each node of the ML tree. Evolutionary analyses
were conducted in MEGA5 (Tamura et al. 2011).

RESULTS

A total of 20 cystacanths infecting Nyctiphanes
couchii were found in different samples. Their
prevalences (95% CI) are presented in Table 2. Esti-
mations of accompanying zooplankton taxa and
abundance, Shannon-Weaver index and species
evenness where larvae were found are recorded in
Table 3. Complete information about mesozoo-
plankton composition in each community is avail-
able in Roura et al. (2013). Cystacanths were
removed from the thoracic organs (Fig. 2A) of N.
couchii adults. The body of the cystacanths was
cylindrical and in most samples their neck and pro-
boscis were invaginated. A detailed description is
given for male and female specimens pooled
because sex could not always be determined. Mor-
phometric measurements are given as means ± SD
[range], with sample size in parentheses.

Description

Trunk long, uniformly cylindrical, 10.5 ± 3.9 mm
[5.3−19.5 mm] long (n = 18) × 0.55 ± 0.37 mm
[0.33−1.87 mm] wide (n = 15), spinose anteriorly.
Trunk spines in 2 fields separated by unarmed zone
(Fig. 2B,C). Anterior trunk spines adjacent to neck,
arranged in 2 or 3 circles, the 3rd ventrally not
 complete, posterior field restricted to ventral area
(Fig. 2B), with ca. 10−14 rows of spines, reaching 23
± 3.5% [15−28%] of trunk length (n = 15). Trunk
spines 82 ± 20 µm [53−118 µm] long (n = 163 from 12
specimens), slightly longer in the posterior region,
embedded in cuticular sheath. Neck cylindrical, 0.22
± 0.10 mm [0.13−0.39 mm] long × 0.18 ± 0.06 mm
[0.12−0.23 mm] wide (n = 5). Proboscis slender, cylin-
drical, 2.26 ± 0.43 mm [1.55−3.32 mm] long × 0.20 ±
0.06 mm [0.11−0.33 mm] wide (n = 16) (Fig. 2D).
Hooks arranged in 14 (rarely 13) rows of 26 hooks
(rarely 23−25) each (n = 16). Hooks of basal circle
only slightly erected and longer than remaining
spines (Fig. 2D). Range of hook (H) length (in µm) at
base as follows (n = 10 specimens except in H24−26,
for which n = 6): H1: 93−131; H2: 62−99; H3: 79−98;
H4: 67−110; H5: 74−110; H6: 69−111; H7: 78−120;
H8: 87−114; H9: 88−124; H10: 94−128; H11: 90−123;
H12: 91−122; H13: 94−118; H14: 86−110; H15:
77−111; H16: 85−123; H17: 96−122; H18: 87−113;
H19: 92−116; H20: 85−114; H21: 77−122; H22:
85−111; H23: 68−108; H24: 85−99; H25: 68−98; H26:
66−88. Proboscis receptacle considerably longer than
proboscis, 3.8 ± 0.5 mm [2.9−4.7 mm] long (n = 16) ×
0.18 ± 0.06 [0.22−0.28] mm wide (n = 4). Lemnisci not
extending past receptacle, generally hidden behind
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Community SF SC AO AC
T5B, 2 Jul T2B, 2 Jul T5B, 26 Sep T5B, 1 Oct T5B, 9 Oct T3B, 10 Oct
N Ab N Ab N Ab N Ab N Ab N Ab

Calyptopis 36433 88.78 1423426 2097.96 2496 11.30 4060 25.52 475 2.13 165120 436.46
Furcilia 49388 120.35 37415 55.15 4512 20.44 480 3.02 175 0.78 92160 243.61
Adults 69955 170.47 328 0.48 3600 16.31 2620 16.47 2175 9.76 1920 5.07
Population 155775 380.60 1461169 2154.59 10608 48.05 7160 45.01 2825 13.67 259200 685.14

No. infected 3 1 12 1 1 2

Population % [CI] 0.0019 0.0001 0.068 0.0008
[0.0004−0.002] [0.0000−0.00013] [0.0372−0.0445] [0.0001−0.0008]

Adults % [CI] 0.0043 0.3047 0.0014 0.1042
[0.0125−0.0009] [0.0000−0.0169] [0.0912−0.2797] [0.0126−0.3758]

Table 2. Nyctiphanes couchii population divided into 3 different stages in each community during 2008, where cystacanths were
found from Ría de Vigo, Galicia, NW Atlantic, Spain, in different samplings: summer frontal (SF), summer coastal (SC), autumn
ocean (AO) and autumn coastal (AC). T5B: transect 5 at bottom; T2B: transect 2 at bottom; T3B: transect 3 at bottom. N: number of
individuals estimated; Ab: abundance (no. m−3); Population % [CI]: prevalence in the population [95% confidence interval]; Adults 

% [CI]: prevalence in adults [95% confidence interval]
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Community                                   SF                            SC                                                     AO                                                      AC
                                                T5B, 2 Jul                T2B, 2 Jul               T5B, 26 Sep       T5B, 1 Oct         T5B, 9 Oct             T3B, 10 Oct
                                                N           Ab             N            Ab             N         Ab           N         Ab           N         Ab              N           Ab

MEROPLANKTON

Cephalopoda                                                                                                                                                                                                 
Loliginidae                             –             –               8           0.01             2       0.01           –                         1       0.004             4           0.01
Octopus vulgaris                   –             –               1           0.001           1       0.005         3       0.01           2         0.01             13         0.03
Sepiolidae                               7           0.08             1           0.001            –           –             –           –             –           –                3           0.01

Cirripedia                                                                                                                                                                                                       
Cirripedia larvae                    –             –             4267         6.29             –           –             –           –             –           –           170880   451.69

Echinodermata                                                                                                                                                                                             
Echinoidea larvae                   –             –             1422         2.10             –           –             –           –             –           –             3840       10.15
Ophiuroidea larvae             512         1.28         28444       41.92            –           –             –           –             –           –           353280   933.82

Fish                                                                                                                                                                                                                 
Fish eggs                               –             –               –               –               –           –             –           –             –           –             1920       5.07
Fish larvae                           512         1.25         1046         1.54           29       0.13           2       0.01           6         0.03           1969       5.20

Gastropoda                                                                                                                                                                                                   
Gastropoda larvae                 –             –           12800       18.87            –           –             –           –            25       0.11         24960     65.98

Isopoda                                                                                                                                                                                                           
Aegidae                                   –             –               50           0.07             –           –             –           –             –           –               24         0.06

Decapoda                                                                                                                                                                                                       
Alpheidae zoeae                   –             –             1422         2.10             –           –             –           –            25       0.11             –             –
Brachyura juvenile               –             –               7           0.01             2       0.01           1       0.01           –           –                –             –
Brachyura megalopa             –             –               –                               –           –             –           –             –           –             1920       5.07
Brachyura zoeae                 2463       6.00         45511       67.08            –           –            40       0.25         25       0.11         24960     65.98
Crangonidae zoeae                –             –             1422         2.10             –           –             –                         –           –                –              
Paguridae megalopa           480         1.17                                               –           –             –           –             –           –                –              
Paguridae zoeae                   –             –             4267         6.29             –           –            20       0.13           –           –             9600       25.38
Palaemonidae zoeae              –             –             1422         2.10             –           –             –           –             –           –                –              
Pisidia longicornis megalopa –             –               –                               –           –             –           –             –           –             1920       5.07
Pisidia longicornis zoeae        –             –           15644       23.06            –           –             –           –             –           –            17280     45.68
Porcellana platycheles zoeae –             –             5689         8.38             –           –             –           –             –           –            15360     40.60
Processidae zoeae                  –             –             533         0.92             –           –             –           –             –           –              600       11.41
Jaxea nocturna                       –             –             1422         2.10             –           –             –           –             –           –                –             –

Amphipoda                                                                                                                                                                                                   
Caprellidea                             –             –               6           0.009            –           –             4       0.02           1       0.004             –             –
Gammaridea                         85         0.201           65           0.10             6       0.03           2       0.01         24       0.11           176         0.46

Stomatopoda                                                                                                                                                                                                 
Meiosquilla desmaresti       480         1.17             –               –               –           –             –           –             –           –                –             –

Polychaeta                                                                                                                                                                                                     
Polychaeta larvae                 5           0.01           49           0.07           35       0.16           6       0.04           8         0.04             21         0.06

HOLOPLANKTON

Appendicularia                      –             –             7111       10.48            –           –             –           –             –           –            71040     187.78

Amphipoda                                                                                                                                                                                                   
Hyperiidea                              –             –               1           0.001           5       0.02           9       0.06         17       0.08             13         0.03

Chaetognatha                       –             –           11942       17.60         1861     8.43       1220     7.67         775       3.48         96000     253.76

Cnidaria                                 –             –               –               –               –           –             –           –             –           –             5760       15.22

Cladocera                                                                                                                                                                                                      
Evadne nordmanni                 –             –           14222       20.96            –           –             –           –             –           –            36480     96.43
Podon intermedius                 –             –           36978       54.50            –           –             –           –             –           –            55680     147.18

Hydrozoa                                                                                                                                                                                                       
Siphonophora                     1536       3.74         5317         7.84           74       0.33           –           –           300       1.35           1920       5.07

Table 3. Mesozooplankton taxa collected in each community during 2008, where cystacanths were found from Ría de Vigo, Galicia, NW
Atlantic, Spain, in different samplings: summer frontal (SF), summer coastal (SC), autumn ocean (AO) and autumn coastal (AC). T5B:
transect number 5 at bottom; T2B: transect 2 at bottom; T3B: transect 3 at bottom. N: number of individuals estimated; Ab: abundance

(no. m−3). Volumes filtered per transect were 410.37, 678.48, 220.78, 159.07, 222.92, and 3783.2 m3, respectively. –: taxon not found
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it but apparently reaching half of proboscis recepta-
cle (n = 2). Terminal gonopore. A voucher specimen
was deposited at the Natural History Museum of
London, UK, with the accession number NHMUK
2013.4.2.1

Amplified sequences of 18S rRNA ranged from 814
to 819 bp. These sequences are available on GenBank
under the accession numbers JQ061133− JQ061136.
BLAST search showed close homology (98%) with the
18S rRNA of Rhadinorhynchus sp. and Pararhadi-
norhynchus sp. (Johnston & Edmonds, 1947). The ML
tree inferred from the 18S rRNA data set of Palaea-
cantocephala revealed that our specimens belong to a
highly supported clade (bootstrap values of 100), with
Rhadinorhynchus sp., Pararhadinorhynchus sp. and
Transvena annulospinosa (Pichelin & Cribb 2001)
(Fig. 3). Unexpectedly, sequences of Rhadinorhyn -

chus pristis and R. lintoni (Cable & Linderoth 1963),
recently described by Verweyen et al. (2011), are nes -
ted in a highly supported group with Pomporhynchus
(Monticelli, 1905) species,  displaying homologies of
99% with those species. Comparing our data against
the sequences of Verweyen et al. (2011) revealed
 homology of only 84%. The ML tree showed the
monophyly of Polymorphida and the paraphyly of
Echi no rhynchida, the 2 orders found within Palaea -
cantocephala. In fact, Rhadino rhynchidae was the
most polyphyletic family among the Echinorhynchida.

DISCUSSION

Cystacanths found in Nyctiphanes couchii can be
undoubtedly assigned to the genus Rhadinorhynchus
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Community                                   SF                            SC                                                     AO                                                      AC
                                                T5B, 2 Jul                T2B, 2 Jul               T5B, 26 Sep       T5B, 1 Oct         T5B, 9 Oct             T3B, 10 Oct
                                                N           Ab             N            Ab             N         Ab           N         Ab           N         Ab              N           Ab

Euphausiacea                                                                                                                                                                                                
Nyctiphanes couchii         36433     88.78     1423426   2097.96       2496   11.30       4060   25.52       475       2.13         165120   436.46
calyptopis                             

N. couchii furcilia             49388     120.35       37415       55.15         4512   20.44       480     3.02         175       0.78         92160     243.61
N. couchii adult                  69955     170.47         328         0.48         3600   16.31       2620   16.47       2175     9.76           1920       5.08

Copepoda                                                                                                                                                                                                      
Calanoidea                                                                                                                                                                                                 

Acartia clausi                       7421       18.08       93867     138.35       1263   5.721       260     1.63       3350     15.03         99840     263.91
Candacia armata                    –             –             1422         2.10             –           –             –           –             –           –                –             –
Calanoides carinatus         72259     176.08       2844         4.19         1600     7.25         20       0.13         575       2.58           7680       20.30
Calanus helgolandicus      35156     85.67         1422         2.10         1853     8.39         100     0.63         475       2.13             –             –
Centropages chierchiae     3966       9.67         14222       20.96            –           –            20       0.13         75       0.34           1920       5.07
Centropages typicus              –             –               –               –               –           –             –           –             –           –             1920       5.07
Clausocalanus spp.               –             –               –               –               –           –           100     0.63         100       0.45           3840       10.15
Diaixis pygmaea                     –             –             1422         2.10             –           –             –           –            25       0.11             –             –
Isias clavipes                           –             –             1422         2.10             –           –             –           –             –           –             1920       5.07
Mesocalanus tenuicornis       –             –               –               –             253     1.14           –           –             –           –                –             –
Metridia lucens                       –             –             1422         2.10         1432     6.48           –           –           100       0.45             –             –
Paracalanus parvus                –             –               –               –             253     1.14           –           –           575       2.58           1920       5.07
Paraeuchaeta hebes           8637       21.05            –               –             7326   33.18       220     1.38         850       3.81           1920       5.07
Paraeuchaeta sp.                 4797       11.69            –               –           20463   92.68       1700   10.69       2225     9.98         15360     40.60
Pseudocalanus elongatus       –             –               –               –               –           –            20       0.13         25       0.11             –             –
Subeucalanus crassus            –             –               –               –               –           –            20       0.13           –           –                –             –
Temora longicornis                 –             –           28444       41.92            –           –             –           –             –           –             9600       25.38

Cyclopoidea                                                                                                                                                                                               
Oithona plumifera                 –             –               –               –               –           –             –           –           250       1.12           5760       15.22

Mysidacea                           1919       4.68             –               –             528     2.39         360     2.26         475       2.13           1920       5.07

Thaliacea                                                                                                                                                                                                       
Salpida                                21175     51.60         4267         6.29         3874   17.54       1780   11.19       1900     8.52         13440     35.53

Polychaeta                                                                                                                                                                                                     
Tomopteris spp.                      –             –               –               –               –           –             –           –            25       0.11             –             –

Total                                   317185   773.93     1814417   2674.37     51466 233.11     13067   82.15     15084   67.66       1321863 3503.90

Shannon’s Index (H’)          1.55       0.507         2.12         1.49           2.31     2.37           

Evenness index                   0.54       0.139         0.71         0.48           0.69     0.64

Table 3 (continued)
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based on the patterns of trunk armature and pro-
boscis morphology (see Petrochenko 1956, Golvan
1969, Amin et al. 2011). Pararhadinorhynchus and
Transvena, which belong to the same clade as Rhadi-
norhynchus (Fig. 3), can be readily distinguished
using their taxonomy because a key character for
species of the genus Pararhadino rhynchus is the
absence of trunk spines. The morphotype of species
of Transvena is distinguished from other acantho-
cephalans because their trunk possesses a single ring
of posteriorly pointing spines, at or near the junction
between the neck and trunk (Pichelin & Cribb 2001).
In contrast, all our examined specimens possess ex -
tended fields of spines on the trunk.

According to the most recent key to species of
Rhadinorhynchus (Amin et al. 2011), our specimens
belong to a group of 20 species that combine 2 char-
acter states that are apparently stable: (1) trunk
spines in 2 fields clearly separated by an unarmed

zone; and (2) dorsal spines absent in the
posterior field. Among these, only a  single
species, namely Rhadinorhynchus saltatrix
(Troncy & Vassiliades 1973), exhibits the
combination of a proboscis armature with
14 rows of hooks and a field of posterior
trunk spines with >10 spine rows (Amin et
al. 2011). The description of R. saltatrix is
well detailed but based only on a few spec-
imens, 5 males and 8 females (Troncy &
Vassiliades 1973). Our specimens agree
with the description made by Troncy &
Vassiliades (1973) except that the number
of hooks per row that they report is 24 in R.
saltatrix while 26 hooks per row are more
frequently found in our specimens. How-
ever, it is important to note that our speci-
mens closely resemble R. pristis and R.
selkirki (Van Cleave, 1921), except that
the number of spine rows in the posterior
field of the trunk is smaller (≤10) in these
species (see Amin et al. 2011).

From the above results a key question is
the range of variability of this spiny field,
and the factors that may influence this
trait. For instance, there is evidence of
clear sexual differences of this trait
in many species (see e.g. Petro chenko
1958, Cable & Linderoth 1963, Troncy &
Vassiliades 1973). In contrast, the status of
Rhadino rhynchus pristis is currently rather
confused. Amin et al. (2011) list 7 species
that, in their opinion, were erroneously
identified as R. pristis, but they consider R.

selkirki as a valid species. In contrast, Chandler
(1934) and Petrochenko (1956) consider R. selkirki as
synonym of R. pristis. To compound the problem,
other available descriptions of R. pristis (e.g. Rego
1987, Arai 1989, Bunkley-Williams & Williams 1996)
were not included in the revision by Amin et al.
(2011) and do not fulfil the diagnostic traits of this
species sensu these authors.

According to the above morphological discussion,
we should tentatively identify our specimens as
Rhadinorhynchus saltatrix, pending a critical re-
examination of R. pristis and related species.

Once the morphological iden tification was con-
firmed, genetic homology using 18S rRNA se quences
allowed us to assign the cystacanths to the genus
Rhadinorhynchus (Fig. 3). The 18S (SSU sequences)
have been broadly used in different research as a
taxonomic tool to clarify the taxonomy of acantho-
cephalans at the species level (Near et al. 1998, Gar-
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Fig. 2. Cystacanth of Rhadinorhynchus sp. from Nyctiphanes couchii. (A)
Single infection with one cystacanth of Rhadinorhynchus sp. in the
cephalothorax cavity (arrow). (B) The spines of the anterior part of the
body, general view. (C) Two fields of spines separated by a space with-
out spines (arrow). (D) Cystacanth’s proboscis. Basal circle perpen-

dicular hooks (arrow)
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cía-Varela et al. 2000, 2002, Herlyn
et al. 2003, Near 2002, García-
Varela & Nadler 2005, 2006, Gar-
cía-Varela & Gon zález-Oliver 2008,
Gregori et al. 2012). At the genetic
level, our identification disagrees
with the results obtained by Ver-
weyen et al. (2011), whose se quen -
ces correspond with R. pristis
and R. lintoni. Phylogenetic analy-
ses showed almost the same topolo -
gy, but the position of Rhadino -
rhynchus species is markedly
dif ferent. Our se quences appeared
in a well-supported clade with
mem bers of the family Transveni -
dae, Transvena annulospi nosa and
Rhadinorhynchus sp. as re ported
by García-Varela & Nadler (2005)
and García-Varela & González-
Oliver (2008). However, R. pristis
and R. lintoni identified by Ver-
weyen et al. (2011) appeared within
the Pompo rhynchus group. This
contradiction is due to the absence
of Pararhadino rhynchus sp. and
Rhadino rhynchus sp. se quences in
the Bayesian analysis  carried out by
Verweyen et al. (2011). The omis-
sion of these 2 se quences placed
their R. pristis and R. lintoni far
from Transvenna annulospinosa,
which was a clade strongly sup-
ported with a bootstrap con fidence
of 100% (García-Varela & Nadler
2005,  García-Varela & González-
Oliver 2008). Our results suggest
that genetic identification of Rha di -
no rhynchus by Verweyen et al.
(2011) should be revised. Another
explanation would be that Rhadino -
rhynchus is a polyphyletic genus,
since Rhadino rhynchidae is a poly-
phyletic family as shown by mor-
phological, molecular and cla distic
studies (Herlyn et al. 2001, Monks
2001, García-Varela et al. 2002,
García-Varela & Nadler 2005, Gar-
cía-Varela & González-Oliver 2008).
It is clear that the paraphyly of
Rhadinorhynchidae requires re-
examination and re classification
and even the creation of new fami-
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Fig. 3. Maximum likelihood consensus tree after 1000 bootstraps showing the
phylogenetic relationships of the Palaeacanthocephala using 18S rRNA se-
quences and Rotifera as the outgroup. Abbreviations: a, Polymorphidae; b, Pla-
giorhynchidae; c, Centrorhynchidae; d, Rhadinorhynchidae; e, Transvenidae;
f, Rhadinorhynchidae; g, Echinorhynchidae; h, Cavisomidae; i, Arhythmacan -
thidae; j, Echinorhynchidae; k, Pomphorhynchidae; l, Illiosentidae. Underlined 

species correspond with cystacanths found infecting Nyctiphanes couchii
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lies. As suggested by Pichelin & Cribb (2001) and
García-Varela & Nadler (2005), the group formed by
Serrasentis sagittifer (Linton, 1889) and Gorgorhyn-
choides bullocki (Cable & Mafarachisi, 1970), plus
Golvanorhynchus (Noronha, Fabio & Pinto, 1978),
which form a sister group of Polymorphida, should
be removed from the Rhadynorhynchidae. Our re -
sults support the transfer of Leptorhynchoides (Kos -
tylev, 1924) and Pseudoleptorhynchoides (Salgado-
 Mal donado, 1976) (both Rhadinorhynchidae) to the
family Illiosentidae, as suggested by García-Varela &
González-Oliver (2008). This way the Illiosentidae
would be a monophyletic clade. In our work the order
Polymorphida is monophyletic, in contrast with the
works of García-Varela & Nadler (2005), García-
Varela & González-Oliver (2008) and Verweyen et al.
(2011). This difference may result from the larger
data set analysed in this work, 49 Palaeacantoce -
phalan sequences, versus the 19, 20 and 36 used by
García-Varela & Nadler (2005), García-Varela &
Gon zález-Oliver (2008) and Verweyen et al. (2011),
respectively. Apart from R. pristis and R. lintoni, our
phylogenetic analysis highlights the possible mis -
identification of Pompo rhynchus bulbocoli (Linkins
in Van Cleave, 1919) as a member of the mono-
phyletic clade Illiosentidae and Echinorhynchida sp.
(Cobbold, 1879) (Fig. 3).

This is the first time that Rhadinorhynchus sp. has
been found in the euphausiid Nyctiphanes couchii.
Euphausiids are an essential and abundant nexus
between the mesozooplankton and nekton, ingested
by fishes, cephalopods (both acting as paratenic host)
and birds (Deagle et al. 2007, Braley et al. 2010,
Roura et al. 2012).

Reports of larval acanthocephalans acting as inter-
mediate hosts in zooplankton are scarce. Among the
Palaeacanthocephala some Echinorhynchus corru-
gatus have been found in Euphausia krohnii (Marco -
gliese 1995). Bolbosoma caenoforme has been found
infecting Thysanoessa longipes and T. raschii (Shi-
mazu 1975), whereas Bolbosoma sp. (Porta, 1908) has
been detected in Thysanoessa sp. (Brandt, 1851)
(Tsimbalyuk 1980). Lindley (1977) reported 3 larvae
of Paleoacanthocephala infecting the euphausiid T.
longicaudata. Recently, 3 larval stages of Polymor-
phida (Bolbosoma or Corynosoma) were reported
within Nyctiphanes simplex on the northwestern
coast of Mexico (Gómez-Gutiérrez et al. 2010).
Finally, cystacanths of Bolbosoma balaenae were
found in Nyctiphanes couchii in the NE Atlantic
(Gregori et al. 2012). Therefore, only acanthocepha-
lans the orders Echinorhynchida and Polymorphida
have been found in euphausiids. This fact may be

related to their final hosts, with Echinorhynchida
infecting mainly teleost fishes and occasionally
amphibians and reptiles, whereas Polymorphida
infect mainly birds and marine mammals (Bush et al.
2001).

Rhadinorhynchus is a generalist at the definitive
host level. However, at the zooplankton level, it
demonstrated some specificity for krill. This speci-
ficity is reinforced because we did not find cysta-
canths of Rhadinorhynchus sp. in the larvae of Nyc-
tiphanes couchii (calyptopis and furcilias with
0.8−2.20 and 2.2−5.5 mm in total length, respec-
tively). We also did not find them in copepod species
or other taxa, probably due to the large size of these
cystacanths (~11.41 mm). We suspect that only adults
of N. couchii could harbour them in their cephalotho-
rax (12−17 mm length). Consequently, it seems that
the smaller zooplankton organisms cannot harbour
large cystacanths or act as intermediate hosts for
these acanthocephalans. Moreover, the large size of
the cystacanths we found probably acts to limit the
intensity to 1, because none of the examined N.
couchii showed more than one cystacanth per indi-
vidual, as described in Gómez-Gutiérrez et al. (2010)
and Gregori et al. (2012).

The prevalence of Rhadinorhynchus sp. within the
euphausiid population was very low (Table 2). This is
usually considered a feature of the zooplankton
trophic level because of the dilution effect of the
pelagic realm where it becomes dif ficult to find a
suitable intermediary host (Marco gliese 2002). Nev-
ertheless, since most predators ingest large quanti-
ties of krill, euphausiids become significant interme-
diate or paratenic hosts that originate high infection
rates and intensities in the final parasite’s hosts
(Marcogliese 1995, 2002). Despite the fact that low
prevalence is a feature at the zooplankton level,
information about it is very scarce. Nevertheless, our
prevalences are similar to those reported by Shimazu
(1975) with infection rates about 0.219% in Thy sa no -
essa longipes and 13.33% in T. raschii. Gómez-
Gutiérrez et al. (2010) re ported an average of preva-
lence about 3.1% in Nyctiphanes simplex and
Gregori et al. (2012) reported a prevalence of 0.10%
in N. couchii.

The ecological impact of cystacanths can be better
understood if we consider the whole mesozooplank-
tonic community where the sample was taken. Roura
et al. (2013) defined 6 characteristic mesozooplank-
ton communities in the Ría de Vigo during the
upwelling season following the bathymetric gradi-
ent, 3 in early summer and 3 in autumn, named as
coastal, frontal and oceanic. These 6 communities
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changed from summer to autumn due to a shift from
relaxation-downwelled to upwelled conditions cou-
pled with life-cycle changes in the zooplankton. We
found cystacanths in the coastal (SC) and frontal (SF)
summer communities as well as coastal (AC) and
oceanic (AO) autumn communities (Table 3). A total
of 2079 and 185 107 adults of Nyctiphanes couchii
were counted in SC and SF, respectively, and there-
fore the number of potential infected adults would be
6 and 8 in these 2 communities. In autumn communi-
ties under upwelling conditions the number of adults
of N. couchii was 3363 and 16 741 individuals in AC
and AO. Accordingly, 4 and 24 would be the inferred
number of infected adults in each community,
respectively. These results suggest that the recruit-
ment of parasites may be affected by the oceanogra-
phy (Pascual et al. 2007).

In conclusion, we would like to emphasize that this
is the first record of Rhadinorhynchus sp. in Nyc-
tiphanes couchii in coastal waters of the NW Iberian
Peninsula, with N. couchii probably acting through
predator−prey interactions as an intermediate host.
The results of our morphological and phylogenetic
study, along with the available epidemiological infor-
mation on R. pristis infection in Scombridae and
Xiphidae fishes from the nearby Portugal coast, the
Madeira Islands and the North Atlantic, suggest that
the cystacanths herein described probably belong to
this species (Rodrigues et al. 1975, Vassiliades 1982,
Hogans et al. 1983, Rego 1987, Costa et al. 2004).
However, we strongly recommend that a thorough
review of the species, as well as the family Rhadi-
norhynchidae, should be carried out.
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